| Index: src/jsregexp.cc
|
| diff --git a/src/jsregexp.cc b/src/jsregexp.cc
|
| deleted file mode 100644
|
| index fc95c5e0b80f8de83f5f1805ce50cb42de0dd19b..0000000000000000000000000000000000000000
|
| --- a/src/jsregexp.cc
|
| +++ /dev/null
|
| @@ -1,6412 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/v8.h"
|
| -
|
| -#include "src/ast.h"
|
| -#include "src/base/platform/platform.h"
|
| -#include "src/compilation-cache.h"
|
| -#include "src/compiler.h"
|
| -#include "src/execution.h"
|
| -#include "src/factory.h"
|
| -#include "src/jsregexp-inl.h"
|
| -#include "src/jsregexp.h"
|
| -#include "src/messages.h"
|
| -#include "src/ostreams.h"
|
| -#include "src/parser.h"
|
| -#include "src/regexp-macro-assembler.h"
|
| -#include "src/regexp-macro-assembler-irregexp.h"
|
| -#include "src/regexp-macro-assembler-tracer.h"
|
| -#include "src/regexp-stack.h"
|
| -#include "src/runtime/runtime.h"
|
| -#include "src/splay-tree-inl.h"
|
| -#include "src/string-search.h"
|
| -#include "src/unicode-decoder.h"
|
| -
|
| -#ifndef V8_INTERPRETED_REGEXP
|
| -#if V8_TARGET_ARCH_IA32
|
| -#include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_X64
|
| -#include "src/x64/regexp-macro-assembler-x64.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_ARM64
|
| -#include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_ARM
|
| -#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_PPC
|
| -#include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_MIPS
|
| -#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_MIPS64
|
| -#include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT
|
| -#elif V8_TARGET_ARCH_X87
|
| -#include "src/x87/regexp-macro-assembler-x87.h" // NOLINT
|
| -#else
|
| -#error Unsupported target architecture.
|
| -#endif
|
| -#endif
|
| -
|
| -#include "src/interpreter-irregexp.h"
|
| -
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -MaybeHandle<Object> RegExpImpl::CreateRegExpLiteral(
|
| - Handle<JSFunction> constructor,
|
| - Handle<String> pattern,
|
| - Handle<String> flags) {
|
| - // Call the construct code with 2 arguments.
|
| - Handle<Object> argv[] = { pattern, flags };
|
| - return Execution::New(constructor, arraysize(argv), argv);
|
| -}
|
| -
|
| -
|
| -MUST_USE_RESULT
|
| -static inline MaybeHandle<Object> ThrowRegExpException(
|
| - Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
|
| - Isolate* isolate = re->GetIsolate();
|
| - THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
|
| - pattern, error_text),
|
| - Object);
|
| -}
|
| -
|
| -
|
| -inline void ThrowRegExpException(Handle<JSRegExp> re,
|
| - Handle<String> error_text) {
|
| - USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
|
| -}
|
| -
|
| -
|
| -ContainedInLattice AddRange(ContainedInLattice containment,
|
| - const int* ranges,
|
| - int ranges_length,
|
| - Interval new_range) {
|
| - DCHECK((ranges_length & 1) == 1);
|
| - DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
|
| - if (containment == kLatticeUnknown) return containment;
|
| - bool inside = false;
|
| - int last = 0;
|
| - for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
|
| - // Consider the range from last to ranges[i].
|
| - // We haven't got to the new range yet.
|
| - if (ranges[i] <= new_range.from()) continue;
|
| - // New range is wholly inside last-ranges[i]. Note that new_range.to() is
|
| - // inclusive, but the values in ranges are not.
|
| - if (last <= new_range.from() && new_range.to() < ranges[i]) {
|
| - return Combine(containment, inside ? kLatticeIn : kLatticeOut);
|
| - }
|
| - return kLatticeUnknown;
|
| - }
|
| - return containment;
|
| -}
|
| -
|
| -
|
| -// More makes code generation slower, less makes V8 benchmark score lower.
|
| -const int kMaxLookaheadForBoyerMoore = 8;
|
| -// In a 3-character pattern you can maximally step forwards 3 characters
|
| -// at a time, which is not always enough to pay for the extra logic.
|
| -const int kPatternTooShortForBoyerMoore = 2;
|
| -
|
| -
|
| -// Identifies the sort of regexps where the regexp engine is faster
|
| -// than the code used for atom matches.
|
| -static bool HasFewDifferentCharacters(Handle<String> pattern) {
|
| - int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
|
| - if (length <= kPatternTooShortForBoyerMoore) return false;
|
| - const int kMod = 128;
|
| - bool character_found[kMod];
|
| - int different = 0;
|
| - memset(&character_found[0], 0, sizeof(character_found));
|
| - for (int i = 0; i < length; i++) {
|
| - int ch = (pattern->Get(i) & (kMod - 1));
|
| - if (!character_found[ch]) {
|
| - character_found[ch] = true;
|
| - different++;
|
| - // We declare a regexp low-alphabet if it has at least 3 times as many
|
| - // characters as it has different characters.
|
| - if (different * 3 > length) return false;
|
| - }
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// Generic RegExp methods. Dispatches to implementation specific methods.
|
| -
|
| -
|
| -MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
|
| - Handle<String> pattern,
|
| - JSRegExp::Flags flags) {
|
| - Isolate* isolate = re->GetIsolate();
|
| - Zone zone;
|
| - CompilationCache* compilation_cache = isolate->compilation_cache();
|
| - MaybeHandle<FixedArray> maybe_cached =
|
| - compilation_cache->LookupRegExp(pattern, flags);
|
| - Handle<FixedArray> cached;
|
| - bool in_cache = maybe_cached.ToHandle(&cached);
|
| - LOG(isolate, RegExpCompileEvent(re, in_cache));
|
| -
|
| - Handle<Object> result;
|
| - if (in_cache) {
|
| - re->set_data(*cached);
|
| - return re;
|
| - }
|
| - pattern = String::Flatten(pattern);
|
| - PostponeInterruptsScope postpone(isolate);
|
| - RegExpCompileData parse_result;
|
| - FlatStringReader reader(isolate, pattern);
|
| - if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader,
|
| - flags.is_multiline(), flags.is_unicode(),
|
| - &parse_result)) {
|
| - // Throw an exception if we fail to parse the pattern.
|
| - return ThrowRegExpException(re, pattern, parse_result.error);
|
| - }
|
| -
|
| - bool has_been_compiled = false;
|
| -
|
| - if (parse_result.simple &&
|
| - !flags.is_ignore_case() &&
|
| - !flags.is_sticky() &&
|
| - !HasFewDifferentCharacters(pattern)) {
|
| - // Parse-tree is a single atom that is equal to the pattern.
|
| - AtomCompile(re, pattern, flags, pattern);
|
| - has_been_compiled = true;
|
| - } else if (parse_result.tree->IsAtom() &&
|
| - !flags.is_ignore_case() &&
|
| - !flags.is_sticky() &&
|
| - parse_result.capture_count == 0) {
|
| - RegExpAtom* atom = parse_result.tree->AsAtom();
|
| - Vector<const uc16> atom_pattern = atom->data();
|
| - Handle<String> atom_string;
|
| - ASSIGN_RETURN_ON_EXCEPTION(
|
| - isolate, atom_string,
|
| - isolate->factory()->NewStringFromTwoByte(atom_pattern),
|
| - Object);
|
| - if (!HasFewDifferentCharacters(atom_string)) {
|
| - AtomCompile(re, pattern, flags, atom_string);
|
| - has_been_compiled = true;
|
| - }
|
| - }
|
| - if (!has_been_compiled) {
|
| - IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
|
| - }
|
| - DCHECK(re->data()->IsFixedArray());
|
| - // Compilation succeeded so the data is set on the regexp
|
| - // and we can store it in the cache.
|
| - Handle<FixedArray> data(FixedArray::cast(re->data()));
|
| - compilation_cache->PutRegExp(pattern, flags, data);
|
| -
|
| - return re;
|
| -}
|
| -
|
| -
|
| -MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
|
| - Handle<String> subject,
|
| - int index,
|
| - Handle<JSArray> last_match_info) {
|
| - switch (regexp->TypeTag()) {
|
| - case JSRegExp::ATOM:
|
| - return AtomExec(regexp, subject, index, last_match_info);
|
| - case JSRegExp::IRREGEXP: {
|
| - return IrregexpExec(regexp, subject, index, last_match_info);
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - return MaybeHandle<Object>();
|
| - }
|
| -}
|
| -
|
| -
|
| -// RegExp Atom implementation: Simple string search using indexOf.
|
| -
|
| -
|
| -void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
|
| - Handle<String> pattern,
|
| - JSRegExp::Flags flags,
|
| - Handle<String> match_pattern) {
|
| - re->GetIsolate()->factory()->SetRegExpAtomData(re,
|
| - JSRegExp::ATOM,
|
| - pattern,
|
| - flags,
|
| - match_pattern);
|
| -}
|
| -
|
| -
|
| -static void SetAtomLastCapture(FixedArray* array,
|
| - String* subject,
|
| - int from,
|
| - int to) {
|
| - SealHandleScope shs(array->GetIsolate());
|
| - RegExpImpl::SetLastCaptureCount(array, 2);
|
| - RegExpImpl::SetLastSubject(array, subject);
|
| - RegExpImpl::SetLastInput(array, subject);
|
| - RegExpImpl::SetCapture(array, 0, from);
|
| - RegExpImpl::SetCapture(array, 1, to);
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
|
| - Handle<String> subject,
|
| - int index,
|
| - int32_t* output,
|
| - int output_size) {
|
| - Isolate* isolate = regexp->GetIsolate();
|
| -
|
| - DCHECK(0 <= index);
|
| - DCHECK(index <= subject->length());
|
| -
|
| - subject = String::Flatten(subject);
|
| - DisallowHeapAllocation no_gc; // ensure vectors stay valid
|
| -
|
| - String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
|
| - int needle_len = needle->length();
|
| - DCHECK(needle->IsFlat());
|
| - DCHECK_LT(0, needle_len);
|
| -
|
| - if (index + needle_len > subject->length()) {
|
| - return RegExpImpl::RE_FAILURE;
|
| - }
|
| -
|
| - for (int i = 0; i < output_size; i += 2) {
|
| - String::FlatContent needle_content = needle->GetFlatContent();
|
| - String::FlatContent subject_content = subject->GetFlatContent();
|
| - DCHECK(needle_content.IsFlat());
|
| - DCHECK(subject_content.IsFlat());
|
| - // dispatch on type of strings
|
| - index =
|
| - (needle_content.IsOneByte()
|
| - ? (subject_content.IsOneByte()
|
| - ? SearchString(isolate, subject_content.ToOneByteVector(),
|
| - needle_content.ToOneByteVector(), index)
|
| - : SearchString(isolate, subject_content.ToUC16Vector(),
|
| - needle_content.ToOneByteVector(), index))
|
| - : (subject_content.IsOneByte()
|
| - ? SearchString(isolate, subject_content.ToOneByteVector(),
|
| - needle_content.ToUC16Vector(), index)
|
| - : SearchString(isolate, subject_content.ToUC16Vector(),
|
| - needle_content.ToUC16Vector(), index)));
|
| - if (index == -1) {
|
| - return i / 2; // Return number of matches.
|
| - } else {
|
| - output[i] = index;
|
| - output[i+1] = index + needle_len;
|
| - index += needle_len;
|
| - }
|
| - }
|
| - return output_size / 2;
|
| -}
|
| -
|
| -
|
| -Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
|
| - Handle<String> subject,
|
| - int index,
|
| - Handle<JSArray> last_match_info) {
|
| - Isolate* isolate = re->GetIsolate();
|
| -
|
| - static const int kNumRegisters = 2;
|
| - STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
|
| - int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
|
| -
|
| - int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
|
| -
|
| - if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
|
| -
|
| - DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
|
| - SealHandleScope shs(isolate);
|
| - FixedArray* array = FixedArray::cast(last_match_info->elements());
|
| - SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
|
| - return last_match_info;
|
| -}
|
| -
|
| -
|
| -// Irregexp implementation.
|
| -
|
| -// Ensures that the regexp object contains a compiled version of the
|
| -// source for either one-byte or two-byte subject strings.
|
| -// If the compiled version doesn't already exist, it is compiled
|
| -// from the source pattern.
|
| -// If compilation fails, an exception is thrown and this function
|
| -// returns false.
|
| -bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
|
| - Handle<String> sample_subject,
|
| - bool is_one_byte) {
|
| - Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - if (compiled_code->IsByteArray()) return true;
|
| -#else // V8_INTERPRETED_REGEXP (RegExp native code)
|
| - if (compiled_code->IsCode()) return true;
|
| -#endif
|
| - // We could potentially have marked this as flushable, but have kept
|
| - // a saved version if we did not flush it yet.
|
| - Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
|
| - if (saved_code->IsCode()) {
|
| - // Reinstate the code in the original place.
|
| - re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
|
| - DCHECK(compiled_code->IsSmi());
|
| - return true;
|
| - }
|
| - return CompileIrregexp(re, sample_subject, is_one_byte);
|
| -}
|
| -
|
| -
|
| -bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
|
| - Handle<String> sample_subject,
|
| - bool is_one_byte) {
|
| - // Compile the RegExp.
|
| - Isolate* isolate = re->GetIsolate();
|
| - Zone zone;
|
| - PostponeInterruptsScope postpone(isolate);
|
| - // If we had a compilation error the last time this is saved at the
|
| - // saved code index.
|
| - Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
|
| - // When arriving here entry can only be a smi, either representing an
|
| - // uncompiled regexp, a previous compilation error, or code that has
|
| - // been flushed.
|
| - DCHECK(entry->IsSmi());
|
| - int entry_value = Smi::cast(entry)->value();
|
| - DCHECK(entry_value == JSRegExp::kUninitializedValue ||
|
| - entry_value == JSRegExp::kCompilationErrorValue ||
|
| - (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
|
| -
|
| - if (entry_value == JSRegExp::kCompilationErrorValue) {
|
| - // A previous compilation failed and threw an error which we store in
|
| - // the saved code index (we store the error message, not the actual
|
| - // error). Recreate the error object and throw it.
|
| - Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
|
| - DCHECK(error_string->IsString());
|
| - Handle<String> error_message(String::cast(error_string));
|
| - ThrowRegExpException(re, error_message);
|
| - return false;
|
| - }
|
| -
|
| - JSRegExp::Flags flags = re->GetFlags();
|
| -
|
| - Handle<String> pattern(re->Pattern());
|
| - pattern = String::Flatten(pattern);
|
| - RegExpCompileData compile_data;
|
| - FlatStringReader reader(isolate, pattern);
|
| - if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags.is_multiline(),
|
| - flags.is_unicode(), &compile_data)) {
|
| - // Throw an exception if we fail to parse the pattern.
|
| - // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
|
| - USE(ThrowRegExpException(re, pattern, compile_data.error));
|
| - return false;
|
| - }
|
| - RegExpEngine::CompilationResult result = RegExpEngine::Compile(
|
| - isolate, &zone, &compile_data, flags.is_ignore_case(), flags.is_global(),
|
| - flags.is_multiline(), flags.is_sticky(), pattern, sample_subject,
|
| - is_one_byte);
|
| - if (result.error_message != NULL) {
|
| - // Unable to compile regexp.
|
| - Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
|
| - CStrVector(result.error_message)).ToHandleChecked();
|
| - ThrowRegExpException(re, error_message);
|
| - return false;
|
| - }
|
| -
|
| - Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
|
| - data->set(JSRegExp::code_index(is_one_byte), result.code);
|
| - int register_max = IrregexpMaxRegisterCount(*data);
|
| - if (result.num_registers > register_max) {
|
| - SetIrregexpMaxRegisterCount(*data, result.num_registers);
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
|
| - return Smi::cast(
|
| - re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
|
| -}
|
| -
|
| -
|
| -void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
|
| - re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
|
| - return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
|
| - return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
|
| -}
|
| -
|
| -
|
| -ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
|
| - return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
|
| -}
|
| -
|
| -
|
| -Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
|
| - return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
|
| -}
|
| -
|
| -
|
| -void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
|
| - Handle<String> pattern,
|
| - JSRegExp::Flags flags,
|
| - int capture_count) {
|
| - // Initialize compiled code entries to null.
|
| - re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
|
| - JSRegExp::IRREGEXP,
|
| - pattern,
|
| - flags,
|
| - capture_count);
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
|
| - Handle<String> subject) {
|
| - subject = String::Flatten(subject);
|
| -
|
| - // Check representation of the underlying storage.
|
| - bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
|
| - if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
|
| -
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - // Byte-code regexp needs space allocated for all its registers.
|
| - // The result captures are copied to the start of the registers array
|
| - // if the match succeeds. This way those registers are not clobbered
|
| - // when we set the last match info from last successful match.
|
| - return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
|
| - (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
|
| -#else // V8_INTERPRETED_REGEXP
|
| - // Native regexp only needs room to output captures. Registers are handled
|
| - // internally.
|
| - return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -}
|
| -
|
| -
|
| -int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
|
| - Handle<String> subject,
|
| - int index,
|
| - int32_t* output,
|
| - int output_size) {
|
| - Isolate* isolate = regexp->GetIsolate();
|
| -
|
| - Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
|
| -
|
| - DCHECK(index >= 0);
|
| - DCHECK(index <= subject->length());
|
| - DCHECK(subject->IsFlat());
|
| -
|
| - bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
|
| -
|
| -#ifndef V8_INTERPRETED_REGEXP
|
| - DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
|
| - do {
|
| - EnsureCompiledIrregexp(regexp, subject, is_one_byte);
|
| - Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
|
| - // The stack is used to allocate registers for the compiled regexp code.
|
| - // This means that in case of failure, the output registers array is left
|
| - // untouched and contains the capture results from the previous successful
|
| - // match. We can use that to set the last match info lazily.
|
| - NativeRegExpMacroAssembler::Result res =
|
| - NativeRegExpMacroAssembler::Match(code,
|
| - subject,
|
| - output,
|
| - output_size,
|
| - index,
|
| - isolate);
|
| - if (res != NativeRegExpMacroAssembler::RETRY) {
|
| - DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
|
| - isolate->has_pending_exception());
|
| - STATIC_ASSERT(
|
| - static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
|
| - STATIC_ASSERT(
|
| - static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
|
| - STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
|
| - == RE_EXCEPTION);
|
| - return static_cast<IrregexpResult>(res);
|
| - }
|
| - // If result is RETRY, the string has changed representation, and we
|
| - // must restart from scratch.
|
| - // In this case, it means we must make sure we are prepared to handle
|
| - // the, potentially, different subject (the string can switch between
|
| - // being internal and external, and even between being Latin1 and UC16,
|
| - // but the characters are always the same).
|
| - IrregexpPrepare(regexp, subject);
|
| - is_one_byte = subject->IsOneByteRepresentationUnderneath();
|
| - } while (true);
|
| - UNREACHABLE();
|
| - return RE_EXCEPTION;
|
| -#else // V8_INTERPRETED_REGEXP
|
| -
|
| - DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
|
| - // We must have done EnsureCompiledIrregexp, so we can get the number of
|
| - // registers.
|
| - int number_of_capture_registers =
|
| - (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
|
| - int32_t* raw_output = &output[number_of_capture_registers];
|
| - // We do not touch the actual capture result registers until we know there
|
| - // has been a match so that we can use those capture results to set the
|
| - // last match info.
|
| - for (int i = number_of_capture_registers - 1; i >= 0; i--) {
|
| - raw_output[i] = -1;
|
| - }
|
| - Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
|
| - isolate);
|
| -
|
| - IrregexpResult result = IrregexpInterpreter::Match(isolate,
|
| - byte_codes,
|
| - subject,
|
| - raw_output,
|
| - index);
|
| - if (result == RE_SUCCESS) {
|
| - // Copy capture results to the start of the registers array.
|
| - MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
|
| - }
|
| - if (result == RE_EXCEPTION) {
|
| - DCHECK(!isolate->has_pending_exception());
|
| - isolate->StackOverflow();
|
| - }
|
| - return result;
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -}
|
| -
|
| -
|
| -MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
|
| - Handle<String> subject,
|
| - int previous_index,
|
| - Handle<JSArray> last_match_info) {
|
| - Isolate* isolate = regexp->GetIsolate();
|
| - DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
|
| -
|
| - // Prepare space for the return values.
|
| -#if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
|
| - if (FLAG_trace_regexp_bytecodes) {
|
| - String* pattern = regexp->Pattern();
|
| - PrintF("\n\nRegexp match: /%s/\n\n", pattern->ToCString().get());
|
| - PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
|
| - }
|
| -#endif
|
| - int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
|
| - if (required_registers < 0) {
|
| - // Compiling failed with an exception.
|
| - DCHECK(isolate->has_pending_exception());
|
| - return MaybeHandle<Object>();
|
| - }
|
| -
|
| - int32_t* output_registers = NULL;
|
| - if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
|
| - output_registers = NewArray<int32_t>(required_registers);
|
| - }
|
| - base::SmartArrayPointer<int32_t> auto_release(output_registers);
|
| - if (output_registers == NULL) {
|
| - output_registers = isolate->jsregexp_static_offsets_vector();
|
| - }
|
| -
|
| - int res = RegExpImpl::IrregexpExecRaw(
|
| - regexp, subject, previous_index, output_registers, required_registers);
|
| - if (res == RE_SUCCESS) {
|
| - int capture_count =
|
| - IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
|
| - return SetLastMatchInfo(
|
| - last_match_info, subject, capture_count, output_registers);
|
| - }
|
| - if (res == RE_EXCEPTION) {
|
| - DCHECK(isolate->has_pending_exception());
|
| - return MaybeHandle<Object>();
|
| - }
|
| - DCHECK(res == RE_FAILURE);
|
| - return isolate->factory()->null_value();
|
| -}
|
| -
|
| -
|
| -static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) {
|
| - if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) {
|
| - JSArray::SetLength(array, minimum_size);
|
| - }
|
| -}
|
| -
|
| -
|
| -Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
|
| - Handle<String> subject,
|
| - int capture_count,
|
| - int32_t* match) {
|
| - DCHECK(last_match_info->HasFastObjectElements());
|
| - int capture_register_count = (capture_count + 1) * 2;
|
| - EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead);
|
| - DisallowHeapAllocation no_allocation;
|
| - FixedArray* array = FixedArray::cast(last_match_info->elements());
|
| - if (match != NULL) {
|
| - for (int i = 0; i < capture_register_count; i += 2) {
|
| - SetCapture(array, i, match[i]);
|
| - SetCapture(array, i + 1, match[i + 1]);
|
| - }
|
| - }
|
| - SetLastCaptureCount(array, capture_register_count);
|
| - SetLastSubject(array, *subject);
|
| - SetLastInput(array, *subject);
|
| - return last_match_info;
|
| -}
|
| -
|
| -
|
| -RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
|
| - Handle<String> subject,
|
| - bool is_global,
|
| - Isolate* isolate)
|
| - : register_array_(NULL),
|
| - register_array_size_(0),
|
| - regexp_(regexp),
|
| - subject_(subject) {
|
| -#ifdef V8_INTERPRETED_REGEXP
|
| - bool interpreted = true;
|
| -#else
|
| - bool interpreted = false;
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -
|
| - if (regexp_->TypeTag() == JSRegExp::ATOM) {
|
| - static const int kAtomRegistersPerMatch = 2;
|
| - registers_per_match_ = kAtomRegistersPerMatch;
|
| - // There is no distinction between interpreted and native for atom regexps.
|
| - interpreted = false;
|
| - } else {
|
| - registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
|
| - if (registers_per_match_ < 0) {
|
| - num_matches_ = -1; // Signal exception.
|
| - return;
|
| - }
|
| - }
|
| -
|
| - if (is_global && !interpreted) {
|
| - register_array_size_ =
|
| - Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
|
| - max_matches_ = register_array_size_ / registers_per_match_;
|
| - } else {
|
| - // Global loop in interpreted regexp is not implemented. We choose
|
| - // the size of the offsets vector so that it can only store one match.
|
| - register_array_size_ = registers_per_match_;
|
| - max_matches_ = 1;
|
| - }
|
| -
|
| - if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
|
| - register_array_ = NewArray<int32_t>(register_array_size_);
|
| - } else {
|
| - register_array_ = isolate->jsregexp_static_offsets_vector();
|
| - }
|
| -
|
| - // Set state so that fetching the results the first time triggers a call
|
| - // to the compiled regexp.
|
| - current_match_index_ = max_matches_ - 1;
|
| - num_matches_ = max_matches_;
|
| - DCHECK(registers_per_match_ >= 2); // Each match has at least one capture.
|
| - DCHECK_GE(register_array_size_, registers_per_match_);
|
| - int32_t* last_match =
|
| - ®ister_array_[current_match_index_ * registers_per_match_];
|
| - last_match[0] = -1;
|
| - last_match[1] = 0;
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Implementation of the Irregexp regular expression engine.
|
| -//
|
| -// The Irregexp regular expression engine is intended to be a complete
|
| -// implementation of ECMAScript regular expressions. It generates either
|
| -// bytecodes or native code.
|
| -
|
| -// The Irregexp regexp engine is structured in three steps.
|
| -// 1) The parser generates an abstract syntax tree. See ast.cc.
|
| -// 2) From the AST a node network is created. The nodes are all
|
| -// subclasses of RegExpNode. The nodes represent states when
|
| -// executing a regular expression. Several optimizations are
|
| -// performed on the node network.
|
| -// 3) From the nodes we generate either byte codes or native code
|
| -// that can actually execute the regular expression (perform
|
| -// the search). The code generation step is described in more
|
| -// detail below.
|
| -
|
| -// Code generation.
|
| -//
|
| -// The nodes are divided into four main categories.
|
| -// * Choice nodes
|
| -// These represent places where the regular expression can
|
| -// match in more than one way. For example on entry to an
|
| -// alternation (foo|bar) or a repetition (*, +, ? or {}).
|
| -// * Action nodes
|
| -// These represent places where some action should be
|
| -// performed. Examples include recording the current position
|
| -// in the input string to a register (in order to implement
|
| -// captures) or other actions on register for example in order
|
| -// to implement the counters needed for {} repetitions.
|
| -// * Matching nodes
|
| -// These attempt to match some element part of the input string.
|
| -// Examples of elements include character classes, plain strings
|
| -// or back references.
|
| -// * End nodes
|
| -// These are used to implement the actions required on finding
|
| -// a successful match or failing to find a match.
|
| -//
|
| -// The code generated (whether as byte codes or native code) maintains
|
| -// some state as it runs. This consists of the following elements:
|
| -//
|
| -// * The capture registers. Used for string captures.
|
| -// * Other registers. Used for counters etc.
|
| -// * The current position.
|
| -// * The stack of backtracking information. Used when a matching node
|
| -// fails to find a match and needs to try an alternative.
