OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/v8.h" | |
6 | |
7 #include "src/ast.h" | |
8 #include "src/base/platform/platform.h" | |
9 #include "src/compilation-cache.h" | |
10 #include "src/compiler.h" | |
11 #include "src/execution.h" | |
12 #include "src/factory.h" | |
13 #include "src/jsregexp-inl.h" | |
14 #include "src/jsregexp.h" | |
15 #include "src/messages.h" | |
16 #include "src/ostreams.h" | |
17 #include "src/parser.h" | |
18 #include "src/regexp-macro-assembler.h" | |
19 #include "src/regexp-macro-assembler-irregexp.h" | |
20 #include "src/regexp-macro-assembler-tracer.h" | |
21 #include "src/regexp-stack.h" | |
22 #include "src/runtime/runtime.h" | |
23 #include "src/splay-tree-inl.h" | |
24 #include "src/string-search.h" | |
25 #include "src/unicode-decoder.h" | |
26 | |
27 #ifndef V8_INTERPRETED_REGEXP | |
28 #if V8_TARGET_ARCH_IA32 | |
29 #include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT | |
30 #elif V8_TARGET_ARCH_X64 | |
31 #include "src/x64/regexp-macro-assembler-x64.h" // NOLINT | |
32 #elif V8_TARGET_ARCH_ARM64 | |
33 #include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT | |
34 #elif V8_TARGET_ARCH_ARM | |
35 #include "src/arm/regexp-macro-assembler-arm.h" // NOLINT | |
36 #elif V8_TARGET_ARCH_PPC | |
37 #include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT | |
38 #elif V8_TARGET_ARCH_MIPS | |
39 #include "src/mips/regexp-macro-assembler-mips.h" // NOLINT | |
40 #elif V8_TARGET_ARCH_MIPS64 | |
41 #include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT | |
42 #elif V8_TARGET_ARCH_X87 | |
43 #include "src/x87/regexp-macro-assembler-x87.h" // NOLINT | |
44 #else | |
45 #error Unsupported target architecture. | |
46 #endif | |
47 #endif | |
48 | |
49 #include "src/interpreter-irregexp.h" | |
50 | |
51 | |
52 namespace v8 { | |
53 namespace internal { | |
54 | |
55 MaybeHandle<Object> RegExpImpl::CreateRegExpLiteral( | |
56 Handle<JSFunction> constructor, | |
57 Handle<String> pattern, | |
58 Handle<String> flags) { | |
59 // Call the construct code with 2 arguments. | |
60 Handle<Object> argv[] = { pattern, flags }; | |
61 return Execution::New(constructor, arraysize(argv), argv); | |
62 } | |
63 | |
64 | |
65 MUST_USE_RESULT | |
66 static inline MaybeHandle<Object> ThrowRegExpException( | |
67 Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) { | |
68 Isolate* isolate = re->GetIsolate(); | |
69 THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp, | |
70 pattern, error_text), | |
71 Object); | |
72 } | |
73 | |
74 | |
75 inline void ThrowRegExpException(Handle<JSRegExp> re, | |
76 Handle<String> error_text) { | |
77 USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text)); | |
78 } | |
79 | |
80 | |
81 ContainedInLattice AddRange(ContainedInLattice containment, | |
82 const int* ranges, | |
83 int ranges_length, | |
84 Interval new_range) { | |
85 DCHECK((ranges_length & 1) == 1); | |
86 DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1); | |
87 if (containment == kLatticeUnknown) return containment; | |
88 bool inside = false; | |
89 int last = 0; | |
90 for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { | |
91 // Consider the range from last to ranges[i]. | |
92 // We haven't got to the new range yet. | |
93 if (ranges[i] <= new_range.from()) continue; | |
94 // New range is wholly inside last-ranges[i]. Note that new_range.to() is | |
95 // inclusive, but the values in ranges are not. | |
96 if (last <= new_range.from() && new_range.to() < ranges[i]) { | |
97 return Combine(containment, inside ? kLatticeIn : kLatticeOut); | |
98 } | |
99 return kLatticeUnknown; | |
100 } | |
101 return containment; | |
102 } | |
103 | |
104 | |
105 // More makes code generation slower, less makes V8 benchmark score lower. | |
106 const int kMaxLookaheadForBoyerMoore = 8; | |
107 // In a 3-character pattern you can maximally step forwards 3 characters | |
108 // at a time, which is not always enough to pay for the extra logic. | |
109 const int kPatternTooShortForBoyerMoore = 2; | |
110 | |
111 | |
112 // Identifies the sort of regexps where the regexp engine is faster | |
113 // than the code used for atom matches. | |
114 static bool HasFewDifferentCharacters(Handle<String> pattern) { | |
115 int length = Min(kMaxLookaheadForBoyerMoore, pattern->length()); | |
116 if (length <= kPatternTooShortForBoyerMoore) return false; | |
117 const int kMod = 128; | |
118 bool character_found[kMod]; | |
119 int different = 0; | |
120 memset(&character_found[0], 0, sizeof(character_found)); | |
121 for (int i = 0; i < length; i++) { | |
122 int ch = (pattern->Get(i) & (kMod - 1)); | |
123 if (!character_found[ch]) { | |
124 character_found[ch] = true; | |
125 different++; | |
126 // We declare a regexp low-alphabet if it has at least 3 times as many | |
127 // characters as it has different characters. | |
128 if (different * 3 > length) return false; | |
129 } | |
130 } | |
131 return true; | |
132 } | |
133 | |
134 | |
135 // Generic RegExp methods. Dispatches to implementation specific methods. | |
136 | |
137 | |
138 MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re, | |
139 Handle<String> pattern, | |
140 JSRegExp::Flags flags) { | |
141 Isolate* isolate = re->GetIsolate(); | |
142 Zone zone; | |
143 CompilationCache* compilation_cache = isolate->compilation_cache(); | |
144 MaybeHandle<FixedArray> maybe_cached = | |
145 compilation_cache->LookupRegExp(pattern, flags); | |
146 Handle<FixedArray> cached; | |
147 bool in_cache = maybe_cached.ToHandle(&cached); | |
148 LOG(isolate, RegExpCompileEvent(re, in_cache)); | |
149 | |
150 Handle<Object> result; | |
151 if (in_cache) { | |
152 re->set_data(*cached); | |
153 return re; | |
154 } | |
155 pattern = String::Flatten(pattern); | |
156 PostponeInterruptsScope postpone(isolate); | |
157 RegExpCompileData parse_result; | |
158 FlatStringReader reader(isolate, pattern); | |
159 if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader, | |
160 flags.is_multiline(), flags.is_unicode(), | |
161 &parse_result)) { | |
162 // Throw an exception if we fail to parse the pattern. | |
163 return ThrowRegExpException(re, pattern, parse_result.error); | |
164 } | |
165 | |
166 bool has_been_compiled = false; | |
167 | |
168 if (parse_result.simple && | |
169 !flags.is_ignore_case() && | |
170 !flags.is_sticky() && | |
171 !HasFewDifferentCharacters(pattern)) { | |
172 // Parse-tree is a single atom that is equal to the pattern. | |
173 AtomCompile(re, pattern, flags, pattern); | |
174 has_been_compiled = true; | |
175 } else if (parse_result.tree->IsAtom() && | |
176 !flags.is_ignore_case() && | |
177 !flags.is_sticky() && | |
178 parse_result.capture_count == 0) { | |
179 RegExpAtom* atom = parse_result.tree->AsAtom(); | |
180 Vector<const uc16> atom_pattern = atom->data(); | |
181 Handle<String> atom_string; | |
182 ASSIGN_RETURN_ON_EXCEPTION( | |
183 isolate, atom_string, | |
184 isolate->factory()->NewStringFromTwoByte(atom_pattern), | |
185 Object); | |
186 if (!HasFewDifferentCharacters(atom_string)) { | |
187 AtomCompile(re, pattern, flags, atom_string); | |
188 has_been_compiled = true; | |
189 } | |
190 } | |
191 if (!has_been_compiled) { | |
192 IrregexpInitialize(re, pattern, flags, parse_result.capture_count); | |
193 } | |
194 DCHECK(re->data()->IsFixedArray()); | |
195 // Compilation succeeded so the data is set on the regexp | |
196 // and we can store it in the cache. | |
197 Handle<FixedArray> data(FixedArray::cast(re->data())); | |
198 compilation_cache->PutRegExp(pattern, flags, data); | |
199 | |
200 return re; | |
201 } | |
202 | |
203 | |
204 MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp, | |
205 Handle<String> subject, | |
206 int index, | |
207 Handle<JSArray> last_match_info) { | |
208 switch (regexp->TypeTag()) { | |
209 case JSRegExp::ATOM: | |
210 return AtomExec(regexp, subject, index, last_match_info); | |
211 case JSRegExp::IRREGEXP: { | |
212 return IrregexpExec(regexp, subject, index, last_match_info); | |
213 } | |
214 default: | |
215 UNREACHABLE(); | |
216 return MaybeHandle<Object>(); | |
217 } | |
218 } | |
219 | |
220 | |
221 // RegExp Atom implementation: Simple string search using indexOf. | |
222 | |
223 | |
224 void RegExpImpl::AtomCompile(Handle<JSRegExp> re, | |
225 Handle<String> pattern, | |
226 JSRegExp::Flags flags, | |
227 Handle<String> match_pattern) { | |
228 re->GetIsolate()->factory()->SetRegExpAtomData(re, | |
229 JSRegExp::ATOM, | |
230 pattern, | |
231 flags, | |
232 match_pattern); | |
233 } | |
234 | |
235 | |
236 static void SetAtomLastCapture(FixedArray* array, | |
237 String* subject, | |
238 int from, | |
239 int to) { | |
240 SealHandleScope shs(array->GetIsolate()); | |
241 RegExpImpl::SetLastCaptureCount(array, 2); | |
242 RegExpImpl::SetLastSubject(array, subject); | |
243 RegExpImpl::SetLastInput(array, subject); | |
244 RegExpImpl::SetCapture(array, 0, from); | |
245 RegExpImpl::SetCapture(array, 1, to); | |
246 } | |
247 | |
248 | |
249 int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp, | |
250 Handle<String> subject, | |
251 int index, | |
252 int32_t* output, | |
253 int output_size) { | |
254 Isolate* isolate = regexp->GetIsolate(); | |
255 | |
256 DCHECK(0 <= index); | |
257 DCHECK(index <= subject->length()); | |
258 | |
259 subject = String::Flatten(subject); | |
260 DisallowHeapAllocation no_gc; // ensure vectors stay valid | |
261 | |
262 String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex)); | |
263 int needle_len = needle->length(); | |
264 DCHECK(needle->IsFlat()); | |
265 DCHECK_LT(0, needle_len); | |
266 | |
267 if (index + needle_len > subject->length()) { | |
268 return RegExpImpl::RE_FAILURE; | |
269 } | |
270 | |
271 for (int i = 0; i < output_size; i += 2) { | |
272 String::FlatContent needle_content = needle->GetFlatContent(); | |
273 String::FlatContent subject_content = subject->GetFlatContent(); | |
274 DCHECK(needle_content.IsFlat()); | |
275 DCHECK(subject_content.IsFlat()); | |
276 // dispatch on type of strings | |
277 index = | |
278 (needle_content.IsOneByte() | |
