Index: src/pathops/SkDCubicIntersection.cpp |
=================================================================== |
--- src/pathops/SkDCubicIntersection.cpp (revision 0) |
+++ src/pathops/SkDCubicIntersection.cpp (revision 0) |
@@ -0,0 +1,451 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkIntersections.h" |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsLine.h" |
+#include "SkPathOpsPoint.h" |
+#include "SkPathOpsQuad.h" |
+#include "SkPathOpsRect.h" |
+#include "SkReduceOrder.h" |
+#include "SkTDArray.h" |
+#include "TSearch.h" |
+ |
+#if ONE_OFF_DEBUG |
+static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}}; |
+static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}}; |
+#endif |
+ |
+#define DEBUG_QUAD_PART 0 |
+#define SWAP_TOP_DEBUG 0 |
+ |
+static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { |
+ SkDCubic part = cubic.subDivide(tStart, tEnd); |
+ SkDQuad quad = part.toQuad(); |
+ // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an |
+ // extremely shallow quadratic? |
+ int order = reducer->reduce(quad, SkReduceOrder::kFill_Style); |
+#if DEBUG_QUAD_PART |
+ SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)" |
+ " t=(%1.17g,%1.17g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, |
+ cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, |
+ cubic[3].fX, cubic[3].fY, tStart, tEnd); |
+ SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)" |
+ " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, |
+ part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, |
+ part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, |
+ quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); |
+ SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); |
+ if (order > 1) { |
+ SkDebugf(" %1.17g,%1.17g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); |
+ } |
+ if (order > 2) { |
+ SkDebugf(" %1.17g,%1.17g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); |
+ } |
+ SkDebugf(")\n"); |
+ SkASSERT(order < 4 && order > 0); |
+#endif |
+ return order; |
+} |
+ |
+static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, |
+ int order2, SkIntersections& i) { |
+ if (order1 == 3 && order2 == 3) { |
+ i.intersect(simple1, simple2); |
+ } else if (order1 <= 2 && order2 <= 2) { |
+ i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); |
+ } else if (order1 == 3 && order2 <= 2) { |
+ i.intersect(simple1, (const SkDLine&) simple2); |
+ } else { |
+ SkASSERT(order1 <= 2 && order2 == 3); |
+ i.intersect(simple2, (const SkDLine&) simple1); |
+ i.swapPts(); |
+ } |
+} |
+ |
+// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently |
+// chase intersections near quadratic ends, requiring odd hacks to find them. |
+static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, |
+ double t2s, double t2e, double precisionScale, SkIntersections& i) { |
+ i.upDepth(); |
+ SkDCubic c1 = cubic1.subDivide(t1s, t1e); |
+ SkDCubic c2 = cubic2.subDivide(t2s, t2e); |
+ SkTDArray<double> ts1; |
+ // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) |
+ c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); |
+ SkTDArray<double> ts2; |
+ c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); |
+ double t1Start = t1s; |
+ int ts1Count = ts1.count(); |
+ for (int i1 = 0; i1 <= ts1Count; ++i1) { |
+ const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; |
+ const double t1 = t1s + (t1e - t1s) * tEnd1; |
+ SkReduceOrder s1; |
+ int o1 = quadPart(cubic1, t1Start, t1, &s1); |
+ double t2Start = t2s; |
+ int ts2Count = ts2.count(); |
+ for (int i2 = 0; i2 <= ts2Count; ++i2) { |
+ const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; |
+ const double t2 = t2s + (t2e - t2s) * tEnd2; |
+ if (&cubic1 == &cubic2 && t1Start >= t2Start) { |
+ t2Start = t2; |
+ continue; |
+ } |
+ SkReduceOrder s2; |
+ int o2 = quadPart(cubic2, t2Start, t2, &s2); |
+ #if ONE_OFF_DEBUG |
+ char tab[] = " "; |
+ if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 |
+ && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { |
+ SkDCubic cSub1 = cubic1.subDivide(t1Start, t1); |
+ SkDCubic cSub2 = cubic2.subDivide(t2Start, t2); |
+ SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, |
+ __FUNCTION__, t1Start, t1, t2Start, t2); |
+ SkIntersections xlocals; |
+ intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); |
+ SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); |
+ } |
+ #endif |
+ SkIntersections locals; |
+ intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); |
+ double coStart[2] = { -1 }; |
+ SkDPoint coPoint; |
+ int tCount = locals.used(); |
+ for (int tIdx = 0; tIdx < tCount; ++tIdx) { |
+ double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; |
+ double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; |
+ // if the computed t is not sufficiently precise, iterate |
+ SkDPoint p1 = cubic1.xyAtT(to1); |
+ SkDPoint p2 = cubic2.xyAtT(to2); |
+ if (p1.approximatelyEqual(p2)) { |
+ if (locals.isCoincident(tIdx)) { |
+ if (coStart[0] < 0) { |
+ coStart[0] = to1; |
+ coStart[1] = to2; |
+ coPoint = p1; |
+ } else { |
+ i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1); |
+ coStart[0] = -1; |
+ } |
+ } else if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { |
+ if (i.swapped()) { // FIXME: insert should respect swap |
+ i.insert(to2, to1, p1); |
+ } else { |
+ i.insert(to1, to2, p1); |
+ } |
+ } |
+ } else { |
+ double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine |
+#if 1 |
+ double c1Bottom = tIdx == 0 ? 0 : |
+ (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; |