|
| -//
|
| -// Conceptual regular expression execution model:
|
| -//
|
| -// There is a simple conceptual model of regular expression execution
|
| -// which will be presented first. The actual code generated is a more
|
| -// efficient simulation of the simple conceptual model:
|
| -//
|
| -// * Choice nodes are implemented as follows:
|
| -// For each choice except the last {
|
| -// push current position
|
| -// push backtrack code location
|
| -// <generate code to test for choice>
|
| -// backtrack code location:
|
| -// pop current position
|
| -// }
|
| -// <generate code to test for last choice>
|
| -//
|
| -// * Actions nodes are generated as follows
|
| -// <push affected registers on backtrack stack>
|
| -// <generate code to perform action>
|
| -// push backtrack code location
|
| -// <generate code to test for following nodes>
|
| -// backtrack code location:
|
| -// <pop affected registers to restore their state>
|
| -// <pop backtrack location from stack and go to it>
|
| -//
|
| -// * Matching nodes are generated as follows:
|
| -// if input string matches at current position
|
| -// update current position
|
| -// <generate code to test for following nodes>
|
| -// else
|
| -// <pop backtrack location from stack and go to it>
|
| -//
|
| -// Thus it can be seen that the current position is saved and restored
|
| -// by the choice nodes, whereas the registers are saved and restored by
|
| -// by the action nodes that manipulate them.
|
| -//
|
| -// The other interesting aspect of this model is that nodes are generated
|
| -// at the point where they are needed by a recursive call to Emit(). If
|
| -// the node has already been code generated then the Emit() call will
|
| -// generate a jump to the previously generated code instead. In order to
|
| -// limit recursion it is possible for the Emit() function to put the node
|
| -// on a work list for later generation and instead generate a jump. The
|
| -// destination of the jump is resolved later when the code is generated.
|
| -//
|
| -// Actual regular expression code generation.
|
| -//
|
| -// Code generation is actually more complicated than the above. In order
|
| -// to improve the efficiency of the generated code some optimizations are
|
| -// performed
|
| -//
|
| -// * Choice nodes have 1-character lookahead.
|
| -// A choice node looks at the following character and eliminates some of
|
| -// the choices immediately based on that character. This is not yet
|
| -// implemented.
|
| -// * Simple greedy loops store reduced backtracking information.
|
| -// A quantifier like /.*foo/m will greedily match the whole input. It will
|
| -// then need to backtrack to a point where it can match "foo". The naive
|
| -// implementation of this would push each character position onto the
|
| -// backtracking stack, then pop them off one by one. This would use space
|
| -// proportional to the length of the input string. However since the "."
|
| -// can only match in one way and always has a constant length (in this case
|
| -// of 1) it suffices to store the current position on the top of the stack
|
| -// once. Matching now becomes merely incrementing the current position and
|
| -// backtracking becomes decrementing the current position and checking the
|
| -// result against the stored current position. This is faster and saves
|
| -// space.
|
| -// * The current state is virtualized.
|
| -// This is used to defer expensive operations until it is clear that they
|
| -// are needed and to generate code for a node more than once, allowing
|
| -// specialized an efficient versions of the code to be created. This is
|
| -// explained in the section below.
|
| -//
|
| -// Execution state virtualization.
|
| -//
|
| -// Instead of emitting code, nodes that manipulate the state can record their
|
| -// manipulation in an object called the Trace. The Trace object can record a
|
| -// current position offset, an optional backtrack code location on the top of
|
| -// the virtualized backtrack stack and some register changes. When a node is
|
| -// to be emitted it can flush the Trace or update it. Flushing the Trace
|
| -// will emit code to bring the actual state into line with the virtual state.
|
| -// Avoiding flushing the state can postpone some work (e.g. updates of capture
|
| -// registers). Postponing work can save time when executing the regular
|
| -// expression since it may be found that the work never has to be done as a
|
| -// failure to match can occur. In addition it is much faster to jump to a
|
| -// known backtrack code location than it is to pop an unknown backtrack
|
| -// location from the stack and jump there.
|
| -//
|
| -// The virtual state found in the Trace affects code generation. For example
|
| -// the virtual state contains the difference between the actual current
|
| -// position and the virtual current position, and matching code needs to use
|
| -// this offset to attempt a match in the correct location of the input
|
| -// string. Therefore code generated for a non-trivial trace is specialized
|
| -// to that trace. The code generator therefore has the ability to generate
|
| -// code for each node several times. In order to limit the size of the
|
| -// generated code there is an arbitrary limit on how many specialized sets of
|
| -// code may be generated for a given node. If the limit is reached, the
|
| -// trace is flushed and a generic version of the code for a node is emitted.
|
| -// This is subsequently used for that node. The code emitted for non-generic
|
| -// trace is not recorded in the node and so it cannot currently be reused in
|
| -// the event that code generation is requested for an identical trace.
|
| -
|
| -
|
| -void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
|
| - text->AddElement(TextElement::Atom(this), zone);
|
| -}
|
| -
|
| -
|
| -void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
|
| - text->AddElement(TextElement::CharClass(this), zone);
|
| -}
|
| -
|
| -
|
| -void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
|
| - for (int i = 0; i < elements()->length(); i++)
|
| - text->AddElement(elements()->at(i), zone);
|
| -}
|
| -
|
| -
|
| -TextElement TextElement::Atom(RegExpAtom* atom) {
|
| - return TextElement(ATOM, atom);
|
| -}
|
| -
|
| -
|
| -TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
|
| - return TextElement(CHAR_CLASS, char_class);
|
| -}
|
| -
|
| -
|
| -int TextElement::length() const {
|
| - switch (text_type()) {
|
| - case ATOM:
|
| - return atom()->length();
|
| -
|
| - case CHAR_CLASS:
|
| - return 1;
|
| - }
|
| - UNREACHABLE();
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
|
| - if (table_ == NULL) {
|
| - table_ = new(zone()) DispatchTable(zone());
|
| - DispatchTableConstructor cons(table_, ignore_case, zone());
|
| - cons.BuildTable(this);
|
| - }
|
| - return table_;
|
| -}
|
| -
|
| -
|
| -class FrequencyCollator {
|
| - public:
|
| - FrequencyCollator() : total_samples_(0) {
|
| - for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
|
| - frequencies_[i] = CharacterFrequency(i);
|
| - }
|
| - }
|
| -
|
| - void CountCharacter(int character) {
|
| - int index = (character & RegExpMacroAssembler::kTableMask);
|
| - frequencies_[index].Increment();
|
| - total_samples_++;
|
| - }
|
| -
|
| - // Does not measure in percent, but rather per-128 (the table size from the
|
| - // regexp macro assembler).
|
| - int Frequency(int in_character) {
|
| - DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
|
| - if (total_samples_ < 1) return 1; // Division by zero.
|
| - int freq_in_per128 =
|
| - (frequencies_[in_character].counter() * 128) / total_samples_;
|
| - return freq_in_per128;
|
| - }
|
| -
|
| - private:
|
| - class CharacterFrequency {
|
| - public:
|
| - CharacterFrequency() : counter_(0), character_(-1) { }
|
| - explicit CharacterFrequency(int character)
|
| - : counter_(0), character_(character) { }
|
| -
|
| - void Increment() { counter_++; }
|
| - int counter() { return counter_; }
|
| - int character() { return character_; }
|
| -
|
| - private:
|
| - int counter_;
|
| - int character_;
|
| - };
|
| -
|
| -
|
| - private:
|
| - CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
|
| - int total_samples_;
|
| -};
|
| -
|
| -
|
| -class RegExpCompiler {
|
| - public:
|
| - RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
|
| - bool ignore_case, bool is_one_byte);
|
| -
|
| - int AllocateRegister() {
|
| - if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
|
| - reg_exp_too_big_ = true;
|
| - return next_register_;
|
| - }
|
| - return next_register_++;
|
| - }
|
| -
|
| - RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
|
| - RegExpNode* start,
|
| - int capture_count,
|
| - Handle<String> pattern);
|
| -
|
| - inline void AddWork(RegExpNode* node) {
|
| - if (!node->on_work_list() && !node->label()->is_bound()) {
|
| - node->set_on_work_list(true);
|
| - work_list_->Add(node);
|
| - }
|
| - }
|
| -
|
| - static const int kImplementationOffset = 0;
|
| - static const int kNumberOfRegistersOffset = 0;
|
| - static const int kCodeOffset = 1;
|
| -
|
| - RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
|
| - EndNode* accept() { return accept_; }
|
| -
|
| - static const int kMaxRecursion = 100;
|
| - inline int recursion_depth() { return recursion_depth_; }
|
| - inline void IncrementRecursionDepth() { recursion_depth_++; }
|
| - inline void DecrementRecursionDepth() { recursion_depth_--; }
|
| -
|
| - void SetRegExpTooBig() { reg_exp_too_big_ = true; }
|
| -
|
| - inline bool ignore_case() { return ignore_case_; }
|
| - inline bool one_byte() { return one_byte_; }
|
| - inline bool optimize() { return optimize_; }
|
| - inline void set_optimize(bool value) { optimize_ = value; }
|
| - inline bool limiting_recursion() { return limiting_recursion_; }
|
| - inline void set_limiting_recursion(bool value) {
|
| - limiting_recursion_ = value;
|
| - }
|
| - FrequencyCollator* frequency_collator() { return &frequency_collator_; }
|
| -
|
| - int current_expansion_factor() { return current_expansion_factor_; }
|
| - void set_current_expansion_factor(int value) {
|
| - current_expansion_factor_ = value;
|
| - }
|
| -
|
| - Isolate* isolate() const { return isolate_; }
|
| - Zone* zone() const { return zone_; }
|
| -
|
| - static const int kNoRegister = -1;
|
| -
|
| - private:
|
| - EndNode* accept_;
|
| - int next_register_;
|
| - List<RegExpNode*>* work_list_;
|
| - int recursion_depth_;
|
| - RegExpMacroAssembler* macro_assembler_;
|
| - bool ignore_case_;
|
| - bool one_byte_;
|
| - bool reg_exp_too_big_;
|
| - bool limiting_recursion_;
|
| - bool optimize_;
|
| - int current_expansion_factor_;
|
| - FrequencyCollator frequency_collator_;
|
| - Isolate* isolate_;
|
| - Zone* zone_;
|
| -};
|
| -
|
| -
|
| -class RecursionCheck {
|
| - public:
|
| - explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
|
| - compiler->IncrementRecursionDepth();
|
| - }
|
| - ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
|
| - private:
|
| - RegExpCompiler* compiler_;
|
| -};
|
| -
|
| -
|
| -static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
|
| - return RegExpEngine::CompilationResult(isolate, "RegExp too big");
|
| -}
|
| -
|
| -
|
| -// Attempts to compile the regexp using an Irregexp code generator. Returns
|
| -// a fixed array or a null handle depending on whether it succeeded.
|
| -RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
|
| - bool ignore_case, bool one_byte)
|
| - : next_register_(2 * (capture_count + 1)),
|
| - work_list_(NULL),
|
| - recursion_depth_(0),
|
| - ignore_case_(ignore_case),
|
| - one_byte_(one_byte),
|
| - reg_exp_too_big_(false),
|
| - limiting_recursion_(false),
|
| - optimize_(FLAG_regexp_optimization),
|
| - current_expansion_factor_(1),
|
| - frequency_collator_(),
|
| - isolate_(isolate),
|
| - zone_(zone) {
|
| - accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
|
| - DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
|
| -}
|
| -
|
| -
|
| -RegExpEngine::CompilationResult RegExpCompiler::Assemble(
|
| - RegExpMacroAssembler* macro_assembler,
|
| - RegExpNode* start,
|
| - int capture_count,
|
| - Handle<String> pattern) {
|
| - Heap* heap = pattern->GetHeap();
|
| -
|
| -#ifdef DEBUG
|
| - if (FLAG_trace_regexp_assembler)
|
| - macro_assembler_ =
|
| - new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
|
| - else
|
| -#endif
|
| - macro_assembler_ = macro_assembler;
|
| -
|
| - List <RegExpNode*> work_list(0);
|
| - work_list_ = &work_list;
|
| - Label fail;
|
| - macro_assembler_->PushBacktrack(&fail);
|
| - Trace new_trace;
|
| - start->Emit(this, &new_trace);
|
| - macro_assembler_->Bind(&fail);
|
| - macro_assembler_->Fail();
|
| - while (!work_list.is_empty()) {
|
| - RegExpNode* node = work_list.RemoveLast();
|
| - node->set_on_work_list(false);
|
| - if (!node->label()->is_bound()) node->Emit(this, &new_trace);
|
| - }
|
| - if (reg_exp_too_big_) {
|
| - macro_assembler_->AbortedCodeGeneration();
|
| - return IrregexpRegExpTooBig(isolate_);
|
| - }
|
| -
|
| - Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
|
| - heap->IncreaseTotalRegexpCodeGenerated(code->Size());
|
| - work_list_ = NULL;
|
| -#ifdef ENABLE_DISASSEMBLER
|
| - if (FLAG_print_code) {
|
| - CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
|
| - OFStream os(trace_scope.file());
|
| - Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
|
| - }
|
| -#endif
|
| -#ifdef DEBUG
|
| - if (FLAG_trace_regexp_assembler) {
|
| - delete macro_assembler_;
|
| - }
|
| -#endif
|
| - return RegExpEngine::CompilationResult(*code, next_register_);
|
| -}
|
| -
|
| -
|
| -bool Trace::DeferredAction::Mentions(int that) {
|
| - if (action_type() == ActionNode::CLEAR_CAPTURES) {
|
| - Interval range = static_cast<DeferredClearCaptures*>(this)->range();
|
| - return range.Contains(that);
|
| - } else {
|
| - return reg() == that;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Trace::mentions_reg(int reg) {
|
| - for (DeferredAction* action = actions_;
|
| - action != NULL;
|
| - action = action->next()) {
|
| - if (action->Mentions(reg))
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool Trace::GetStoredPosition(int reg, int* cp_offset) {
|
| - DCHECK_EQ(0, *cp_offset);
|
| - for (DeferredAction* action = actions_;
|
| - action != NULL;
|
| - action = action->next()) {
|
| - if (action->Mentions(reg)) {
|
| - if (action->action_type() == ActionNode::STORE_POSITION) {
|
| - *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
|
| - return true;
|
| - } else {
|
| - return false;
|
| - }
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -int Trace::FindAffectedRegisters(OutSet* affected_registers,
|
| - Zone* zone) {
|
| - int max_register = RegExpCompiler::kNoRegister;
|
| - for (DeferredAction* action = actions_;
|
| - action != NULL;
|
| - action = action->next()) {
|
| - if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
|
| - Interval range = static_cast<DeferredClearCaptures*>(action)->range();
|
| - for (int i = range.from(); i <= range.to(); i++)
|
| - affected_registers->Set(i, zone);
|
| - if (range.to() > max_register) max_register = range.to();
|
| - } else {
|
| - affected_registers->Set(action->reg(), zone);
|
| - if (action->reg() > max_register) max_register = action->reg();
|
| - }
|
| - }
|
| - return max_register;
|
| -}
|
| -
|
| -
|
| -void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
|
| - int max_register,
|
| - const OutSet& registers_to_pop,
|
| - const OutSet& registers_to_clear) {
|
| - for (int reg = max_register; reg >= 0; reg--) {
|
| - if (registers_to_pop.Get(reg)) {
|
| - assembler->PopRegister(reg);
|
| - } else if (registers_to_clear.Get(reg)) {
|
| - int clear_to = reg;
|
| - while (reg > 0 && registers_to_clear.Get(reg - 1)) {
|
| - reg--;
|
| - }
|
| - assembler->ClearRegisters(reg, clear_to);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| - int max_register,
|
| - const OutSet& affected_registers,
|
| - OutSet* registers_to_pop,
|
| - OutSet* registers_to_clear,
|
| - Zone* zone) {
|
| - // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
|
| - const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
|
| -
|
| - // Count pushes performed to force a stack limit check occasionally.
|
| - int pushes = 0;
|
| -
|
| - for (int reg = 0; reg <= max_register; reg++) {
|
| - if (!affected_registers.Get(reg)) {
|
| - continue;
|
| - }
|
| -
|
| - // The chronologically first deferred action in the trace
|
| - // is used to infer the action needed to restore a register
|
| - // to its previous state (or not, if it's safe to ignore it).
|
| - enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
|
| - DeferredActionUndoType undo_action = IGNORE;
|
| -
|
| - int value = 0;
|
| - bool absolute = false;
|
| - bool clear = false;
|
| - int store_position = -1;
|
| - // This is a little tricky because we are scanning the actions in reverse
|
| - // historical order (newest first).
|
| - for (DeferredAction* action = actions_;
|
| - action != NULL;
|
| - action = action->next()) {
|
| - if (action->Mentions(reg)) {
|
| - switch (action->action_type()) {
|
| - case ActionNode::SET_REGISTER: {
|
| - Trace::DeferredSetRegister* psr =
|
| - static_cast<Trace::DeferredSetRegister*>(action);
|
| - if (!absolute) {
|
| - value += psr->value();
|
| - absolute = true;
|
| - }
|
| - // SET_REGISTER is currently only used for newly introduced loop
|
| - // counters. They can have a significant previous value if they
|
| - // occour in a loop. TODO(lrn): Propagate this information, so
|
| - // we can set undo_action to IGNORE if we know there is no value to
|
| - // restore.
|
| - undo_action = RESTORE;
|
| - DCHECK_EQ(store_position, -1);
|
| - DCHECK(!clear);
|
| - break;
|
| - }
|
| - case ActionNode::INCREMENT_REGISTER:
|
| - if (!absolute) {
|
| - value++;
|
| - }
|
| - DCHECK_EQ(store_position, -1);
|
| - DCHECK(!clear);
|
| - undo_action = RESTORE;
|
| - break;
|
| - case ActionNode::STORE_POSITION: {
|
| - Trace::DeferredCapture* pc =
|
| - static_cast<Trace::DeferredCapture*>(action);
|
| - if (!clear && store_position == -1) {
|
| - store_position = pc->cp_offset();
|
| - }
|
| -
|
| - // For captures we know that stores and clears alternate.
|
| - // Other register, are never cleared, and if the occur
|
| - // inside a loop, they might be assigned more than once.
|
| - if (reg <= 1) {
|
| - // Registers zero and one, aka "capture zero", is
|
| - // always set correctly if we succeed. There is no
|
| - // need to undo a setting on backtrack, because we
|
| - // will set it again or fail.
|
| - undo_action = IGNORE;
|
| - } else {
|
| - undo_action = pc->is_capture() ? CLEAR : RESTORE;
|
| - }
|
| - DCHECK(!absolute);
|
| - DCHECK_EQ(value, 0);
|
| - break;
|
| - }
|
| - case ActionNode::CLEAR_CAPTURES: {
|
| - // Since we're scanning in reverse order, if we've already
|
| - // set the position we have to ignore historically earlier
|
| - // clearing operations.
|
| - if (store_position == -1) {
|
| - clear = true;
|
| - }
|
| - undo_action = RESTORE;
|
| - DCHECK(!absolute);
|
| - DCHECK_EQ(value, 0);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - // Prepare for the undo-action (e.g., push if it's going to be popped).
|
| - if (undo_action == RESTORE) {
|
| - pushes++;
|
| - RegExpMacroAssembler::StackCheckFlag stack_check =
|
| - RegExpMacroAssembler::kNoStackLimitCheck;
|
| - if (pushes == push_limit) {
|
| - stack_check = RegExpMacroAssembler::kCheckStackLimit;
|
| - pushes = 0;
|
| - }
|
| -
|
| - assembler->PushRegister(reg, stack_check);
|
| - registers_to_pop->Set(reg, zone);
|
| - } else if (undo_action == CLEAR) {
|
| - registers_to_clear->Set(reg, zone);
|
| - }
|
| - // Perform the chronologically last action (or accumulated increment)
|
| - // for the register.
|
| - if (store_position != -1) {
|
| - assembler->WriteCurrentPositionToRegister(reg, store_position);
|
| - } else if (clear) {
|
| - assembler->ClearRegisters(reg, reg);
|
| - } else if (absolute) {
|
| - assembler->SetRegister(reg, value);
|
| - } else if (value != 0) {
|
| - assembler->AdvanceRegister(reg, value);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// This is called as we come into a loop choice node and some other tricky
|
| -// nodes. It normalizes the state of the code generator to ensure we can
|
| -// generate generic code.
|
| -void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| -
|
| - DCHECK(!is_trivial());
|
| -
|
| - if (actions_ == NULL && backtrack() == NULL) {
|
| - // Here we just have some deferred cp advances to fix and we are back to
|
| - // a normal situation. We may also have to forget some information gained
|
| - // through a quick check that was already performed.
|
| - if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
|
| - // Create a new trivial state and generate the node with that.
|
| - Trace new_state;
|
| - successor->Emit(compiler, &new_state);
|
| - return;
|
| - }
|
| -
|
| - // Generate deferred actions here along with code to undo them again.
|
| - OutSet affected_registers;
|
| -
|
| - if (backtrack() != NULL) {
|
| - // Here we have a concrete backtrack location. These are set up by choice
|
| - // nodes and so they indicate that we have a deferred save of the current
|
| - // position which we may need to emit here.
|
| - assembler->PushCurrentPosition();
|
| - }
|
| -
|
| - int max_register = FindAffectedRegisters(&affected_registers,
|
| - compiler->zone());
|
| - OutSet registers_to_pop;
|
| - OutSet registers_to_clear;
|
| - PerformDeferredActions(assembler,
|
| - max_register,
|
| - affected_registers,
|
| - ®isters_to_pop,
|
| - ®isters_to_clear,
|
| - compiler->zone());
|
| - if (cp_offset_ != 0) {
|
| - assembler->AdvanceCurrentPosition(cp_offset_);
|
| - }
|
| -
|
| - // Create a new trivial state and generate the node with that.
|
| - Label undo;
|
| - assembler->PushBacktrack(&undo);
|
| - if (successor->KeepRecursing(compiler)) {
|
| - Trace new_state;
|
| - successor->Emit(compiler, &new_state);
|
| - } else {
|
| - compiler->AddWork(successor);
|
| - assembler->GoTo(successor->label());
|
| - }
|
| -
|
| - // On backtrack we need to restore state.
|
| - assembler->Bind(&undo);
|
| - RestoreAffectedRegisters(assembler,
|
| - max_register,
|
| - registers_to_pop,
|
| - registers_to_clear);
|
| - if (backtrack() == NULL) {
|
| - assembler->Backtrack();
|
| - } else {
|
| - assembler->PopCurrentPosition();
|
| - assembler->GoTo(backtrack());
|
| - }
|
| -}
|
| -
|
| -
|
| -void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| -
|
| - // Omit flushing the trace. We discard the entire stack frame anyway.
|
| -
|
| - if (!label()->is_bound()) {
|
| - // We are completely independent of the trace, since we ignore it,
|
| - // so this code can be used as the generic version.
|
| - assembler->Bind(label());
|
| - }
|
| -
|
| - // Throw away everything on the backtrack stack since the start
|
| - // of the negative submatch and restore the character position.
|
| - assembler->ReadCurrentPositionFromRegister(current_position_register_);
|
| - assembler->ReadStackPointerFromRegister(stack_pointer_register_);
|
| - if (clear_capture_count_ > 0) {
|
| - // Clear any captures that might have been performed during the success
|
| - // of the body of the negative look-ahead.
|
| - int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
|
| - assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
|
| - }
|
| - // Now that we have unwound the stack we find at the top of the stack the
|
| - // backtrack that the BeginSubmatch node got.
|
| - assembler->Backtrack();
|
| -}
|
| -
|
| -
|
| -void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - return;
|
| - }
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - if (!label()->is_bound()) {
|
| - assembler->Bind(label());
|
| - }
|
| - switch (action_) {
|
| - case ACCEPT:
|
| - assembler->Succeed();
|
| - return;
|
| - case BACKTRACK:
|
| - assembler->GoTo(trace->backtrack());
|
| - return;
|
| - case NEGATIVE_SUBMATCH_SUCCESS:
|
| - // This case is handled in a different virtual method.
|
| - UNREACHABLE();
|
| - }
|
| - UNIMPLEMENTED();
|
| -}
|
| -
|
| -
|
| -void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
|
| - if (guards_ == NULL)
|
| - guards_ = new(zone) ZoneList<Guard*>(1, zone);
|
| - guards_->Add(guard, zone);
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::SetRegister(int reg,
|
| - int val,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
|
| - result->data_.u_store_register.reg = reg;
|
| - result->data_.u_store_register.value = val;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
|
| - result->data_.u_increment_register.reg = reg;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::StorePosition(int reg,
|
| - bool is_capture,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
|
| - result->data_.u_position_register.reg = reg;
|
| - result->data_.u_position_register.is_capture = is_capture;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::ClearCaptures(Interval range,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
|
| - result->data_.u_clear_captures.range_from = range.from();
|
| - result->data_.u_clear_captures.range_to = range.to();
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::BeginSubmatch(int stack_reg,
|
| - int position_reg,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
|
| - result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| - result->data_.u_submatch.current_position_register = position_reg;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
|
| - int position_reg,
|
| - int clear_register_count,
|
| - int clear_register_from,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
|
| - result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| - result->data_.u_submatch.current_position_register = position_reg;
|
| - result->data_.u_submatch.clear_register_count = clear_register_count;
|
| - result->data_.u_submatch.clear_register_from = clear_register_from;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -ActionNode* ActionNode::EmptyMatchCheck(int start_register,
|
| - int repetition_register,
|
| - int repetition_limit,
|
| - RegExpNode* on_success) {
|
| - ActionNode* result =
|
| - new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
|
| - result->data_.u_empty_match_check.start_register = start_register;
|
| - result->data_.u_empty_match_check.repetition_register = repetition_register;
|
| - result->data_.u_empty_match_check.repetition_limit = repetition_limit;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -#define DEFINE_ACCEPT(Type) \
|
| - void Type##Node::Accept(NodeVisitor* visitor) { \
|
| - visitor->Visit##Type(this); \
|
| - }
|
| -FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
|
| -#undef DEFINE_ACCEPT
|
| -
|
| -
|
| -void LoopChoiceNode::Accept(NodeVisitor* visitor) {
|
| - visitor->VisitLoopChoice(this);
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Emit code.
|
| -
|
| -
|
| -void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
| - Guard* guard,
|
| - Trace* trace) {
|
| - switch (guard->op()) {
|
| - case Guard::LT:
|
| - DCHECK(!trace->mentions_reg(guard->reg()));
|
| - macro_assembler->IfRegisterGE(guard->reg(),
|
| - guard->value(),
|
| - trace->backtrack());
|
| - break;
|
| - case Guard::GEQ:
|
| - DCHECK(!trace->mentions_reg(guard->reg()));
|
| - macro_assembler->IfRegisterLT(guard->reg(),
|
| - guard->value(),
|
| - trace->backtrack());
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -// Returns the number of characters in the equivalence class, omitting those
|
| -// that cannot occur in the source string because it is Latin1.
