| Index: src/pathops/SkDCubicLineIntersection.cpp
|
| ===================================================================
|
| --- src/pathops/SkDCubicLineIntersection.cpp (revision 0)
|
| +++ src/pathops/SkDCubicLineIntersection.cpp (revision 0)
|
| @@ -0,0 +1,261 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkIntersections.h"
|
| +#include "SkPathOpsCubic.h"
|
| +#include "SkPathOpsLine.h"
|
| +
|
| +/*
|
| +Find the interection of a line and cubic by solving for valid t values.
|
| +
|
| +Analogous to line-quadratic intersection, solve line-cubic intersection by
|
| +representing the cubic as:
|
| + x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
|
| + y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
|
| +and the line as:
|
| + y = i*x + j (if the line is more horizontal)
|
| +or:
|
| + x = i*y + j (if the line is more vertical)
|
| +
|
| +Then using Mathematica, solve for the values of t where the cubic intersects the
|
| +line:
|
| +
|
| + (in) Resultant[
|
| + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
|
| + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
|
| + (out) -e + j +
|
| + 3 e t - 3 f t -
|
| + 3 e t^2 + 6 f t^2 - 3 g t^2 +
|
| + e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
|
| + i ( a -
|
| + 3 a t + 3 b t +
|
| + 3 a t^2 - 6 b t^2 + 3 c t^2 -
|
| + a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
|
| +
|
| +if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
|
| +
|
| + (in) Resultant[
|
| + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
|
| + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
|
| + (out) a - j -
|
| + 3 a t + 3 b t +
|
| + 3 a t^2 - 6 b t^2 + 3 c t^2 -
|
| + a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
|
| + i ( e -
|
| + 3 e t + 3 f t +
|
| + 3 e t^2 - 6 f t^2 + 3 g t^2 -
|
| + e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
|
| +
|
| +Solving this with Mathematica produces an expression with hundreds of terms;
|
| +instead, use Numeric Solutions recipe to solve the cubic.
|
| +
|
| +The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
|
| + A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
|
| + B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
|
| + C = 3*(-(-e + f ) + i*(-a + b ) )
|
| + D = (-( e ) + i*( a ) + j )
|
| +
|
| +The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
|
| + A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
|
| + B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
|
| + C = 3*( (-a + b ) - i*(-e + f ) )
|
| + D = ( ( a ) - i*( e ) - j )
|
| +
|
| +For horizontal lines:
|
| +(in) Resultant[
|
| + a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
|
| + e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
|
| +(out) e - j -
|
| + 3 e t + 3 f t +
|
| + 3 e t^2 - 6 f t^2 + 3 g t^2 -
|
| + e t^3 + 3 f t^3 - 3 g t^3 + h t^3
|
| + */
|
| +
|
| +class LineCubicIntersections {
|
| +public:
|
| +
|
| +LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i)
|
| + : cubic(c)
|
| + , line(l)
|
| + , intersections(i) {
|
| +}
|
| +
|
| +// see parallel routine in line quadratic intersections
|
| +int intersectRay(double roots[3]) {
|
| + double adj = line[1].fX - line[0].fX;
|
| + double opp = line[1].fY - line[0].fY;
|
| + SkDCubic r;
|
| + for (int n = 0; n < 4; ++n) {
|
| + r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp;
|
| + }
|
| + double A, B, C, D;
|
| + SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
|
| + return SkDCubic::RootsValidT(A, B, C, D, roots);
|
| +}
|
| +
|
| +int intersect() {
|
| + addEndPoints();
|
| + double rootVals[3];
|
| + int roots = intersectRay(rootVals);
|
| + for (int index = 0; index < roots; ++index) {
|
| + double cubicT = rootVals[index];
|
| + double lineT = findLineT(cubicT);
|
| + if (pinTs(&cubicT, &lineT)) {
|
| + SkDPoint pt = line.xyAtT(lineT);
|
| + intersections.insert(cubicT, lineT, pt);
|
| + }
|
| + }
|
| + return intersections.used();
|
| +}
|
| +
|
| +int horizontalIntersect(double axisIntercept, double roots[3]) {
|
| + double A, B, C, D;
|
| + SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
|
| + D -= axisIntercept;
|
| + return SkDCubic::RootsValidT(A, B, C, D, roots);
|
| +}
|
| +
|