279 ? (subject_content.IsOneByte() | |
280 ? SearchString(isolate, subject_content.ToOneByteVector(), | |
281 needle_content.ToOneByteVector(), index) | |
282 : SearchString(isolate, subject_content.ToUC16Vector(), | |
283 needle_content.ToOneByteVector(), index)) | |
284 : (subject_content.IsOneByte() | |
285 ? SearchString(isolate, subject_content.ToOneByteVector(), | |
286 needle_content.ToUC16Vector(), index) | |
287 : SearchString(isolate, subject_content.ToUC16Vector(), | |
288 needle_content.ToUC16Vector(), index))); | |
289 if (index == -1) { | |
290 return i / 2; // Return number of matches. | |
291 } else { | |
292 output[i] = index; | |
293 output[i+1] = index + needle_len; | |
294 index += needle_len; | |
295 } | |
296 } | |
297 return output_size / 2; | |
298 } | |
299 | |
300 | |
301 Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re, | |
302 Handle<String> subject, | |
303 int index, | |
304 Handle<JSArray> last_match_info) { | |
305 Isolate* isolate = re->GetIsolate(); | |
306 | |
307 static const int kNumRegisters = 2; | |
308 STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize); | |
309 int32_t* output_registers = isolate->jsregexp_static_offsets_vector(); | |
310 | |
311 int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters); | |
312 | |
313 if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value(); | |
314 | |
315 DCHECK_EQ(res, RegExpImpl::RE_SUCCESS); | |
316 SealHandleScope shs(isolate); | |
317 FixedArray* array = FixedArray::cast(last_match_info->elements()); | |
318 SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]); | |
319 return last_match_info; | |
320 } | |
321 | |
322 | |
323 // Irregexp implementation. | |
324 | |
325 // Ensures that the regexp object contains a compiled version of the | |
326 // source for either one-byte or two-byte subject strings. | |
327 // If the compiled version doesn't already exist, it is compiled | |
328 // from the source pattern. | |
329 // If compilation fails, an exception is thrown and this function | |
330 // returns false. | |
331 bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, | |
332 Handle<String> sample_subject, | |
333 bool is_one_byte) { | |
334 Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte)); | |
335 #ifdef V8_INTERPRETED_REGEXP | |
336 if (compiled_code->IsByteArray()) return true; | |
337 #else // V8_INTERPRETED_REGEXP (RegExp native code) | |
338 if (compiled_code->IsCode()) return true; | |
339 #endif | |
340 // We could potentially have marked this as flushable, but have kept | |
341 // a saved version if we did not flush it yet. | |
342 Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte)); | |
343 if (saved_code->IsCode()) { | |
344 // Reinstate the code in the original place. | |
345 re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code); | |
346 DCHECK(compiled_code->IsSmi()); | |
347 return true; | |
348 } | |
349 return CompileIrregexp(re, sample_subject, is_one_byte); | |
350 } | |
351 | |
352 | |
353 bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, | |
354 Handle<String> sample_subject, | |
355 bool is_one_byte) { | |
356 // Compile the RegExp. | |
357 Isolate* isolate = re->GetIsolate(); | |
358 Zone zone; | |
359 PostponeInterruptsScope postpone(isolate); | |
360 // If we had a compilation error the last time this is saved at the | |
361 // saved code index. | |
362 Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte)); | |
363 // When arriving here entry can only be a smi, either representing an | |
364 // uncompiled regexp, a previous compilation error, or code that has | |
365 // been flushed. | |
366 DCHECK(entry->IsSmi()); | |
367 int entry_value = Smi::cast(entry)->value(); | |
368 DCHECK(entry_value == JSRegExp::kUninitializedValue || | |
369 entry_value == JSRegExp::kCompilationErrorValue || | |
370 (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0)); | |
371 | |
372 if (entry_value == JSRegExp::kCompilationErrorValue) { | |
373 // A previous compilation failed and threw an error which we store in | |
374 // the saved code index (we store the error message, not the actual | |
375 // error). Recreate the error object and throw it. | |
376 Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte)); | |
377 DCHECK(error_string->IsString()); | |
378 Handle<String> error_message(String::cast(error_string)); | |
379 ThrowRegExpException(re, error_message); | |
380 return false; | |
381 } | |
382 | |
383 JSRegExp::Flags flags = re->GetFlags(); | |
384 | |
385 Handle<String> pattern(re->Pattern()); | |
386 pattern = String::Flatten(pattern); | |
387 RegExpCompileData compile_data; | |
388 FlatStringReader reader(isolate, pattern); | |
389 if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags.is_multiline(), | |
390 flags.is_unicode(), &compile_data)) { | |
391 // Throw an exception if we fail to parse the pattern. | |
392 // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once. | |
393 USE(ThrowRegExpException(re, pattern, compile_data.error)); | |
394 return false; | |
395 } | |
396 RegExpEngine::CompilationResult result = RegExpEngine::Compile( | |
397 isolate, &zone, &compile_data, flags.is_ignore_case(), flags.is_global(), | |
398 flags.is_multiline(), flags.is_sticky(), pattern, sample_subject, | |
399 is_one_byte); | |
400 if (result.error_message != NULL) { | |
401 // Unable to compile regexp. | |
402 Handle<String> error_message = isolate->factory()->NewStringFromUtf8( | |
403 CStrVector(result.error_message)).ToHandleChecked(); | |
404 ThrowRegExpException(re, error_message); | |
405 return false; | |
406 } | |
407 | |
408 Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data())); | |
409 data->set(JSRegExp::code_index(is_one_byte), result.code); | |
410 int register_max = IrregexpMaxRegisterCount(*data); | |
411 if (result.num_registers > register_max) { | |
412 SetIrregexpMaxRegisterCount(*data, result.num_registers); | |
413 } | |
414 | |
415 return true; | |
416 } | |
417 | |
418 | |
419 int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) { | |
420 return Smi::cast( | |
421 re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); | |
422 } | |
423 | |
424 | |
425 void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) { | |
426 re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value)); | |
427 } | |
428 | |
429 | |
430 int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) { | |
431 return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value(); | |
432 } | |
433 | |
434 | |
435 int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) { | |
436 return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); | |
437 } | |
438 | |
439 | |
440 ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) { | |
441 return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte))); | |
442 } | |
443 | |
444 | |
445 Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) { | |
446 return Code::cast(re->get(JSRegExp::code_index(is_one_byte))); | |
447 } | |
448 | |
449 | |
450 void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re, | |
451 Handle<String> pattern, | |
452 JSRegExp::Flags flags, | |
453 int capture_count) { | |
454 // Initialize compiled code entries to null. | |
455 re->GetIsolate()->factory()->SetRegExpIrregexpData(re, | |
456 JSRegExp::IRREGEXP, | |
457 pattern, | |
458 flags, | |
459 capture_count); | |
460 } | |
461 | |
462 | |
463 int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp, | |
464 Handle<String> subject) { | |
465 subject = String::Flatten(subject); | |
466 | |
467 // Check representation of the underlying storage. | |
468 bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); | |
469 if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1; | |
470 | |
471 #ifdef V8_INTERPRETED_REGEXP | |
472 // Byte-code regexp needs space allocated for all its registers. | |
473 // The result captures are copied to the start of the registers array | |
474 // if the match succeeds. This way those registers are not clobbered | |
475 // when we set the last match info from last successful match. | |
476 return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) + | |
477 (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; | |
478 #else // V8_INTERPRETED_REGEXP | |
479 // Native regexp only needs room to output captures. Registers are handled | |
480 // internally. | |
481 return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; | |
482 #endif // V8_INTERPRETED_REGEXP | |
483 } | |
484 | |
485 | |
486 int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp, | |
487 Handle<String> subject, | |
488 int index, | |
489 int32_t* output, | |
490 int output_size) { | |
491 Isolate* isolate = regexp->GetIsolate(); | |
492 | |
493 Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate); | |
494 | |
495 DCHECK(index >= 0); | |
496 DCHECK(index <= subject->length()); | |
497 DCHECK(subject->IsFlat()); | |
498 | |
499 bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); | |
500 | |
501 #ifndef V8_INTERPRETED_REGEXP | |
502 DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2); | |
503 do { | |
504 EnsureCompiledIrregexp(regexp, subject, is_one_byte); | |
505 Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate); | |
506 // The stack is used to allocate registers for the compiled regexp code. | |
507 // This means that in case of failure, the output registers array is left | |
508 // untouched and contains the capture results from the previous successful | |
509 // match. We can use that to set the last match info lazily. | |
510 NativeRegExpMacroAssembler::Result res = | |
511 NativeRegExpMacroAssembler::Match(code, | |
512 subject, | |
513 output, | |
514 output_size, | |
515 index, | |
516 isolate); | |
517 if (res != NativeRegExpMacroAssembler::RETRY) { | |
518 DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION || | |
519 isolate->has_pending_exception()); | |
520 STATIC_ASSERT( | |
521 static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS); | |
522 STATIC_ASSERT( | |
523 static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE); | |
524 STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION) | |