|
| -static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
|
| - bool one_byte_subject,
|
| - unibrow::uchar* letters) {
|
| - int length =
|
| - isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
|
| - // Unibrow returns 0 or 1 for characters where case independence is
|
| - // trivial.
|
| - if (length == 0) {
|
| - letters[0] = character;
|
| - length = 1;
|
| - }
|
| -
|
| - if (one_byte_subject) {
|
| - int new_length = 0;
|
| - for (int i = 0; i < length; i++) {
|
| - if (letters[i] <= String::kMaxOneByteCharCode) {
|
| - letters[new_length++] = letters[i];
|
| - }
|
| - }
|
| - length = new_length;
|
| - }
|
| -
|
| - return length;
|
| -}
|
| -
|
| -
|
| -static inline bool EmitSimpleCharacter(Isolate* isolate,
|
| - RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| - bool check,
|
| - bool preloaded) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - bool bound_checked = false;
|
| - if (!preloaded) {
|
| - assembler->LoadCurrentCharacter(
|
| - cp_offset,
|
| - on_failure,
|
| - check);
|
| - bound_checked = true;
|
| - }
|
| - assembler->CheckNotCharacter(c, on_failure);
|
| - return bound_checked;
|
| -}
|
| -
|
| -
|
| -// Only emits non-letters (things that don't have case). Only used for case
|
| -// independent matches.
|
| -static inline bool EmitAtomNonLetter(Isolate* isolate,
|
| - RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| - bool check,
|
| - bool preloaded) {
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - bool one_byte = compiler->one_byte();
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
|
| - if (length < 1) {
|
| - // This can't match. Must be an one-byte subject and a non-one-byte
|
| - // character. We do not need to do anything since the one-byte pass
|
| - // already handled this.
|
| - return false; // Bounds not checked.
|
| - }
|
| - bool checked = false;
|
| - // We handle the length > 1 case in a later pass.
|
| - if (length == 1) {
|
| - if (one_byte && c > String::kMaxOneByteCharCodeU) {
|
| - // Can't match - see above.
|
| - return false; // Bounds not checked.
|
| - }
|
| - if (!preloaded) {
|
| - macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
| - checked = check;
|
| - }
|
| - macro_assembler->CheckNotCharacter(c, on_failure);
|
| - }
|
| - return checked;
|
| -}
|
| -
|
| -
|
| -static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
|
| - bool one_byte, uc16 c1, uc16 c2,
|
| - Label* on_failure) {
|
| - uc16 char_mask;
|
| - if (one_byte) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| - } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| - }
|
| - uc16 exor = c1 ^ c2;
|
| - // Check whether exor has only one bit set.
|
| - if (((exor - 1) & exor) == 0) {
|
| - // If c1 and c2 differ only by one bit.
|
| - // Ecma262UnCanonicalize always gives the highest number last.
|
| - DCHECK(c2 > c1);
|
| - uc16 mask = char_mask ^ exor;
|
| - macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
|
| - return true;
|
| - }
|
| - DCHECK(c2 > c1);
|
| - uc16 diff = c2 - c1;
|
| - if (((diff - 1) & diff) == 0 && c1 >= diff) {
|
| - // If the characters differ by 2^n but don't differ by one bit then
|
| - // subtract the difference from the found character, then do the or
|
| - // trick. We avoid the theoretical case where negative numbers are
|
| - // involved in order to simplify code generation.
|
| - uc16 mask = char_mask ^ diff;
|
| - macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
|
| - diff,
|
| - mask,
|
| - on_failure);
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -typedef bool EmitCharacterFunction(Isolate* isolate,
|
| - RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| - bool check,
|
| - bool preloaded);
|
| -
|
| -// Only emits letters (things that have case). Only used for case independent
|
| -// matches.
|
| -static inline bool EmitAtomLetter(Isolate* isolate,
|
| - RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| - bool check,
|
| - bool preloaded) {
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - bool one_byte = compiler->one_byte();
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
|
| - if (length <= 1) return false;
|
| - // We may not need to check against the end of the input string
|
| - // if this character lies before a character that matched.
|
| - if (!preloaded) {
|
| - macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
| - }
|
| - Label ok;
|
| - DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
|
| - switch (length) {
|
| - case 2: {
|
| - if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
|
| - chars[1], on_failure)) {
|
| - } else {
|
| - macro_assembler->CheckCharacter(chars[0], &ok);
|
| - macro_assembler->CheckNotCharacter(chars[1], on_failure);
|
| - macro_assembler->Bind(&ok);
|
| - }
|
| - break;
|
| - }
|
| - case 4:
|
| - macro_assembler->CheckCharacter(chars[3], &ok);
|
| - // Fall through!
|
| - case 3:
|
| - macro_assembler->CheckCharacter(chars[0], &ok);
|
| - macro_assembler->CheckCharacter(chars[1], &ok);
|
| - macro_assembler->CheckNotCharacter(chars[2], on_failure);
|
| - macro_assembler->Bind(&ok);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -static void EmitBoundaryTest(RegExpMacroAssembler* masm,
|
| - int border,
|
| - Label* fall_through,
|
| - Label* above_or_equal,
|
| - Label* below) {
|
| - if (below != fall_through) {
|
| - masm->CheckCharacterLT(border, below);
|
| - if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
|
| - } else {
|
| - masm->CheckCharacterGT(border - 1, above_or_equal);
|
| - }
|
| -}
|
| -
|
| -
|
| -static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
|
| - int first,
|
| - int last,
|
| - Label* fall_through,
|
| - Label* in_range,
|
| - Label* out_of_range) {
|
| - if (in_range == fall_through) {
|
| - if (first == last) {
|
| - masm->CheckNotCharacter(first, out_of_range);
|
| - } else {
|
| - masm->CheckCharacterNotInRange(first, last, out_of_range);
|
| - }
|
| - } else {
|
| - if (first == last) {
|
| - masm->CheckCharacter(first, in_range);
|
| - } else {
|
| - masm->CheckCharacterInRange(first, last, in_range);
|
| - }
|
| - if (out_of_range != fall_through) masm->GoTo(out_of_range);
|
| - }
|
| -}
|
| -
|
| -
|
| -// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
|
| -// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
|
| -static void EmitUseLookupTable(
|
| - RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int min_char,
|
| - Label* fall_through,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - static const int kMask = RegExpMacroAssembler::kTableMask;
|
| -
|
| - int base = (min_char & ~kMask);
|
| - USE(base);
|
| -
|
| - // Assert that everything is on one kTableSize page.
|
| - for (int i = start_index; i <= end_index; i++) {
|
| - DCHECK_EQ(ranges->at(i) & ~kMask, base);
|
| - }
|
| - DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
|
| -
|
| - char templ[kSize];
|
| - Label* on_bit_set;
|
| - Label* on_bit_clear;
|
| - int bit;
|
| - if (even_label == fall_through) {
|
| - on_bit_set = odd_label;
|
| - on_bit_clear = even_label;
|
| - bit = 1;
|
| - } else {
|
| - on_bit_set = even_label;
|
| - on_bit_clear = odd_label;
|
| - bit = 0;
|
| - }
|
| - for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
|
| - templ[i] = bit;
|
| - }
|
| - int j = 0;
|
| - bit ^= 1;
|
| - for (int i = start_index; i < end_index; i++) {
|
| - for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
|
| - templ[j] = bit;
|
| - }
|
| - bit ^= 1;
|
| - }
|
| - for (int i = j; i < kSize; i++) {
|
| - templ[i] = bit;
|
| - }
|
| - Factory* factory = masm->isolate()->factory();
|
| - // TODO(erikcorry): Cache these.
|
| - Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
|
| - for (int i = 0; i < kSize; i++) {
|
| - ba->set(i, templ[i]);
|
| - }
|
| - masm->CheckBitInTable(ba, on_bit_set);
|
| - if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
|
| -}
|
| -
|
| -
|
| -static void CutOutRange(RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int cut_index,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| - bool odd = (((cut_index - start_index) & 1) == 1);
|
| - Label* in_range_label = odd ? odd_label : even_label;
|
| - Label dummy;
|
| - EmitDoubleBoundaryTest(masm,
|
| - ranges->at(cut_index),
|
| - ranges->at(cut_index + 1) - 1,
|
| - &dummy,
|
| - in_range_label,
|
| - &dummy);
|
| - DCHECK(!dummy.is_linked());
|
| - // Cut out the single range by rewriting the array. This creates a new
|
| - // range that is a merger of the two ranges on either side of the one we
|
| - // are cutting out. The oddity of the labels is preserved.
|
| - for (int j = cut_index; j > start_index; j--) {
|
| - ranges->at(j) = ranges->at(j - 1);
|
| - }
|
| - for (int j = cut_index + 1; j < end_index; j++) {
|
| - ranges->at(j) = ranges->at(j + 1);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Unicode case. Split the search space into kSize spaces that are handled
|
| -// with recursion.
|
| -static void SplitSearchSpace(ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int* new_start_index,
|
| - int* new_end_index,
|
| - int* border) {
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - static const int kMask = RegExpMacroAssembler::kTableMask;
|
| -
|
| - int first = ranges->at(start_index);
|
| - int last = ranges->at(end_index) - 1;
|
| -
|
| - *new_start_index = start_index;
|
| - *border = (ranges->at(start_index) & ~kMask) + kSize;
|
| - while (*new_start_index < end_index) {
|
| - if (ranges->at(*new_start_index) > *border) break;
|
| - (*new_start_index)++;
|
| - }
|
| - // new_start_index is the index of the first edge that is beyond the
|
| - // current kSize space.
|
| -
|
| - // For very large search spaces we do a binary chop search of the non-Latin1
|
| - // space instead of just going to the end of the current kSize space. The
|
| - // heuristics are complicated a little by the fact that any 128-character
|
| - // encoding space can be quickly tested with a table lookup, so we don't
|
| - // wish to do binary chop search at a smaller granularity than that. A
|
| - // 128-character space can take up a lot of space in the ranges array if,
|
| - // for example, we only want to match every second character (eg. the lower
|
| - // case characters on some Unicode pages).
|
| - int binary_chop_index = (end_index + start_index) / 2;
|
| - // The first test ensures that we get to the code that handles the Latin1
|
| - // range with a single not-taken branch, speeding up this important
|
| - // character range (even non-Latin1 charset-based text has spaces and
|
| - // punctuation).
|
| - if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
|
| - end_index - start_index > (*new_start_index - start_index) * 2 &&
|
| - last - first > kSize * 2 && binary_chop_index > *new_start_index &&
|
| - ranges->at(binary_chop_index) >= first + 2 * kSize) {
|
| - int scan_forward_for_section_border = binary_chop_index;;
|
| - int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
|
| -
|
| - while (scan_forward_for_section_border < end_index) {
|
| - if (ranges->at(scan_forward_for_section_border) > new_border) {
|
| - *new_start_index = scan_forward_for_section_border;
|
| - *border = new_border;
|
| - break;
|
| - }
|
| - scan_forward_for_section_border++;
|
| - }
|
| - }
|
| -
|
| - DCHECK(*new_start_index > start_index);
|
| - *new_end_index = *new_start_index - 1;
|
| - if (ranges->at(*new_end_index) == *border) {
|
| - (*new_end_index)--;
|
| - }
|
| - if (*border >= ranges->at(end_index)) {
|
| - *border = ranges->at(end_index);
|
| - *new_start_index = end_index; // Won't be used.
|
| - *new_end_index = end_index - 1;
|
| - }
|
| -}
|
| -
|
| -
|
| -// Gets a series of segment boundaries representing a character class. If the
|
| -// character is in the range between an even and an odd boundary (counting from
|
| -// start_index) then go to even_label, otherwise go to odd_label. We already
|
| -// know that the character is in the range of min_char to max_char inclusive.
|
| -// Either label can be NULL indicating backtracking. Either label can also be
|
| -// equal to the fall_through label.
|
| -static void GenerateBranches(RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - uc16 min_char,
|
| - uc16 max_char,
|
| - Label* fall_through,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| - int first = ranges->at(start_index);
|
| - int last = ranges->at(end_index) - 1;
|
| -
|
| - DCHECK_LT(min_char, first);
|
| -
|
| - // Just need to test if the character is before or on-or-after
|
| - // a particular character.
|
| - if (start_index == end_index) {
|
| - EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
|
| - return;
|
| - }
|
| -
|
| - // Another almost trivial case: There is one interval in the middle that is
|
| - // different from the end intervals.
|
| - if (start_index + 1 == end_index) {
|
| - EmitDoubleBoundaryTest(
|
| - masm, first, last, fall_through, even_label, odd_label);
|
| - return;
|
| - }
|
| -
|
| - // It's not worth using table lookup if there are very few intervals in the
|
| - // character class.
|
| - if (end_index - start_index <= 6) {
|
| - // It is faster to test for individual characters, so we look for those
|
| - // first, then try arbitrary ranges in the second round.
|
| - static int kNoCutIndex = -1;
|
| - int cut = kNoCutIndex;
|
| - for (int i = start_index; i < end_index; i++) {
|
| - if (ranges->at(i) == ranges->at(i + 1) - 1) {
|
| - cut = i;
|
| - break;
|
| - }
|
| - }
|
| - if (cut == kNoCutIndex) cut = start_index;
|
| - CutOutRange(
|
| - masm, ranges, start_index, end_index, cut, even_label, odd_label);
|
| - DCHECK_GE(end_index - start_index, 2);
|
| - GenerateBranches(masm,
|
| - ranges,
|
| - start_index + 1,
|
| - end_index - 1,
|
| - min_char,
|
| - max_char,
|
| - fall_through,
|
| - even_label,
|
| - odd_label);
|
| - return;
|
| - }
|
| -
|
| - // If there are a lot of intervals in the regexp, then we will use tables to
|
| - // determine whether the character is inside or outside the character class.
|
| - static const int kBits = RegExpMacroAssembler::kTableSizeBits;
|
| -
|
| - if ((max_char >> kBits) == (min_char >> kBits)) {
|
| - EmitUseLookupTable(masm,
|
| - ranges,
|
| - start_index,
|
| - end_index,
|
| - min_char,
|
| - fall_through,
|
| - even_label,
|
| - odd_label);
|
| - return;
|
| - }
|
| -
|
| - if ((min_char >> kBits) != (first >> kBits)) {
|
| - masm->CheckCharacterLT(first, odd_label);
|
| - GenerateBranches(masm,
|
| - ranges,
|
| - start_index + 1,
|
| - end_index,
|
| - first,
|
| - max_char,
|
| - fall_through,
|
| - odd_label,
|
| - even_label);
|
| - return;
|
| - }
|
| -
|
| - int new_start_index = 0;
|
| - int new_end_index = 0;
|
| - int border = 0;
|
| -
|
| - SplitSearchSpace(ranges,
|
| - start_index,
|
| - end_index,
|
| - &new_start_index,
|
| - &new_end_index,
|
| - &border);
|
| -
|
| - Label handle_rest;
|
| - Label* above = &handle_rest;
|
| - if (border == last + 1) {
|
| - // We didn't find any section that started after the limit, so everything
|
| - // above the border is one of the terminal labels.
|
| - above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
|
| - DCHECK(new_end_index == end_index - 1);
|
| - }
|
| -
|
| - DCHECK_LE(start_index, new_end_index);
|
| - DCHECK_LE(new_start_index, end_index);
|
| - DCHECK_LT(start_index, new_start_index);
|
| - DCHECK_LT(new_end_index, end_index);
|
| - DCHECK(new_end_index + 1 == new_start_index ||
|
| - (new_end_index + 2 == new_start_index &&
|
| - border == ranges->at(new_end_index + 1)));
|
| - DCHECK_LT(min_char, border - 1);
|
| - DCHECK_LT(border, max_char);
|
| - DCHECK_LT(ranges->at(new_end_index), border);
|
| - DCHECK(border < ranges->at(new_start_index) ||
|
| - (border == ranges->at(new_start_index) &&
|
| - new_start_index == end_index &&
|
| - new_end_index == end_index - 1 &&
|
| - border == last + 1));
|
| - DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
|
| -
|
| - masm->CheckCharacterGT(border - 1, above);
|
| - Label dummy;
|
| - GenerateBranches(masm,
|
| - ranges,
|
| - start_index,
|
| - new_end_index,
|
| - min_char,
|
| - border - 1,
|
| - &dummy,
|
| - even_label,
|
| - odd_label);
|
| - if (handle_rest.is_linked()) {
|
| - masm->Bind(&handle_rest);
|
| - bool flip = (new_start_index & 1) != (start_index & 1);
|
| - GenerateBranches(masm,
|
| - ranges,
|
| - new_start_index,
|
| - end_index,
|
| - border,
|
| - max_char,
|
| - &dummy,
|
| - flip ? odd_label : even_label,
|
| - flip ? even_label : odd_label);
|
| - }
|
| -}
|
| -
|
| -
|
| -static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| - RegExpCharacterClass* cc, bool one_byte,
|
| - Label* on_failure, int cp_offset, bool check_offset,
|
| - bool preloaded, Zone* zone) {
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone);
|
| - if (!CharacterRange::IsCanonical(ranges)) {
|
| - CharacterRange::Canonicalize(ranges);
|
| - }
|
| -
|
| - int max_char;
|
| - if (one_byte) {
|
| - max_char = String::kMaxOneByteCharCode;
|
| - } else {
|
| - max_char = String::kMaxUtf16CodeUnit;
|
| - }
|
| -
|
| - int range_count = ranges->length();
|
| -
|
| - int last_valid_range = range_count - 1;
|
| - while (last_valid_range >= 0) {
|
| - CharacterRange& range = ranges->at(last_valid_range);
|
| - if (range.from() <= max_char) {
|
| - break;
|
| - }
|
| - last_valid_range--;
|
| - }
|
| -
|
| - if (last_valid_range < 0) {
|
| - if (!cc->is_negated()) {
|
| - macro_assembler->GoTo(on_failure);
|
| - }
|
| - if (check_offset) {
|
| - macro_assembler->CheckPosition(cp_offset, on_failure);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - if (last_valid_range == 0 &&
|
| - ranges->at(0).IsEverything(max_char)) {
|
| - if (cc->is_negated()) {
|
| - macro_assembler->GoTo(on_failure);
|
| - } else {
|
| - // This is a common case hit by non-anchored expressions.
|
| - if (check_offset) {
|
| - macro_assembler->CheckPosition(cp_offset, on_failure);
|
| - }
|
| - }
|
| - return;
|
| - }
|
| - if (last_valid_range == 0 &&
|
| - !cc->is_negated() &&
|
| - ranges->at(0).IsEverything(max_char)) {
|
| - // This is a common case hit by non-anchored expressions.
|
| - if (check_offset) {
|
| - macro_assembler->CheckPosition(cp_offset, on_failure);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - if (!preloaded) {
|
| - macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
|
| - }
|
| -
|
| - if (cc->is_standard(zone) &&
|
| - macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
|
| - on_failure)) {
|
| - return;
|
| - }
|
| -
|
| -
|
| - // A new list with ascending entries. Each entry is a code unit
|
| - // where there is a boundary between code units that are part of
|
| - // the class and code units that are not. Normally we insert an
|
| - // entry at zero which goes to the failure label, but if there
|
| - // was already one there we fall through for success on that entry.
|
| - // Subsequent entries have alternating meaning (success/failure).
|
| - ZoneList<int>* range_boundaries =
|
| - new(zone) ZoneList<int>(last_valid_range, zone);
|
| -
|
| - bool zeroth_entry_is_failure = !cc->is_negated();
|
| -
|
| - for (int i = 0; i <= last_valid_range; i++) {
|
| - CharacterRange& range = ranges->at(i);
|
| - if (range.from() == 0) {
|
| - DCHECK_EQ(i, 0);
|
| - zeroth_entry_is_failure = !zeroth_entry_is_failure;
|
| - } else {
|
| - range_boundaries->Add(range.from(), zone);
|
| - }
|
| - range_boundaries->Add(range.to() + 1, zone);
|
| - }
|
| - int end_index = range_boundaries->length() - 1;
|
| - if (range_boundaries->at(end_index) > max_char) {
|
| - end_index--;
|
| - }
|
| -
|
| - Label fall_through;
|
| - GenerateBranches(macro_assembler,
|
| - range_boundaries,
|
| - 0, // start_index.
|
| - end_index,
|
| - 0, // min_char.
|
| - max_char,
|
| - &fall_through,
|
| - zeroth_entry_is_failure ? &fall_through : on_failure,
|
| - zeroth_entry_is_failure ? on_failure : &fall_through);
|
| - macro_assembler->Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -RegExpNode::~RegExpNode() {
|
| -}
|
| -
|
| -
|
| -RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
| - Trace* trace) {
|
| - // If we are generating a greedy loop then don't stop and don't reuse code.
|
| - if (trace->stop_node() != NULL) {
|
| - return CONTINUE;
|
| - }
|
| -
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - if (trace->is_trivial()) {
|
| - if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
|
| - // If a generic version is already scheduled to be generated or we have
|
| - // recursed too deeply then just generate a jump to that code.
|
| - macro_assembler->GoTo(&label_);
|
| - // This will queue it up for generation of a generic version if it hasn't
|
| - // already been queued.
|
| - compiler->AddWork(this);
|
| - return DONE;
|
| - }
|
| - // Generate generic version of the node and bind the label for later use.
|
| - macro_assembler->Bind(&label_);
|
| - return CONTINUE;
|
| - }
|
| -
|
| - // We are being asked to make a non-generic version. Keep track of how many
|
| - // non-generic versions we generate so as not to overdo it.
|
| - trace_count_++;
|
| - if (KeepRecursing(compiler) && compiler->optimize() &&
|
| - trace_count_ < kMaxCopiesCodeGenerated) {
|
| - return CONTINUE;
|
| - }
|
| -
|
| - // If we get here code has been generated for this node too many times or
|
| - // recursion is too deep. Time to switch to a generic version. The code for
|
| - // generic versions above can handle deep recursion properly.
|
| - bool was_limiting = compiler->limiting_recursion();
|
| - compiler->set_limiting_recursion(true);
|
| - trace->Flush(compiler, this);
|
| - compiler->set_limiting_recursion(was_limiting);
|
| - return DONE;
|
| -}
|
| -
|
| -
|
| -bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
|
| - return !compiler->limiting_recursion() &&
|
| - compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
|
| -}
|
| -
|
| -
|
| -int ActionNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - if (budget <= 0) return 0;
|
| - if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
|
| - return on_success()->EatsAtLeast(still_to_find,
|
| - budget - 1,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
|
| - BoyerMooreLookahead* bm, bool not_at_start) {
|
| - if (action_type_ == BEGIN_SUBMATCH) {
|
| - bm->SetRest(offset);
|
| - } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
|
| - on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
|
| - }
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| -}
|
| -
|
| -
|
| -int AssertionNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - if (budget <= 0) return 0;
|
| - // If we know we are not at the start and we are asked "how many characters
|
| - // will you match if you succeed?" then we can answer anything since false
|
| - // implies false. So lets just return the max answer (still_to_find) since
|
| - // that won't prevent us from preloading a lot of characters for the other
|
| - // branches in the node graph.
|
| - if (assertion_type() == AT_START && not_at_start) return still_to_find;
|
| - return on_success()->EatsAtLeast(still_to_find,
|
| - budget - 1,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
|
| - BoyerMooreLookahead* bm, bool not_at_start) {
|
| - // Match the behaviour of EatsAtLeast on this node.
|
| - if (assertion_type() == AT_START && not_at_start) return;
|
| - on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| -}
|
| -
|
| -
|
| -int BackReferenceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - if (budget <= 0) return 0;
|
| - return on_success()->EatsAtLeast(still_to_find,
|
| - budget - 1,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -int TextNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - int answer = Length();
|
| - if (answer >= still_to_find) return answer;
|
| - if (budget <= 0) return answer;
|
| - // We are not at start after this node so we set the last argument to 'true'.
|
| - return answer + on_success()->EatsAtLeast(still_to_find - answer,
|
| - budget - 1,
|
| - true);
|
| -}
|
| -
|
| -
|
| -int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - if (budget <= 0) return 0;
|
| - // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| - // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| - return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
|
| -}
|
| -
|
| -
|
| -void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
|
| - QuickCheckDetails* details,
|
| - RegExpCompiler* compiler,
|
| - int filled_in,
|
| - bool not_at_start) {
|
| - // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| - // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| - return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
|
| -}
|
| -
|
| -
|
| -int ChoiceNode::EatsAtLeastHelper(int still_to_find,
|
| - int budget,
|
| - RegExpNode* ignore_this_node,
|
| - bool not_at_start) {
|
| - if (budget <= 0) return 0;
|
| - int min = 100;
|
| - int choice_count = alternatives_->length();
|
| - budget = (budget - 1) / choice_count;
|
| - for (int i = 0; i < choice_count; i++) {
|
| - RegExpNode* node = alternatives_->at(i).node();
|
| - if (node == ignore_this_node) continue;
|
| - int node_eats_at_least =
|
| - node->EatsAtLeast(still_to_find, budget, not_at_start);
|
| - if (node_eats_at_least < min) min = node_eats_at_least;
|
| - if (min == 0) return 0;
|
| - }
|
| - return min;
|
| -}
|
| -
|
| -
|
| -int LoopChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - return EatsAtLeastHelper(still_to_find,
|
| - budget - 1,
|
| - loop_node_,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -int ChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - return EatsAtLeastHelper(still_to_find,
|
| - budget,
|
| - NULL,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -// Takes the left-most 1-bit and smears it out, setting all bits to its right.
|
| -static inline uint32_t SmearBitsRight(uint32_t v) {
|
| - v |= v >> 1;
|
| - v |= v >> 2;
|
| - v |= v >> 4;
|
| - v |= v >> 8;
|
| - v |= v >> 16;
|
| - return v;
|
| -}
|
| -
|
| -
|
| -bool QuickCheckDetails::Rationalize(bool asc) {
|
| - bool found_useful_op = false;
|
| - uint32_t char_mask;
|
| - if (asc) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| - } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| - }
|
| - mask_ = 0;
|
| - value_ = 0;
|
| - int char_shift = 0;
|
| - for (int i = 0; i < characters_; i++) {
|
| - Position* pos = &positions_[i];
|
| - if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
|
| - found_useful_op = true;
|
| - }
|
| - mask_ |= (pos->mask & char_mask) << char_shift;
|
| - value_ |= (pos->value & char_mask) << char_shift;
|
| - char_shift += asc ? 8 : 16;
|
| - }
|
| - return found_useful_op;
|
| -}
|
| -
|
| -
|
| -bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| - Trace* bounds_check_trace,
|
| - Trace* trace,
|
| - bool preload_has_checked_bounds,
|
| - Label* on_possible_success,
|
| - QuickCheckDetails* details,
|
| - bool fall_through_on_failure) {
|
| - if (details->characters() == 0) return false;
|
| - GetQuickCheckDetails(
|
| - details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
|
| - if (details->cannot_match()) return false;
|
| - if (!details->Rationalize(compiler->one_byte())) return false;
|
| - DCHECK(details->characters() == 1 ||
|
| - compiler->macro_assembler()->CanReadUnaligned());
|
| - uint32_t mask = details->mask();
|
| - uint32_t value = details->value();
|
| -
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| -
|
| - if (trace->characters_preloaded() != details->characters()) {
|
| - DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
|
| - // We are attempting to preload the minimum number of characters
|
| - // any choice would eat, so if the bounds check fails, then none of the
|
| - // choices can succeed, so we can just immediately backtrack, rather
|
| - // than go to the next choice.
