Index: src/pathops/SkDCubicLineIntersection.cpp |
=================================================================== |
--- src/pathops/SkDCubicLineIntersection.cpp (revision 0) |
+++ src/pathops/SkDCubicLineIntersection.cpp (revision 0) |
@@ -0,0 +1,261 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkIntersections.h" |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsLine.h" |
+ |
+/* |
+Find the interection of a line and cubic by solving for valid t values. |
+ |
+Analogous to line-quadratic intersection, solve line-cubic intersection by |
+representing the cubic as: |
+ x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 |
+ y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 |
+and the line as: |
+ y = i*x + j (if the line is more horizontal) |
+or: |
+ x = i*y + j (if the line is more vertical) |
+ |
+Then using Mathematica, solve for the values of t where the cubic intersects the |
+line: |
+ |
+ (in) Resultant[ |
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, |
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] |
+ (out) -e + j + |
+ 3 e t - 3 f t - |
+ 3 e t^2 + 6 f t^2 - 3 g t^2 + |
+ e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + |
+ i ( a - |
+ 3 a t + 3 b t + |
+ 3 a t^2 - 6 b t^2 + 3 c t^2 - |
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) |
+ |
+if i goes to infinity, we can rewrite the line in terms of x. Mathematica: |
+ |
+ (in) Resultant[ |
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, |
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
+ (out) a - j - |
+ 3 a t + 3 b t + |
+ 3 a t^2 - 6 b t^2 + 3 c t^2 - |
+ a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - |
+ i ( e - |
+ 3 e t + 3 f t + |
+ 3 e t^2 - 6 f t^2 + 3 g t^2 - |
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) |
+ |
+Solving this with Mathematica produces an expression with hundreds of terms; |
+instead, use Numeric Solutions recipe to solve the cubic. |
+ |
+The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
+ A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) |
+ B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) |
+ C = 3*(-(-e + f ) + i*(-a + b ) ) |
+ D = (-( e ) + i*( a ) + j ) |
+ |
+The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
+ A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) |
+ B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) |
+ C = 3*( (-a + b ) - i*(-e + f ) ) |
+ D = ( ( a ) - i*( e ) - j ) |
+ |
+For horizontal lines: |
+(in) Resultant[ |
+ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, |
+ e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
+(out) e - j - |
+ 3 e t + 3 f t + |
+ 3 e t^2 - 6 f t^2 + 3 g t^2 - |
+ e t^3 + 3 f t^3 - 3 g t^3 + h t^3 |
+ */ |
+ |
+class LineCubicIntersections { |
+public: |
+ |
+LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i) |
+ : cubic(c) |
+ , line(l) |
+ , intersections(i) { |
+} |
+ |
+// see parallel routine in line quadratic intersections |
+int intersectRay(double roots[3]) { |
+ double adj = line[1].fX - line[0].fX; |
+ double opp = line[1].fY - line[0].fY; |
+ SkDCubic r; |
+ for (int n = 0; n < 4; ++n) { |
+ r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp; |
+ } |
+ double A, B, C, D; |
+ SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D); |
+ return SkDCubic::RootsValidT(A, B, C, D, roots); |
+} |
+ |
+int intersect() { |
+ addEndPoints(); |
+ double rootVals[3]; |
+ int roots = intersectRay(rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double cubicT = rootVals[index]; |
+ double lineT = findLineT(cubicT); |
+ if (pinTs(&cubicT, &lineT)) { |
+ SkDPoint pt = line.xyAtT(lineT); |
+ intersections.insert(cubicT, lineT, pt); |
+ } |
+ } |
+ return intersections.used(); |
+} |
+ |
+int horizontalIntersect(double axisIntercept, double roots[3]) { |
+ double A, B, C, D; |
+ SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); |
+ D -= axisIntercept; |
+ return SkDCubic::RootsValidT(A, B, C, D, roots); |
+} |
+ |