525 == RE_EXCEPTION); | |
526 return static_cast<IrregexpResult>(res); | |
527 } | |
528 // If result is RETRY, the string has changed representation, and we | |
529 // must restart from scratch. | |
530 // In this case, it means we must make sure we are prepared to handle | |
531 // the, potentially, different subject (the string can switch between | |
532 // being internal and external, and even between being Latin1 and UC16, | |
533 // but the characters are always the same). | |
534 IrregexpPrepare(regexp, subject); | |
535 is_one_byte = subject->IsOneByteRepresentationUnderneath(); | |
536 } while (true); | |
537 UNREACHABLE(); | |
538 return RE_EXCEPTION; | |
539 #else // V8_INTERPRETED_REGEXP | |
540 | |
541 DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp)); | |
542 // We must have done EnsureCompiledIrregexp, so we can get the number of | |
543 // registers. | |
544 int number_of_capture_registers = | |
545 (IrregexpNumberOfCaptures(*irregexp) + 1) * 2; | |
546 int32_t* raw_output = &output[number_of_capture_registers]; | |
547 // We do not touch the actual capture result registers until we know there | |
548 // has been a match so that we can use those capture results to set the | |
549 // last match info. | |
550 for (int i = number_of_capture_registers - 1; i >= 0; i--) { | |
551 raw_output[i] = -1; | |
552 } | |
553 Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte), | |
554 isolate); | |
555 | |
556 IrregexpResult result = IrregexpInterpreter::Match(isolate, | |
557 byte_codes, | |
558 subject, | |
559 raw_output, | |
560 index); | |
561 if (result == RE_SUCCESS) { | |
562 // Copy capture results to the start of the registers array. | |
563 MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t)); | |
564 } | |
565 if (result == RE_EXCEPTION) { | |
566 DCHECK(!isolate->has_pending_exception()); | |
567 isolate->StackOverflow(); | |
568 } | |
569 return result; | |
570 #endif // V8_INTERPRETED_REGEXP | |
571 } | |
572 | |
573 | |
574 MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp, | |
575 Handle<String> subject, | |
576 int previous_index, | |
577 Handle<JSArray> last_match_info) { | |
578 Isolate* isolate = regexp->GetIsolate(); | |
579 DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); | |
580 | |
581 // Prepare space for the return values. | |
582 #if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG) | |
583 if (FLAG_trace_regexp_bytecodes) { | |
584 String* pattern = regexp->Pattern(); | |
585 PrintF("\n\nRegexp match: /%s/\n\n", pattern->ToCString().get()); | |
586 PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get()); | |
587 } | |
588 #endif | |
589 int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); | |
590 if (required_registers < 0) { | |
591 // Compiling failed with an exception. | |
592 DCHECK(isolate->has_pending_exception()); | |
593 return MaybeHandle<Object>(); | |
594 } | |
595 | |
596 int32_t* output_registers = NULL; | |
597 if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) { | |
598 output_registers = NewArray<int32_t>(required_registers); | |
599 } | |
600 base::SmartArrayPointer<int32_t> auto_release(output_registers); | |
601 if (output_registers == NULL) { | |
602 output_registers = isolate->jsregexp_static_offsets_vector(); | |
603 } | |
604 | |
605 int res = RegExpImpl::IrregexpExecRaw( | |
606 regexp, subject, previous_index, output_registers, required_registers); | |
607 if (res == RE_SUCCESS) { | |
608 int capture_count = | |
609 IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())); | |
610 return SetLastMatchInfo( | |
611 last_match_info, subject, capture_count, output_registers); | |
612 } | |
613 if (res == RE_EXCEPTION) { | |
614 DCHECK(isolate->has_pending_exception()); | |
615 return MaybeHandle<Object>(); | |
616 } | |
617 DCHECK(res == RE_FAILURE); | |
618 return isolate->factory()->null_value(); | |
619 } | |
620 | |
621 | |
622 static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) { | |
623 if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) { | |
624 JSArray::SetLength(array, minimum_size); | |
625 } | |
626 } | |
627 | |
628 | |
629 Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info, | |
630 Handle<String> subject, | |
631 int capture_count, | |
632 int32_t* match) { | |
633 DCHECK(last_match_info->HasFastObjectElements()); | |
634 int capture_register_count = (capture_count + 1) * 2; | |
635 EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead); | |
636 DisallowHeapAllocation no_allocation; | |
637 FixedArray* array = FixedArray::cast(last_match_info->elements()); | |
638 if (match != NULL) { | |
639 for (int i = 0; i < capture_register_count; i += 2) { | |
640 SetCapture(array, i, match[i]); | |
641 SetCapture(array, i + 1, match[i + 1]); | |
642 } | |
643 } | |
644 SetLastCaptureCount(array, capture_register_count); | |
645 SetLastSubject(array, *subject); | |
646 SetLastInput(array, *subject); | |
647 return last_match_info; | |
648 } | |
649 | |
650 | |
651 RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp, | |
652 Handle<String> subject, | |
653 bool is_global, | |
654 Isolate* isolate) | |
655 : register_array_(NULL), | |
656 register_array_size_(0), | |
657 regexp_(regexp), | |
658 subject_(subject) { | |
659 #ifdef V8_INTERPRETED_REGEXP | |
660 bool interpreted = true; | |
661 #else | |
662 bool interpreted = false; | |
663 #endif // V8_INTERPRETED_REGEXP | |
664 | |
665 if (regexp_->TypeTag() == JSRegExp::ATOM) { | |
666 static const int kAtomRegistersPerMatch = 2; | |
667 registers_per_match_ = kAtomRegistersPerMatch; | |
668 // There is no distinction between interpreted and native for atom regexps. | |
669 interpreted = false; | |
670 } else { | |
671 registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_); | |
672 if (registers_per_match_ < 0) { | |
673 num_matches_ = -1; // Signal exception. | |
674 return; | |
675 } | |
676 } | |
677 | |
678 if (is_global && !interpreted) { | |
679 register_array_size_ = | |
680 Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize); | |
681 max_matches_ = register_array_size_ / registers_per_match_; | |
682 } else { | |
683 // Global loop in interpreted regexp is not implemented. We choose | |
684 // the size of the offsets vector so that it can only store one match. | |
685 register_array_size_ = registers_per_match_; | |
686 max_matches_ = 1; | |
687 } | |
688 | |
689 if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { | |
690 register_array_ = NewArray<int32_t>(register_array_size_); | |
691 } else { | |
692 register_array_ = isolate->jsregexp_static_offsets_vector(); | |
693 } | |
694 | |
695 // Set state so that fetching the results the first time triggers a call | |
696 // to the compiled regexp. | |
697 current_match_index_ = max_matches_ - 1; | |
698 num_matches_ = max_matches_; | |
699 DCHECK(registers_per_match_ >= 2); // Each match has at least one capture. | |
700 DCHECK_GE(register_array_size_, registers_per_match_); | |
701 int32_t* last_match = | |
702 ®ister_array_[current_match_index_ * registers_per_match_]; | |
703 last_match[0] = -1; | |
704 last_match[1] = 0; | |
705 } | |
706 | |
707 | |
708 // ------------------------------------------------------------------- | |
709 // Implementation of the Irregexp regular expression engine. | |
710 // | |
711 // The Irregexp regular expression engine is intended to be a complete | |
712 // implementation of ECMAScript regular expressions. It generates either | |
713 // bytecodes or native code. | |
714 | |
715 // The Irregexp regexp engine is structured in three steps. | |
716 // 1) The parser generates an abstract syntax tree. See ast.cc. | |
717 // 2) From the AST a node network is created. The nodes are all | |
718 // subclasses of RegExpNode. The nodes represent states when | |
719 // executing a regular expression. Several optimizations are | |
720 // performed on the node network. | |
721 // 3) From the nodes we generate either byte codes or native code | |
722 // that can actually execute the regular expression (perform | |
723 // the search). The code generation step is described in more | |
724 // detail below. | |
725 | |
726 // Code generation. | |
727 // | |
728 // The nodes are divided into four main categories. | |
729 // * Choice nodes | |
730 // These represent places where the regular expression can | |
731 // match in more than one way. For example on entry to an | |
732 // alternation (foo|bar) or a repetition (*, +, ? or {}). | |
733 // * Action nodes | |
734 // These represent places where some action should be | |
735 // performed. Examples include recording the current position | |
736 // in the input string to a register (in order to implement | |
737 // captures) or other actions on register for example in order | |
738 // to implement the counters needed for {} repetitions. | |
739 // * Matching nodes | |
740 // These attempt to match some element part of the input string. | |
741 // Examples of elements include character classes, plain strings | |
742 // or back references. | |
743 // * End nodes | |
744 // These are used to implement the actions required on finding | |
745 // a successful match or failing to find a match. | |
746 // | |
747 // The code generated (whether as byte codes or native code) maintains | |
748 // some state as it runs. This consists of the following elements: | |
749 // | |
750 // * The capture registers. Used for string captures. | |
751 // * Other registers. Used for counters etc. | |
752 // * The current position. | |
753 // * The stack of backtracking information. Used when a matching node | |
754 // fails to find a match and needs to try an alternative. | |
755 // | |
756 // Conceptual regular expression execution model: | |
757 // | |
758 // There is a simple conceptual model of regular expression execution | |
759 // which will be presented first. The actual code generated is a more | |
760 // efficient simulation of the simple conceptual model: | |
761 // | |
762 // * Choice nodes are implemented as follows: | |
763 // For each choice except the last { | |
764 // push current position | |