|
| - assembler->LoadCurrentCharacter(trace->cp_offset(),
|
| - bounds_check_trace->backtrack(),
|
| - !preload_has_checked_bounds,
|
| - details->characters());
|
| - }
|
| -
|
| -
|
| - bool need_mask = true;
|
| -
|
| - if (details->characters() == 1) {
|
| - // If number of characters preloaded is 1 then we used a byte or 16 bit
|
| - // load so the value is already masked down.
|
| - uint32_t char_mask;
|
| - if (compiler->one_byte()) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| - } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| - }
|
| - if ((mask & char_mask) == char_mask) need_mask = false;
|
| - mask &= char_mask;
|
| - } else {
|
| - // For 2-character preloads in one-byte mode or 1-character preloads in
|
| - // two-byte mode we also use a 16 bit load with zero extend.
|
| - if (details->characters() == 2 && compiler->one_byte()) {
|
| - if ((mask & 0xffff) == 0xffff) need_mask = false;
|
| - } else if (details->characters() == 1 && !compiler->one_byte()) {
|
| - if ((mask & 0xffff) == 0xffff) need_mask = false;
|
| - } else {
|
| - if (mask == 0xffffffff) need_mask = false;
|
| - }
|
| - }
|
| -
|
| - if (fall_through_on_failure) {
|
| - if (need_mask) {
|
| - assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
|
| - } else {
|
| - assembler->CheckCharacter(value, on_possible_success);
|
| - }
|
| - } else {
|
| - if (need_mask) {
|
| - assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
|
| - } else {
|
| - assembler->CheckNotCharacter(value, trace->backtrack());
|
| - }
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// Here is the meat of GetQuickCheckDetails (see also the comment on the
|
| -// super-class in the .h file).
|
| -//
|
| -// We iterate along the text object, building up for each character a
|
| -// mask and value that can be used to test for a quick failure to match.
|
| -// The masks and values for the positions will be combined into a single
|
| -// machine word for the current character width in order to be used in
|
| -// generating a quick check.
|
| -void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| - RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| - bool not_at_start) {
|
| - Isolate* isolate = compiler->macro_assembler()->isolate();
|
| - DCHECK(characters_filled_in < details->characters());
|
| - int characters = details->characters();
|
| - int char_mask;
|
| - if (compiler->one_byte()) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| - } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| - }
|
| - for (int k = 0; k < elms_->length(); k++) {
|
| - TextElement elm = elms_->at(k);
|
| - if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int i = 0; i < characters && i < quarks.length(); i++) {
|
| - QuickCheckDetails::Position* pos =
|
| - details->positions(characters_filled_in);
|
| - uc16 c = quarks[i];
|
| - if (compiler->ignore_case()) {
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c,
|
| - compiler->one_byte(), chars);
|
| - if (length == 0) {
|
| - // This can happen because all case variants are non-Latin1, but we
|
| - // know the input is Latin1.
|
| - details->set_cannot_match();
|
| - pos->determines_perfectly = false;
|
| - return;
|
| - }
|
| - if (length == 1) {
|
| - // This letter has no case equivalents, so it's nice and simple
|
| - // and the mask-compare will determine definitely whether we have
|
| - // a match at this character position.
|
| - pos->mask = char_mask;
|
| - pos->value = c;
|
| - pos->determines_perfectly = true;
|
| - } else {
|
| - uint32_t common_bits = char_mask;
|
| - uint32_t bits = chars[0];
|
| - for (int j = 1; j < length; j++) {
|
| - uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
|
| - common_bits ^= differing_bits;
|
| - bits &= common_bits;
|
| - }
|
| - // If length is 2 and common bits has only one zero in it then
|
| - // our mask and compare instruction will determine definitely
|
| - // whether we have a match at this character position. Otherwise
|
| - // it can only be an approximate check.
|
| - uint32_t one_zero = (common_bits | ~char_mask);
|
| - if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
|
| - pos->determines_perfectly = true;
|
| - }
|
| - pos->mask = common_bits;
|
| - pos->value = bits;
|
| - }
|
| - } else {
|
| - // Don't ignore case. Nice simple case where the mask-compare will
|
| - // determine definitely whether we have a match at this character
|
| - // position.
|
| - if (c > char_mask) {
|
| - details->set_cannot_match();
|
| - pos->determines_perfectly = false;
|
| - return;
|
| - }
|
| - pos->mask = char_mask;
|
| - pos->value = c;
|
| - pos->determines_perfectly = true;
|
| - }
|
| - characters_filled_in++;
|
| - DCHECK(characters_filled_in <= details->characters());
|
| - if (characters_filled_in == details->characters()) {
|
| - return;
|
| - }
|
| - }
|
| - } else {
|
| - QuickCheckDetails::Position* pos =
|
| - details->positions(characters_filled_in);
|
| - RegExpCharacterClass* tree = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = tree->ranges(zone());
|
| - if (tree->is_negated()) {
|
| - // A quick check uses multi-character mask and compare. There is no
|
| - // useful way to incorporate a negative char class into this scheme
|
| - // so we just conservatively create a mask and value that will always
|
| - // succeed.
|
| - pos->mask = 0;
|
| - pos->value = 0;
|
| - } else {
|
| - int first_range = 0;
|
| - while (ranges->at(first_range).from() > char_mask) {
|
| - first_range++;
|
| - if (first_range == ranges->length()) {
|
| - details->set_cannot_match();
|
| - pos->determines_perfectly = false;
|
| - return;
|
| - }
|
| - }
|
| - CharacterRange range = ranges->at(first_range);
|
| - uc16 from = range.from();
|
| - uc16 to = range.to();
|
| - if (to > char_mask) {
|
| - to = char_mask;
|
| - }
|
| - uint32_t differing_bits = (from ^ to);
|
| - // A mask and compare is only perfect if the differing bits form a
|
| - // number like 00011111 with one single block of trailing 1s.
|
| - if ((differing_bits & (differing_bits + 1)) == 0 &&
|
| - from + differing_bits == to) {
|
| - pos->determines_perfectly = true;
|
| - }
|
| - uint32_t common_bits = ~SmearBitsRight(differing_bits);
|
| - uint32_t bits = (from & common_bits);
|
| - for (int i = first_range + 1; i < ranges->length(); i++) {
|
| - CharacterRange range = ranges->at(i);
|
| - uc16 from = range.from();
|
| - uc16 to = range.to();
|
| - if (from > char_mask) continue;
|
| - if (to > char_mask) to = char_mask;
|
| - // Here we are combining more ranges into the mask and compare
|
| - // value. With each new range the mask becomes more sparse and
|
| - // so the chances of a false positive rise. A character class
|
| - // with multiple ranges is assumed never to be equivalent to a
|
| - // mask and compare operation.
|
| - pos->determines_perfectly = false;
|
| - uint32_t new_common_bits = (from ^ to);
|
| - new_common_bits = ~SmearBitsRight(new_common_bits);
|
| - common_bits &= new_common_bits;
|
| - bits &= new_common_bits;
|
| - uint32_t differing_bits = (from & common_bits) ^ bits;
|
| - common_bits ^= differing_bits;
|
| - bits &= common_bits;
|
| - }
|
| - pos->mask = common_bits;
|
| - pos->value = bits;
|
| - }
|
| - characters_filled_in++;
|
| - DCHECK(characters_filled_in <= details->characters());
|
| - if (characters_filled_in == details->characters()) {
|
| - return;
|
| - }
|
| - }
|
| - }
|
| - DCHECK(characters_filled_in != details->characters());
|
| - if (!details->cannot_match()) {
|
| - on_success()-> GetQuickCheckDetails(details,
|
| - compiler,
|
| - characters_filled_in,
|
| - true);
|
| - }
|
| -}
|
| -
|
| -
|
| -void QuickCheckDetails::Clear() {
|
| - for (int i = 0; i < characters_; i++) {
|
| - positions_[i].mask = 0;
|
| - positions_[i].value = 0;
|
| - positions_[i].determines_perfectly = false;
|
| - }
|
| - characters_ = 0;
|
| -}
|
| -
|
| -
|
| -void QuickCheckDetails::Advance(int by, bool one_byte) {
|
| - DCHECK(by >= 0);
|
| - if (by >= characters_) {
|
| - Clear();
|
| - return;
|
| - }
|
| - for (int i = 0; i < characters_ - by; i++) {
|
| - positions_[i] = positions_[by + i];
|
| - }
|
| - for (int i = characters_ - by; i < characters_; i++) {
|
| - positions_[i].mask = 0;
|
| - positions_[i].value = 0;
|
| - positions_[i].determines_perfectly = false;
|
| - }
|
| - characters_ -= by;
|
| - // We could change mask_ and value_ here but we would never advance unless
|
| - // they had already been used in a check and they won't be used again because
|
| - // it would gain us nothing. So there's no point.
|
| -}
|
| -
|
| -
|
| -void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
|
| - DCHECK(characters_ == other->characters_);
|
| - if (other->cannot_match_) {
|
| - return;
|
| - }
|
| - if (cannot_match_) {
|
| - *this = *other;
|
| - return;
|
| - }
|
| - for (int i = from_index; i < characters_; i++) {
|
| - QuickCheckDetails::Position* pos = positions(i);
|
| - QuickCheckDetails::Position* other_pos = other->positions(i);
|
| - if (pos->mask != other_pos->mask ||
|
| - pos->value != other_pos->value ||
|
| - !other_pos->determines_perfectly) {
|
| - // Our mask-compare operation will be approximate unless we have the
|
| - // exact same operation on both sides of the alternation.
|
| - pos->determines_perfectly = false;
|
| - }
|
| - pos->mask &= other_pos->mask;
|
| - pos->value &= pos->mask;
|
| - other_pos->value &= pos->mask;
|
| - uc16 differing_bits = (pos->value ^ other_pos->value);
|
| - pos->mask &= ~differing_bits;
|
| - pos->value &= pos->mask;
|
| - }
|
| -}
|
| -
|
| -
|
| -class VisitMarker {
|
| - public:
|
| - explicit VisitMarker(NodeInfo* info) : info_(info) {
|
| - DCHECK(!info->visited);
|
| - info->visited = true;
|
| - }
|
| - ~VisitMarker() {
|
| - info_->visited = false;
|
| - }
|
| - private:
|
| - NodeInfo* info_;
|
| -};
|
| -
|
| -
|
| -RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
|
| - if (info()->replacement_calculated) return replacement();
|
| - if (depth < 0) return this;
|
| - DCHECK(!info()->visited);
|
| - VisitMarker marker(info());
|
| - return FilterSuccessor(depth - 1, ignore_case);
|
| -}
|
| -
|
| -
|
| -RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
|
| - RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
|
| - if (next == NULL) return set_replacement(NULL);
|
| - on_success_ = next;
|
| - return set_replacement(this);
|
| -}
|
| -
|
| -
|
| -// We need to check for the following characters: 0x39c 0x3bc 0x178.
|
| -static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
|
| - // TODO(dcarney): this could be a lot more efficient.
|
| - return range.Contains(0x39c) ||
|
| - range.Contains(0x3bc) || range.Contains(0x178);
|
| -}
|
| -
|
| -
|
| -static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
|
| - for (int i = 0; i < ranges->length(); i++) {
|
| - // TODO(dcarney): this could be a lot more efficient.
|
| - if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
|
| - if (info()->replacement_calculated) return replacement();
|
| - if (depth < 0) return this;
|
| - DCHECK(!info()->visited);
|
| - VisitMarker marker(info());
|
| - int element_count = elms_->length();
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement elm = elms_->at(i);
|
| - if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int j = 0; j < quarks.length(); j++) {
|
| - uint16_t c = quarks[j];
|
| - if (c <= String::kMaxOneByteCharCode) continue;
|
| - if (!ignore_case) return set_replacement(NULL);
|
| - // Here, we need to check for characters whose upper and lower cases
|
| - // are outside the Latin-1 range.
|
| - uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
|
| - // Character is outside Latin-1 completely
|
| - if (converted == 0) return set_replacement(NULL);
|
| - // Convert quark to Latin-1 in place.
|
| - uint16_t* copy = const_cast<uint16_t*>(quarks.start());
|
| - copy[j] = converted;
|
| - }
|
| - } else {
|
| - DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
|
| - RegExpCharacterClass* cc = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone());
|
| - if (!CharacterRange::IsCanonical(ranges)) {
|
| - CharacterRange::Canonicalize(ranges);
|
| - }
|
| - // Now they are in order so we only need to look at the first.
|
| - int range_count = ranges->length();
|
| - if (cc->is_negated()) {
|
| - if (range_count != 0 &&
|
| - ranges->at(0).from() == 0 &&
|
| - ranges->at(0).to() >= String::kMaxOneByteCharCode) {
|
| - // This will be handled in a later filter.
|
| - if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| - return set_replacement(NULL);
|
| - }
|
| - } else {
|
| - if (range_count == 0 ||
|
| - ranges->at(0).from() > String::kMaxOneByteCharCode) {
|
| - // This will be handled in a later filter.
|
| - if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| - return set_replacement(NULL);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - return FilterSuccessor(depth - 1, ignore_case);
|
| -}
|
| -
|
| -
|
| -RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| - if (info()->replacement_calculated) return replacement();
|
| - if (depth < 0) return this;
|
| - if (info()->visited) return this;
|
| - {
|
| - VisitMarker marker(info());
|
| -
|
| - RegExpNode* continue_replacement =
|
| - continue_node_->FilterOneByte(depth - 1, ignore_case);
|
| - // If we can't continue after the loop then there is no sense in doing the
|
| - // loop.
|
| - if (continue_replacement == NULL) return set_replacement(NULL);
|
| - }
|
| -
|
| - return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
|
| -}
|
| -
|
| -
|
| -RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| - if (info()->replacement_calculated) return replacement();
|
| - if (depth < 0) return this;
|
| - if (info()->visited) return this;
|
| - VisitMarker marker(info());
|
| - int choice_count = alternatives_->length();
|
| -
|
| - for (int i = 0; i < choice_count; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| - if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
|
| - set_replacement(this);
|
| - return this;
|
| - }
|
| - }
|
| -
|
| - int surviving = 0;
|
| - RegExpNode* survivor = NULL;
|
| - for (int i = 0; i < choice_count; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| - RegExpNode* replacement =
|
| - alternative.node()->FilterOneByte(depth - 1, ignore_case);
|
| - DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
|
| - if (replacement != NULL) {
|
| - alternatives_->at(i).set_node(replacement);
|
| - surviving++;
|
| - survivor = replacement;
|
| - }
|
| - }
|
| - if (surviving < 2) return set_replacement(survivor);
|
| -
|
| - set_replacement(this);
|
| - if (surviving == choice_count) {
|
| - return this;
|
| - }
|
| - // Only some of the nodes survived the filtering. We need to rebuild the
|
| - // alternatives list.
|
| - ZoneList<GuardedAlternative>* new_alternatives =
|
| - new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
|
| - for (int i = 0; i < choice_count; i++) {
|
| - RegExpNode* replacement =
|
| - alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
|
| - if (replacement != NULL) {
|
| - alternatives_->at(i).set_node(replacement);
|
| - new_alternatives->Add(alternatives_->at(i), zone());
|
| - }
|
| - }
|
| - alternatives_ = new_alternatives;
|
| - return this;
|
| -}
|
| -
|
| -
|
| -RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
|
| - bool ignore_case) {
|
| - if (info()->replacement_calculated) return replacement();
|
| - if (depth < 0) return this;
|
| - if (info()->visited) return this;
|
| - VisitMarker marker(info());
|
| - // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| - // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| - RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
|
| - if (replacement == NULL) return set_replacement(NULL);
|
| - alternatives_->at(1).set_node(replacement);
|
| -
|
| - RegExpNode* neg_node = alternatives_->at(0).node();
|
| - RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
|
| - // If the negative lookahead is always going to fail then
|
| - // we don't need to check it.
|
| - if (neg_replacement == NULL) return set_replacement(replacement);
|
| - alternatives_->at(0).set_node(neg_replacement);
|
| - return set_replacement(this);
|
| -}
|
| -
|
| -
|
| -void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| - RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| - bool not_at_start) {
|
| - if (body_can_be_zero_length_ || info()->visited) return;
|
| - VisitMarker marker(info());
|
| - return ChoiceNode::GetQuickCheckDetails(details,
|
| - compiler,
|
| - characters_filled_in,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
|
| - BoyerMooreLookahead* bm, bool not_at_start) {
|
| - if (body_can_be_zero_length_ || budget <= 0) {
|
| - bm->SetRest(offset);
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| - return;
|
| - }
|
| - ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| - RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| - bool not_at_start) {
|
| - not_at_start = (not_at_start || not_at_start_);
|
| - int choice_count = alternatives_->length();
|
| - DCHECK(choice_count > 0);
|
| - alternatives_->at(0).node()->GetQuickCheckDetails(details,
|
| - compiler,
|
| - characters_filled_in,
|
| - not_at_start);
|
| - for (int i = 1; i < choice_count; i++) {
|
| - QuickCheckDetails new_details(details->characters());
|
| - RegExpNode* node = alternatives_->at(i).node();
|
| - node->GetQuickCheckDetails(&new_details, compiler,
|
| - characters_filled_in,
|
| - not_at_start);
|
| - // Here we merge the quick match details of the two branches.
|
| - details->Merge(&new_details, characters_filled_in);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Check for [0-9A-Z_a-z].
|
| -static void EmitWordCheck(RegExpMacroAssembler* assembler,
|
| - Label* word,
|
| - Label* non_word,
|
| - bool fall_through_on_word) {
|
| - if (assembler->CheckSpecialCharacterClass(
|
| - fall_through_on_word ? 'w' : 'W',
|
| - fall_through_on_word ? non_word : word)) {
|
| - // Optimized implementation available.
|
| - return;
|
| - }
|
| - assembler->CheckCharacterGT('z', non_word);
|
| - assembler->CheckCharacterLT('0', non_word);
|
| - assembler->CheckCharacterGT('a' - 1, word);
|
| - assembler->CheckCharacterLT('9' + 1, word);
|
| - assembler->CheckCharacterLT('A', non_word);
|
| - assembler->CheckCharacterLT('Z' + 1, word);
|
| - if (fall_through_on_word) {
|
| - assembler->CheckNotCharacter('_', non_word);
|
| - } else {
|
| - assembler->CheckCharacter('_', word);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Emit the code to check for a ^ in multiline mode (1-character lookbehind
|
| -// that matches newline or the start of input).
|
| -static void EmitHat(RegExpCompiler* compiler,
|
| - RegExpNode* on_success,
|
| - Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - // We will be loading the previous character into the current character
|
| - // register.
|
| - Trace new_trace(*trace);
|
| - new_trace.InvalidateCurrentCharacter();
|
| -
|
| - Label ok;
|
| - if (new_trace.cp_offset() == 0) {
|
| - // The start of input counts as a newline in this context, so skip to
|
| - // ok if we are at the start.
|
| - assembler->CheckAtStart(&ok);
|
| - }
|
| - // We already checked that we are not at the start of input so it must be
|
| - // OK to load the previous character.
|
| - assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
|
| - new_trace.backtrack(),
|
| - false);
|
| - if (!assembler->CheckSpecialCharacterClass('n',
|
| - new_trace.backtrack())) {
|
| - // Newline means \n, \r, 0x2028 or 0x2029.
|
| - if (!compiler->one_byte()) {
|
| - assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
|
| - }
|
| - assembler->CheckCharacter('\n', &ok);
|
| - assembler->CheckNotCharacter('\r', new_trace.backtrack());
|
| - }
|
| - assembler->Bind(&ok);
|
| - on_success->Emit(compiler, &new_trace);
|
| -}
|
| -
|
| -
|
| -// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
|
| -void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - Isolate* isolate = assembler->isolate();
|
| - Trace::TriBool next_is_word_character = Trace::UNKNOWN;
|
| - bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
|
| - BoyerMooreLookahead* lookahead = bm_info(not_at_start);
|
| - if (lookahead == NULL) {
|
| - int eats_at_least =
|
| - Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| - kRecursionBudget,
|
| - not_at_start));
|
| - if (eats_at_least >= 1) {
|
| - BoyerMooreLookahead* bm =
|
| - new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
|
| - FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
|
| - if (bm->at(0)->is_non_word())
|
| - next_is_word_character = Trace::FALSE_VALUE;
|
| - if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
|
| - }
|
| - } else {
|
| - if (lookahead->at(0)->is_non_word())
|
| - next_is_word_character = Trace::FALSE_VALUE;
|
| - if (lookahead->at(0)->is_word())
|
| - next_is_word_character = Trace::TRUE_VALUE;
|
| - }
|
| - bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
|
| - if (next_is_word_character == Trace::UNKNOWN) {
|
| - Label before_non_word;
|
| - Label before_word;
|
| - if (trace->characters_preloaded() != 1) {
|
| - assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
|
| - }
|
| - // Fall through on non-word.
|
| - EmitWordCheck(assembler, &before_word, &before_non_word, false);
|
| - // Next character is not a word character.
|
| - assembler->Bind(&before_non_word);
|
| - Label ok;
|
| - BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| - assembler->GoTo(&ok);
|
| -
|
| - assembler->Bind(&before_word);
|
| - BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| - assembler->Bind(&ok);
|
| - } else if (next_is_word_character == Trace::TRUE_VALUE) {
|
| - BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| - } else {
|
| - DCHECK(next_is_word_character == Trace::FALSE_VALUE);
|
| - BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| - }
|
| -}
|
| -
|
| -
|
| -void AssertionNode::BacktrackIfPrevious(
|
| - RegExpCompiler* compiler,
|
| - Trace* trace,
|
| - AssertionNode::IfPrevious backtrack_if_previous) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - Trace new_trace(*trace);
|
| - new_trace.InvalidateCurrentCharacter();
|
| -
|
| - Label fall_through, dummy;
|
| -
|
| - Label* non_word = backtrack_if_previous == kIsNonWord ?
|
| - new_trace.backtrack() :
|
| - &fall_through;
|
| - Label* word = backtrack_if_previous == kIsNonWord ?
|
| - &fall_through :
|
| - new_trace.backtrack();
|
| -
|
| - if (new_trace.cp_offset() == 0) {
|
| - // The start of input counts as a non-word character, so the question is
|
| - // decided if we are at the start.
|
| - assembler->CheckAtStart(non_word);
|
| - }
|
| - // We already checked that we are not at the start of input so it must be
|
| - // OK to load the previous character.
|
| - assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
|
| - EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
|
| -
|
| - assembler->Bind(&fall_through);
|
| - on_success()->Emit(compiler, &new_trace);
|
| -}
|
| -
|
| -
|
| -void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| - RegExpCompiler* compiler,
|
| - int filled_in,
|
| - bool not_at_start) {
|
| - if (assertion_type_ == AT_START && not_at_start) {
|
| - details->set_cannot_match();
|
| - return;
|
| - }
|
| - return on_success()->GetQuickCheckDetails(details,
|
| - compiler,
|
| - filled_in,
|
| - not_at_start);
|
| -}
|
| -
|
| -
|
| -void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - switch (assertion_type_) {
|
| - case AT_END: {
|
| - Label ok;
|
| - assembler->CheckPosition(trace->cp_offset(), &ok);
|
| - assembler->GoTo(trace->backtrack());
|
| - assembler->Bind(&ok);
|
| - break;
|
| - }
|
| - case AT_START: {
|
| - if (trace->at_start() == Trace::FALSE_VALUE) {
|
| - assembler->GoTo(trace->backtrack());
|
| - return;
|
| - }
|
| - if (trace->at_start() == Trace::UNKNOWN) {
|
| - assembler->CheckNotAtStart(trace->backtrack());
|
| - Trace at_start_trace = *trace;
|
| - at_start_trace.set_at_start(true);
|
| - on_success()->Emit(compiler, &at_start_trace);
|
| - return;
|
| - }
|
| - }
|
| - break;
|
| - case AFTER_NEWLINE:
|
| - EmitHat(compiler, on_success(), trace);
|
| - return;
|
| - case AT_BOUNDARY:
|
| - case AT_NON_BOUNDARY: {
|
| - EmitBoundaryCheck(compiler, trace);
|
| - return;
|
| - }
|
| - }
|
| - on_success()->Emit(compiler, trace);
|
| -}
|
| -
|
| -
|
| -static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
|
| - if (quick_check == NULL) return false;
|
| - if (offset >= quick_check->characters()) return false;
|
| - return quick_check->positions(offset)->determines_perfectly;
|
| -}
|
| -
|
| -
|
| -static void UpdateBoundsCheck(int index, int* checked_up_to) {
|
| - if (index > *checked_up_to) {
|
| - *checked_up_to = index;
|
| - }
|
| -}
|
| -
|
| -
|
| -// We call this repeatedly to generate code for each pass over the text node.
|
| -// The passes are in increasing order of difficulty because we hope one
|
| -// of the first passes will fail in which case we are saved the work of the
|
| -// later passes. for example for the case independent regexp /%[asdfghjkl]a/
|
| -// we will check the '%' in the first pass, the case independent 'a' in the
|
| -// second pass and the character class in the last pass.
|
| -//
|
| -// The passes are done from right to left, so for example to test for /bar/
|
| -// we will first test for an 'r' with offset 2, then an 'a' with offset 1
|
| -// and then a 'b' with offset 0. This means we can avoid the end-of-input
|
| -// bounds check most of the time. In the example we only need to check for
|
| -// end-of-input when loading the putative 'r'.
|
| -//
|
| -// A slight complication involves the fact that the first character may already
|
| -// be fetched into a register by the previous node. In this case we want to
|
| -// do the test for that character first. We do this in separate passes. The
|
| -// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
|
| -// pass has been performed then subsequent passes will have true in
|
| -// first_element_checked to indicate that that character does not need to be
|
| -// checked again.
|
| -//
|
| -// In addition to all this we are passed a Trace, which can
|
| -// contain an AlternativeGeneration object. In this AlternativeGeneration
|
| -// object we can see details of any quick check that was already passed in
|
| -// order to get to the code we are now generating. The quick check can involve
|
| -// loading characters, which means we do not need to recheck the bounds
|
| -// up to the limit the quick check already checked. In addition the quick
|
| -// check can have involved a mask and compare operation which may simplify
|
| -// or obviate the need for further checks at some character positions.