| +int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
|
| + addHorizontalEndPoints(left, right, axisIntercept);
|
| + double rootVals[3];
|
| + int roots = horizontalIntersect(axisIntercept, rootVals);
|
| + for (int index = 0; index < roots; ++index) {
|
| + double cubicT = rootVals[index];
|
| + SkDPoint pt = cubic.xyAtT(cubicT);
|
| + double lineT = (pt.fX - left) / (right - left);
|
| + if (pinTs(&cubicT, &lineT)) {
|
| + intersections.insert(cubicT, lineT, pt);
|
| + }
|
| + }
|
| + if (flipped) {
|
| + intersections.flip();
|
| + }
|
| + return intersections.used();
|
| +}
|
| +
|
| +int verticalIntersect(double axisIntercept, double roots[3]) {
|
| + double A, B, C, D;
|
| + SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D);
|
| + D -= axisIntercept;
|
| + return SkDCubic::RootsValidT(A, B, C, D, roots);
|
| +}
|
| +
|
| +int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
|
| + addVerticalEndPoints(top, bottom, axisIntercept);
|
| + double rootVals[3];
|
| + int roots = verticalIntersect(axisIntercept, rootVals);
|
| + for (int index = 0; index < roots; ++index) {
|
| + double cubicT = rootVals[index];
|
| + SkDPoint pt = cubic.xyAtT(cubicT);
|
| + double lineT = (pt.fY - top) / (bottom - top);
|
| + if (pinTs(&cubicT, &lineT)) {
|
| + intersections.insert(cubicT, lineT, pt);
|
| + }
|
| + }
|
| + if (flipped) {
|
| + intersections.flip();
|
| + }
|
| + return intersections.used();
|
| +}
|
| +
|
| +protected:
|
| +
|
| +void addEndPoints() {
|
| + for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| + for (int lIndex = 0; lIndex < 2; lIndex++) {
|
| + if (cubic[cIndex] == line[lIndex]) {
|
| + intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void addHorizontalEndPoints(double left, double right, double y) {
|
| + for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| + if (cubic[cIndex].fY != y) {
|
| + continue;
|
| + }
|
| + if (cubic[cIndex].fX == left) {
|
| + intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
|
| + }
|
| + if (cubic[cIndex].fX == right) {
|
| + intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void addVerticalEndPoints(double top, double bottom, double x) {
|
| + for (int cIndex = 0; cIndex < 4; cIndex += 3) {
|
| + if (cubic[cIndex].fX != x) {
|
| + continue;
|
| + }
|
| + if (cubic[cIndex].fY == top) {
|
| + intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
|
| + }
|
| + if (cubic[cIndex].fY == bottom) {
|
| + intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +double findLineT(double t) {
|
| + SkDPoint xy = cubic.xyAtT(t);
|
| + double dx = line[1].fX - line[0].fX;
|
| + double dy = line[1].fY - line[0].fY;
|
| + if (fabs(dx) > fabs(dy)) {
|
| + return (xy.fX - line[0].fX) / dx;
|
| + }
|
| + return (xy.fY - line[0].fY) / dy;
|
| +}
|
| +
|
| +static bool pinTs(double* cubicT, double* lineT) {
|
| + if (!approximately_one_or_less(*lineT)) {
|
| + return false;
|
| + }
|
| + if (!approximately_zero_or_more(*lineT)) {
|
| + return false;
|
| + }
|
| + if (precisely_less_than_zero(*cubicT)) {
|
| + *cubicT = 0;
|
| + } else if (precisely_greater_than_one(*cubicT)) {
|
| + *cubicT = 1;
|
| + }
|
| + if (precisely_less_than_zero(*lineT)) {
|
| + *lineT = 0;
|
| + } else if (precisely_greater_than_one(*lineT)) {
|
| + *lineT = 1;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +private:
|
| +
|
| +const SkDCubic& cubic;
|
| +const SkDLine& line;
|
| +SkIntersections& intersections;
|
| +};
|
| +
|
| +int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
|
| + bool flipped) {
|
| + LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
|
| + return c.horizontalIntersect(y, left, right, flipped);
|
| +}
|
| +
|
| +int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
|
| + bool flipped) {
|
| + LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
|
| + return c.verticalIntersect(x, top, bottom, flipped);
|
| +}
|
| +
|
| +int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
|
| + LineCubicIntersections c(cubic, line, *this);
|
| + return c.intersect();
|
| +}
|
| +
|
| +int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
|
| + LineCubicIntersections c(cubic, line, *this);
|
| + return c.intersectRay(fT[0]);
|
| +}
|
|
|