765 // push backtrack code location | |
766 // <generate code to test for choice> | |
767 // backtrack code location: | |
768 // pop current position | |
769 // } | |
770 // <generate code to test for last choice> | |
771 // | |
772 // * Actions nodes are generated as follows | |
773 // <push affected registers on backtrack stack> | |
774 // <generate code to perform action> | |
775 // push backtrack code location | |
776 // <generate code to test for following nodes> | |
777 // backtrack code location: | |
778 // <pop affected registers to restore their state> | |
779 // <pop backtrack location from stack and go to it> | |
780 // | |
781 // * Matching nodes are generated as follows: | |
782 // if input string matches at current position | |
783 // update current position | |
784 // <generate code to test for following nodes> | |
785 // else | |
786 // <pop backtrack location from stack and go to it> | |
787 // | |
788 // Thus it can be seen that the current position is saved and restored | |
789 // by the choice nodes, whereas the registers are saved and restored by | |
790 // by the action nodes that manipulate them. | |
791 // | |
792 // The other interesting aspect of this model is that nodes are generated | |
793 // at the point where they are needed by a recursive call to Emit(). If | |
794 // the node has already been code generated then the Emit() call will | |
795 // generate a jump to the previously generated code instead. In order to | |
796 // limit recursion it is possible for the Emit() function to put the node | |
797 // on a work list for later generation and instead generate a jump. The | |
798 // destination of the jump is resolved later when the code is generated. | |
799 // | |
800 // Actual regular expression code generation. | |
801 // | |
802 // Code generation is actually more complicated than the above. In order | |
803 // to improve the efficiency of the generated code some optimizations are | |
804 // performed | |
805 // | |
806 // * Choice nodes have 1-character lookahead. | |
807 // A choice node looks at the following character and eliminates some of | |
808 // the choices immediately based on that character. This is not yet | |
809 // implemented. | |
810 // * Simple greedy loops store reduced backtracking information. | |
811 // A quantifier like /.*foo/m will greedily match the whole input. It will | |
812 // then need to backtrack to a point where it can match "foo". The naive | |
813 // implementation of this would push each character position onto the | |
814 // backtracking stack, then pop them off one by one. This would use space | |
815 // proportional to the length of the input string. However since the "." | |
816 // can only match in one way and always has a constant length (in this case | |
817 // of 1) it suffices to store the current position on the top of the stack | |
818 // once. Matching now becomes merely incrementing the current position and | |
819 // backtracking becomes decrementing the current position and checking the | |
820 // result against the stored current position. This is faster and saves | |
821 // space. | |
822 // * The current state is virtualized. | |
823 // This is used to defer expensive operations until it is clear that they | |
824 // are needed and to generate code for a node more than once, allowing | |
825 // specialized an efficient versions of the code to be created. This is | |
826 // explained in the section below. | |
827 // | |
828 // Execution state virtualization. | |
829 // | |
830 // Instead of emitting code, nodes that manipulate the state can record their | |
831 // manipulation in an object called the Trace. The Trace object can record a | |
832 // current position offset, an optional backtrack code location on the top of | |
833 // the virtualized backtrack stack and some register changes. When a node is | |
834 // to be emitted it can flush the Trace or update it. Flushing the Trace | |
835 // will emit code to bring the actual state into line with the virtual state. | |
836 // Avoiding flushing the state can postpone some work (e.g. updates of capture | |
837 // registers). Postponing work can save time when executing the regular | |
838 // expression since it may be found that the work never has to be done as a | |
839 // failure to match can occur. In addition it is much faster to jump to a | |
840 // known backtrack code location than it is to pop an unknown backtrack | |
841 // location from the stack and jump there. | |
842 // | |
843 // The virtual state found in the Trace affects code generation. For example | |
844 // the virtual state contains the difference between the actual current | |
845 // position and the virtual current position, and matching code needs to use | |
846 // this offset to attempt a match in the correct location of the input | |
847 // string. Therefore code generated for a non-trivial trace is specialized | |
848 // to that trace. The code generator therefore has the ability to generate | |
849 // code for each node several times. In order to limit the size of the | |
850 // generated code there is an arbitrary limit on how many specialized sets of | |
851 // code may be generated for a given node. If the limit is reached, the | |
852 // trace is flushed and a generic version of the code for a node is emitted. | |
853 // This is subsequently used for that node. The code emitted for non-generic | |
854 // trace is not recorded in the node and so it cannot currently be reused in | |
855 // the event that code generation is requested for an identical trace. | |
856 | |
857 | |
858 void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { | |
859 UNREACHABLE(); | |
860 } | |
861 | |
862 | |
863 void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { | |
864 text->AddElement(TextElement::Atom(this), zone); | |
865 } | |
866 | |
867 | |
868 void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { | |
869 text->AddElement(TextElement::CharClass(this), zone); | |
870 } | |
871 | |
872 | |
873 void RegExpText::AppendToText(RegExpText* text, Zone* zone) { | |
874 for (int i = 0; i < elements()->length(); i++) | |
875 text->AddElement(elements()->at(i), zone); | |
876 } | |
877 | |
878 | |
879 TextElement TextElement::Atom(RegExpAtom* atom) { | |
880 return TextElement(ATOM, atom); | |
881 } | |
882 | |
883 | |
884 TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { | |
885 return TextElement(CHAR_CLASS, char_class); | |
886 } | |
887 | |
888 | |
889 int TextElement::length() const { | |
890 switch (text_type()) { | |
891 case ATOM: | |
892 return atom()->length(); | |
893 | |
894 case CHAR_CLASS: | |
895 return 1; | |
896 } | |
897 UNREACHABLE(); | |
898 return 0; | |
899 } | |
900 | |
901 | |
902 DispatchTable* ChoiceNode::GetTable(bool ignore_case) { | |
903 if (table_ == NULL) { | |
904 table_ = new(zone()) DispatchTable(zone()); | |
905 DispatchTableConstructor cons(table_, ignore_case, zone()); | |
906 cons.BuildTable(this); | |
907 } | |
908 return table_; | |
909 } | |
910 | |
911 | |
912 class FrequencyCollator { | |
913 public: | |
914 FrequencyCollator() : total_samples_(0) { | |
915 for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { | |
916 frequencies_[i] = CharacterFrequency(i); | |
917 } | |
918 } | |
919 | |
920 void CountCharacter(int character) { | |
921 int index = (character & RegExpMacroAssembler::kTableMask); | |
922 frequencies_[index].Increment(); | |
923 total_samples_++; | |
924 } | |
925 | |
926 // Does not measure in percent, but rather per-128 (the table size from the | |
927 // regexp macro assembler). | |
928 int Frequency(int in_character) { | |
929 DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character); | |
930 if (total_samples_ < 1) return 1; // Division by zero. | |
931 int freq_in_per128 = | |
932 (frequencies_[in_character].counter() * 128) / total_samples_; | |
933 return freq_in_per128; | |
934 } | |
935 | |
936 private: | |
937 class CharacterFrequency { | |
938 public: | |
939 CharacterFrequency() : counter_(0), character_(-1) { } | |
940 explicit CharacterFrequency(int character) | |
941 : counter_(0), character_(character) { } | |
942 | |
943 void Increment() { counter_++; } | |
944 int counter() { return counter_; } | |
945 int character() { return character_; } | |
946 | |
947 private: | |
948 int counter_; | |
949 int character_; | |
950 }; | |
951 | |
952 | |
953 private: | |
954 CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; | |
955 int total_samples_; | |
956 }; | |
957 | |
958 | |
959 class RegExpCompiler { | |
960 public: | |
961 RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, | |
962 bool ignore_case, bool is_one_byte); | |
963 | |
964 int AllocateRegister() { | |
965 if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { | |
966 reg_exp_too_big_ = true; | |
967 return next_register_; | |
968 } | |
969 return next_register_++; | |
970 } | |
971 | |
972 RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, | |
973 RegExpNode* start, | |
974 int capture_count, | |
975 Handle<String> pattern); | |
976 | |
977 inline void AddWork(RegExpNode* node) { | |
978 if (!node->on_work_list() && !node->label()->is_bound()) { | |
979 node->set_on_work_list(true); | |
980 work_list_->Add(node); | |
981 } | |
982 } | |
983 | |
984 static const int kImplementationOffset = 0; | |
985 static const int kNumberOfRegistersOffset = 0; | |
986 static const int kCodeOffset = 1; | |
987 | |
988 RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } | |
989 EndNode* accept() { return accept_; } | |
990 | |
991 static const int kMaxRecursion = 100; | |
992 inline int recursion_depth() { return recursion_depth_; } | |
993 inline void IncrementRecursionDepth() { recursion_depth_++; } | |
994 inline void DecrementRecursionDepth() { recursion_depth_--; } | |
995 | |
996 void SetRegExpTooBig() { reg_exp_too_big_ = true; } | |
997 | |
998 inline bool ignore_case() { return ignore_case_; } | |
999 inline bool one_byte() { return one_byte_; } | |
1000 inline bool optimize() { return optimize_; } | |
1001 inline void set_optimize(bool value) { optimize_ = value; } | |
