| Index: src/pathops/SkDCubicToQuads.cpp
|
| ===================================================================
|
| --- src/pathops/SkDCubicToQuads.cpp (revision 0)
|
| +++ src/pathops/SkDCubicToQuads.cpp (revision 0)
|
| @@ -0,0 +1,190 @@
|
| +/*
|
| +http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
|
| +*/
|
| +
|
| +/*
|
| +Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
|
| +Then for degree elevation, the equations are:
|
| +
|
| +Q0 = P0
|
| +Q1 = 1/3 P0 + 2/3 P1
|
| +Q2 = 2/3 P1 + 1/3 P2
|
| +Q3 = P2
|
| +In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
|
| + the equations above:
|
| +
|
| +P1 = 3/2 Q1 - 1/2 Q0
|
| +P1 = 3/2 Q2 - 1/2 Q3
|
| +If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
|
| + it's likely not, your best bet is to average them. So,
|
| +
|
| +P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
|
| +
|
| +
|
| +SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
|
| +|x| is the euclidean norm of x
|
| +mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
|
| + control point at C = (3·C2 - P2 + 3·C1 - P1)/4
|
| +
|
| +Algorithm
|
| +
|
| +pick an absolute precision (prec)
|
| +Compute the Tdiv as the root of (cubic) equation
|
| +sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
|
| +if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
|
| + quadratic, with a defect less than prec, by the mid-point approximation.
|
| + Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
|
| +0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
|
| + approximation
|
| +Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
|
| +
|
| +confirmed by (maybe stolen from)
|
| +http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
|
| +// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf
|
| +// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
|
| +
|
| +*/
|
| +
|
| +#include "SkPathOpsCubic.h"
|
| +#include "SkPathOpsLine.h"
|
| +#include "SkPathOpsQuad.h"
|
| +#include "SkReduceOrder.h"
|
| +#include "SkTDArray.h"
|
| +#include "TSearch.h"
|
| +
|
| +#define USE_CUBIC_END_POINTS 1
|
| +
|
| +static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
|
| + const double adjust = sqrt(3) / 36;
|
| + SkDCubic sub;
|
| + const SkDCubic* cPtr;
|
| + if (start == 0) {
|
| + cPtr = &cubic;
|
| + } else {
|
| + // OPTIMIZE: special-case half-split ?
|
| + sub = cubic.subDivide(start, 1);
|
| + cPtr = ⊂
|
| + }
|
| + const SkDCubic& c = *cPtr;
|
| + double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
|
| + double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
|
| + double dist = sqrt(dx * dx + dy * dy);
|
| + double tDiv3 = precision / (adjust * dist);
|
| + double t = SkDCubeRoot(tDiv3);
|
| + if (start > 0) {
|
| + t = start + (1 - start) * t;
|
| + }
|
| + return t;
|
| +}
|
| +
|
| +SkDQuad SkDCubic::toQuad() const {
|
| + SkDQuad quad;
|
| + quad[0] = fPts[0];
|
| + const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
|
| + const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
|
| + quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
|
| + quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
|
| + quad[2] = fPts[3];
|
| + return quad;
|
| +}
|
| +
|
| +static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTDArray<double>* ts) {
|
| + double tDiv = calc_t_div(cubic, precision, 0);
|
| + if (tDiv >= 1) {
|
| + return true;
|
| + }
|
| + if (tDiv >= 0.5) {
|
| + *ts->append() = 0.5;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +static void addTs(const SkDCubic& cubic, double precision, double start, double end,
|
| + SkTDArray<double>* ts) {
|
| + double tDiv = calc_t_div(cubic, precision, 0);
|
| + double parts = ceil(1.0 / tDiv);
|
| + for (double index = 0; index < parts; ++index) {
|
| + double newT = start + (index / parts) * (end - start);
|
| + if (newT > 0 && newT < 1) {
|
| + *ts->append() = newT;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// flavor that returns T values only, deferring computing the quads until they are needed
|
| +// FIXME: when called from recursive intersect 2, this could take the original cubic
|
| +// and do a more precise job when calling chop at and sub divide by computing the fractional ts.
|
| +// it would still take the prechopped cubic for reduce order and find cubic inflections
|
| +void SkDCubic::toQuadraticTs(double precision, SkTDArray<double>* ts) const {
|
| + SkReduceOrder reducer;
|
| + int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics, SkReduceOrder::kFill_Style);
|
| + if (order < 3) {
|
| + return;
|
| + }
|
| + double inflectT[5];
|
| + int inflections = findInflections(inflectT);
|
| + SkASSERT(inflections <= 2);
|
| + if (!endsAreExtremaInXOrY()) {
|
| + inflections += findMaxCurvature(&inflectT[inflections]);
|
| + SkASSERT(inflections <= 5);
|
| + }
|
| + QSort<double>(inflectT, &inflectT[inflections - 1]);
|
| + // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
|
| + // own subroutine?
|
| + while (inflections && approximately_less_than_zero(inflectT[0])) {
|
| + memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
|
| + }
|
| + int start = 0;
|
| + do {
|
| + int next = start + 1;
|
| + if (next >= inflections) {
|
| + break;
|
| + }
|
| + if (!approximately_equal(inflectT[start], inflectT[next])) {
|
| + ++start;
|
| + continue;
|
| + }
|
| + memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
|
| + } while (true);
|
| + while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
|
| + --inflections;
|
| + }
|
| + SkDCubicPair pair;
|
| + if (inflections == 1) {
|
| + pair = chopAt(inflectT[0]);
|
| + int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics,
|
| + SkReduceOrder::kFill_Style);
|
| + if (orderP1 < 2) {
|
| + --inflections;
|
| + } else {
|
| + int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics,
|
| + SkReduceOrder::kFill_Style);
|
| + if (orderP2 < 2) {
|
| + --inflections;
|
| + }
|
| + }
|
| + }
|
| + if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
|
| + return;
|
| + }
|
| + if (inflections == 1) {
|
| + pair = chopAt(inflectT[0]);
|
| + addTs(pair.first(), precision, 0, inflectT[0], ts);
|
| + addTs(pair.second(), precision, inflectT[0], 1, ts);
|
| + return;
|
| + }
|
| + if (inflections > 1) {
|
| + SkDCubic part = subDivide(0, inflectT[0]);
|
| + addTs(part, precision, 0, inflectT[0], ts);
|
| + int last = inflections - 1;
|
| + for (int idx = 0; idx < last; ++idx) {
|
| + part = subDivide(inflectT[idx], inflectT[idx + 1]);
|
| + addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
|
| + }
|
| + part = subDivide(inflectT[last], 1);
|
| + addTs(part, precision, inflectT[last], 1, ts);
|
| + return;
|
| + }
|
| + addTs(*this, precision, 0, 1, ts);
|
| +}
|
|
|