|
| -void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| - TextEmitPassType pass,
|
| - bool preloaded,
|
| - Trace* trace,
|
| - bool first_element_checked,
|
| - int* checked_up_to) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - Isolate* isolate = assembler->isolate();
|
| - bool one_byte = compiler->one_byte();
|
| - Label* backtrack = trace->backtrack();
|
| - QuickCheckDetails* quick_check = trace->quick_check_performed();
|
| - int element_count = elms_->length();
|
| - for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
|
| - TextElement elm = elms_->at(i);
|
| - int cp_offset = trace->cp_offset() + elm.cp_offset();
|
| - if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
|
| - if (first_element_checked && i == 0 && j == 0) continue;
|
| - if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
|
| - EmitCharacterFunction* emit_function = NULL;
|
| - switch (pass) {
|
| - case NON_LATIN1_MATCH:
|
| - DCHECK(one_byte);
|
| - if (quarks[j] > String::kMaxOneByteCharCode) {
|
| - assembler->GoTo(backtrack);
|
| - return;
|
| - }
|
| - break;
|
| - case NON_LETTER_CHARACTER_MATCH:
|
| - emit_function = &EmitAtomNonLetter;
|
| - break;
|
| - case SIMPLE_CHARACTER_MATCH:
|
| - emit_function = &EmitSimpleCharacter;
|
| - break;
|
| - case CASE_CHARACTER_MATCH:
|
| - emit_function = &EmitAtomLetter;
|
| - break;
|
| - default:
|
| - break;
|
| - }
|
| - if (emit_function != NULL) {
|
| - bool bound_checked = emit_function(isolate,
|
| - compiler,
|
| - quarks[j],
|
| - backtrack,
|
| - cp_offset + j,
|
| - *checked_up_to < cp_offset + j,
|
| - preloaded);
|
| - if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
|
| - }
|
| - }
|
| - } else {
|
| - DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
|
| - if (pass == CHARACTER_CLASS_MATCH) {
|
| - if (first_element_checked && i == 0) continue;
|
| - if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
|
| - RegExpCharacterClass* cc = elm.char_class();
|
| - EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
|
| - *checked_up_to < cp_offset, preloaded, zone());
|
| - UpdateBoundsCheck(cp_offset, checked_up_to);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -int TextNode::Length() {
|
| - TextElement elm = elms_->last();
|
| - DCHECK(elm.cp_offset() >= 0);
|
| - return elm.cp_offset() + elm.length();
|
| -}
|
| -
|
| -
|
| -bool TextNode::SkipPass(int int_pass, bool ignore_case) {
|
| - TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
|
| - if (ignore_case) {
|
| - return pass == SIMPLE_CHARACTER_MATCH;
|
| - } else {
|
| - return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
|
| - }
|
| -}
|
| -
|
| -
|
| -// This generates the code to match a text node. A text node can contain
|
| -// straight character sequences (possibly to be matched in a case-independent
|
| -// way) and character classes. For efficiency we do not do this in a single
|
| -// pass from left to right. Instead we pass over the text node several times,
|
| -// emitting code for some character positions every time. See the comment on
|
| -// TextEmitPass for details.
|
| -void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - LimitResult limit_result = LimitVersions(compiler, trace);
|
| - if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| -
|
| - if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
|
| - compiler->SetRegExpTooBig();
|
| - return;
|
| - }
|
| -
|
| - if (compiler->one_byte()) {
|
| - int dummy = 0;
|
| - TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
|
| - }
|
| -
|
| - bool first_elt_done = false;
|
| - int bound_checked_to = trace->cp_offset() - 1;
|
| - bound_checked_to += trace->bound_checked_up_to();
|
| -
|
| - // If a character is preloaded into the current character register then
|
| - // check that now.
|
| - if (trace->characters_preloaded() == 1) {
|
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| - if (!SkipPass(pass, compiler->ignore_case())) {
|
| - TextEmitPass(compiler,
|
| - static_cast<TextEmitPassType>(pass),
|
| - true,
|
| - trace,
|
| - false,
|
| - &bound_checked_to);
|
| - }
|
| - }
|
| - first_elt_done = true;
|
| - }
|
| -
|
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| - if (!SkipPass(pass, compiler->ignore_case())) {
|
| - TextEmitPass(compiler,
|
| - static_cast<TextEmitPassType>(pass),
|
| - false,
|
| - trace,
|
| - first_elt_done,
|
| - &bound_checked_to);
|
| - }
|
| - }
|
| -
|
| - Trace successor_trace(*trace);
|
| - successor_trace.set_at_start(false);
|
| - successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
|
| - RecursionCheck rc(compiler);
|
| - on_success()->Emit(compiler, &successor_trace);
|
| -}
|
| -
|
| -
|
| -void Trace::InvalidateCurrentCharacter() {
|
| - characters_preloaded_ = 0;
|
| -}
|
| -
|
| -
|
| -void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
|
| - DCHECK(by > 0);
|
| - // We don't have an instruction for shifting the current character register
|
| - // down or for using a shifted value for anything so lets just forget that
|
| - // we preloaded any characters into it.
|
| - characters_preloaded_ = 0;
|
| - // Adjust the offsets of the quick check performed information. This
|
| - // information is used to find out what we already determined about the
|
| - // characters by means of mask and compare.
|
| - quick_check_performed_.Advance(by, compiler->one_byte());
|
| - cp_offset_ += by;
|
| - if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
|
| - compiler->SetRegExpTooBig();
|
| - cp_offset_ = 0;
|
| - }
|
| - bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
|
| -}
|
| -
|
| -
|
| -void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
|
| - int element_count = elms_->length();
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement elm = elms_->at(i);
|
| - if (elm.text_type() == TextElement::CHAR_CLASS) {
|
| - RegExpCharacterClass* cc = elm.char_class();
|
| - // None of the standard character classes is different in the case
|
| - // independent case and it slows us down if we don't know that.
|
| - if (cc->is_standard(zone())) continue;
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone());
|
| - int range_count = ranges->length();
|
| - for (int j = 0; j < range_count; j++) {
|
| - ranges->at(j).AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -int TextNode::GreedyLoopTextLength() {
|
| - TextElement elm = elms_->at(elms_->length() - 1);
|
| - return elm.cp_offset() + elm.length();
|
| -}
|
| -
|
| -
|
| -RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
|
| - RegExpCompiler* compiler) {
|
| - if (elms_->length() != 1) return NULL;
|
| - TextElement elm = elms_->at(0);
|
| - if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
|
| - RegExpCharacterClass* node = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = node->ranges(zone());
|
| - if (!CharacterRange::IsCanonical(ranges)) {
|
| - CharacterRange::Canonicalize(ranges);
|
| - }
|
| - if (node->is_negated()) {
|
| - return ranges->length() == 0 ? on_success() : NULL;
|
| - }
|
| - if (ranges->length() != 1) return NULL;
|
| - uint32_t max_char;
|
| - if (compiler->one_byte()) {
|
| - max_char = String::kMaxOneByteCharCode;
|
| - } else {
|
| - max_char = String::kMaxUtf16CodeUnit;
|
| - }
|
| - return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
|
| -}
|
| -
|
| -
|
| -// Finds the fixed match length of a sequence of nodes that goes from
|
| -// this alternative and back to this choice node. If there are variable
|
| -// length nodes or other complications in the way then return a sentinel
|
| -// value indicating that a greedy loop cannot be constructed.
|
| -int ChoiceNode::GreedyLoopTextLengthForAlternative(
|
| - GuardedAlternative* alternative) {
|
| - int length = 0;
|
| - RegExpNode* node = alternative->node();
|
| - // Later we will generate code for all these text nodes using recursion
|
| - // so we have to limit the max number.
|
| - int recursion_depth = 0;
|
| - while (node != this) {
|
| - if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
|
| - return kNodeIsTooComplexForGreedyLoops;
|
| - }
|
| - int node_length = node->GreedyLoopTextLength();
|
| - if (node_length == kNodeIsTooComplexForGreedyLoops) {
|
| - return kNodeIsTooComplexForGreedyLoops;
|
| - }
|
| - length += node_length;
|
| - SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
|
| - node = seq_node->on_success();
|
| - }
|
| - return length;
|
| -}
|
| -
|
| -
|
| -void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
|
| - DCHECK_NULL(loop_node_);
|
| - AddAlternative(alt);
|
| - loop_node_ = alt.node();
|
| -}
|
| -
|
| -
|
| -void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
|
| - DCHECK_NULL(continue_node_);
|
| - AddAlternative(alt);
|
| - continue_node_ = alt.node();
|
| -}
|
| -
|
| -
|
| -void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - if (trace->stop_node() == this) {
|
| - // Back edge of greedy optimized loop node graph.
|
| - int text_length =
|
| - GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
|
| - DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
|
| - // Update the counter-based backtracking info on the stack. This is an
|
| - // optimization for greedy loops (see below).
|
| - DCHECK(trace->cp_offset() == text_length);
|
| - macro_assembler->AdvanceCurrentPosition(text_length);
|
| - macro_assembler->GoTo(trace->loop_label());
|
| - return;
|
| - }
|
| - DCHECK_NULL(trace->stop_node());
|
| - if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - return;
|
| - }
|
| - ChoiceNode::Emit(compiler, trace);
|
| -}
|
| -
|
| -
|
| -int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
| - int eats_at_least) {
|
| - int preload_characters = Min(4, eats_at_least);
|
| - if (compiler->macro_assembler()->CanReadUnaligned()) {
|
| - bool one_byte = compiler->one_byte();
|
| - if (one_byte) {
|
| - if (preload_characters > 4) preload_characters = 4;
|
| - // We can't preload 3 characters because there is no machine instruction
|
| - // to do that. We can't just load 4 because we could be reading
|
| - // beyond the end of the string, which could cause a memory fault.
|
| - if (preload_characters == 3) preload_characters = 2;
|
| - } else {
|
| - if (preload_characters > 2) preload_characters = 2;
|
| - }
|
| - } else {
|
| - if (preload_characters > 1) preload_characters = 1;
|
| - }
|
| - return preload_characters;
|
| -}
|
| -
|
| -
|
| -// This class is used when generating the alternatives in a choice node. It
|
| -// records the way the alternative is being code generated.
|
| -class AlternativeGeneration: public Malloced {
|
| - public:
|
| - AlternativeGeneration()
|
| - : possible_success(),
|
| - expects_preload(false),
|
| - after(),
|
| - quick_check_details() { }
|
| - Label possible_success;
|
| - bool expects_preload;
|
| - Label after;
|
| - QuickCheckDetails quick_check_details;
|
| -};
|
| -
|
| -
|
| -// Creates a list of AlternativeGenerations. If the list has a reasonable
|
| -// size then it is on the stack, otherwise the excess is on the heap.
|
| -class AlternativeGenerationList {
|
| - public:
|
| - AlternativeGenerationList(int count, Zone* zone)
|
| - : alt_gens_(count, zone) {
|
| - for (int i = 0; i < count && i < kAFew; i++) {
|
| - alt_gens_.Add(a_few_alt_gens_ + i, zone);
|
| - }
|
| - for (int i = kAFew; i < count; i++) {
|
| - alt_gens_.Add(new AlternativeGeneration(), zone);
|
| - }
|
| - }
|
| - ~AlternativeGenerationList() {
|
| - for (int i = kAFew; i < alt_gens_.length(); i++) {
|
| - delete alt_gens_[i];
|
| - alt_gens_[i] = NULL;
|
| - }
|
| - }
|
| -
|
| - AlternativeGeneration* at(int i) {
|
| - return alt_gens_[i];
|
| - }
|
| -
|
| - private:
|
| - static const int kAFew = 10;
|
| - ZoneList<AlternativeGeneration*> alt_gens_;
|
| - AlternativeGeneration a_few_alt_gens_[kAFew];
|
| -};
|
| -
|
| -
|
| -// The '2' variant is has inclusive from and exclusive to.
|
| -// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
|
| -// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
|
| -static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
|
| - 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
|
| - 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
|
| - 0xFEFF, 0xFF00, 0x10000 };
|
| -static const int kSpaceRangeCount = arraysize(kSpaceRanges);
|
| -
|
| -static const int kWordRanges[] = {
|
| - '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
|
| -static const int kWordRangeCount = arraysize(kWordRanges);
|
| -static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
|
| -static const int kDigitRangeCount = arraysize(kDigitRanges);
|
| -static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
|
| -static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
|
| -static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
|
| - 0x2028, 0x202A, 0x10000 };
|
| -static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
|
| -
|
| -
|
| -void BoyerMoorePositionInfo::Set(int character) {
|
| - SetInterval(Interval(character, character));
|
| -}
|
| -
|
| -
|
| -void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
|
| - s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
|
| - w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
|
| - d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
|
| - surrogate_ =
|
| - AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
|
| - if (interval.to() - interval.from() >= kMapSize - 1) {
|
| - if (map_count_ != kMapSize) {
|
| - map_count_ = kMapSize;
|
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
|
| - }
|
| - return;
|
| - }
|
| - for (int i = interval.from(); i <= interval.to(); i++) {
|
| - int mod_character = (i & kMask);
|
| - if (!map_->at(mod_character)) {
|
| - map_count_++;
|
| - map_->at(mod_character) = true;
|
| - }
|
| - if (map_count_ == kMapSize) return;
|
| - }
|
| -}
|
| -
|
| -
|
| -void BoyerMoorePositionInfo::SetAll() {
|
| - s_ = w_ = d_ = kLatticeUnknown;
|
| - if (map_count_ != kMapSize) {
|
| - map_count_ = kMapSize;
|
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
|
| - }
|
| -}
|
| -
|
| -
|
| -BoyerMooreLookahead::BoyerMooreLookahead(
|
| - int length, RegExpCompiler* compiler, Zone* zone)
|
| - : length_(length),
|
| - compiler_(compiler) {
|
| - if (compiler->one_byte()) {
|
| - max_char_ = String::kMaxOneByteCharCode;
|
| - } else {
|
| - max_char_ = String::kMaxUtf16CodeUnit;
|
| - }
|
| - bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
|
| - for (int i = 0; i < length; i++) {
|
| - bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Find the longest range of lookahead that has the fewest number of different
|
| -// characters that can occur at a given position. Since we are optimizing two
|
| -// different parameters at once this is a tradeoff.
|
| -bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
|
| - int biggest_points = 0;
|
| - // If more than 32 characters out of 128 can occur it is unlikely that we can
|
| - // be lucky enough to step forwards much of the time.
|
| - const int kMaxMax = 32;
|
| - for (int max_number_of_chars = 4;
|
| - max_number_of_chars < kMaxMax;
|
| - max_number_of_chars *= 2) {
|
| - biggest_points =
|
| - FindBestInterval(max_number_of_chars, biggest_points, from, to);
|
| - }
|
| - if (biggest_points == 0) return false;
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// Find the highest-points range between 0 and length_ where the character
|
| -// information is not too vague. 'Too vague' means that there are more than
|
| -// max_number_of_chars that can occur at this position. Calculates the number
|
| -// of points as the product of width-of-the-range and
|
| -// probability-of-finding-one-of-the-characters, where the probability is
|
| -// calculated using the frequency distribution of the sample subject string.
|
| -int BoyerMooreLookahead::FindBestInterval(
|
| - int max_number_of_chars, int old_biggest_points, int* from, int* to) {
|
| - int biggest_points = old_biggest_points;
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - for (int i = 0; i < length_; ) {
|
| - while (i < length_ && Count(i) > max_number_of_chars) i++;
|
| - if (i == length_) break;
|
| - int remembered_from = i;
|
| - bool union_map[kSize];
|
| - for (int j = 0; j < kSize; j++) union_map[j] = false;
|
| - while (i < length_ && Count(i) <= max_number_of_chars) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| - for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
|
| - i++;
|
| - }
|
| - int frequency = 0;
|
| - for (int j = 0; j < kSize; j++) {
|
| - if (union_map[j]) {
|
| - // Add 1 to the frequency to give a small per-character boost for
|
| - // the cases where our sampling is not good enough and many
|
| - // characters have a frequency of zero. This means the frequency
|
| - // can theoretically be up to 2*kSize though we treat it mostly as
|
| - // a fraction of kSize.
|
| - frequency += compiler_->frequency_collator()->Frequency(j) + 1;
|
| - }
|
| - }
|
| - // We use the probability of skipping times the distance we are skipping to
|
| - // judge the effectiveness of this. Actually we have a cut-off: By
|
| - // dividing by 2 we switch off the skipping if the probability of skipping
|
| - // is less than 50%. This is because the multibyte mask-and-compare
|
| - // skipping in quickcheck is more likely to do well on this case.
|
| - bool in_quickcheck_range =
|
| - ((i - remembered_from < 4) ||
|
| - (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
|
| - // Called 'probability' but it is only a rough estimate and can actually
|
| - // be outside the 0-kSize range.
|
| - int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
|
| - int points = (i - remembered_from) * probability;
|
| - if (points > biggest_points) {
|
| - *from = remembered_from;
|
| - *to = i - 1;
|
| - biggest_points = points;
|
| - }
|
| - }
|
| - return biggest_points;
|
| -}
|
| -
|
| -
|
| -// Take all the characters that will not prevent a successful match if they
|
| -// occur in the subject string in the range between min_lookahead and
|
| -// max_lookahead (inclusive) measured from the current position. If the
|
| -// character at max_lookahead offset is not one of these characters, then we
|
| -// can safely skip forwards by the number of characters in the range.
|
| -int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
|
| - int max_lookahead,
|
| - Handle<ByteArray> boolean_skip_table) {
|
| - const int kSize = RegExpMacroAssembler::kTableSize;
|
| -
|
| - const int kSkipArrayEntry = 0;
|
| - const int kDontSkipArrayEntry = 1;
|
| -
|
| - for (int i = 0; i < kSize; i++) {
|
| - boolean_skip_table->set(i, kSkipArrayEntry);
|
| - }
|
| - int skip = max_lookahead + 1 - min_lookahead;
|
| -
|
| - for (int i = max_lookahead; i >= min_lookahead; i--) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| - for (int j = 0; j < kSize; j++) {
|
| - if (map->at(j)) {
|
| - boolean_skip_table->set(j, kDontSkipArrayEntry);
|
| - }
|
| - }
|
| - }
|
| -
|
| - return skip;
|
| -}
|
| -
|
| -
|
| -// See comment above on the implementation of GetSkipTable.
|
| -void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| - const int kSize = RegExpMacroAssembler::kTableSize;
|
| -
|
| - int min_lookahead = 0;
|
| - int max_lookahead = 0;
|
| -
|
| - if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
|
| -
|
| - bool found_single_character = false;
|
| - int single_character = 0;
|
| - for (int i = max_lookahead; i >= min_lookahead; i--) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| - if (map->map_count() > 1 ||
|
| - (found_single_character && map->map_count() != 0)) {
|
| - found_single_character = false;
|
| - break;
|
| - }
|
| - for (int j = 0; j < kSize; j++) {
|
| - if (map->at(j)) {
|
| - found_single_character = true;
|
| - single_character = j;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -
|
| - int lookahead_width = max_lookahead + 1 - min_lookahead;
|
| -
|
| - if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
|
| - // The mask-compare can probably handle this better.
|
| - return;
|
| - }
|
| -
|
| - if (found_single_character) {
|
| - Label cont, again;
|
| - masm->Bind(&again);
|
| - masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| - if (max_char_ > kSize) {
|
| - masm->CheckCharacterAfterAnd(single_character,
|
| - RegExpMacroAssembler::kTableMask,
|
| - &cont);
|
| - } else {
|
| - masm->CheckCharacter(single_character, &cont);
|
| - }
|
| - masm->AdvanceCurrentPosition(lookahead_width);
|
| - masm->GoTo(&again);
|
| - masm->Bind(&cont);
|
| - return;
|
| - }
|
| -
|
| - Factory* factory = masm->isolate()->factory();
|
| - Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
|
| - int skip_distance = GetSkipTable(
|
| - min_lookahead, max_lookahead, boolean_skip_table);
|
| - DCHECK(skip_distance != 0);
|
| -
|
| - Label cont, again;
|
| - masm->Bind(&again);
|
| - masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| - masm->CheckBitInTable(boolean_skip_table, &cont);
|
| - masm->AdvanceCurrentPosition(skip_distance);
|
| - masm->GoTo(&again);
|
| - masm->Bind(&cont);
|
| -}
|
| -
|
| -
|
| -/* Code generation for choice nodes.
|
| - *
|
| - * We generate quick checks that do a mask and compare to eliminate a
|
| - * choice. If the quick check succeeds then it jumps to the continuation to
|
| - * do slow checks and check subsequent nodes. If it fails (the common case)
|
| - * it falls through to the next choice.
|
| - *
|
| - * Here is the desired flow graph. Nodes directly below each other imply
|
| - * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
|
| - * 3 doesn't have a quick check so we have to call the slow check.
|
| - * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
|
| - * regexp continuation is generated directly after the Sn node, up to the
|
| - * next GoTo if we decide to reuse some already generated code. Some
|
| - * nodes expect preload_characters to be preloaded into the current
|
| - * character register. R nodes do this preloading. Vertices are marked
|
| - * F for failures and S for success (possible success in the case of quick
|
| - * nodes). L, V, < and > are used as arrow heads.
|
| - *
|
| - * ----------> R
|
| - * |
|
| - * V
|
| - * Q1 -----> S1
|
| - * | S /
|
| - * F| /
|
| - * | F/
|
| - * | /
|
| - * | R
|
| - * | /
|
| - * V L
|
| - * Q2 -----> S2
|
| - * | S /
|
| - * F| /
|
| - * | F/
|
| - * | /
|
| - * | R
|
| - * | /
|
| - * V L
|
| - * S3
|
| - * |
|
| - * F|
|
| - * |
|
| - * R
|
| - * |
|
| - * backtrack V
|
| - * <----------Q4
|
| - * \ F |
|
| - * \ |S
|
| - * \ F V
|
| - * \-----S4
|
| - *
|
| - * For greedy loops we push the current position, then generate the code that
|
| - * eats the input specially in EmitGreedyLoop. The other choice (the
|
| - * continuation) is generated by the normal code in EmitChoices, and steps back
|
| - * in the input to the starting position when it fails to match. The loop code
|
| - * looks like this (U is the unwind code that steps back in the greedy loop).
|
| - *
|
| - * _____
|
| - * / \
|
| - * V |
|
| - * ----------> S1 |
|
| - * /| |
|
| - * / |S |
|
| - * F/ \_____/
|
| - * /
|
| - * |<-----
|
| - * | \
|
| - * V |S
|
| - * Q2 ---> U----->backtrack
|
| - * | F /
|
| - * S| /
|
| - * V F /
|
| - * S2--/
|
| - */
|
| -
|
| -GreedyLoopState::GreedyLoopState(bool not_at_start) {
|
| - counter_backtrack_trace_.set_backtrack(&label_);
|
| - if (not_at_start) counter_backtrack_trace_.set_at_start(false);
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
|
| -#ifdef DEBUG
|
| - int choice_count = alternatives_->length();
|
| - for (int i = 0; i < choice_count - 1; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| - for (int j = 0; j < guard_count; j++) {
|
| - DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
|
| - }
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
|
| - Trace* current_trace,
|
| - PreloadState* state) {
|
| - if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
|
| - // Save some time by looking at most one machine word ahead.
|
| - state->eats_at_least_ =
|
| - EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
|
| - current_trace->at_start() == Trace::FALSE_VALUE);
|
| - }
|
| - state->preload_characters_ =
|
| - CalculatePreloadCharacters(compiler, state->eats_at_least_);
|
| -
|
| - state->preload_is_current_ =
|
| - (current_trace->characters_preloaded() == state->preload_characters_);
|
| - state->preload_has_checked_bounds_ = state->preload_is_current_;
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - int choice_count = alternatives_->length();
|
| -
|
| - AssertGuardsMentionRegisters(trace);
|
| -
|
| - LimitResult limit_result = LimitVersions(compiler, trace);
|
| - if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| -
|
| - // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
|
| - // other choice nodes we only flush if we are out of code size budget.
|
| - if (trace->flush_budget() == 0 && trace->actions() != NULL) {
|
| - trace->Flush(compiler, this);
|
| - return;
|
| - }
|
| -
|
| - RecursionCheck rc(compiler);
|
| -
|
| - PreloadState preload;
|
| - preload.init();
|
| - GreedyLoopState greedy_loop_state(not_at_start());
|
| -
|
| - int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
|
| - AlternativeGenerationList alt_gens(choice_count, zone());
|
| -
|
| - if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
|
| - trace = EmitGreedyLoop(compiler,
|
| - trace,
|
| - &alt_gens,
|
| - &preload,
|
| - &greedy_loop_state,
|
| - text_length);
|
| - } else {
|
| - // TODO(erikcorry): Delete this. We don't need this label, but it makes us
|
| - // match the traces produced pre-cleanup.
|
| - Label second_choice;
|
| - compiler->macro_assembler()->Bind(&second_choice);
|
| -
|
| - preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
|
| -
|
| - EmitChoices(compiler,
|
| - &alt_gens,
|
| - 0,
|
| - trace,
|
| - &preload);
|
| - }
|
| -
|
| - // At this point we need to generate slow checks for the alternatives where
|
| - // the quick check was inlined. We can recognize these because the associated
|
| - // label was bound.
|
| - int new_flush_budget = trace->flush_budget() / choice_count;
|
| - for (int i = 0; i < choice_count; i++) {
|
| - AlternativeGeneration* alt_gen = alt_gens.at(i);
|
| - Trace new_trace(*trace);
|
| - // If there are actions to be flushed we have to limit how many times
|
| - // they are flushed. Take the budget of the parent trace and distribute
|
| - // it fairly amongst the children.
|
| - if (new_trace.actions() != NULL) {
|
| - new_trace.set_flush_budget(new_flush_budget);
|
| - }
|
| - bool next_expects_preload =
|
| - i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
|
| - EmitOutOfLineContinuation(compiler,
|
| - &new_trace,
|
| - alternatives_->at(i),
|
| - alt_gen,
|
| - preload.preload_characters_,
|
| - next_expects_preload);
|
| - }
|
| -}
|
| -
|
| -
|
| -Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
|
| - Trace* trace,
|
| - AlternativeGenerationList* alt_gens,
|
| - PreloadState* preload,
|
| - GreedyLoopState* greedy_loop_state,
|
| - int text_length) {
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - // Here we have special handling for greedy loops containing only text nodes
|
| - // and other simple nodes. These are handled by pushing the current
|
| - // position on the stack and then incrementing the current position each
|
| - // time around the switch. On backtrack we decrement the current position
|
| - // and check it against the pushed value. This avoids pushing backtrack
|
| - // information for each iteration of the loop, which could take up a lot of
|
| - // space.