+int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
+ addHorizontalEndPoints(left, right, axisIntercept); |
+ double rootVals[3]; |
+ int roots = horizontalIntersect(axisIntercept, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double cubicT = rootVals[index]; |
+ SkDPoint pt = cubic.xyAtT(cubicT); |
+ double lineT = (pt.fX - left) / (right - left); |
+ if (pinTs(&cubicT, &lineT)) { |
+ intersections.insert(cubicT, lineT, pt); |
+ } |
+ } |
+ if (flipped) { |
+ intersections.flip(); |
+ } |
+ return intersections.used(); |
+} |
+ |
+int verticalIntersect(double axisIntercept, double roots[3]) { |
+ double A, B, C, D; |
+ SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D); |
+ D -= axisIntercept; |
+ return SkDCubic::RootsValidT(A, B, C, D, roots); |
+} |
+ |
+int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
+ addVerticalEndPoints(top, bottom, axisIntercept); |
+ double rootVals[3]; |
+ int roots = verticalIntersect(axisIntercept, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double cubicT = rootVals[index]; |
+ SkDPoint pt = cubic.xyAtT(cubicT); |
+ double lineT = (pt.fY - top) / (bottom - top); |
+ if (pinTs(&cubicT, &lineT)) { |
+ intersections.insert(cubicT, lineT, pt); |
+ } |
+ } |
+ if (flipped) { |
+ intersections.flip(); |
+ } |
+ return intersections.used(); |
+} |
+ |
+protected: |
+ |
+void addEndPoints() { |
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
+ for (int lIndex = 0; lIndex < 2; lIndex++) { |
+ if (cubic[cIndex] == line[lIndex]) { |
+ intersections.insert(cIndex >> 1, lIndex, line[lIndex]); |
+ } |
+ } |
+ } |
+} |
+ |
+void addHorizontalEndPoints(double left, double right, double y) { |
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
+ if (cubic[cIndex].fY != y) { |
+ continue; |
+ } |
+ if (cubic[cIndex].fX == left) { |
+ intersections.insert(cIndex >> 1, 0, cubic[cIndex]); |
+ } |
+ if (cubic[cIndex].fX == right) { |
+ intersections.insert(cIndex >> 1, 1, cubic[cIndex]); |
+ } |
+ } |
+} |
+ |
+void addVerticalEndPoints(double top, double bottom, double x) { |
+ for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
+ if (cubic[cIndex].fX != x) { |
+ continue; |
+ } |
+ if (cubic[cIndex].fY == top) { |
+ intersections.insert(cIndex >> 1, 0, cubic[cIndex]); |
+ } |
+ if (cubic[cIndex].fY == bottom) { |
+ intersections.insert(cIndex >> 1, 1, cubic[cIndex]); |
+ } |
+ } |
+} |
+ |
+double findLineT(double t) { |
+ SkDPoint xy = cubic.xyAtT(t); |
+ double dx = line[1].fX - line[0].fX; |
+ double dy = line[1].fY - line[0].fY; |
+ if (fabs(dx) > fabs(dy)) { |
+ return (xy.fX - line[0].fX) / dx; |
+ } |
+ return (xy.fY - line[0].fY) / dy; |
+} |
+ |
+static bool pinTs(double* cubicT, double* lineT) { |
+ if (!approximately_one_or_less(*lineT)) { |
+ return false; |
+ } |
+ if (!approximately_zero_or_more(*lineT)) { |
+ return false; |
+ } |
+ if (precisely_less_than_zero(*cubicT)) { |
+ *cubicT = 0; |
+ } else if (precisely_greater_than_one(*cubicT)) { |
+ *cubicT = 1; |
+ } |
+ if (precisely_less_than_zero(*lineT)) { |
+ *lineT = 0; |
+ } else if (precisely_greater_than_one(*lineT)) { |
+ *lineT = 1; |
+ } |
+ return true; |
+} |
+ |
+private: |
+ |
+const SkDCubic& cubic; |
+const SkDLine& line; |
+SkIntersections& intersections; |
+}; |
+ |
+int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, |
+ bool flipped) { |
+ LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this); |
+ return c.horizontalIntersect(y, left, right, flipped); |
+} |
+ |
+int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, |
+ bool flipped) { |
+ LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this); |
+ return c.verticalIntersect(x, top, bottom, flipped); |
+} |
+ |
+int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { |
+ LineCubicIntersections c(cubic, line, *this); |
+ return c.intersect(); |
+} |
+ |
+int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { |
+ LineCubicIntersections c(cubic, line, *this); |
+ return c.intersectRay(fT[0]); |
+} |