1002 inline bool limiting_recursion() { return limiting_recursion_; } | |
1003 inline void set_limiting_recursion(bool value) { | |
1004 limiting_recursion_ = value; | |
1005 } | |
1006 FrequencyCollator* frequency_collator() { return &frequency_collator_; } | |
1007 | |
1008 int current_expansion_factor() { return current_expansion_factor_; } | |
1009 void set_current_expansion_factor(int value) { | |
1010 current_expansion_factor_ = value; | |
1011 } | |
1012 | |
1013 Isolate* isolate() const { return isolate_; } | |
1014 Zone* zone() const { return zone_; } | |
1015 | |
1016 static const int kNoRegister = -1; | |
1017 | |
1018 private: | |
1019 EndNode* accept_; | |
1020 int next_register_; | |
1021 List<RegExpNode*>* work_list_; | |
1022 int recursion_depth_; | |
1023 RegExpMacroAssembler* macro_assembler_; | |
1024 bool ignore_case_; | |
1025 bool one_byte_; | |
1026 bool reg_exp_too_big_; | |
1027 bool limiting_recursion_; | |
1028 bool optimize_; | |
1029 int current_expansion_factor_; | |
1030 FrequencyCollator frequency_collator_; | |
1031 Isolate* isolate_; | |
1032 Zone* zone_; | |
1033 }; | |
1034 | |
1035 | |
1036 class RecursionCheck { | |
1037 public: | |
1038 explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { | |
1039 compiler->IncrementRecursionDepth(); | |
1040 } | |
1041 ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } | |
1042 private: | |
1043 RegExpCompiler* compiler_; | |
1044 }; | |
1045 | |
1046 | |
1047 static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) { | |
1048 return RegExpEngine::CompilationResult(isolate, "RegExp too big"); | |
1049 } | |
1050 | |
1051 | |
1052 // Attempts to compile the regexp using an Irregexp code generator. Returns | |
1053 // a fixed array or a null handle depending on whether it succeeded. | |
1054 RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, | |
1055 bool ignore_case, bool one_byte) | |
1056 : next_register_(2 * (capture_count + 1)), | |
1057 work_list_(NULL), | |
1058 recursion_depth_(0), | |
1059 ignore_case_(ignore_case), | |
1060 one_byte_(one_byte), | |
1061 reg_exp_too_big_(false), | |
1062 limiting_recursion_(false), | |
1063 optimize_(FLAG_regexp_optimization), | |
1064 current_expansion_factor_(1), | |
1065 frequency_collator_(), | |
1066 isolate_(isolate), | |
1067 zone_(zone) { | |
1068 accept_ = new(zone) EndNode(EndNode::ACCEPT, zone); | |
1069 DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); | |
1070 } | |
1071 | |
1072 | |
1073 RegExpEngine::CompilationResult RegExpCompiler::Assemble( | |
1074 RegExpMacroAssembler* macro_assembler, | |
1075 RegExpNode* start, | |
1076 int capture_count, | |
1077 Handle<String> pattern) { | |
1078 Heap* heap = pattern->GetHeap(); | |
1079 | |
1080 #ifdef DEBUG | |
1081 if (FLAG_trace_regexp_assembler) | |
1082 macro_assembler_ = | |
1083 new RegExpMacroAssemblerTracer(isolate(), macro_assembler); | |
1084 else | |
1085 #endif | |
1086 macro_assembler_ = macro_assembler; | |
1087 | |
1088 List <RegExpNode*> work_list(0); | |
1089 work_list_ = &work_list; | |
1090 Label fail; | |
1091 macro_assembler_->PushBacktrack(&fail); | |
1092 Trace new_trace; | |
1093 start->Emit(this, &new_trace); | |
1094 macro_assembler_->Bind(&fail); | |
1095 macro_assembler_->Fail(); | |
1096 while (!work_list.is_empty()) { | |
1097 RegExpNode* node = work_list.RemoveLast(); | |
1098 node->set_on_work_list(false); | |
1099 if (!node->label()->is_bound()) node->Emit(this, &new_trace); | |
1100 } | |
1101 if (reg_exp_too_big_) { | |
1102 macro_assembler_->AbortedCodeGeneration(); | |
1103 return IrregexpRegExpTooBig(isolate_); | |
1104 } | |
1105 | |
1106 Handle<HeapObject> code = macro_assembler_->GetCode(pattern); | |
1107 heap->IncreaseTotalRegexpCodeGenerated(code->Size()); | |
1108 work_list_ = NULL; | |
1109 #ifdef ENABLE_DISASSEMBLER | |
1110 if (FLAG_print_code) { | |
1111 CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer()); | |
1112 OFStream os(trace_scope.file()); | |
1113 Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os); | |
1114 } | |
1115 #endif | |
1116 #ifdef DEBUG | |
1117 if (FLAG_trace_regexp_assembler) { | |
1118 delete macro_assembler_; | |
1119 } | |
1120 #endif | |
1121 return RegExpEngine::CompilationResult(*code, next_register_); | |
1122 } | |
1123 | |
1124 | |
1125 bool Trace::DeferredAction::Mentions(int that) { | |
1126 if (action_type() == ActionNode::CLEAR_CAPTURES) { | |
1127 Interval range = static_cast<DeferredClearCaptures*>(this)->range(); | |
1128 return range.Contains(that); | |
1129 } else { | |
1130 return reg() == that; | |
1131 } | |
1132 } | |
1133 | |
1134 | |
1135 bool Trace::mentions_reg(int reg) { | |
1136 for (DeferredAction* action = actions_; | |
1137 action != NULL; | |
1138 action = action->next()) { | |
1139 if (action->Mentions(reg)) | |
1140 return true; | |
1141 } | |
1142 return false; | |
1143 } | |
1144 | |
1145 | |
1146 bool Trace::GetStoredPosition(int reg, int* cp_offset) { | |
1147 DCHECK_EQ(0, *cp_offset); | |
1148 for (DeferredAction* action = actions_; | |
1149 action != NULL; | |
1150 action = action->next()) { | |
1151 if (action->Mentions(reg)) { | |
1152 if (action->action_type() == ActionNode::STORE_POSITION) { | |
1153 *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); | |
1154 return true; | |
1155 } else { | |
1156 return false; | |
1157 } | |
1158 } | |
1159 } | |
1160 return false; | |
1161 } | |
1162 | |
1163 | |
1164 int Trace::FindAffectedRegisters(OutSet* affected_registers, | |
1165 Zone* zone) { | |
1166 int max_register = RegExpCompiler::kNoRegister; | |
1167 for (DeferredAction* action = actions_; | |
1168 action != NULL; | |
1169 action = action->next()) { | |
1170 if (action->action_type() == ActionNode::CLEAR_CAPTURES) { | |
1171 Interval range = static_cast<DeferredClearCaptures*>(action)->range(); | |
1172 for (int i = range.from(); i <= range.to(); i++) | |
1173 affected_registers->Set(i, zone); | |
1174 if (range.to() > max_register) max_register = range.to(); | |
1175 } else { | |
1176 affected_registers->Set(action->reg(), zone); | |
1177 if (action->reg() > max_register) max_register = action->reg(); | |
1178 } | |
1179 } | |
1180 return max_register; | |
1181 } | |
1182 | |
1183 | |
1184 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, | |
1185 int max_register, | |
1186 const OutSet& registers_to_pop, | |
1187 const OutSet& registers_to_clear) { | |
1188 for (int reg = max_register; reg >= 0; reg--) { | |
1189 if (registers_to_pop.Get(reg)) { | |
1190 assembler->PopRegister(reg); | |
1191 } else if (registers_to_clear.Get(reg)) { | |
1192 int clear_to = reg; | |
1193 while (reg > 0 && registers_to_clear.Get(reg - 1)) { | |
1194 reg--; | |
1195 } | |
1196 assembler->ClearRegisters(reg, clear_to); | |
1197 } | |
1198 } | |
1199 } | |
1200 | |
1201 | |
1202 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, | |
1203 int max_register, | |
1204 const OutSet& affected_registers, | |
1205 OutSet* registers_to_pop, | |
1206 OutSet* registers_to_clear, | |
1207 Zone* zone) { | |
1208 // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. | |
1209 const int push_limit = (assembler->stack_limit_slack() + 1) / 2; | |
1210 | |
1211 // Count pushes performed to force a stack limit check occasionally. | |
1212 int pushes = 0; | |
1213 | |
1214 for (int reg = 0; reg <= max_register; reg++) { | |
1215 if (!affected_registers.Get(reg)) { | |
1216 continue; | |
1217 } | |
1218 | |
1219 // The chronologically first deferred action in the trace | |
1220 // is used to infer the action needed to restore a register | |
1221 // to its previous state (or not, if it's safe to ignore it). | |
1222 enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; | |
1223 DeferredActionUndoType undo_action = IGNORE; | |
1224 | |
1225 int value = 0; | |
1226 bool absolute = false; | |
1227 bool clear = false; | |
1228 int store_position = -1; | |
1229 // This is a little tricky because we are scanning the actions in reverse | |
1230 // historical order (newest first). | |
1231 for (DeferredAction* action = actions_; | |
1232 action != NULL; | |
1233 action = action->next()) { | |
1234 if (action->Mentions(reg)) { | |
1235 switch (action->action_type()) { | |
1236 case ActionNode::SET_REGISTER: { | |
1237 Trace::DeferredSetRegister* psr = | |
1238 static_cast<Trace::DeferredSetRegister*>(action); | |
1239 if (!absolute) { | |
1240 value += psr->value(); | |
1241 absolute = true; | |
1242 } | |
1243 // SET_REGISTER is currently only used for newly introduced loop | |
1244 // counters. They can have a significant previous value if they | |
1245 // occour in a loop. TODO(lrn): Propagate this information, so | |
1246 // we can set undo_action to IGNORE if we know there is no value to | |
1247 // restore. | |
1248 undo_action = RESTORE; | |
1249 DCHECK_EQ(store_position, -1); | |
1250 DCHECK(!clear); | |
1251 break; | |
1252 } | |
1253 case ActionNode::INCREMENT_REGISTER: | |
1254 if (!absolute) { | |
1255 value++; | |
1256 } | |
1257 DCHECK_EQ(store_position, -1); | |
1258 DCHECK(!clear); | |
1259 undo_action = RESTORE; | |
1260 break; | |
1261 case ActionNode::STORE_POSITION: { | |
1262 Trace::DeferredCapture* pc = | |
1263 static_cast<Trace::DeferredCapture*>(action); | |
1264 if (!clear && store_position == -1) { | |
1265 store_position = pc->cp_offset(); | |
1266 } | |
1267 | |
1268 // For captures we know that stores and clears alternate. | |
1269 // Other register, are never cleared, and if the occur | |
1270 // inside a loop, they might be assigned more than once. | |
1271 if (reg <= 1) { | |
1272 // Registers zero and one, aka "capture zero", is | |
1273 // always set correctly if we succeed. There is no | |
1274 // need to undo a setting on backtrack, because we | |
1275 // will set it again or fail. | |
1276 undo_action = IGNORE; | |
1277 } else { | |
1278 undo_action = pc->is_capture() ? CLEAR : RESTORE; | |
1279 } | |
1280 DCHECK(!absolute); | |
1281 DCHECK_EQ(value, 0); | |
1282 break; | |
1283 } | |
1284 case ActionNode::CLEAR_CAPTURES: { | |