|
| - DCHECK(trace->stop_node() == NULL);
|
| - macro_assembler->PushCurrentPosition();
|
| - Label greedy_match_failed;
|
| - Trace greedy_match_trace;
|
| - if (not_at_start()) greedy_match_trace.set_at_start(false);
|
| - greedy_match_trace.set_backtrack(&greedy_match_failed);
|
| - Label loop_label;
|
| - macro_assembler->Bind(&loop_label);
|
| - greedy_match_trace.set_stop_node(this);
|
| - greedy_match_trace.set_loop_label(&loop_label);
|
| - alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
|
| - macro_assembler->Bind(&greedy_match_failed);
|
| -
|
| - Label second_choice; // For use in greedy matches.
|
| - macro_assembler->Bind(&second_choice);
|
| -
|
| - Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
|
| -
|
| - EmitChoices(compiler,
|
| - alt_gens,
|
| - 1,
|
| - new_trace,
|
| - preload);
|
| -
|
| - macro_assembler->Bind(greedy_loop_state->label());
|
| - // If we have unwound to the bottom then backtrack.
|
| - macro_assembler->CheckGreedyLoop(trace->backtrack());
|
| - // Otherwise try the second priority at an earlier position.
|
| - macro_assembler->AdvanceCurrentPosition(-text_length);
|
| - macro_assembler->GoTo(&second_choice);
|
| - return new_trace;
|
| -}
|
| -
|
| -int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
| - Trace* trace) {
|
| - int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
|
| - if (alternatives_->length() != 2) return eats_at_least;
|
| -
|
| - GuardedAlternative alt1 = alternatives_->at(1);
|
| - if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
|
| - return eats_at_least;
|
| - }
|
| - RegExpNode* eats_anything_node = alt1.node();
|
| - if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
|
| - return eats_at_least;
|
| - }
|
| -
|
| - // Really we should be creating a new trace when we execute this function,
|
| - // but there is no need, because the code it generates cannot backtrack, and
|
| - // we always arrive here with a trivial trace (since it's the entry to a
|
| - // loop. That also implies that there are no preloaded characters, which is
|
| - // good, because it means we won't be violating any assumptions by
|
| - // overwriting those characters with new load instructions.
|
| - DCHECK(trace->is_trivial());
|
| -
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - Isolate* isolate = macro_assembler->isolate();
|
| - // At this point we know that we are at a non-greedy loop that will eat
|
| - // any character one at a time. Any non-anchored regexp has such a
|
| - // loop prepended to it in order to find where it starts. We look for
|
| - // a pattern of the form ...abc... where we can look 6 characters ahead
|
| - // and step forwards 3 if the character is not one of abc. Abc need
|
| - // not be atoms, they can be any reasonably limited character class or
|
| - // small alternation.
|
| - BoyerMooreLookahead* bm = bm_info(false);
|
| - if (bm == NULL) {
|
| - eats_at_least = Min(kMaxLookaheadForBoyerMoore,
|
| - EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| - kRecursionBudget,
|
| - false));
|
| - if (eats_at_least >= 1) {
|
| - bm = new(zone()) BoyerMooreLookahead(eats_at_least,
|
| - compiler,
|
| - zone());
|
| - GuardedAlternative alt0 = alternatives_->at(0);
|
| - alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
|
| - }
|
| - }
|
| - if (bm != NULL) {
|
| - bm->EmitSkipInstructions(macro_assembler);
|
| - }
|
| - return eats_at_least;
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
| - AlternativeGenerationList* alt_gens,
|
| - int first_choice,
|
| - Trace* trace,
|
| - PreloadState* preload) {
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - SetUpPreLoad(compiler, trace, preload);
|
| -
|
| - // For now we just call all choices one after the other. The idea ultimately
|
| - // is to use the Dispatch table to try only the relevant ones.
|
| - int choice_count = alternatives_->length();
|
| -
|
| - int new_flush_budget = trace->flush_budget() / choice_count;
|
| -
|
| - for (int i = first_choice; i < choice_count; i++) {
|
| - bool is_last = i == choice_count - 1;
|
| - bool fall_through_on_failure = !is_last;
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| - AlternativeGeneration* alt_gen = alt_gens->at(i);
|
| - alt_gen->quick_check_details.set_characters(preload->preload_characters_);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| - Trace new_trace(*trace);
|
| - new_trace.set_characters_preloaded(preload->preload_is_current_ ?
|
| - preload->preload_characters_ :
|
| - 0);
|
| - if (preload->preload_has_checked_bounds_) {
|
| - new_trace.set_bound_checked_up_to(preload->preload_characters_);
|
| - }
|
| - new_trace.quick_check_performed()->Clear();
|
| - if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
|
| - if (!is_last) {
|
| - new_trace.set_backtrack(&alt_gen->after);
|
| - }
|
| - alt_gen->expects_preload = preload->preload_is_current_;
|
| - bool generate_full_check_inline = false;
|
| - if (compiler->optimize() &&
|
| - try_to_emit_quick_check_for_alternative(i == 0) &&
|
| - alternative.node()->EmitQuickCheck(
|
| - compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
|
| - &alt_gen->possible_success, &alt_gen->quick_check_details,
|
| - fall_through_on_failure)) {
|
| - // Quick check was generated for this choice.
|
| - preload->preload_is_current_ = true;
|
| - preload->preload_has_checked_bounds_ = true;
|
| - // If we generated the quick check to fall through on possible success,
|
| - // we now need to generate the full check inline.
|
| - if (!fall_through_on_failure) {
|
| - macro_assembler->Bind(&alt_gen->possible_success);
|
| - new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| - new_trace.set_characters_preloaded(preload->preload_characters_);
|
| - new_trace.set_bound_checked_up_to(preload->preload_characters_);
|
| - generate_full_check_inline = true;
|
| - }
|
| - } else if (alt_gen->quick_check_details.cannot_match()) {
|
| - if (!fall_through_on_failure) {
|
| - macro_assembler->GoTo(trace->backtrack());
|
| - }
|
| - continue;
|
| - } else {
|
| - // No quick check was generated. Put the full code here.
|
| - // If this is not the first choice then there could be slow checks from
|
| - // previous cases that go here when they fail. There's no reason to
|
| - // insist that they preload characters since the slow check we are about
|
| - // to generate probably can't use it.
|
| - if (i != first_choice) {
|
| - alt_gen->expects_preload = false;
|
| - new_trace.InvalidateCurrentCharacter();
|
| - }
|
| - generate_full_check_inline = true;
|
| - }
|
| - if (generate_full_check_inline) {
|
| - if (new_trace.actions() != NULL) {
|
| - new_trace.set_flush_budget(new_flush_budget);
|
| - }
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &new_trace);
|
| - }
|
| - alternative.node()->Emit(compiler, &new_trace);
|
| - preload->preload_is_current_ = false;
|
| - }
|
| - macro_assembler->Bind(&alt_gen->after);
|
| - }
|
| -}
|
| -
|
| -
|
| -void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
| - Trace* trace,
|
| - GuardedAlternative alternative,
|
| - AlternativeGeneration* alt_gen,
|
| - int preload_characters,
|
| - bool next_expects_preload) {
|
| - if (!alt_gen->possible_success.is_linked()) return;
|
| -
|
| - RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - macro_assembler->Bind(&alt_gen->possible_success);
|
| - Trace out_of_line_trace(*trace);
|
| - out_of_line_trace.set_characters_preloaded(preload_characters);
|
| - out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| - if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| - if (next_expects_preload) {
|
| - Label reload_current_char;
|
| - out_of_line_trace.set_backtrack(&reload_current_char);
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
| - }
|
| - alternative.node()->Emit(compiler, &out_of_line_trace);
|
| - macro_assembler->Bind(&reload_current_char);
|
| - // Reload the current character, since the next quick check expects that.
|
| - // We don't need to check bounds here because we only get into this
|
| - // code through a quick check which already did the checked load.
|
| - macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
|
| - NULL,
|
| - false,
|
| - preload_characters);
|
| - macro_assembler->GoTo(&(alt_gen->after));
|
| - } else {
|
| - out_of_line_trace.set_backtrack(&(alt_gen->after));
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
| - }
|
| - alternative.node()->Emit(compiler, &out_of_line_trace);
|
| - }
|
| -}
|
| -
|
| -
|
| -void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - LimitResult limit_result = LimitVersions(compiler, trace);
|
| - if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| -
|
| - RecursionCheck rc(compiler);
|
| -
|
| - switch (action_type_) {
|
| - case STORE_POSITION: {
|
| - Trace::DeferredCapture
|
| - new_capture(data_.u_position_register.reg,
|
| - data_.u_position_register.is_capture,
|
| - trace);
|
| - Trace new_trace = *trace;
|
| - new_trace.add_action(&new_capture);
|
| - on_success()->Emit(compiler, &new_trace);
|
| - break;
|
| - }
|
| - case INCREMENT_REGISTER: {
|
| - Trace::DeferredIncrementRegister
|
| - new_increment(data_.u_increment_register.reg);
|
| - Trace new_trace = *trace;
|
| - new_trace.add_action(&new_increment);
|
| - on_success()->Emit(compiler, &new_trace);
|
| - break;
|
| - }
|
| - case SET_REGISTER: {
|
| - Trace::DeferredSetRegister
|
| - new_set(data_.u_store_register.reg, data_.u_store_register.value);
|
| - Trace new_trace = *trace;
|
| - new_trace.add_action(&new_set);
|
| - on_success()->Emit(compiler, &new_trace);
|
| - break;
|
| - }
|
| - case CLEAR_CAPTURES: {
|
| - Trace::DeferredClearCaptures
|
| - new_capture(Interval(data_.u_clear_captures.range_from,
|
| - data_.u_clear_captures.range_to));
|
| - Trace new_trace = *trace;
|
| - new_trace.add_action(&new_capture);
|
| - on_success()->Emit(compiler, &new_trace);
|
| - break;
|
| - }
|
| - case BEGIN_SUBMATCH:
|
| - if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - } else {
|
| - assembler->WriteCurrentPositionToRegister(
|
| - data_.u_submatch.current_position_register, 0);
|
| - assembler->WriteStackPointerToRegister(
|
| - data_.u_submatch.stack_pointer_register);
|
| - on_success()->Emit(compiler, trace);
|
| - }
|
| - break;
|
| - case EMPTY_MATCH_CHECK: {
|
| - int start_pos_reg = data_.u_empty_match_check.start_register;
|
| - int stored_pos = 0;
|
| - int rep_reg = data_.u_empty_match_check.repetition_register;
|
| - bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
|
| - bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
|
| - if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
|
| - // If we know we haven't advanced and there is no minimum we
|
| - // can just backtrack immediately.
|
| - assembler->GoTo(trace->backtrack());
|
| - } else if (know_dist && stored_pos < trace->cp_offset()) {
|
| - // If we know we've advanced we can generate the continuation
|
| - // immediately.
|
| - on_success()->Emit(compiler, trace);
|
| - } else if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - } else {
|
| - Label skip_empty_check;
|
| - // If we have a minimum number of repetitions we check the current
|
| - // number first and skip the empty check if it's not enough.
|
| - if (has_minimum) {
|
| - int limit = data_.u_empty_match_check.repetition_limit;
|
| - assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
|
| - }
|
| - // If the match is empty we bail out, otherwise we fall through
|
| - // to the on-success continuation.
|
| - assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
|
| - trace->backtrack());
|
| - assembler->Bind(&skip_empty_check);
|
| - on_success()->Emit(compiler, trace);
|
| - }
|
| - break;
|
| - }
|
| - case POSITIVE_SUBMATCH_SUCCESS: {
|
| - if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - return;
|
| - }
|
| - assembler->ReadCurrentPositionFromRegister(
|
| - data_.u_submatch.current_position_register);
|
| - assembler->ReadStackPointerFromRegister(
|
| - data_.u_submatch.stack_pointer_register);
|
| - int clear_register_count = data_.u_submatch.clear_register_count;
|
| - if (clear_register_count == 0) {
|
| - on_success()->Emit(compiler, trace);
|
| - return;
|
| - }
|
| - int clear_registers_from = data_.u_submatch.clear_register_from;
|
| - Label clear_registers_backtrack;
|
| - Trace new_trace = *trace;
|
| - new_trace.set_backtrack(&clear_registers_backtrack);
|
| - on_success()->Emit(compiler, &new_trace);
|
| -
|
| - assembler->Bind(&clear_registers_backtrack);
|
| - int clear_registers_to = clear_registers_from + clear_register_count - 1;
|
| - assembler->ClearRegisters(clear_registers_from, clear_registers_to);
|
| -
|
| - DCHECK(trace->backtrack() == NULL);
|
| - assembler->Backtrack();
|
| - return;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - if (!trace->is_trivial()) {
|
| - trace->Flush(compiler, this);
|
| - return;
|
| - }
|
| -
|
| - LimitResult limit_result = LimitVersions(compiler, trace);
|
| - if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| -
|
| - RecursionCheck rc(compiler);
|
| -
|
| - DCHECK_EQ(start_reg_ + 1, end_reg_);
|
| - if (compiler->ignore_case()) {
|
| - assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
|
| - trace->backtrack());
|
| - } else {
|
| - assembler->CheckNotBackReference(start_reg_, trace->backtrack());
|
| - }
|
| - on_success()->Emit(compiler, trace);
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Dot/dotty output
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -
|
| -
|
| -class DotPrinter: public NodeVisitor {
|
| - public:
|
| - DotPrinter(std::ostream& os, bool ignore_case) // NOLINT
|
| - : os_(os),
|
| - ignore_case_(ignore_case) {}
|
| - void PrintNode(const char* label, RegExpNode* node);
|
| - void Visit(RegExpNode* node);
|
| - void PrintAttributes(RegExpNode* from);
|
| - void PrintOnFailure(RegExpNode* from, RegExpNode* to);
|
| -#define DECLARE_VISIT(Type) \
|
| - virtual void Visit##Type(Type##Node* that);
|
| -FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| -#undef DECLARE_VISIT
|
| - private:
|
| - std::ostream& os_;
|
| - bool ignore_case_;
|
| -};
|
| -
|
| -
|
| -void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
|
| - os_ << "digraph G {\n graph [label=\"";
|
| - for (int i = 0; label[i]; i++) {
|
| - switch (label[i]) {
|
| - case '\\':
|
| - os_ << "\\\\";
|
| - break;
|
| - case '"':
|
| - os_ << "\"";
|
| - break;
|
| - default:
|
| - os_ << label[i];
|
| - break;
|
| - }
|
| - }
|
| - os_ << "\"];\n";
|
| - Visit(node);
|
| - os_ << "}" << std::endl;
|
| -}
|
| -
|
| -
|
| -void DotPrinter::Visit(RegExpNode* node) {
|
| - if (node->info()->visited) return;
|
| - node->info()->visited = true;
|
| - node->Accept(this);
|
| -}
|
| -
|
| -
|
| -void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
|
| - os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
|
| - Visit(on_failure);
|
| -}
|
| -
|
| -
|
| -class TableEntryBodyPrinter {
|
| - public:
|
| - TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice) // NOLINT
|
| - : os_(os),
|
| - choice_(choice) {}
|
| - void Call(uc16 from, DispatchTable::Entry entry) {
|
| - OutSet* out_set = entry.out_set();
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (out_set->Get(i)) {
|
| - os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
|
| - << choice()->alternatives()->at(i).node() << ";\n";
|
| - }
|
| - }
|
| - }
|
| - private:
|
| - ChoiceNode* choice() { return choice_; }
|
| - std::ostream& os_;
|
| - ChoiceNode* choice_;
|
| -};
|
| -
|
| -
|
| -class TableEntryHeaderPrinter {
|
| - public:
|
| - explicit TableEntryHeaderPrinter(std::ostream& os) // NOLINT
|
| - : first_(true),
|
| - os_(os) {}
|
| - void Call(uc16 from, DispatchTable::Entry entry) {
|
| - if (first_) {
|
| - first_ = false;
|
| - } else {
|
| - os_ << "|";
|
| - }
|
| - os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
|
| - OutSet* out_set = entry.out_set();
|
| - int priority = 0;
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (out_set->Get(i)) {
|
| - if (priority > 0) os_ << "|";
|
| - os_ << "<s" << from << "o" << i << "> " << priority;
|
| - priority++;
|
| - }
|
| - }
|
| - os_ << "}}";
|
| - }
|
| -
|
| - private:
|
| - bool first_;
|
| - std::ostream& os_;
|
| -};
|
| -
|
| -
|
| -class AttributePrinter {
|
| - public:
|
| - explicit AttributePrinter(std::ostream& os) // NOLINT
|
| - : os_(os),
|
| - first_(true) {}
|
| - void PrintSeparator() {
|
| - if (first_) {
|
| - first_ = false;
|
| - } else {
|
| - os_ << "|";
|
| - }
|
| - }
|
| - void PrintBit(const char* name, bool value) {
|
| - if (!value) return;
|
| - PrintSeparator();
|
| - os_ << "{" << name << "}";
|
| - }
|
| - void PrintPositive(const char* name, int value) {
|
| - if (value < 0) return;
|
| - PrintSeparator();
|
| - os_ << "{" << name << "|" << value << "}";
|
| - }
|
| -
|
| - private:
|
| - std::ostream& os_;
|
| - bool first_;
|
| -};
|
| -
|
| -
|
| -void DotPrinter::PrintAttributes(RegExpNode* that) {
|
| - os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
|
| - << "margin=0.1, fontsize=10, label=\"{";
|
| - AttributePrinter printer(os_);
|
| - NodeInfo* info = that->info();
|
| - printer.PrintBit("NI", info->follows_newline_interest);
|
| - printer.PrintBit("WI", info->follows_word_interest);
|
| - printer.PrintBit("SI", info->follows_start_interest);
|
| - Label* label = that->label();
|
| - if (label->is_bound())
|
| - printer.PrintPositive("@", label->pos());
|
| - os_ << "}\"];\n"
|
| - << " a" << that << " -> n" << that
|
| - << " [style=dashed, color=grey, arrowhead=none];\n";
|
| -}
|
| -
|
| -
|
| -static const bool kPrintDispatchTable = false;
|
| -void DotPrinter::VisitChoice(ChoiceNode* that) {
|
| - if (kPrintDispatchTable) {
|
| - os_ << " n" << that << " [shape=Mrecord, label=\"";
|
| - TableEntryHeaderPrinter header_printer(os_);
|
| - that->GetTable(ignore_case_)->ForEach(&header_printer);
|
| - os_ << "\"]\n";
|
| - PrintAttributes(that);
|
| - TableEntryBodyPrinter body_printer(os_, that);
|
| - that->GetTable(ignore_case_)->ForEach(&body_printer);
|
| - } else {
|
| - os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - GuardedAlternative alt = that->alternatives()->at(i);
|
| - os_ << " n" << that << " -> n" << alt.node();
|
| - }
|
| - }
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - GuardedAlternative alt = that->alternatives()->at(i);
|
| - alt.node()->Accept(this);
|
| - }
|
| -}
|
| -
|
| -
|
| -void DotPrinter::VisitText(TextNode* that) {
|
| - Zone* zone = that->zone();
|
| - os_ << " n" << that << " [label=\"";
|
| - for (int i = 0; i < that->elements()->length(); i++) {
|
| - if (i > 0) os_ << " ";
|
| - TextElement elm = that->elements()->at(i);
|
| - switch (elm.text_type()) {
|
| - case TextElement::ATOM: {
|
| - Vector<const uc16> data = elm.atom()->data();
|
| - for (int i = 0; i < data.length(); i++) {
|
| - os_ << static_cast<char>(data[i]);
|
| - }
|
| - break;
|
| - }
|
| - case TextElement::CHAR_CLASS: {
|
| - RegExpCharacterClass* node = elm.char_class();
|
| - os_ << "[";
|
| - if (node->is_negated()) os_ << "^";
|
| - for (int j = 0; j < node->ranges(zone)->length(); j++) {
|
| - CharacterRange range = node->ranges(zone)->at(j);
|
| - os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
|
| - }
|
| - os_ << "]";
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| - os_ << "\", shape=box, peripheries=2];\n";
|
| - PrintAttributes(that);
|
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n";
|
| - Visit(that->on_success());
|
| -}
|
| -
|
| -
|
| -void DotPrinter::VisitBackReference(BackReferenceNode* that) {
|
| - os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
|
| - << that->end_register() << "\", shape=doubleoctagon];\n";
|
| - PrintAttributes(that);
|
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n";
|
| - Visit(that->on_success());
|
| -}
|
| -
|
| -
|
| -void DotPrinter::VisitEnd(EndNode* that) {
|
| - os_ << " n" << that << " [style=bold, shape=point];\n";
|
| - PrintAttributes(that);
|
| -}
|
| -
|
| -
|
| -void DotPrinter::VisitAssertion(AssertionNode* that) {
|
| - os_ << " n" << that << " [";
|
| - switch (that->assertion_type()) {
|
| - case AssertionNode::AT_END:
|
| - os_ << "label=\"$\", shape=septagon";
|
| - break;
|
| - case AssertionNode::AT_START:
|
| - os_ << "label=\"^\", shape=septagon";
|
| - break;
|
| - case AssertionNode::AT_BOUNDARY:
|
| - os_ << "label=\"\\b\", shape=septagon";
|
| - break;
|
| - case AssertionNode::AT_NON_BOUNDARY:
|
| - os_ << "label=\"\\B\", shape=septagon";
|
| - break;
|
| - case AssertionNode::AFTER_NEWLINE:
|
| - os_ << "label=\"(?<=\\n)\", shape=septagon";
|
| - break;
|
| - }
|
| - os_ << "];\n";
|
| - PrintAttributes(that);
|
| - RegExpNode* successor = that->on_success();
|
| - os_ << " n" << that << " -> n" << successor << ";\n";
|
| - Visit(successor);
|
| -}
|
| -
|
| -
|
| -void DotPrinter::VisitAction(ActionNode* that) {
|
| - os_ << " n" << that << " [";
|
| - switch (that->action_type_) {
|
| - case ActionNode::SET_REGISTER:
|
| - os_ << "label=\"$" << that->data_.u_store_register.reg
|
| - << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
|
| - break;
|
| - case ActionNode::INCREMENT_REGISTER:
|
| - os_ << "label=\"$" << that->data_.u_increment_register.reg
|
| - << "++\", shape=octagon";
|
| - break;
|
| - case ActionNode::STORE_POSITION:
|
| - os_ << "label=\"$" << that->data_.u_position_register.reg
|
| - << ":=$pos\", shape=octagon";
|
| - break;
|
| - case ActionNode::BEGIN_SUBMATCH:
|
| - os_ << "label=\"$" << that->data_.u_submatch.current_position_register
|
| - << ":=$pos,begin\", shape=septagon";
|
| - break;
|
| - case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
|
| - os_ << "label=\"escape\", shape=septagon";
|
| - break;
|
| - case ActionNode::EMPTY_MATCH_CHECK:
|
| - os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
|
| - << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
|
| - << "<" << that->data_.u_empty_match_check.repetition_limit
|
| - << "?\", shape=septagon";
|
| - break;
|
| - case ActionNode::CLEAR_CAPTURES: {
|
| - os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
|
| - << " to $" << that->data_.u_clear_captures.range_to
|
| - << "\", shape=septagon";
|
| - break;
|
| - }
|
| - }
|
| - os_ << "];\n";
|
| - PrintAttributes(that);
|
| - RegExpNode* successor = that->on_success();
|
| - os_ << " n" << that << " -> n" << successor << ";\n";
|
| - Visit(successor);
|
| -}
|
| -
|
| -
|
| -class DispatchTableDumper {
|
| - public:
|
| - explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
|
| - void Call(uc16 key, DispatchTable::Entry entry);
|
| - private:
|
| - std::ostream& os_;
|
| -};
|
| -
|
| -
|
| -void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
|
| - os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
|
| - OutSet* set = entry.out_set();
|
| - bool first = true;
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (set->Get(i)) {
|
| - if (first) {
|
| - first = false;
|
| - } else {
|
| - os_ << ", ";
|
| - }
|
| - os_ << i;
|
| - }
|
| - }
|
| - os_ << "}\n";
|
| -}
|
| -
|
| -
|
| -void DispatchTable::Dump() {
|
| - OFStream os(stderr);
|
| - DispatchTableDumper dumper(os);
|
| - tree()->ForEach(&dumper);
|
| -}
|
| -
|
| -
|
| -void RegExpEngine::DotPrint(const char* label,
|
| - RegExpNode* node,
|
| - bool ignore_case) {
|
| - OFStream os(stdout);
|
| - DotPrinter printer(os, ignore_case);
|
| - printer.PrintNode(label, node);
|
| -}
|
| -
|
| -
|
| -#endif // DEBUG
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Tree to graph conversion
|
| -
|
| -RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - ZoneList<TextElement>* elms =
|
| - new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
|
| - elms->Add(TextElement::Atom(this), compiler->zone());
|
| - return new(compiler->zone()) TextNode(elms, on_success);
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return new(compiler->zone()) TextNode(elements(), on_success);
|
| -}
|
| -
|
| -
|
| -static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
|
| - const int* special_class,
|
| - int length) {
|
| - length--; // Remove final 0x10000.
|
| - DCHECK(special_class[length] == 0x10000);
|
| - DCHECK(ranges->length() != 0);
|
| - DCHECK(length != 0);
|
| - DCHECK(special_class[0] != 0);
|
| - if (ranges->length() != (length >> 1) + 1) {
|
| - return false;
|
| - }
|
| - CharacterRange range = ranges->at(0);
|
| - if (range.from() != 0) {
|
| - return false;
|
| - }
|
| - for (int i = 0; i < length; i += 2) {
|
| - if (special_class[i] != (range.to() + 1)) {
|
| - return false;
|
| - }
|
| - range = ranges->at((i >> 1) + 1);
|
| - if (special_class[i+1] != range.from()) {
|
| - return false;
|
| - }
|
| - }
|
| - if (range.to() != 0xffff) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -static bool CompareRanges(ZoneList<CharacterRange>* ranges,
|
| - const int* special_class,
|
| - int length) {
|
| - length--; // Remove final 0x10000.
|
| - DCHECK(special_class[length] == 0x10000);
|
| - if (ranges->length() * 2 != length) {
|
| - return false;
|
| - }
|
| - for (int i = 0; i < length; i += 2) {
|
| - CharacterRange range = ranges->at(i >> 1);
|
| - if (range.from() != special_class[i] ||
|
| - range.to() != special_class[i + 1] - 1) {
|
| - return false;
|
| - }
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool RegExpCharacterClass::is_standard(Zone* zone) {
|
| - // TODO(lrn): Remove need for this function, by not throwing away information
|
| - // along the way.
