Index: src/pathops/SkDCubicToQuads.cpp |
=================================================================== |
--- src/pathops/SkDCubicToQuads.cpp (revision 0) |
+++ src/pathops/SkDCubicToQuads.cpp (revision 0) |
@@ -0,0 +1,190 @@ |
+/* |
+http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi |
+*/ |
+ |
+/* |
+Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. |
+Then for degree elevation, the equations are: |
+ |
+Q0 = P0 |
+Q1 = 1/3 P0 + 2/3 P1 |
+Q2 = 2/3 P1 + 1/3 P2 |
+Q3 = P2 |
+In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from |
+ the equations above: |
+ |
+P1 = 3/2 Q1 - 1/2 Q0 |
+P1 = 3/2 Q2 - 1/2 Q3 |
+If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since |
+ it's likely not, your best bet is to average them. So, |
+ |
+P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 |
+ |
+ |
+SkDCubic defined by: P1/2 - anchor points, C1/C2 control points |
+|x| is the euclidean norm of x |
+mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the |
+ control point at C = (3·C2 - P2 + 3·C1 - P1)/4 |
+ |
+Algorithm |
+ |
+pick an absolute precision (prec) |
+Compute the Tdiv as the root of (cubic) equation |
+sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec |
+if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a |
+ quadratic, with a defect less than prec, by the mid-point approximation. |
+ Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) |
+0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point |
+ approximation |
+Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation |
+ |
+confirmed by (maybe stolen from) |
+http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html |
+// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf |
+// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf |
+ |
+*/ |
+ |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsLine.h" |
+#include "SkPathOpsQuad.h" |
+#include "SkReduceOrder.h" |
+#include "SkTDArray.h" |
+#include "TSearch.h" |
+ |
+#define USE_CUBIC_END_POINTS 1 |
+ |
+static double calc_t_div(const SkDCubic& cubic, double precision, double start) { |
+ const double adjust = sqrt(3) / 36; |
+ SkDCubic sub; |
+ const SkDCubic* cPtr; |
+ if (start == 0) { |
+ cPtr = &cubic; |
+ } else { |
+ // OPTIMIZE: special-case half-split ? |
+ sub = cubic.subDivide(start, 1); |
+ cPtr = ⊂ |
+ } |
+ const SkDCubic& c = *cPtr; |
+ double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX; |
+ double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY; |
+ double dist = sqrt(dx * dx + dy * dy); |
+ double tDiv3 = precision / (adjust * dist); |
+ double t = SkDCubeRoot(tDiv3); |
+ if (start > 0) { |
+ t = start + (1 - start) * t; |
+ } |
+ return t; |
+} |
+ |
+SkDQuad SkDCubic::toQuad() const { |
+ SkDQuad quad; |
+ quad[0] = fPts[0]; |
+ const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2}; |
+ const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2}; |
+ quad[1].fX = (fromC1.fX + fromC2.fX) / 2; |
+ quad[1].fY = (fromC1.fY + fromC2.fY) / 2; |
+ quad[2] = fPts[3]; |
+ return quad; |
+} |
+ |
+static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTDArray<double>* ts) { |
+ double tDiv = calc_t_div(cubic, precision, 0); |
+ if (tDiv >= 1) { |
+ return true; |
+ } |
+ if (tDiv >= 0.5) { |
+ *ts->append() = 0.5; |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+static void addTs(const SkDCubic& cubic, double precision, double start, double end, |
+ SkTDArray<double>* ts) { |
+ double tDiv = calc_t_div(cubic, precision, 0); |
+ double parts = ceil(1.0 / tDiv); |
+ for (double index = 0; index < parts; ++index) { |
+ double newT = start + (index / parts) * (end - start); |
+ if (newT > 0 && newT < 1) { |
+ *ts->append() = newT; |
+ } |
+ } |
+} |
+ |
+// flavor that returns T values only, deferring computing the quads until they are needed |
+// FIXME: when called from recursive intersect 2, this could take the original cubic |
+// and do a more precise job when calling chop at and sub divide by computing the fractional ts. |
+// it would still take the prechopped cubic for reduce order and find cubic inflections |
+void SkDCubic::toQuadraticTs(double precision, SkTDArray<double>* ts) const { |
+ SkReduceOrder reducer; |
+ int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics, SkReduceOrder::kFill_Style); |
+ if (order < 3) { |
+ return; |
+ } |
+ double inflectT[5]; |
+ int inflections = findInflections(inflectT); |
+ SkASSERT(inflections <= 2); |
+ if (!endsAreExtremaInXOrY()) { |
+ inflections += findMaxCurvature(&inflectT[inflections]); |
+ SkASSERT(inflections <= 5); |
+ } |
+ QSort<double>(inflectT, &inflectT[inflections - 1]); |
+ // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
+ // own subroutine? |
+ while (inflections && approximately_less_than_zero(inflectT[0])) { |
+ memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
+ } |
+ int start = 0; |
+ do { |
+ int next = start + 1; |
+ if (next >= inflections) { |
+ break; |
+ } |
+ if (!approximately_equal(inflectT[start], inflectT[next])) { |
+ ++start; |
+ continue; |
+ } |
+ memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
+ } while (true); |
+ while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
+ --inflections; |
+ } |
+ SkDCubicPair pair; |
+ if (inflections == 1) { |
+ pair = chopAt(inflectT[0]); |
+ int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics, |
+ SkReduceOrder::kFill_Style); |
+ if (orderP1 < 2) { |
+ --inflections; |
+ } else { |
+ int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics, |
+ SkReduceOrder::kFill_Style); |
+ if (orderP2 < 2) { |
+ --inflections; |
+ } |
+ } |
+ } |
+ if (inflections == 0 && add_simple_ts(*this, precision, ts)) { |
+ return; |
+ } |
+ if (inflections == 1) { |
+ pair = chopAt(inflectT[0]); |
+ addTs(pair.first(), precision, 0, inflectT[0], ts); |
+ addTs(pair.second(), precision, inflectT[0], 1, ts); |
+ return; |
+ } |
+ if (inflections > 1) { |
+ SkDCubic part = subDivide(0, inflectT[0]); |
+ addTs(part, precision, 0, inflectT[0], ts); |
+ int last = inflections - 1; |
+ for (int idx = 0; idx < last; ++idx) { |
+ part = subDivide(inflectT[idx], inflectT[idx + 1]); |
+ addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
+ } |
+ part = subDivide(inflectT[last], 1); |
+ addTs(part, precision, inflectT[last], 1, ts); |
+ return; |
+ } |
+ addTs(*this, precision, 0, 1, ts); |
+} |