1285 // Since we're scanning in reverse order, if we've already | |
1286 // set the position we have to ignore historically earlier | |
1287 // clearing operations. | |
1288 if (store_position == -1) { | |
1289 clear = true; | |
1290 } | |
1291 undo_action = RESTORE; | |
1292 DCHECK(!absolute); | |
1293 DCHECK_EQ(value, 0); | |
1294 break; | |
1295 } | |
1296 default: | |
1297 UNREACHABLE(); | |
1298 break; | |
1299 } | |
1300 } | |
1301 } | |
1302 // Prepare for the undo-action (e.g., push if it's going to be popped). | |
1303 if (undo_action == RESTORE) { | |
1304 pushes++; | |
1305 RegExpMacroAssembler::StackCheckFlag stack_check = | |
1306 RegExpMacroAssembler::kNoStackLimitCheck; | |
1307 if (pushes == push_limit) { | |
1308 stack_check = RegExpMacroAssembler::kCheckStackLimit; | |
1309 pushes = 0; | |
1310 } | |
1311 | |
1312 assembler->PushRegister(reg, stack_check); | |
1313 registers_to_pop->Set(reg, zone); | |
1314 } else if (undo_action == CLEAR) { | |
1315 registers_to_clear->Set(reg, zone); | |
1316 } | |
1317 // Perform the chronologically last action (or accumulated increment) | |
1318 // for the register. | |
1319 if (store_position != -1) { | |
1320 assembler->WriteCurrentPositionToRegister(reg, store_position); | |
1321 } else if (clear) { | |
1322 assembler->ClearRegisters(reg, reg); | |
1323 } else if (absolute) { | |
1324 assembler->SetRegister(reg, value); | |
1325 } else if (value != 0) { | |
1326 assembler->AdvanceRegister(reg, value); | |
1327 } | |
1328 } | |
1329 } | |
1330 | |
1331 | |
1332 // This is called as we come into a loop choice node and some other tricky | |
1333 // nodes. It normalizes the state of the code generator to ensure we can | |
1334 // generate generic code. | |
1335 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { | |
1336 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
1337 | |
1338 DCHECK(!is_trivial()); | |
1339 | |
1340 if (actions_ == NULL && backtrack() == NULL) { | |
1341 // Here we just have some deferred cp advances to fix and we are back to | |
1342 // a normal situation. We may also have to forget some information gained | |
1343 // through a quick check that was already performed. | |
1344 if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); | |
1345 // Create a new trivial state and generate the node with that. | |
1346 Trace new_state; | |
1347 successor->Emit(compiler, &new_state); | |
1348 return; | |
1349 } | |
1350 | |
1351 // Generate deferred actions here along with code to undo them again. | |
1352 OutSet affected_registers; | |
1353 | |
1354 if (backtrack() != NULL) { | |
1355 // Here we have a concrete backtrack location. These are set up by choice | |
1356 // nodes and so they indicate that we have a deferred save of the current | |
1357 // position which we may need to emit here. | |
1358 assembler->PushCurrentPosition(); | |
1359 } | |
1360 | |
1361 int max_register = FindAffectedRegisters(&affected_registers, | |
1362 compiler->zone()); | |
1363 OutSet registers_to_pop; | |
1364 OutSet registers_to_clear; | |
1365 PerformDeferredActions(assembler, | |
1366 max_register, | |
1367 affected_registers, | |
1368 ®isters_to_pop, | |
1369 ®isters_to_clear, | |
1370 compiler->zone()); | |
1371 if (cp_offset_ != 0) { | |
1372 assembler->AdvanceCurrentPosition(cp_offset_); | |
1373 } | |
1374 | |
1375 // Create a new trivial state and generate the node with that. | |
1376 Label undo; | |
1377 assembler->PushBacktrack(&undo); | |
1378 if (successor->KeepRecursing(compiler)) { | |
1379 Trace new_state; | |
1380 successor->Emit(compiler, &new_state); | |
1381 } else { | |
1382 compiler->AddWork(successor); | |
1383 assembler->GoTo(successor->label()); | |
1384 } | |
1385 | |
1386 // On backtrack we need to restore state. | |
1387 assembler->Bind(&undo); | |
1388 RestoreAffectedRegisters(assembler, | |
1389 max_register, | |
1390 registers_to_pop, | |
1391 registers_to_clear); | |
1392 if (backtrack() == NULL) { | |
1393 assembler->Backtrack(); | |
1394 } else { | |
1395 assembler->PopCurrentPosition(); | |
1396 assembler->GoTo(backtrack()); | |
1397 } | |
1398 } | |
1399 | |
1400 | |
1401 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { | |
1402 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
1403 | |
1404 // Omit flushing the trace. We discard the entire stack frame anyway. | |
1405 | |
1406 if (!label()->is_bound()) { | |
1407 // We are completely independent of the trace, since we ignore it, | |
1408 // so this code can be used as the generic version. | |
1409 assembler->Bind(label()); | |
1410 } | |
1411 | |
1412 // Throw away everything on the backtrack stack since the start | |
1413 // of the negative submatch and restore the character position. | |
1414 assembler->ReadCurrentPositionFromRegister(current_position_register_); | |
1415 assembler->ReadStackPointerFromRegister(stack_pointer_register_); | |
1416 if (clear_capture_count_ > 0) { | |
1417 // Clear any captures that might have been performed during the success | |
1418 // of the body of the negative look-ahead. | |
1419 int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; | |
1420 assembler->ClearRegisters(clear_capture_start_, clear_capture_end); | |
1421 } | |
1422 // Now that we have unwound the stack we find at the top of the stack the | |
1423 // backtrack that the BeginSubmatch node got. | |
1424 assembler->Backtrack(); | |
1425 } | |
1426 | |
1427 | |
1428 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
1429 if (!trace->is_trivial()) { | |
1430 trace->Flush(compiler, this); | |
1431 return; | |
1432 } | |
1433 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
1434 if (!label()->is_bound()) { | |
1435 assembler->Bind(label()); | |
1436 } | |
1437 switch (action_) { | |
1438 case ACCEPT: | |
1439 assembler->Succeed(); | |
1440 return; | |
1441 case BACKTRACK: | |
1442 assembler->GoTo(trace->backtrack()); | |
1443 return; | |
1444 case NEGATIVE_SUBMATCH_SUCCESS: | |
1445 // This case is handled in a different virtual method. | |
1446 UNREACHABLE(); | |
1447 } | |
1448 UNIMPLEMENTED(); | |
1449 } | |
1450 | |
1451 | |
1452 void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { | |
1453 if (guards_ == NULL) | |
1454 guards_ = new(zone) ZoneList<Guard*>(1, zone); | |
1455 guards_->Add(guard, zone); | |
1456 } | |
1457 | |
1458 | |
1459 ActionNode* ActionNode::SetRegister(int reg, | |
1460 int val, | |
1461 RegExpNode* on_success) { | |
1462 ActionNode* result = | |
1463 new(on_success->zone()) ActionNode(SET_REGISTER, on_success); | |
1464 result->data_.u_store_register.reg = reg; | |
1465 result->data_.u_store_register.value = val; | |
1466 return result; | |
1467 } | |
1468 | |
1469 | |
1470 ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { | |
1471 ActionNode* result = | |
1472 new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); | |
1473 result->data_.u_increment_register.reg = reg; | |
1474 return result; | |
1475 } | |
1476 | |
1477 | |
1478 ActionNode* ActionNode::StorePosition(int reg, | |
1479 bool is_capture, | |
1480 RegExpNode* on_success) { | |
1481 ActionNode* result = | |
1482 new(on_success->zone()) ActionNode(STORE_POSITION, on_success); | |
1483 result->data_.u_position_register.reg = reg; | |
1484 result->data_.u_position_register.is_capture = is_capture; | |
1485 return result; | |
1486 } | |
1487 | |
1488 | |
1489 ActionNode* ActionNode::ClearCaptures(Interval range, | |
1490 RegExpNode* on_success) { | |
1491 ActionNode* result = | |
1492 new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); | |
1493 result->data_.u_clear_captures.range_from = range.from(); | |
1494 result->data_.u_clear_captures.range_to = range.to(); | |
1495 return result; | |
1496 } | |
1497 | |
1498 | |
1499 ActionNode* ActionNode::BeginSubmatch(int stack_reg, | |
1500 int position_reg, | |
1501 RegExpNode* on_success) { | |
1502 ActionNode* result = | |
1503 new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); | |
1504 result->data_.u_submatch.stack_pointer_register = stack_reg; | |
1505 result->data_.u_submatch.current_position_register = position_reg; | |
1506 return result; | |
1507 } | |
1508 | |
1509 | |
1510 ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, | |
1511 int position_reg, | |
1512 int clear_register_count, | |
1513 int clear_register_from, | |
1514 RegExpNode* on_success) { | |
1515 ActionNode* result = | |
1516 new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); | |
1517 result->data_.u_submatch.stack_pointer_register = stack_reg; | |
1518 result->data_.u_submatch.current_position_register = position_reg; | |
1519 result->data_.u_submatch.clear_register_count = clear_register_count; | |
1520 result->data_.u_submatch.clear_register_from = clear_register_from; | |
1521 return result; | |
1522 } | |
1523 | |
1524 | |
1525 ActionNode* ActionNode::EmptyMatchCheck(int start_register, | |
1526 int repetition_register, | |
1527 int repetition_limit, | |
1528 RegExpNode* on_success) { | |
1529 ActionNode* result = | |
1530 new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); | |
1531 result->data_.u_empty_match_check.start_register = start_register; | |
1532 result->data_.u_empty_match_check.repetition_register = repetition_register; | |
1533 result->data_.u_empty_match_check.repetition_limit = repetition_limit; | |
1534 return result; | |
1535 } | |
1536 | |
1537 | |
1538 #define DEFINE_ACCEPT(Type) \ | |
1539 void Type##Node::Accept(NodeVisitor* visitor) { \ | |
1540 visitor->Visit##Type(this); \ | |
1541 } | |
1542 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) | |
1543 #undef DEFINE_ACCEPT | |
1544 | |
1545 | |
1546 void LoopChoiceNode::Accept(NodeVisitor* visitor) { | |
1547 visitor->VisitLoopChoice(this); | |
1548 } | |
1549 | |
1550 | |
1551 // ------------------------------------------------------------------- | |
1552 // Emit code. | |
1553 | |
1554 | |
1555 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, | |
1556 Guard* guard, | |
1557 Trace* trace) { | |
1558 switch (guard->op()) { | |
1559 case Guard::LT: | |
1560 DCHECK(!trace->mentions_reg(guard->reg())); | |
1561 macro_assembler->IfRegisterGE(guard->reg(), | |