|
| - if (is_negated_) {
|
| - return false;
|
| - }
|
| - if (set_.is_standard()) {
|
| - return true;
|
| - }
|
| - if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
|
| - set_.set_standard_set_type('s');
|
| - return true;
|
| - }
|
| - if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
|
| - set_.set_standard_set_type('S');
|
| - return true;
|
| - }
|
| - if (CompareInverseRanges(set_.ranges(zone),
|
| - kLineTerminatorRanges,
|
| - kLineTerminatorRangeCount)) {
|
| - set_.set_standard_set_type('.');
|
| - return true;
|
| - }
|
| - if (CompareRanges(set_.ranges(zone),
|
| - kLineTerminatorRanges,
|
| - kLineTerminatorRangeCount)) {
|
| - set_.set_standard_set_type('n');
|
| - return true;
|
| - }
|
| - if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
|
| - set_.set_standard_set_type('w');
|
| - return true;
|
| - }
|
| - if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
|
| - set_.set_standard_set_type('W');
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return new(compiler->zone()) TextNode(this, on_success);
|
| -}
|
| -
|
| -
|
| -int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
|
| - RegExpAtom* atom1 = (*a)->AsAtom();
|
| - RegExpAtom* atom2 = (*b)->AsAtom();
|
| - uc16 character1 = atom1->data().at(0);
|
| - uc16 character2 = atom2->data().at(0);
|
| - if (character1 < character2) return -1;
|
| - if (character1 > character2) return 1;
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -static unibrow::uchar Canonical(
|
| - unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
|
| - unibrow::uchar c) {
|
| - unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
|
| - int length = canonicalize->get(c, '\0', chars);
|
| - DCHECK_LE(length, 1);
|
| - unibrow::uchar canonical = c;
|
| - if (length == 1) canonical = chars[0];
|
| - return canonical;
|
| -}
|
| -
|
| -
|
| -int CompareFirstCharCaseIndependent(
|
| - unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
|
| - RegExpTree* const* a, RegExpTree* const* b) {
|
| - RegExpAtom* atom1 = (*a)->AsAtom();
|
| - RegExpAtom* atom2 = (*b)->AsAtom();
|
| - unibrow::uchar character1 = atom1->data().at(0);
|
| - unibrow::uchar character2 = atom2->data().at(0);
|
| - if (character1 == character2) return 0;
|
| - if (character1 >= 'a' || character2 >= 'a') {
|
| - character1 = Canonical(canonicalize, character1);
|
| - character2 = Canonical(canonicalize, character2);
|
| - }
|
| - return static_cast<int>(character1) - static_cast<int>(character2);
|
| -}
|
| -
|
| -
|
| -// We can stable sort runs of atoms, since the order does not matter if they
|
| -// start with different characters.
|
| -// Returns true if any consecutive atoms were found.
|
| -bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - int length = alternatives->length();
|
| - bool found_consecutive_atoms = false;
|
| - for (int i = 0; i < length; i++) {
|
| - while (i < length) {
|
| - RegExpTree* alternative = alternatives->at(i);
|
| - if (alternative->IsAtom()) break;
|
| - i++;
|
| - }
|
| - // i is length or it is the index of an atom.
|
| - if (i == length) break;
|
| - int first_atom = i;
|
| - i++;
|
| - while (i < length) {
|
| - RegExpTree* alternative = alternatives->at(i);
|
| - if (!alternative->IsAtom()) break;
|
| - i++;
|
| - }
|
| - // Sort atoms to get ones with common prefixes together.
|
| - // This step is more tricky if we are in a case-independent regexp,
|
| - // because it would change /is|I/ to /I|is/, and order matters when
|
| - // the regexp parts don't match only disjoint starting points. To fix
|
| - // this we have a version of CompareFirstChar that uses case-
|
| - // independent character classes for comparison.
|
| - DCHECK_LT(first_atom, alternatives->length());
|
| - DCHECK_LE(i, alternatives->length());
|
| - DCHECK_LE(first_atom, i);
|
| - if (compiler->ignore_case()) {
|
| - unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
|
| - compiler->isolate()->regexp_macro_assembler_canonicalize();
|
| - auto compare_closure =
|
| - [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
|
| - return CompareFirstCharCaseIndependent(canonicalize, a, b);
|
| - };
|
| - alternatives->StableSort(compare_closure, first_atom, i - first_atom);
|
| - } else {
|
| - alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
|
| - }
|
| - if (i - first_atom > 1) found_consecutive_atoms = true;
|
| - }
|
| - return found_consecutive_atoms;
|
| -}
|
| -
|
| -
|
| -// Optimizes ab|ac|az to a(?:b|c|d).
|
| -void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
|
| - Zone* zone = compiler->zone();
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - int length = alternatives->length();
|
| -
|
| - int write_posn = 0;
|
| - int i = 0;
|
| - while (i < length) {
|
| - RegExpTree* alternative = alternatives->at(i);
|
| - if (!alternative->IsAtom()) {
|
| - alternatives->at(write_posn++) = alternatives->at(i);
|
| - i++;
|
| - continue;
|
| - }
|
| - RegExpAtom* atom = alternative->AsAtom();
|
| - unibrow::uchar common_prefix = atom->data().at(0);
|
| - int first_with_prefix = i;
|
| - int prefix_length = atom->length();
|
| - i++;
|
| - while (i < length) {
|
| - alternative = alternatives->at(i);
|
| - if (!alternative->IsAtom()) break;
|
| - atom = alternative->AsAtom();
|
| - unibrow::uchar new_prefix = atom->data().at(0);
|
| - if (new_prefix != common_prefix) {
|
| - if (!compiler->ignore_case()) break;
|
| - unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
|
| - compiler->isolate()->regexp_macro_assembler_canonicalize();
|
| - new_prefix = Canonical(canonicalize, new_prefix);
|
| - common_prefix = Canonical(canonicalize, common_prefix);
|
| - if (new_prefix != common_prefix) break;
|
| - }
|
| - prefix_length = Min(prefix_length, atom->length());
|
| - i++;
|
| - }
|
| - if (i > first_with_prefix + 2) {
|
| - // Found worthwhile run of alternatives with common prefix of at least one
|
| - // character. The sorting function above did not sort on more than one
|
| - // character for reasons of correctness, but there may still be a longer
|
| - // common prefix if the terms were similar or presorted in the input.
|
| - // Find out how long the common prefix is.
|
| - int run_length = i - first_with_prefix;
|
| - atom = alternatives->at(first_with_prefix)->AsAtom();
|
| - for (int j = 1; j < run_length && prefix_length > 1; j++) {
|
| - RegExpAtom* old_atom =
|
| - alternatives->at(j + first_with_prefix)->AsAtom();
|
| - for (int k = 1; k < prefix_length; k++) {
|
| - if (atom->data().at(k) != old_atom->data().at(k)) {
|
| - prefix_length = k;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - RegExpAtom* prefix =
|
| - new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
|
| - ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
|
| - pair->Add(prefix, zone);
|
| - ZoneList<RegExpTree*>* suffixes =
|
| - new (zone) ZoneList<RegExpTree*>(run_length, zone);
|
| - for (int j = 0; j < run_length; j++) {
|
| - RegExpAtom* old_atom =
|
| - alternatives->at(j + first_with_prefix)->AsAtom();
|
| - int len = old_atom->length();
|
| - if (len == prefix_length) {
|
| - suffixes->Add(new (zone) RegExpEmpty(), zone);
|
| - } else {
|
| - RegExpTree* suffix = new (zone) RegExpAtom(
|
| - old_atom->data().SubVector(prefix_length, old_atom->length()));
|
| - suffixes->Add(suffix, zone);
|
| - }
|
| - }
|
| - pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
|
| - alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
|
| - } else {
|
| - // Just copy any non-worthwhile alternatives.
|
| - for (int j = first_with_prefix; j < i; j++) {
|
| - alternatives->at(write_posn++) = alternatives->at(j);
|
| - }
|
| - }
|
| - }
|
| - alternatives->Rewind(write_posn); // Trim end of array.
|
| -}
|
| -
|
| -
|
| -// Optimizes b|c|z to [bcz].
|
| -void RegExpDisjunction::FixSingleCharacterDisjunctions(
|
| - RegExpCompiler* compiler) {
|
| - Zone* zone = compiler->zone();
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - int length = alternatives->length();
|
| -
|
| - int write_posn = 0;
|
| - int i = 0;
|
| - while (i < length) {
|
| - RegExpTree* alternative = alternatives->at(i);
|
| - if (!alternative->IsAtom()) {
|
| - alternatives->at(write_posn++) = alternatives->at(i);
|
| - i++;
|
| - continue;
|
| - }
|
| - RegExpAtom* atom = alternative->AsAtom();
|
| - if (atom->length() != 1) {
|
| - alternatives->at(write_posn++) = alternatives->at(i);
|
| - i++;
|
| - continue;
|
| - }
|
| - int first_in_run = i;
|
| - i++;
|
| - while (i < length) {
|
| - alternative = alternatives->at(i);
|
| - if (!alternative->IsAtom()) break;
|
| - atom = alternative->AsAtom();
|
| - if (atom->length() != 1) break;
|
| - i++;
|
| - }
|
| - if (i > first_in_run + 1) {
|
| - // Found non-trivial run of single-character alternatives.
|
| - int run_length = i - first_in_run;
|
| - ZoneList<CharacterRange>* ranges =
|
| - new (zone) ZoneList<CharacterRange>(2, zone);
|
| - for (int j = 0; j < run_length; j++) {
|
| - RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
|
| - DCHECK_EQ(old_atom->length(), 1);
|
| - ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
|
| - }
|
| - alternatives->at(write_posn++) =
|
| - new (zone) RegExpCharacterClass(ranges, false);
|
| - } else {
|
| - // Just copy any trivial alternatives.
|
| - for (int j = first_in_run; j < i; j++) {
|
| - alternatives->at(write_posn++) = alternatives->at(j);
|
| - }
|
| - }
|
| - }
|
| - alternatives->Rewind(write_posn); // Trim end of array.
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| -
|
| - if (alternatives->length() > 2) {
|
| - bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
|
| - if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
|
| - FixSingleCharacterDisjunctions(compiler);
|
| - if (alternatives->length() == 1) {
|
| - return alternatives->at(0)->ToNode(compiler, on_success);
|
| - }
|
| - }
|
| -
|
| - int length = alternatives->length();
|
| -
|
| - ChoiceNode* result =
|
| - new(compiler->zone()) ChoiceNode(length, compiler->zone());
|
| - for (int i = 0; i < length; i++) {
|
| - GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
|
| - on_success));
|
| - result->AddAlternative(alternative);
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return ToNode(min(),
|
| - max(),
|
| - is_greedy(),
|
| - body(),
|
| - compiler,
|
| - on_success);
|
| -}
|
| -
|
| -
|
| -// Scoped object to keep track of how much we unroll quantifier loops in the
|
| -// regexp graph generator.
|
| -class RegExpExpansionLimiter {
|
| - public:
|
| - static const int kMaxExpansionFactor = 6;
|
| - RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
|
| - : compiler_(compiler),
|
| - saved_expansion_factor_(compiler->current_expansion_factor()),
|
| - ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
|
| - DCHECK(factor > 0);
|
| - if (ok_to_expand_) {
|
| - if (factor > kMaxExpansionFactor) {
|
| - // Avoid integer overflow of the current expansion factor.
|
| - ok_to_expand_ = false;
|
| - compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
|
| - } else {
|
| - int new_factor = saved_expansion_factor_ * factor;
|
| - ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
|
| - compiler->set_current_expansion_factor(new_factor);
|
| - }
|
| - }
|
| - }
|
| -
|
| - ~RegExpExpansionLimiter() {
|
| - compiler_->set_current_expansion_factor(saved_expansion_factor_);
|
| - }
|
| -
|
| - bool ok_to_expand() { return ok_to_expand_; }
|
| -
|
| - private:
|
| - RegExpCompiler* compiler_;
|
| - int saved_expansion_factor_;
|
| - bool ok_to_expand_;
|
| -
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
|
| -};
|
| -
|
| -
|
| -RegExpNode* RegExpQuantifier::ToNode(int min,
|
| - int max,
|
| - bool is_greedy,
|
| - RegExpTree* body,
|
| - RegExpCompiler* compiler,
|
| - RegExpNode* on_success,
|
| - bool not_at_start) {
|
| - // x{f, t} becomes this:
|
| - //
|
| - // (r++)<-.
|
| - // | `
|
| - // | (x)
|
| - // v ^
|
| - // (r=0)-->(?)---/ [if r < t]
|
| - // |
|
| - // [if r >= f] \----> ...
|
| - //
|
| -
|
| - // 15.10.2.5 RepeatMatcher algorithm.
|
| - // The parser has already eliminated the case where max is 0. In the case
|
| - // where max_match is zero the parser has removed the quantifier if min was
|
| - // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
|
| -
|
| - // If we know that we cannot match zero length then things are a little
|
| - // simpler since we don't need to make the special zero length match check
|
| - // from step 2.1. If the min and max are small we can unroll a little in
|
| - // this case.
|
| - static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
|
| - static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
|
| - if (max == 0) return on_success; // This can happen due to recursion.
|
| - bool body_can_be_empty = (body->min_match() == 0);
|
| - int body_start_reg = RegExpCompiler::kNoRegister;
|
| - Interval capture_registers = body->CaptureRegisters();
|
| - bool needs_capture_clearing = !capture_registers.is_empty();
|
| - Zone* zone = compiler->zone();
|
| -
|
| - if (body_can_be_empty) {
|
| - body_start_reg = compiler->AllocateRegister();
|
| - } else if (compiler->optimize() && !needs_capture_clearing) {
|
| - // Only unroll if there are no captures and the body can't be
|
| - // empty.
|
| - {
|
| - RegExpExpansionLimiter limiter(
|
| - compiler, min + ((max != min) ? 1 : 0));
|
| - if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
|
| - int new_max = (max == kInfinity) ? max : max - min;
|
| - // Recurse once to get the loop or optional matches after the fixed
|
| - // ones.
|
| - RegExpNode* answer = ToNode(
|
| - 0, new_max, is_greedy, body, compiler, on_success, true);
|
| - // Unroll the forced matches from 0 to min. This can cause chains of
|
| - // TextNodes (which the parser does not generate). These should be
|
| - // combined if it turns out they hinder good code generation.
|
| - for (int i = 0; i < min; i++) {
|
| - answer = body->ToNode(compiler, answer);
|
| - }
|
| - return answer;
|
| - }
|
| - }
|
| - if (max <= kMaxUnrolledMaxMatches && min == 0) {
|
| - DCHECK(max > 0); // Due to the 'if' above.
|
| - RegExpExpansionLimiter limiter(compiler, max);
|
| - if (limiter.ok_to_expand()) {
|
| - // Unroll the optional matches up to max.
|
| - RegExpNode* answer = on_success;
|
| - for (int i = 0; i < max; i++) {
|
| - ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
|
| - if (is_greedy) {
|
| - alternation->AddAlternative(
|
| - GuardedAlternative(body->ToNode(compiler, answer)));
|
| - alternation->AddAlternative(GuardedAlternative(on_success));
|
| - } else {
|
| - alternation->AddAlternative(GuardedAlternative(on_success));
|
| - alternation->AddAlternative(
|
| - GuardedAlternative(body->ToNode(compiler, answer)));
|
| - }
|
| - answer = alternation;
|
| - if (not_at_start) alternation->set_not_at_start();
|
| - }
|
| - return answer;
|
| - }
|
| - }
|
| - }
|
| - bool has_min = min > 0;
|
| - bool has_max = max < RegExpTree::kInfinity;
|
| - bool needs_counter = has_min || has_max;
|
| - int reg_ctr = needs_counter
|
| - ? compiler->AllocateRegister()
|
| - : RegExpCompiler::kNoRegister;
|
| - LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
|
| - zone);
|
| - if (not_at_start) center->set_not_at_start();
|
| - RegExpNode* loop_return = needs_counter
|
| - ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
|
| - : static_cast<RegExpNode*>(center);
|
| - if (body_can_be_empty) {
|
| - // If the body can be empty we need to check if it was and then
|
| - // backtrack.
|
| - loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
|
| - reg_ctr,
|
| - min,
|
| - loop_return);
|
| - }
|
| - RegExpNode* body_node = body->ToNode(compiler, loop_return);
|
| - if (body_can_be_empty) {
|
| - // If the body can be empty we need to store the start position
|
| - // so we can bail out if it was empty.
|
| - body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
|
| - }
|
| - if (needs_capture_clearing) {
|
| - // Before entering the body of this loop we need to clear captures.
|
| - body_node = ActionNode::ClearCaptures(capture_registers, body_node);
|
| - }
|
| - GuardedAlternative body_alt(body_node);
|
| - if (has_max) {
|
| - Guard* body_guard =
|
| - new(zone) Guard(reg_ctr, Guard::LT, max);
|
| - body_alt.AddGuard(body_guard, zone);
|
| - }
|
| - GuardedAlternative rest_alt(on_success);
|
| - if (has_min) {
|
| - Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
|
| - rest_alt.AddGuard(rest_guard, zone);
|
| - }
|
| - if (is_greedy) {
|
| - center->AddLoopAlternative(body_alt);
|
| - center->AddContinueAlternative(rest_alt);
|
| - } else {
|
| - center->AddContinueAlternative(rest_alt);
|
| - center->AddLoopAlternative(body_alt);
|
| - }
|
| - if (needs_counter) {
|
| - return ActionNode::SetRegister(reg_ctr, 0, center);
|
| - } else {
|
| - return center;
|
| - }
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - NodeInfo info;
|
| - Zone* zone = compiler->zone();
|
| -
|
| - switch (assertion_type()) {
|
| - case START_OF_LINE:
|
| - return AssertionNode::AfterNewline(on_success);
|
| - case START_OF_INPUT:
|
| - return AssertionNode::AtStart(on_success);
|
| - case BOUNDARY:
|
| - return AssertionNode::AtBoundary(on_success);
|
| - case NON_BOUNDARY:
|
| - return AssertionNode::AtNonBoundary(on_success);
|
| - case END_OF_INPUT:
|
| - return AssertionNode::AtEnd(on_success);
|
| - case END_OF_LINE: {
|
| - // Compile $ in multiline regexps as an alternation with a positive
|
| - // lookahead in one side and an end-of-input on the other side.
|
| - // We need two registers for the lookahead.
|
| - int stack_pointer_register = compiler->AllocateRegister();
|
| - int position_register = compiler->AllocateRegister();
|
| - // The ChoiceNode to distinguish between a newline and end-of-input.
|
| - ChoiceNode* result = new(zone) ChoiceNode(2, zone);
|
| - // Create a newline atom.
|
| - ZoneList<CharacterRange>* newline_ranges =
|
| - new(zone) ZoneList<CharacterRange>(3, zone);
|
| - CharacterRange::AddClassEscape('n', newline_ranges, zone);
|
| - RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
|
| - TextNode* newline_matcher = new(zone) TextNode(
|
| - newline_atom,
|
| - ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
| - position_register,
|
| - 0, // No captures inside.
|
| - -1, // Ignored if no captures.
|
| - on_success));
|
| - // Create an end-of-input matcher.
|
| - RegExpNode* end_of_line = ActionNode::BeginSubmatch(
|
| - stack_pointer_register,
|
| - position_register,
|
| - newline_matcher);
|
| - // Add the two alternatives to the ChoiceNode.
|
| - GuardedAlternative eol_alternative(end_of_line);
|
| - result->AddAlternative(eol_alternative);
|
| - GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
|
| - result->AddAlternative(end_alternative);
|
| - return result;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - return on_success;
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return new(compiler->zone())
|
| - BackReferenceNode(RegExpCapture::StartRegister(index()),
|
| - RegExpCapture::EndRegister(index()),
|
| - on_success);
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return on_success;
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - int stack_pointer_register = compiler->AllocateRegister();
|
| - int position_register = compiler->AllocateRegister();
|
| -
|
| - const int registers_per_capture = 2;
|
| - const int register_of_first_capture = 2;
|
| - int register_count = capture_count_ * registers_per_capture;
|
| - int register_start =
|
| - register_of_first_capture + capture_from_ * registers_per_capture;
|
| -
|
| - RegExpNode* success;
|
| - if (is_positive()) {
|
| - RegExpNode* node = ActionNode::BeginSubmatch(
|
| - stack_pointer_register,
|
| - position_register,
|
| - body()->ToNode(
|
| - compiler,
|
| - ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
| - position_register,
|
| - register_count,
|
| - register_start,
|
| - on_success)));
|
| - return node;
|
| - } else {
|
| - // We use a ChoiceNode for a negative lookahead because it has most of
|
| - // the characteristics we need. It has the body of the lookahead as its
|
| - // first alternative and the expression after the lookahead of the second
|
| - // alternative. If the first alternative succeeds then the
|
| - // NegativeSubmatchSuccess will unwind the stack including everything the
|
| - // choice node set up and backtrack. If the first alternative fails then
|
| - // the second alternative is tried, which is exactly the desired result
|
| - // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
|
| - // ChoiceNode that knows to ignore the first exit when calculating quick
|
| - // checks.
|
| - Zone* zone = compiler->zone();
|
| -
|
| - GuardedAlternative body_alt(
|
| - body()->ToNode(
|
| - compiler,
|
| - success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
|
| - position_register,
|
| - register_count,
|
| - register_start,
|
| - zone)));
|
| - ChoiceNode* choice_node =
|
| - new(zone) NegativeLookaheadChoiceNode(body_alt,
|
| - GuardedAlternative(on_success),
|
| - zone);
|
| - return ActionNode::BeginSubmatch(stack_pointer_register,
|
| - position_register,
|
| - choice_node);
|
| - }
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - return ToNode(body(), index(), compiler, on_success);
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
|
| - int index,
|
| - RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - int start_reg = RegExpCapture::StartRegister(index);
|
| - int end_reg = RegExpCapture::EndRegister(index);
|
| - RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
|
| - RegExpNode* body_node = body->ToNode(compiler, store_end);
|
| - return ActionNode::StorePosition(start_reg, true, body_node);
|
| -}
|
| -
|
| -
|
| -RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
|
| - RegExpNode* on_success) {
|
| - ZoneList<RegExpTree*>* children = nodes();
|
| - RegExpNode* current = on_success;
|
| - for (int i = children->length() - 1; i >= 0; i--) {
|
| - current = children->at(i)->ToNode(compiler, current);
|
| - }
|
| - return current;
|
| -}
|
| -
|
| -
|
| -static void AddClass(const int* elmv,
|
| - int elmc,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| - elmc--;
|
| - DCHECK(elmv[elmc] == 0x10000);
|
| - for (int i = 0; i < elmc; i += 2) {
|
| - DCHECK(elmv[i] < elmv[i + 1]);
|
| - ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
|
| - }
|
| -}
|
| -
|
| -
|
| -static void AddClassNegated(const int *elmv,
|
| - int elmc,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| - elmc--;
|
| - DCHECK(elmv[elmc] == 0x10000);
|
| - DCHECK(elmv[0] != 0x0000);
|
| - DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
|
| - uc16 last = 0x0000;
|
| - for (int i = 0; i < elmc; i += 2) {
|
| - DCHECK(last <= elmv[i] - 1);
|
| - DCHECK(elmv[i] < elmv[i + 1]);
|
| - ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
|
| - last = elmv[i + 1];
|
| - }
|
| - ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::AddClassEscape(uc16 type,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| - switch (type) {
|
| - case 's':
|
| - AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
|
| - break;
|
| - case 'S':
|
| - AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
|
| - break;
|
| - case 'w':
|
| - AddClass(kWordRanges, kWordRangeCount, ranges, zone);
|
| - break;
|
| - case 'W':
|
| - AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
|
| - break;
|
| - case 'd':
|
| - AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
|
| - break;
|
| - case 'D':
|
| - AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
|
| - break;
|
| - case '.':
|
| - AddClassNegated(kLineTerminatorRanges,
|
| - kLineTerminatorRangeCount,
|
| - ranges,
|
| - zone);
|
| - break;
|
| - // This is not a character range as defined by the spec but a
|
| - // convenient shorthand for a character class that matches any
|
| - // character.
|
| - case '*':
|
| - ranges->Add(CharacterRange::Everything(), zone);
|
| - break;
|
| - // This is the set of characters matched by the $ and ^ symbols
|
| - // in multiline mode.
|
| - case 'n':
|
| - AddClass(kLineTerminatorRanges,
|
| - kLineTerminatorRangeCount,
|
| - ranges,
|
| - zone);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -Vector<const int> CharacterRange::GetWordBounds() {
|
| - return Vector<const int>(kWordRanges, kWordRangeCount - 1);
|
| -}
|
| -
|
| -
|
| -class CharacterRangeSplitter {
|
| - public:
|
| - CharacterRangeSplitter(ZoneList<CharacterRange>** included,
|
| - ZoneList<CharacterRange>** excluded,
|
| - Zone* zone)
|
| - : included_(included),
|
| - excluded_(excluded),
|
| - zone_(zone) { }
|
| - void Call(uc16 from, DispatchTable::Entry entry);
|
| -
|
| - static const int kInBase = 0;
|
| - static const int kInOverlay = 1;
|
| -
|
| - private:
|
| - ZoneList<CharacterRange>** included_;
|
| - ZoneList<CharacterRange>** excluded_;
|
| - Zone* zone_;
|
| -};
|
| -
|
| -
|
| -void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
|
| - if (!entry.out_set()->Get(kInBase)) return;
|
| - ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
|
| - ? included_
|
| - : excluded_;
|
| - if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
|
| - (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::Split(ZoneList<CharacterRange>* base,
|
| - Vector<const int> overlay,
|
| - ZoneList<CharacterRange>** included,
|
| - ZoneList<CharacterRange>** excluded,
|
| - Zone* zone) {
|
| - DCHECK_NULL(*included);
|
| - DCHECK_NULL(*excluded);
|
| - DispatchTable table(zone);
|
| - for (int i = 0; i < base->length(); i++)
|
| - table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
|
| - for (int i = 0; i < overlay.length(); i += 2) {
|
| - table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
|
| - CharacterRangeSplitter::kInOverlay, zone);
|
| - }
|
| - CharacterRangeSplitter callback(included, excluded, zone);
|
| - table.ForEach(&callback);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
|
| - ZoneList<CharacterRange>* ranges,
|
| - bool is_one_byte) {
|
| - uc16 bottom = from();
|
| - uc16 top = to();
|
| - if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
|
| - if (bottom > String::kMaxOneByteCharCode) return;
|
| - if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
|
| - }
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - if (top == bottom) {
|
| - // If this is a singleton we just expand the one character.
|
| - int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
|
| - for (int i = 0; i < length; i++) {
|
| - uc32 chr = chars[i];
|
| - if (chr != bottom) {
|
| - ranges->Add(CharacterRange::Singleton(chars[i]), zone);
|
| - }
|
| - }
|
| - } else {
|
| - // If this is a range we expand the characters block by block,
|
| - // expanding contiguous subranges (blocks) one at a time.