+ double c1Min = SkTMax(c1Bottom, to1 - offset); |
+ double c1Top = tIdx == tCount - 1 ? 1 : |
+ (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; |
+ double c1Max = SkTMin(c1Top, to1 + offset); |
+ double c2Min = SkTMax(0., to2 - offset); |
+ double c2Max = SkTMin(1., to2 + offset); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
+ __FUNCTION__, |
+ c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
+ && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
+ to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
+ c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
+ && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
+ to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
+ SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
+ " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
+ i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., |
+ to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
+ SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
+ " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
+ c1Max, c2Min, c2Max); |
+ #endif |
+ intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
+ i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
+ #endif |
+ if (tCount > 1) { |
+ c1Min = SkTMax(0., to1 - offset); |
+ c1Max = SkTMin(1., to1 + offset); |
+ double c2Bottom = tIdx == 0 ? to2 : |
+ (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; |
+ double c2Top = tIdx == tCount - 1 ? to2 : |
+ (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; |
+ if (c2Bottom > c2Top) { |
+ SkTSwap(c2Bottom, c2Top); |
+ } |
+ if (c2Bottom == to2) { |
+ c2Bottom = 0; |
+ } |
+ if (c2Top == to2) { |
+ c2Top = 1; |
+ } |
+ c2Min = SkTMax(c2Bottom, to2 - offset); |
+ c2Max = SkTMin(c2Top, to2 + offset); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
+ __FUNCTION__, |
+ c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
+ && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
+ to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
+ c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
+ && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
+ to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
+ SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
+ " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
+ i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, |
+ to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
+ SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
+ " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
+ c1Max, c2Min, c2Max); |
+ #endif |
+ intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
+ i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
+ #endif |
+ c1Min = SkTMax(c1Bottom, to1 - offset); |
+ c1Max = SkTMin(c1Top, to1 + offset); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, |
+ __FUNCTION__, |
+ c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max |
+ && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, |
+ to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, |
+ c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max |
+ && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, |
+ to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset |
+ && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); |
+ SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
+ " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
+ i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, |
+ to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
+ SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
+ " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, |
+ c1Max, c2Min, c2Max); |
+ #endif |
+ intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, |
+ i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); |
+ #endif |
+ } |
+#else |
+ double c1Bottom = tIdx == 0 ? 0 : |
+ (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; |
+ double c1Min = SkTMax(c1Bottom, to1 - offset); |
+ double c1Top = tIdx == tCount - 1 ? 1 : |
+ (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; |
+ double c1Max = SkTMin(c1Top, to1 + offset); |
+ double c2Bottom = tIdx == 0 ? to2 : |
+ (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; |
+ double c2Top = tIdx == tCount - 1 ? to2 : |
+ (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; |
+ if (c2Bottom > c2Top) { |
+ SkTSwap(c2Bottom, c2Top); |
+ } |
+ if (c2Bottom == to2) { |
+ c2Bottom = 0; |
+ } |
+ if (c2Top == to2) { |
+ c2Top = 1; |
+ } |
+ double c2Min = SkTMax(c2Bottom, to2 - offset); |
+ double c2Max = SkTMin(c2Top, to2 + offset); |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__, |
+ c1Min <= 0.210357794 && 0.210357794 <= c1Max |
+ && c2Min <= 0.223476406 && 0.223476406 <= c2Max, |
+ to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset |
+ && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset, |
+ c1Min <= 0.211324707 && 0.211324707 <= c1Max |
+ && c2Min <= 0.211327209 && 0.211327209 <= c2Max, |
+ to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset |
+ && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset); |
+ SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" |
+ " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", |
+ __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top, |
+ to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); |
+ SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" |
+ " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); |
+ #endif |
+#endif |
+ intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); |
+ // FIXME: if no intersection is found, either quadratics intersected where |
+ // cubics did not, or the intersection was missed. In the former case, expect |
+ // the quadratics to be nearly parallel at the point of intersection, and check |
+ // for that. |
+ } |
+ } |
+ SkASSERT(coStart[0] == -1); |
+ t2Start = t2; |
+ } |
+ t1Start = t1; |
+ } |
+ i.downDepth(); |
+} |
+ |
+#define LINE_FRACTION 0.1 |
+ |
+// intersect the end of the cubic with the other. Try lines from the end to control and opposite |
+// end to determine range of t on opposite cubic. |
+static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, |
+ const SkDRect& bounds2, SkIntersections& i) { |
+ SkDLine line; |
+ int t1Index = start ? 0 : 3; |
+ line[0] = cubic1[t1Index]; |
+ // don't bother if the two cubics are connnected |
+ SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array |
+ for (int index = 0; index < 4; ++index) { |
+ if (index == t1Index) { |
+ continue; |
+ } |
+ SkDVector dxy1 = cubic1[index] - line[0]; |
+ dxy1 /= SkDCubic::gPrecisionUnit; |
+ line[1] = line[0] + dxy1; |
+ SkDRect lineBounds; |
+ lineBounds.setBounds(line); |
+ if (!bounds2.intersects(&lineBounds)) { |
+ continue; |
+ } |
+ SkIntersections local; |
+ if (!local.intersect(cubic2, line)) { |
+ continue; |
+ } |
+ for (int idx2 = 0; idx2 < local.used(); ++idx2) { |
+ double foundT = local[0][idx2]; |
+ if (approximately_less_than_zero(foundT) |
+ || approximately_greater_than_one(foundT)) { |
+ continue; |
+ } |
+ if (local.pt(idx2).approximatelyEqual(line[0])) { |
+ if (i.swapped()) { // FIXME: insert should respect swap |
+ i.insert(foundT, start ? 0 : 1, line[0]); |
+ } else { |
+ i.insert(start ? 0 : 1, foundT, line[0]); |
+ } |
+ } else { |
+ *tVals.append() = local[0][idx2]; |
+ } |
+ } |
+ } |
+ if (tVals.count() == 0) { |
+ return; |
+ } |
+ QSort<double>(tVals.begin(), tVals.end() - 1); |
+ double tMin1 = start ? 0 : 1 - LINE_FRACTION; |
+ double tMax1 = start ? LINE_FRACTION : 1; |
+ int tIdx = 0; |
+ do { |
+ int tLast = tIdx; |
+ while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { |
+ ++tLast; |
+ } |
+ double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); |
+ double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); |
+ int lastUsed = i.used(); |
+ intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); |
+ if (lastUsed == i.used()) { |
+ tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); |
+ tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); |
+ intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); |
+ } |
+ tIdx = tLast + 1; |
+ } while (tIdx < tVals.count()); |
+ return; |
+} |
+ |
+const double CLOSE_ENOUGH = 0.001; |
+ |
+static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { |
+ if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { |
+ return false; |
+ } |
+ pt = cubic.xyAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); |
+ return true; |
+} |
+ |
+static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { |
+ int last = i.used() - 1; |
+ if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { |
+ return false; |
+ } |
+ pt = cubic.xyAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); |
+ return true; |
+} |
+ |
+int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { |
+ ::intersect(c1, 0, 1, c2, 0, 1, 1, *this); |
+ // FIXME: pass in cached bounds from caller |
+ SkDRect c1Bounds, c2Bounds; |
+ c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? |
+ c2Bounds.setBounds(c2); |
+ intersectEnd(c1, false, c2, c2Bounds, *this); |
+ intersectEnd(c1, true, c2, c2Bounds, *this); |
+ bool selfIntersect = &c1 == &c2; |
+ if (!selfIntersect) { |
+ swap(); |
+ intersectEnd(c2, false, c1, c1Bounds, *this); |
+ intersectEnd(c2, true, c1, c1Bounds, *this); |
+ swap(); |
+ } |
+ // If an end point and a second point very close to the end is returned, the second |
+ // point may have been detected because the approximate quads |
+ // intersected at the end and close to it. Verify that the second point is valid. |
+ if (fUsed <= 1 || coincidentUsed()) { |
+ return fUsed; |
+ } |
+ SkDPoint pt[2]; |
+ if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) |
+ && pt[0].approximatelyEqual(pt[1])) { |
+ removeOne(1); |
+ } |
+ if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) |
+ && pt[0].approximatelyEqual(pt[1])) { |
+ removeOne(used() - 2); |
+ } |
+ return fUsed; |
+} |
+ |
+// Up promote the quad to a cubic. |
+// OPTIMIZATION If this is a common use case, optimize by duplicating |
+// the intersect 3 loop to avoid the promotion / demotion code |
+int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { |
+ SkDCubic up = quad.toCubic(); |
+ (void) intersect(cubic, up); |
+ return used(); |
+} |
+ |
+/* http://www.ag.jku.at/compass/compasssample.pdf |
+( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen |
+Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no |
+SINTEF Applied Mathematics http://www.sintef.no ) |
+describes a method to find the self intersection of a cubic by taking the gradient of the implicit |
+form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ |
+ |
+int SkIntersections::intersect(const SkDCubic& c) { |
+ // check to see if x or y end points are the extrema. Are other quick rejects possible? |
+ if (c.endsAreExtremaInXOrY()) { |
+ return false; |
+ } |
+ (void) intersect(c, c); |
+ if (used() > 0) { |
+ SkASSERT(used() == 1); |
+ if (fT[0][0] > fT[1][0]) { |
+ swapPts(); |
+ } |
+ } |
+ return used(); |
+} |