1562 guard->value(), | |
1563 trace->backtrack()); | |
1564 break; | |
1565 case Guard::GEQ: | |
1566 DCHECK(!trace->mentions_reg(guard->reg())); | |
1567 macro_assembler->IfRegisterLT(guard->reg(), | |
1568 guard->value(), | |
1569 trace->backtrack()); | |
1570 break; | |
1571 } | |
1572 } | |
1573 | |
1574 | |
1575 // Returns the number of characters in the equivalence class, omitting those | |
1576 // that cannot occur in the source string because it is Latin1. | |
1577 static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, | |
1578 bool one_byte_subject, | |
1579 unibrow::uchar* letters) { | |
1580 int length = | |
1581 isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); | |
1582 // Unibrow returns 0 or 1 for characters where case independence is | |
1583 // trivial. | |
1584 if (length == 0) { | |
1585 letters[0] = character; | |
1586 length = 1; | |
1587 } | |
1588 | |
1589 if (one_byte_subject) { | |
1590 int new_length = 0; | |
1591 for (int i = 0; i < length; i++) { | |
1592 if (letters[i] <= String::kMaxOneByteCharCode) { | |
1593 letters[new_length++] = letters[i]; | |
1594 } | |
1595 } | |
1596 length = new_length; | |
1597 } | |
1598 | |
1599 return length; | |
1600 } | |
1601 | |
1602 | |
1603 static inline bool EmitSimpleCharacter(Isolate* isolate, | |
1604 RegExpCompiler* compiler, | |
1605 uc16 c, | |
1606 Label* on_failure, | |
1607 int cp_offset, | |
1608 bool check, | |
1609 bool preloaded) { | |
1610 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
1611 bool bound_checked = false; | |
1612 if (!preloaded) { | |
1613 assembler->LoadCurrentCharacter( | |
1614 cp_offset, | |
1615 on_failure, | |
1616 check); | |
1617 bound_checked = true; | |
1618 } | |
1619 assembler->CheckNotCharacter(c, on_failure); | |
1620 return bound_checked; | |
1621 } | |
1622 | |
1623 | |
1624 // Only emits non-letters (things that don't have case). Only used for case | |
1625 // independent matches. | |
1626 static inline bool EmitAtomNonLetter(Isolate* isolate, | |
1627 RegExpCompiler* compiler, | |
1628 uc16 c, | |
1629 Label* on_failure, | |
1630 int cp_offset, | |
1631 bool check, | |
1632 bool preloaded) { | |
1633 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
1634 bool one_byte = compiler->one_byte(); | |
1635 unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
1636 int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); | |
1637 if (length < 1) { | |
1638 // This can't match. Must be an one-byte subject and a non-one-byte | |
1639 // character. We do not need to do anything since the one-byte pass | |
1640 // already handled this. | |
1641 return false; // Bounds not checked. | |
1642 } | |
1643 bool checked = false; | |
1644 // We handle the length > 1 case in a later pass. | |
1645 if (length == 1) { | |
1646 if (one_byte && c > String::kMaxOneByteCharCodeU) { | |
1647 // Can't match - see above. | |
1648 return false; // Bounds not checked. | |
1649 } | |
1650 if (!preloaded) { | |
1651 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); | |
1652 checked = check; | |
1653 } | |
1654 macro_assembler->CheckNotCharacter(c, on_failure); | |
1655 } | |
1656 return checked; | |
1657 } | |
1658 | |
1659 | |
1660 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, | |
1661 bool one_byte, uc16 c1, uc16 c2, | |
1662 Label* on_failure) { | |
1663 uc16 char_mask; | |
1664 if (one_byte) { | |
1665 char_mask = String::kMaxOneByteCharCode; | |
1666 } else { | |
1667 char_mask = String::kMaxUtf16CodeUnit; | |
1668 } | |
1669 uc16 exor = c1 ^ c2; | |
1670 // Check whether exor has only one bit set. | |
1671 if (((exor - 1) & exor) == 0) { | |
1672 // If c1 and c2 differ only by one bit. | |
1673 // Ecma262UnCanonicalize always gives the highest number last. | |
1674 DCHECK(c2 > c1); | |
1675 uc16 mask = char_mask ^ exor; | |
1676 macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); | |
1677 return true; | |
1678 } | |
1679 DCHECK(c2 > c1); | |
1680 uc16 diff = c2 - c1; | |
1681 if (((diff - 1) & diff) == 0 && c1 >= diff) { | |
1682 // If the characters differ by 2^n but don't differ by one bit then | |
1683 // subtract the difference from the found character, then do the or | |
1684 // trick. We avoid the theoretical case where negative numbers are | |
1685 // involved in order to simplify code generation. | |
1686 uc16 mask = char_mask ^ diff; | |
1687 macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, | |
1688 diff, | |
1689 mask, | |
1690 on_failure); | |
1691 return true; | |
1692 } | |
1693 return false; | |
1694 } | |
1695 | |
1696 | |
1697 typedef bool EmitCharacterFunction(Isolate* isolate, | |
1698 RegExpCompiler* compiler, | |
1699 uc16 c, | |
1700 Label* on_failure, | |
1701 int cp_offset, | |
1702 bool check, | |
1703 bool preloaded); | |
1704 | |
1705 // Only emits letters (things that have case). Only used for case independent | |
1706 // matches. | |
1707 static inline bool EmitAtomLetter(Isolate* isolate, | |
1708 RegExpCompiler* compiler, | |
1709 uc16 c, | |
1710 Label* on_failure, | |
1711 int cp_offset, | |
1712 bool check, | |
1713 bool preloaded) { | |
1714 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
1715 bool one_byte = compiler->one_byte(); | |
1716 unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
1717 int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); | |
1718 if (length <= 1) return false; | |
1719 // We may not need to check against the end of the input string | |
1720 // if this character lies before a character that matched. | |
1721 if (!preloaded) { | |
1722 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); | |
1723 } | |
1724 Label ok; | |
1725 DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); | |
1726 switch (length) { | |
1727 case 2: { | |
1728 if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], | |
1729 chars[1], on_failure)) { | |
1730 } else { | |
1731 macro_assembler->CheckCharacter(chars[0], &ok); | |
1732 macro_assembler->CheckNotCharacter(chars[1], on_failure); | |
1733 macro_assembler->Bind(&ok); | |
1734 } | |
1735 break; | |
1736 } | |
1737 case 4: | |
1738 macro_assembler->CheckCharacter(chars[3], &ok); | |
1739 // Fall through! | |
1740 case 3: | |
1741 macro_assembler->CheckCharacter(chars[0], &ok); | |
1742 macro_assembler->CheckCharacter(chars[1], &ok); | |
1743 macro_assembler->CheckNotCharacter(chars[2], on_failure); | |
1744 macro_assembler->Bind(&ok); | |
1745 break; | |
1746 default: | |
1747 UNREACHABLE(); | |
1748 break; | |
1749 } | |
1750 return true; | |
1751 } | |
1752 | |
1753 | |
1754 static void EmitBoundaryTest(RegExpMacroAssembler* masm, | |
1755 int border, | |
1756 Label* fall_through, | |
1757 Label* above_or_equal, | |
1758 Label* below) { | |
1759 if (below != fall_through) { | |
1760 masm->CheckCharacterLT(border, below); | |
1761 if (above_or_equal != fall_through) masm->GoTo(above_or_equal); | |
1762 } else { | |
1763 masm->CheckCharacterGT(border - 1, above_or_equal); | |
1764 } | |
1765 } | |
1766 | |
1767 | |
1768 static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, | |
1769 int first, | |
1770 int last, | |
1771 Label* fall_through, | |
1772 Label* in_range, | |
1773 Label* out_of_range) { | |
1774 if (in_range == fall_through) { | |
1775 if (first == last) { | |
1776 masm->CheckNotCharacter(first, out_of_range); | |
1777 } else { | |
1778 masm->CheckCharacterNotInRange(first, last, out_of_range); | |
1779 } | |
1780 } else { | |
1781 if (first == last) { | |
1782 masm->CheckCharacter(first, in_range); | |
1783 } else { | |
1784 masm->CheckCharacterInRange(first, last, in_range); | |
1785 } | |
1786 if (out_of_range != fall_through) masm->GoTo(out_of_range); | |
1787 } | |
1788 } | |
1789 | |
1790 | |
1791 // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. | |
1792 // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. | |
1793 static void EmitUseLookupTable( | |
1794 RegExpMacroAssembler* masm, | |
1795 ZoneList<int>* ranges, | |
1796 int start_index, | |
1797 int end_index, | |
1798 int min_char, | |
1799 Label* fall_through, | |
1800 Label* even_label, | |
1801 Label* odd_label) { | |
1802 static const int kSize = RegExpMacroAssembler::kTableSize; | |
1803 static const int kMask = RegExpMacroAssembler::kTableMask; | |
1804 | |
1805 int base = (min_char & ~kMask); | |
1806 USE(base); | |
1807 | |
1808 // Assert that everything is on one kTableSize page. | |
1809 for (int i = start_index; i <= end_index; i++) { | |
1810 DCHECK_EQ(ranges->at(i) & ~kMask, base); | |
1811 } | |
1812 DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); | |
1813 | |
1814 char templ[kSize]; | |
1815 Label* on_bit_set; | |
1816 Label* on_bit_clear; | |
1817 int bit; | |
1818 if (even_label == fall_through) { | |
1819 on_bit_set = odd_label; | |
1820 on_bit_clear = even_label; | |
1821 bit = 1; | |
1822 } else { | |
1823 on_bit_set = even_label; | |
1824 on_bit_clear = odd_label; | |
1825 bit = 0; | |
1826 } | |
1827 for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { | |
1828 templ[i] = bit; | |
1829 } | |
1830 int j = 0; | |
1831 bit ^= 1; | |
1832 for (int i = start_index; i < end_index; i++) { | |
1833 for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { | |
1834 templ[j] = bit; | |
1835 } | |
1836 bit ^= 1; | |
1837 } | |
1838 for (int i = j; i < kSize; i++) { | |
1839 templ[i] = bit; | |
1840 } | |
1841 Factory* factory = masm->isolate()->factory(); | |
1842 // TODO(erikcorry): Cache these. | |
1843 Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED); | |
1844 for (int i = 0; i < kSize; i++) { | |
1845 ba->set(i, templ[i]); | |
1846 } | |
1847 masm->CheckBitInTable(ba, on_bit_set); | |
1848 if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); | |
1849 } | |
1850 | |
1851 | |
1852 static void CutOutRange(RegExpMacroAssembler* masm, | |
1853 ZoneList<int>* ranges, | |
1854 int start_index, | |
1855 int end_index, | |
1856 int cut_index, | |
1857 Label* even_label, | |
1858 Label* odd_label) { | |
1859 bool odd = (((cut_index - start_index) & 1) == 1); | |
1860 Label* in_range_label = odd ? odd_label : even_label; | |
1861 Label dummy; | |