|
| - // The approach is as follows. For a given start character we
|
| - // look up the remainder of the block that contains it (represented
|
| - // by the end point), for instance we find 'z' if the character
|
| - // is 'c'. A block is characterized by the property
|
| - // that all characters uncanonicalize in the same way, except that
|
| - // each entry in the result is incremented by the distance from the first
|
| - // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
|
| - // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
|
| - // Once we've found the end point we look up its uncanonicalization
|
| - // and produce a range for each element. For instance for [c-f]
|
| - // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
|
| - // add a range if it is not already contained in the input, so [c-f]
|
| - // will be skipped but [C-F] will be added. If this range is not
|
| - // completely contained in a block we do this for all the blocks
|
| - // covered by the range (handling characters that is not in a block
|
| - // as a "singleton block").
|
| - unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int pos = bottom;
|
| - while (pos <= top) {
|
| - int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
|
| - uc16 block_end;
|
| - if (length == 0) {
|
| - block_end = pos;
|
| - } else {
|
| - DCHECK_EQ(1, length);
|
| - block_end = range[0];
|
| - }
|
| - int end = (block_end > top) ? top : block_end;
|
| - length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
|
| - for (int i = 0; i < length; i++) {
|
| - uc32 c = range[i];
|
| - uc16 range_from = c - (block_end - pos);
|
| - uc16 range_to = c - (block_end - end);
|
| - if (!(bottom <= range_from && range_to <= top)) {
|
| - ranges->Add(CharacterRange(range_from, range_to), zone);
|
| - }
|
| - }
|
| - pos = end + 1;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
|
| - DCHECK_NOT_NULL(ranges);
|
| - int n = ranges->length();
|
| - if (n <= 1) return true;
|
| - int max = ranges->at(0).to();
|
| - for (int i = 1; i < n; i++) {
|
| - CharacterRange next_range = ranges->at(i);
|
| - if (next_range.from() <= max + 1) return false;
|
| - max = next_range.to();
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
|
| - if (ranges_ == NULL) {
|
| - ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
|
| - CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
|
| - }
|
| - return ranges_;
|
| -}
|
| -
|
| -
|
| -// Move a number of elements in a zonelist to another position
|
| -// in the same list. Handles overlapping source and target areas.
|
| -static void MoveRanges(ZoneList<CharacterRange>* list,
|
| - int from,
|
| - int to,
|
| - int count) {
|
| - // Ranges are potentially overlapping.
|
| - if (from < to) {
|
| - for (int i = count - 1; i >= 0; i--) {
|
| - list->at(to + i) = list->at(from + i);
|
| - }
|
| - } else {
|
| - for (int i = 0; i < count; i++) {
|
| - list->at(to + i) = list->at(from + i);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
|
| - int count,
|
| - CharacterRange insert) {
|
| - // Inserts a range into list[0..count[, which must be sorted
|
| - // by from value and non-overlapping and non-adjacent, using at most
|
| - // list[0..count] for the result. Returns the number of resulting
|
| - // canonicalized ranges. Inserting a range may collapse existing ranges into
|
| - // fewer ranges, so the return value can be anything in the range 1..count+1.
|
| - uc16 from = insert.from();
|
| - uc16 to = insert.to();
|
| - int start_pos = 0;
|
| - int end_pos = count;
|
| - for (int i = count - 1; i >= 0; i--) {
|
| - CharacterRange current = list->at(i);
|
| - if (current.from() > to + 1) {
|
| - end_pos = i;
|
| - } else if (current.to() + 1 < from) {
|
| - start_pos = i + 1;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - // Inserted range overlaps, or is adjacent to, ranges at positions
|
| - // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
|
| - // not affected by the insertion.
|
| - // If start_pos == end_pos, the range must be inserted before start_pos.
|
| - // if start_pos < end_pos, the entire range from start_pos to end_pos
|
| - // must be merged with the insert range.
|
| -
|
| - if (start_pos == end_pos) {
|
| - // Insert between existing ranges at position start_pos.
|
| - if (start_pos < count) {
|
| - MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
|
| - }
|
| - list->at(start_pos) = insert;
|
| - return count + 1;
|
| - }
|
| - if (start_pos + 1 == end_pos) {
|
| - // Replace single existing range at position start_pos.
|
| - CharacterRange to_replace = list->at(start_pos);
|
| - int new_from = Min(to_replace.from(), from);
|
| - int new_to = Max(to_replace.to(), to);
|
| - list->at(start_pos) = CharacterRange(new_from, new_to);
|
| - return count;
|
| - }
|
| - // Replace a number of existing ranges from start_pos to end_pos - 1.
|
| - // Move the remaining ranges down.
|
| -
|
| - int new_from = Min(list->at(start_pos).from(), from);
|
| - int new_to = Max(list->at(end_pos - 1).to(), to);
|
| - if (end_pos < count) {
|
| - MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
|
| - }
|
| - list->at(start_pos) = CharacterRange(new_from, new_to);
|
| - return count - (end_pos - start_pos) + 1;
|
| -}
|
| -
|
| -
|
| -void CharacterSet::Canonicalize() {
|
| - // Special/default classes are always considered canonical. The result
|
| - // of calling ranges() will be sorted.
|
| - if (ranges_ == NULL) return;
|
| - CharacterRange::Canonicalize(ranges_);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
|
| - if (character_ranges->length() <= 1) return;
|
| - // Check whether ranges are already canonical (increasing, non-overlapping,
|
| - // non-adjacent).
|
| - int n = character_ranges->length();
|
| - int max = character_ranges->at(0).to();
|
| - int i = 1;
|
| - while (i < n) {
|
| - CharacterRange current = character_ranges->at(i);
|
| - if (current.from() <= max + 1) {
|
| - break;
|
| - }
|
| - max = current.to();
|
| - i++;
|
| - }
|
| - // Canonical until the i'th range. If that's all of them, we are done.
|
| - if (i == n) return;
|
| -
|
| - // The ranges at index i and forward are not canonicalized. Make them so by
|
| - // doing the equivalent of insertion sort (inserting each into the previous
|
| - // list, in order).
|
| - // Notice that inserting a range can reduce the number of ranges in the
|
| - // result due to combining of adjacent and overlapping ranges.
|
| - int read = i; // Range to insert.
|
| - int num_canonical = i; // Length of canonicalized part of list.
|
| - do {
|
| - num_canonical = InsertRangeInCanonicalList(character_ranges,
|
| - num_canonical,
|
| - character_ranges->at(read));
|
| - read++;
|
| - } while (read < n);
|
| - character_ranges->Rewind(num_canonical);
|
| -
|
| - DCHECK(CharacterRange::IsCanonical(character_ranges));
|
| -}
|
| -
|
| -
|
| -void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
|
| - ZoneList<CharacterRange>* negated_ranges,
|
| - Zone* zone) {
|
| - DCHECK(CharacterRange::IsCanonical(ranges));
|
| - DCHECK_EQ(0, negated_ranges->length());
|
| - int range_count = ranges->length();
|
| - uc16 from = 0;
|
| - int i = 0;
|
| - if (range_count > 0 && ranges->at(0).from() == 0) {
|
| - from = ranges->at(0).to();
|
| - i = 1;
|
| - }
|
| - while (i < range_count) {
|
| - CharacterRange range = ranges->at(i);
|
| - negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
|
| - from = range.to();
|
| - i++;
|
| - }
|
| - if (from < String::kMaxUtf16CodeUnit) {
|
| - negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
|
| - zone);
|
| - }
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Splay tree
|
| -
|
| -
|
| -OutSet* OutSet::Extend(unsigned value, Zone* zone) {
|
| - if (Get(value))
|
| - return this;
|
| - if (successors(zone) != NULL) {
|
| - for (int i = 0; i < successors(zone)->length(); i++) {
|
| - OutSet* successor = successors(zone)->at(i);
|
| - if (successor->Get(value))
|
| - return successor;
|
| - }
|
| - } else {
|
| - successors_ = new(zone) ZoneList<OutSet*>(2, zone);
|
| - }
|
| - OutSet* result = new(zone) OutSet(first_, remaining_);
|
| - result->Set(value, zone);
|
| - successors(zone)->Add(result, zone);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -void OutSet::Set(unsigned value, Zone *zone) {
|
| - if (value < kFirstLimit) {
|
| - first_ |= (1 << value);
|
| - } else {
|
| - if (remaining_ == NULL)
|
| - remaining_ = new(zone) ZoneList<unsigned>(1, zone);
|
| - if (remaining_->is_empty() || !remaining_->Contains(value))
|
| - remaining_->Add(value, zone);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool OutSet::Get(unsigned value) const {
|
| - if (value < kFirstLimit) {
|
| - return (first_ & (1 << value)) != 0;
|
| - } else if (remaining_ == NULL) {
|
| - return false;
|
| - } else {
|
| - return remaining_->Contains(value);
|
| - }
|
| -}
|
| -
|
| -
|
| -const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
|
| -
|
| -
|
| -void DispatchTable::AddRange(CharacterRange full_range, int value,
|
| - Zone* zone) {
|
| - CharacterRange current = full_range;
|
| - if (tree()->is_empty()) {
|
| - // If this is the first range we just insert into the table.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - bool inserted = tree()->Insert(current.from(), &loc);
|
| - DCHECK(inserted);
|
| - USE(inserted);
|
| - loc.set_value(Entry(current.from(), current.to(),
|
| - empty()->Extend(value, zone)));
|
| - return;
|
| - }
|
| - // First see if there is a range to the left of this one that
|
| - // overlaps.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - if (tree()->FindGreatestLessThan(current.from(), &loc)) {
|
| - Entry* entry = &loc.value();
|
| - // If we've found a range that overlaps with this one, and it
|
| - // starts strictly to the left of this one, we have to fix it
|
| - // because the following code only handles ranges that start on
|
| - // or after the start point of the range we're adding.
|
| - if (entry->from() < current.from() && entry->to() >= current.from()) {
|
| - // Snap the overlapping range in half around the start point of
|
| - // the range we're adding.
|
| - CharacterRange left(entry->from(), current.from() - 1);
|
| - CharacterRange right(current.from(), entry->to());
|
| - // The left part of the overlapping range doesn't overlap.
|
| - // Truncate the whole entry to be just the left part.
|
| - entry->set_to(left.to());
|
| - // The right part is the one that overlaps. We add this part
|
| - // to the map and let the next step deal with merging it with
|
| - // the range we're adding.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - bool inserted = tree()->Insert(right.from(), &loc);
|
| - DCHECK(inserted);
|
| - USE(inserted);
|
| - loc.set_value(Entry(right.from(),
|
| - right.to(),
|
| - entry->out_set()));
|
| - }
|
| - }
|
| - while (current.is_valid()) {
|
| - if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
|
| - (loc.value().from() <= current.to()) &&
|
| - (loc.value().to() >= current.from())) {
|
| - Entry* entry = &loc.value();
|
| - // We have overlap. If there is space between the start point of
|
| - // the range we're adding and where the overlapping range starts
|
| - // then we have to add a range covering just that space.
|
| - if (current.from() < entry->from()) {
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - bool inserted = tree()->Insert(current.from(), &ins);
|
| - DCHECK(inserted);
|
| - USE(inserted);
|
| - ins.set_value(Entry(current.from(),
|
| - entry->from() - 1,
|
| - empty()->Extend(value, zone)));
|
| - current.set_from(entry->from());
|
| - }
|
| - DCHECK_EQ(current.from(), entry->from());
|
| - // If the overlapping range extends beyond the one we want to add
|
| - // we have to snap the right part off and add it separately.
|
| - if (entry->to() > current.to()) {
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - bool inserted = tree()->Insert(current.to() + 1, &ins);
|
| - DCHECK(inserted);
|
| - USE(inserted);
|
| - ins.set_value(Entry(current.to() + 1,
|
| - entry->to(),
|
| - entry->out_set()));
|
| - entry->set_to(current.to());
|
| - }
|
| - DCHECK(entry->to() <= current.to());
|
| - // The overlapping range is now completely contained by the range
|
| - // we're adding so we can just update it and move the start point
|
| - // of the range we're adding just past it.
|
| - entry->AddValue(value, zone);
|
| - // Bail out if the last interval ended at 0xFFFF since otherwise
|
| - // adding 1 will wrap around to 0.
|
| - if (entry->to() == String::kMaxUtf16CodeUnit)
|
| - break;
|
| - DCHECK(entry->to() + 1 > current.from());
|
| - current.set_from(entry->to() + 1);
|
| - } else {
|
| - // There is no overlap so we can just add the range
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - bool inserted = tree()->Insert(current.from(), &ins);
|
| - DCHECK(inserted);
|
| - USE(inserted);
|
| - ins.set_value(Entry(current.from(),
|
| - current.to(),
|
| - empty()->Extend(value, zone)));
|
| - break;
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -OutSet* DispatchTable::Get(uc16 value) {
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - if (!tree()->FindGreatestLessThan(value, &loc))
|
| - return empty();
|
| - Entry* entry = &loc.value();
|
| - if (value <= entry->to())
|
| - return entry->out_set();
|
| - else
|
| - return empty();
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Analysis
|
| -
|
| -
|
| -void Analysis::EnsureAnalyzed(RegExpNode* that) {
|
| - StackLimitCheck check(isolate());
|
| - if (check.HasOverflowed()) {
|
| - fail("Stack overflow");
|
| - return;
|
| - }
|
| - if (that->info()->been_analyzed || that->info()->being_analyzed)
|
| - return;
|
| - that->info()->being_analyzed = true;
|
| - that->Accept(this);
|
| - that->info()->being_analyzed = false;
|
| - that->info()->been_analyzed = true;
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitEnd(EndNode* that) {
|
| - // nothing to do
|
| -}
|
| -
|
| -
|
| -void TextNode::CalculateOffsets() {
|
| - int element_count = elements()->length();
|
| - // Set up the offsets of the elements relative to the start. This is a fixed
|
| - // quantity since a TextNode can only contain fixed-width things.
|
| - int cp_offset = 0;
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement& elm = elements()->at(i);
|
| - elm.set_cp_offset(cp_offset);
|
| - cp_offset += elm.length();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitText(TextNode* that) {
|
| - if (ignore_case_) {
|
| - that->MakeCaseIndependent(isolate(), is_one_byte_);
|
| - }
|
| - EnsureAnalyzed(that->on_success());
|
| - if (!has_failed()) {
|
| - that->CalculateOffsets();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitAction(ActionNode* that) {
|
| - RegExpNode* target = that->on_success();
|
| - EnsureAnalyzed(target);
|
| - if (!has_failed()) {
|
| - // If the next node is interested in what it follows then this node
|
| - // has to be interested too so it can pass the information on.
|
| - that->info()->AddFromFollowing(target->info());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitChoice(ChoiceNode* that) {
|
| - NodeInfo* info = that->info();
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - RegExpNode* node = that->alternatives()->at(i).node();
|
| - EnsureAnalyzed(node);
|
| - if (has_failed()) return;
|
| - // Anything the following nodes need to know has to be known by
|
| - // this node also, so it can pass it on.
|
| - info->AddFromFollowing(node->info());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
|
| - NodeInfo* info = that->info();
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - RegExpNode* node = that->alternatives()->at(i).node();
|
| - if (node != that->loop_node()) {
|
| - EnsureAnalyzed(node);
|
| - if (has_failed()) return;
|
| - info->AddFromFollowing(node->info());
|
| - }
|
| - }
|
| - // Check the loop last since it may need the value of this node
|
| - // to get a correct result.
|
| - EnsureAnalyzed(that->loop_node());
|
| - if (!has_failed()) {
|
| - info->AddFromFollowing(that->loop_node()->info());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitBackReference(BackReferenceNode* that) {
|
| - EnsureAnalyzed(that->on_success());
|
| -}
|
| -
|
| -
|
| -void Analysis::VisitAssertion(AssertionNode* that) {
|
| - EnsureAnalyzed(that->on_success());
|
| -}
|
| -
|
| -
|
| -void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
|
| - BoyerMooreLookahead* bm,
|
| - bool not_at_start) {
|
| - // Working out the set of characters that a backreference can match is too
|
| - // hard, so we just say that any character can match.
|
| - bm->SetRest(offset);
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| -}
|
| -
|
| -
|
| -STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
|
| - RegExpMacroAssembler::kTableSize);
|
| -
|
| -
|
| -void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
|
| - BoyerMooreLookahead* bm, bool not_at_start) {
|
| - ZoneList<GuardedAlternative>* alts = alternatives();
|
| - budget = (budget - 1) / alts->length();
|
| - for (int i = 0; i < alts->length(); i++) {
|
| - GuardedAlternative& alt = alts->at(i);
|
| - if (alt.guards() != NULL && alt.guards()->length() != 0) {
|
| - bm->SetRest(offset); // Give up trying to fill in info.
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| - return;
|
| - }
|
| - alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
|
| - }
|
| - SaveBMInfo(bm, not_at_start, offset);
|
| -}
|
| -
|
| -
|
| -void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
|
| - BoyerMooreLookahead* bm, bool not_at_start) {
|
| - if (initial_offset >= bm->length()) return;
|
| - int offset = initial_offset;
|
| - int max_char = bm->max_char();
|
| - for (int i = 0; i < elements()->length(); i++) {
|
| - if (offset >= bm->length()) {
|
| - if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| - return;
|
| - }
|
| - TextElement text = elements()->at(i);
|
| - if (text.text_type() == TextElement::ATOM) {
|
| - RegExpAtom* atom = text.atom();
|
| - for (int j = 0; j < atom->length(); j++, offset++) {
|
| - if (offset >= bm->length()) {
|
| - if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| - return;
|
| - }
|
| - uc16 character = atom->data()[j];
|
| - if (bm->compiler()->ignore_case()) {
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(
|
| - isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
|
| - chars);
|
| - for (int j = 0; j < length; j++) {
|
| - bm->Set(offset, chars[j]);
|
| - }
|
| - } else {
|
| - if (character <= max_char) bm->Set(offset, character);
|
| - }
|
| - }
|
| - } else {
|
| - DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
|
| - RegExpCharacterClass* char_class = text.char_class();
|
| - ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
|
| - if (char_class->is_negated()) {
|
| - bm->SetAll(offset);
|
| - } else {
|
| - for (int k = 0; k < ranges->length(); k++) {
|
| - CharacterRange& range = ranges->at(k);
|
| - if (range.from() > max_char) continue;
|
| - int to = Min(max_char, static_cast<int>(range.to()));
|
| - bm->SetInterval(offset, Interval(range.from(), to));
|
| - }
|
| - }
|
| - offset++;
|
| - }
|
| - }
|
| - if (offset >= bm->length()) {
|
| - if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| - return;
|
| - }
|
| - on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
|
| - true); // Not at start after a text node.
|
| - if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------
|
| -// Dispatch table construction
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitEnd(EndNode* that) {
|
| - AddRange(CharacterRange::Everything());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
|
| - node->set_being_calculated(true);
|
| - ZoneList<GuardedAlternative>* alternatives = node->alternatives();
|
| - for (int i = 0; i < alternatives->length(); i++) {
|
| - set_choice_index(i);
|
| - alternatives->at(i).node()->Accept(this);
|
| - }
|
| - node->set_being_calculated(false);
|
| -}
|
| -
|
| -
|
| -class AddDispatchRange {
|
| - public:
|
| - explicit AddDispatchRange(DispatchTableConstructor* constructor)
|
| - : constructor_(constructor) { }
|
| - void Call(uc32 from, DispatchTable::Entry entry);
|
| - private:
|
| - DispatchTableConstructor* constructor_;
|
| -};
|
| -
|
| -
|
| -void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
|
| - CharacterRange range(from, entry.to());
|
| - constructor_->AddRange(range);
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
|
| - if (node->being_calculated())
|
| - return;
|
| - DispatchTable* table = node->GetTable(ignore_case_);
|
| - AddDispatchRange adder(this);
|
| - table->ForEach(&adder);
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
|
| - // TODO(160): Find the node that we refer back to and propagate its start
|
| - // set back to here. For now we just accept anything.
|
| - AddRange(CharacterRange::Everything());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
|
| - RegExpNode* target = that->on_success();
|
| - target->Accept(this);
|
| -}
|
| -
|
| -
|
| -static int CompareRangeByFrom(const CharacterRange* a,
|
| - const CharacterRange* b) {
|
| - return Compare<uc16>(a->from(), b->from());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
|
| - ranges->Sort(CompareRangeByFrom);
|
| - uc16 last = 0;
|
| - for (int i = 0; i < ranges->length(); i++) {
|
| - CharacterRange range = ranges->at(i);
|
| - if (last < range.from())
|
| - AddRange(CharacterRange(last, range.from() - 1));
|
| - if (range.to() >= last) {
|
| - if (range.to() == String::kMaxUtf16CodeUnit) {
|
| - return;
|
| - } else {
|
| - last = range.to() + 1;
|
| - }
|
| - }
|
| - }
|
| - AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitText(TextNode* that) {
|
| - TextElement elm = that->elements()->at(0);
|
| - switch (elm.text_type()) {
|
| - case TextElement::ATOM: {
|
| - uc16 c = elm.atom()->data()[0];
|
| - AddRange(CharacterRange(c, c));
|
| - break;
|
| - }
|
| - case TextElement::CHAR_CLASS: {
|
| - RegExpCharacterClass* tree = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
|
| - if (tree->is_negated()) {
|
| - AddInverse(ranges);
|
| - } else {
|
| - for (int i = 0; i < ranges->length(); i++)
|
| - AddRange(ranges->at(i));
|
| - }
|
| - break;
|
| - }
|
| - default: {
|
| - UNIMPLEMENTED();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitAction(ActionNode* that) {
|
| - RegExpNode* target = that->on_success();
|
| - target->Accept(this);
|
| -}
|
| -
|
| -
|
| -RegExpEngine::CompilationResult RegExpEngine::Compile(
|
| - Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case,
|
| - bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern,
|
| - Handle<String> sample_subject, bool is_one_byte) {
|
| - if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
|
| - return IrregexpRegExpTooBig(isolate);
|
| - }
|
| - RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case,
|
| - is_one_byte);
|
| -
|
| - if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
|
| -
|
| - // Sample some characters from the middle of the string.
|
| - static const int kSampleSize = 128;
|
| -
|
| - sample_subject = String::Flatten(sample_subject);
|
| - int chars_sampled = 0;
|
| - int half_way = (sample_subject->length() - kSampleSize) / 2;
|
| - for (int i = Max(0, half_way);
|
| - i < sample_subject->length() && chars_sampled < kSampleSize;
|
| - i++, chars_sampled++) {
|
| - compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
|
| - }
|
| -
|
| - // Wrap the body of the regexp in capture #0.
|
| - RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
|
| - 0,
|
| - &compiler,
|
| - compiler.accept());
|
| - RegExpNode* node = captured_body;
|
| - bool is_end_anchored = data->tree->IsAnchoredAtEnd();
|
| - bool is_start_anchored = data->tree->IsAnchoredAtStart();
|
| - int max_length = data->tree->max_match();
|
| - if (!is_start_anchored && !is_sticky) {
|
| - // Add a .*? at the beginning, outside the body capture, unless
|
| - // this expression is anchored at the beginning or sticky.
|
| - RegExpNode* loop_node =
|
| - RegExpQuantifier::ToNode(0,
|
| - RegExpTree::kInfinity,
|
| - false,
|
| - new(zone) RegExpCharacterClass('*'),
|
| - &compiler,
|
| - captured_body,
|
| - data->contains_anchor);
|
| -
|
| - if (data->contains_anchor) {
|
| - // Unroll loop once, to take care of the case that might start
|
| - // at the start of input.
|
| - ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
|
| - first_step_node->AddAlternative(GuardedAlternative(captured_body));
|
| - first_step_node->AddAlternative(GuardedAlternative(
|
| - new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
|
| - node = first_step_node;
|
| - } else {
|
| - node = loop_node;
|
| - }
|
| - }
|
| - if (is_one_byte) {
|
| - node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
|
| - // Do it again to propagate the new nodes to places where they were not
|
| - // put because they had not been calculated yet.
|
| - if (node != NULL) {
|
| - node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
|
| - }
|
| - }
|
| -
|
| - if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
|
| - data->node = node;
|
| - Analysis analysis(isolate, ignore_case, is_one_byte);
|
| - analysis.EnsureAnalyzed(node);
|
| - if (analysis.has_failed()) {
|
| - const char* error_message = analysis.error_message();
|
| - return CompilationResult(isolate, error_message);
|
| - }
|
| -
|
| - // Create the correct assembler for the architecture.
|
| -#ifndef V8_INTERPRETED_REGEXP
|
| - // Native regexp implementation.
|
| -
|
| - NativeRegExpMacroAssembler::Mode mode =
|
| - is_one_byte ? NativeRegExpMacroAssembler::LATIN1
|
| - : NativeRegExpMacroAssembler::UC16;
|
| -
|
| -#if V8_TARGET_ARCH_IA32
|
| - RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_X64
|
| - RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_ARM
|
| - RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_ARM64
|
| - RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_PPC
|
| - RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_MIPS
|
| - RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_MIPS64
|
| - RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#elif V8_TARGET_ARCH_X87
|
| - RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
|
| - (data->capture_count + 1) * 2);
|
| -#else
|
| -#error "Unsupported architecture"
|
| -#endif
|
| -
|
| -#else // V8_INTERPRETED_REGEXP
|
| - // Interpreted regexp implementation.
|
| - EmbeddedVector<byte, 1024> codes;
|
| - RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -
|
| - macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
|
| -
|
| - // Inserted here, instead of in Assembler, because it depends on information
|
| - // in the AST that isn't replicated in the Node structure.
|
| - static const int kMaxBacksearchLimit = 1024;
|
| - if (is_end_anchored &&
|
| - !is_start_anchored &&
|
| - max_length < kMaxBacksearchLimit) {
|
| - macro_assembler.SetCurrentPositionFromEnd(max_length);
|
| - }
|
| -
|
| - if (is_global) {
|
| - macro_assembler.set_global_mode(
|
| - (data->tree->min_match() > 0)
|
| - ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
|
| - : RegExpMacroAssembler::GLOBAL);
|
| - }
|
| -
|
| - return compiler.Assemble(¯o_assembler,
|
| - node,
|
| - data->capture_count,
|
| - pattern);
|
| -}
|
| -
|
| -
|
| -bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
|
| - Heap* heap = pattern->GetHeap();
|
| - bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
|
| - if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
|
| - heap->isolate()->memory_allocator()->SizeExecutable() >
|
| - RegExpImpl::kRegExpExecutableMemoryLimit) {
|
| - too_much = true;
|
| - }
|
| - return too_much;
|
| -}
|
| -} // namespace internal
|
| -} // namespace v8
|
|
|