Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(113)

Unified Diff: src/pathops/SkDCubicLineIntersection.cpp

Issue 12880016: Add intersections for path ops (Closed) Base URL: http://skia.googlecode.com/svn/trunk/
Patch Set: Created 7 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkDCubicIntersection.cpp ('k') | src/pathops/SkDCubicToQuads.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkDCubicLineIntersection.cpp
===================================================================
--- src/pathops/SkDCubicLineIntersection.cpp (revision 0)
+++ src/pathops/SkDCubicLineIntersection.cpp (revision 0)
@@ -0,0 +1,261 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "SkIntersections.h"
+#include "SkPathOpsCubic.h"
+#include "SkPathOpsLine.h"
+
+/*
+Find the interection of a line and cubic by solving for valid t values.
+
+Analogous to line-quadratic intersection, solve line-cubic intersection by
+representing the cubic as:
+ x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
+ y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
+and the line as:
+ y = i*x + j (if the line is more horizontal)
+or:
+ x = i*y + j (if the line is more vertical)
+
+Then using Mathematica, solve for the values of t where the cubic intersects the
+line:
+
+ (in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
+ (out) -e + j +
+ 3 e t - 3 f t -
+ 3 e t^2 + 6 f t^2 - 3 g t^2 +
+ e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
+ i ( a -
+ 3 a t + 3 b t +
+ 3 a t^2 - 6 b t^2 + 3 c t^2 -
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
+
+if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
+
+ (in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
+ (out) a - j -
+ 3 a t + 3 b t +
+ 3 a t^2 - 6 b t^2 + 3 c t^2 -
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
+ i ( e -
+ 3 e t + 3 f t +
+ 3 e t^2 - 6 f t^2 + 3 g t^2 -
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
+
+Solving this with Mathematica produces an expression with hundreds of terms;
+instead, use Numeric Solutions recipe to solve the cubic.
+
+The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
+ A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
+ B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
+ C = 3*(-(-e + f ) + i*(-a + b ) )
+ D = (-( e ) + i*( a ) + j )
+
+The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
+ A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
+ B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
+ C = 3*( (-a + b ) - i*(-e + f ) )
+ D = ( ( a ) - i*( e ) - j )
+
+For horizontal lines:
+(in) Resultant[
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
+(out) e - j -
+ 3 e t + 3 f t +
+ 3 e t^2 - 6 f t^2 + 3 g t^2 -
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3
+ */
+
+class LineCubicIntersections {
+public:
+
+LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i)
+ : cubic(c)
+ , line(l)
+ , intersections(i) {
+}
+
+// see parallel routine in line quadratic intersections
+int intersectRay(double roots[3]) {
+ double adj = line[1].fX - line[0].fX;
+ double opp = line[1].fY - line[0].fY;
+ SkDCubic r;
+ for (int n = 0; n < 4; ++n) {
+ r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp;
+ }
+ double A, B, C, D;
+ SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+}
+
+int intersect() {
+ addEndPoints();
+ double rootVals[3];
+ int roots = intersectRay(rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ double lineT = findLineT(cubicT);
+ if (pinTs(&cubicT, &lineT)) {
+ SkDPoint pt = line.xyAtT(lineT);
+ intersections.insert(cubicT, lineT, pt);
+ }
+ }
+ return intersections.used();
+}
+
+int horizontalIntersect(double axisIntercept, double roots[3]) {
+ double A, B, C, D;
+ SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
+ D -= axisIntercept;
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+}
+
+int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
+ addHorizontalEndPoints(left, right, axisIntercept);
+ double rootVals[3];
+ int roots = horizontalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ SkDPoint pt = cubic.xyAtT(cubicT);
+ double lineT = (pt.fX - left) / (right - left);
+ if (pinTs(&cubicT, &lineT)) {
+ intersections.insert(cubicT, lineT, pt);
+ }
+ }
+ if (flipped) {
+ intersections.flip();
+ }
+ return intersections.used();
+}
+
+int verticalIntersect(double axisIntercept, double roots[3]) {
+ double A, B, C, D;
+ SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D);
+ D -= axisIntercept;
+ return SkDCubic::RootsValidT(A, B, C, D, roots);
+}
+
+int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
+ addVerticalEndPoints(top, bottom, axisIntercept);
+ double rootVals[3];
+ int roots = verticalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double cubicT = rootVals[index];
+ SkDPoint pt = cubic.xyAtT(cubicT);
+ double lineT = (pt.fY - top) / (bottom - top);
+ if (pinTs(&cubicT, &lineT)) {
+ intersections.insert(cubicT, lineT, pt);
+ }
+ }
+ if (flipped) {
+ intersections.flip();
+ }
+ return intersections.used();
+}
+
+protected:
+
+void addEndPoints() {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ for (int lIndex = 0; lIndex < 2; lIndex++) {
+ if (cubic[cIndex] == line[lIndex]) {
+ intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
+ }
+ }
+ }
+}
+
+void addHorizontalEndPoints(double left, double right, double y) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ if (cubic[cIndex].fY != y) {
+ continue;
+ }
+ if (cubic[cIndex].fX == left) {
+ intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
+ }
+ if (cubic[cIndex].fX == right) {
+ intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
+ }
+ }
+}
+
+void addVerticalEndPoints(double top, double bottom, double x) {
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) {
+ if (cubic[cIndex].fX != x) {
+ continue;
+ }
+ if (cubic[cIndex].fY == top) {
+ intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
+ }
+ if (cubic[cIndex].fY == bottom) {
+ intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
+ }
+ }
+}
+
+double findLineT(double t) {
+ SkDPoint xy = cubic.xyAtT(t);
+ double dx = line[1].fX - line[0].fX;
+ double dy = line[1].fY - line[0].fY;
+ if (fabs(dx) > fabs(dy)) {
+ return (xy.fX - line[0].fX) / dx;
+ }
+ return (xy.fY - line[0].fY) / dy;
+}
+
+static bool pinTs(double* cubicT, double* lineT) {
+ if (!approximately_one_or_less(*lineT)) {
+ return false;
+ }
+ if (!approximately_zero_or_more(*lineT)) {
+ return false;
+ }
+ if (precisely_less_than_zero(*cubicT)) {
+ *cubicT = 0;
+ } else if (precisely_greater_than_one(*cubicT)) {
+ *cubicT = 1;
+ }
+ if (precisely_less_than_zero(*lineT)) {
+ *lineT = 0;
+ } else if (precisely_greater_than_one(*lineT)) {
+ *lineT = 1;
+ }
+ return true;
+}
+
+private:
+
+const SkDCubic& cubic;
+const SkDLine& line;
+SkIntersections& intersections;
+};
+
+int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
+ bool flipped) {
+ LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
+ return c.horizontalIntersect(y, left, right, flipped);
+}
+
+int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
+ bool flipped) {
+ LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
+ return c.verticalIntersect(x, top, bottom, flipped);
+}
+
+int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
+ LineCubicIntersections c(cubic, line, *this);
+ return c.intersect();
+}
+
+int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
+ LineCubicIntersections c(cubic, line, *this);
+ return c.intersectRay(fT[0]);
+}
« no previous file with comments | « src/pathops/SkDCubicIntersection.cpp ('k') | src/pathops/SkDCubicToQuads.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698