1862 EmitDoubleBoundaryTest(masm, | |
1863 ranges->at(cut_index), | |
1864 ranges->at(cut_index + 1) - 1, | |
1865 &dummy, | |
1866 in_range_label, | |
1867 &dummy); | |
1868 DCHECK(!dummy.is_linked()); | |
1869 // Cut out the single range by rewriting the array. This creates a new | |
1870 // range that is a merger of the two ranges on either side of the one we | |
1871 // are cutting out. The oddity of the labels is preserved. | |
1872 for (int j = cut_index; j > start_index; j--) { | |
1873 ranges->at(j) = ranges->at(j - 1); | |
1874 } | |
1875 for (int j = cut_index + 1; j < end_index; j++) { | |
1876 ranges->at(j) = ranges->at(j + 1); | |
1877 } | |
1878 } | |
1879 | |
1880 | |
1881 // Unicode case. Split the search space into kSize spaces that are handled | |
1882 // with recursion. | |
1883 static void SplitSearchSpace(ZoneList<int>* ranges, | |
1884 int start_index, | |
1885 int end_index, | |
1886 int* new_start_index, | |
1887 int* new_end_index, | |
1888 int* border) { | |
1889 static const int kSize = RegExpMacroAssembler::kTableSize; | |
1890 static const int kMask = RegExpMacroAssembler::kTableMask; | |
1891 | |
1892 int first = ranges->at(start_index); | |
1893 int last = ranges->at(end_index) - 1; | |
1894 | |
1895 *new_start_index = start_index; | |
1896 *border = (ranges->at(start_index) & ~kMask) + kSize; | |
1897 while (*new_start_index < end_index) { | |
1898 if (ranges->at(*new_start_index) > *border) break; | |
1899 (*new_start_index)++; | |
1900 } | |
1901 // new_start_index is the index of the first edge that is beyond the | |
1902 // current kSize space. | |
1903 | |
1904 // For very large search spaces we do a binary chop search of the non-Latin1 | |
1905 // space instead of just going to the end of the current kSize space. The | |
1906 // heuristics are complicated a little by the fact that any 128-character | |
1907 // encoding space can be quickly tested with a table lookup, so we don't | |
1908 // wish to do binary chop search at a smaller granularity than that. A | |
1909 // 128-character space can take up a lot of space in the ranges array if, | |
1910 // for example, we only want to match every second character (eg. the lower | |
1911 // case characters on some Unicode pages). | |
1912 int binary_chop_index = (end_index + start_index) / 2; | |
1913 // The first test ensures that we get to the code that handles the Latin1 | |
1914 // range with a single not-taken branch, speeding up this important | |
1915 // character range (even non-Latin1 charset-based text has spaces and | |
1916 // punctuation). | |
1917 if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. | |
1918 end_index - start_index > (*new_start_index - start_index) * 2 && | |
1919 last - first > kSize * 2 && binary_chop_index > *new_start_index && | |
1920 ranges->at(binary_chop_index) >= first + 2 * kSize) { | |
1921 int scan_forward_for_section_border = binary_chop_index;; | |
1922 int new_border = (ranges->at(binary_chop_index) | kMask) + 1; | |
1923 | |
1924 while (scan_forward_for_section_border < end_index) { | |
1925 if (ranges->at(scan_forward_for_section_border) > new_border) { | |
1926 *new_start_index = scan_forward_for_section_border; | |
1927 *border = new_border; | |
1928 break; | |
1929 } | |
1930 scan_forward_for_section_border++; | |
1931 } | |
1932 } | |
1933 | |
1934 DCHECK(*new_start_index > start_index); | |
1935 *new_end_index = *new_start_index - 1; | |
1936 if (ranges->at(*new_end_index) == *border) { | |
1937 (*new_end_index)--; | |
1938 } | |
1939 if (*border >= ranges->at(end_index)) { | |
1940 *border = ranges->at(end_index); | |
1941 *new_start_index = end_index; // Won't be used. | |
1942 *new_end_index = end_index - 1; | |
1943 } | |
1944 } | |
1945 | |
1946 | |
1947 // Gets a series of segment boundaries representing a character class. If the | |
1948 // character is in the range between an even and an odd boundary (counting from | |
1949 // start_index) then go to even_label, otherwise go to odd_label. We already | |
1950 // know that the character is in the range of min_char to max_char inclusive. | |
1951 // Either label can be NULL indicating backtracking. Either label can also be | |
1952 // equal to the fall_through label. | |
1953 static void GenerateBranches(RegExpMacroAssembler* masm, | |
1954 ZoneList<int>* ranges, | |
1955 int start_index, | |
1956 int end_index, | |
1957 uc16 min_char, | |
1958 uc16 max_char, | |
1959 Label* fall_through, | |
1960 Label* even_label, | |
1961 Label* odd_label) { | |
1962 int first = ranges->at(start_index); | |
1963 int last = ranges->at(end_index) - 1; | |
1964 | |
1965 DCHECK_LT(min_char, first); | |
1966 | |
1967 // Just need to test if the character is before or on-or-after | |
1968 // a particular character. | |
1969 if (start_index == end_index) { | |
1970 EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); | |
1971 return; | |
1972 } | |
1973 | |
1974 // Another almost trivial case: There is one interval in the middle that is | |
1975 // different from the end intervals. | |
1976 if (start_index + 1 == end_index) { | |
1977 EmitDoubleBoundaryTest( | |
1978 masm, first, last, fall_through, even_label, odd_label); | |
1979 return; | |
1980 } | |
1981 | |
1982 // It's not worth using table lookup if there are very few intervals in the | |
1983 // character class. | |
1984 if (end_index - start_index <= 6) { | |
1985 // It is faster to test for individual characters, so we look for those | |
1986 // first, then try arbitrary ranges in the second round. | |
1987 static int kNoCutIndex = -1; | |
1988 int cut = kNoCutIndex; | |
1989 for (int i = start_index; i < end_index; i++) { | |
1990 if (ranges->at(i) == ranges->at(i + 1) - 1) { | |
1991 cut = i; | |
1992 break; | |
1993 } | |
1994 } | |
1995 if (cut == kNoCutIndex) cut = start_index; | |
1996 CutOutRange( | |
1997 masm, ranges, start_index, end_index, cut, even_label, odd_label); | |
1998 DCHECK_GE(end_index - start_index, 2); | |
1999 GenerateBranches(masm, | |
2000 ranges, | |
2001 start_index + 1, | |
2002 end_index - 1, | |
2003 min_char, | |
2004 max_char, | |
2005 fall_through, | |
2006 even_label, | |
2007 odd_label); | |
2008 return; | |
2009 } | |
2010 | |
2011 // If there are a lot of intervals in the regexp, then we will use tables to | |
2012 // determine whether the character is inside or outside the character class. | |
2013 static const int kBits = RegExpMacroAssembler::kTableSizeBits; | |
2014 | |
2015 if ((max_char >> kBits) == (min_char >> kBits)) { | |
2016 EmitUseLookupTable(masm, | |
2017 ranges, | |
2018 start_index, | |
2019 end_index, | |
2020 min_char, | |
2021 fall_through, | |
2022 even_label, | |
2023 odd_label); | |
2024 return; | |
2025 } | |
2026 | |
2027 if ((min_char >> kBits) != (first >> kBits)) { | |
2028 masm->CheckCharacterLT(first, odd_label); | |
2029 GenerateBranches(masm, | |
2030 ranges, | |
2031 start_index + 1, | |
2032 end_index, | |
2033 first, | |
2034 max_char, | |
2035 fall_through, | |
2036 odd_label, | |
2037 even_label); | |
2038 return; | |
2039 } | |
2040 | |
2041 int new_start_index = 0; | |
2042 int new_end_index = 0; | |
2043 int border = 0; | |
2044 | |
2045 SplitSearchSpace(ranges, | |
2046 start_index, | |
2047 end_index, | |
2048 &new_start_index, | |
2049 &new_end_index, | |
2050 &border); | |
2051 | |
2052 Label handle_rest; | |
2053 Label* above = &handle_rest; | |
2054 if (border == last + 1) { | |
2055 // We didn't find any section that started after the limit, so everything | |
2056 // above the border is one of the terminal labels. | |
2057 above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; | |
2058 DCHECK(new_end_index == end_index - 1); | |
2059 } | |
2060 | |
2061 DCHECK_LE(start_index, new_end_index); | |
2062 DCHECK_LE(new_start_index, end_index); | |
2063 DCHECK_LT(start_index, new_start_index); | |
2064 DCHECK_LT(new_end_index, end_index); | |
2065 DCHECK(new_end_index + 1 == new_start_index || | |
2066 (new_end_index + 2 == new_start_index && | |
2067 border == ranges->at(new_end_index + 1))); | |
2068 DCHECK_LT(min_char, border - 1); | |
2069 DCHECK_LT(border, max_char); | |
2070 DCHECK_LT(ranges->at(new_end_index), border); | |
2071 DCHECK(border < ranges->at(new_start_index) || | |
2072 (border == ranges->at(new_start_index) && | |
2073 new_start_index == end_index && | |
2074 new_end_index == end_index - 1 && | |
2075 border == last + 1)); | |
2076 DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); | |
2077 | |
2078 masm->CheckCharacterGT(border - 1, above); | |
2079 Label dummy; | |
2080 GenerateBranches(masm, | |
2081 ranges, | |
2082 start_index, | |
2083 new_end_index, | |
2084 min_char, | |
2085 border - 1, | |
2086 &dummy, | |
2087 even_label, | |
2088 odd_label); | |
2089 if (handle_rest.is_linked()) { | |
2090 masm->Bind(&handle_rest); | |
2091 bool flip = (new_start_index & 1) != (start_index & 1); | |
2092 GenerateBranches(masm, | |
2093 ranges, | |
2094 new_start_index, | |
2095 end_index, | |
2096 border, | |
2097 max_char, | |
2098 &dummy, | |
2099 flip ? odd_label : even_label, | |
2100 flip ? even_label : odd_label); | |
2101 } | |
2102 } | |
2103 | |
2104 | |
2105 static void EmitCharClass(RegExpMacroAssembler* macro_assembler, | |
2106 RegExpCharacterClass* cc, bool one_byte, | |
2107 Label* on_failure, int cp_offset, bool check_offset, | |
2108 bool preloaded, Zone* zone) { | |
2109 ZoneList<CharacterRange>* ranges = cc->ranges(zone); | |
2110 if (!CharacterRange::IsCanonical(ranges)) { | |
2111 CharacterRange::Canonicalize(ranges); | |
2112 } | |
2113 | |
2114 int max_char; | |
2115 if (one_byte) { | |
2116 max_char = String::kMaxOneByteCharCode; | |
2117 } else { | |
2118 max_char = String::kMaxUtf16CodeUnit; | |
2119 } | |
2120 | |
2121 int range_count = ranges->length(); | |
2122 | |
2123 int last_valid_range = range_count - 1; | |
2124 while (last_valid_range >= 0) { | |
2125 CharacterRange& range = ranges->at(last_valid_range); | |
2126 if (range.from() <= max_char) { | |
2127 break; | |
2128 } | |
2129 last_valid_range--; | |
2130 } | |
2131 | |
2132 if (last_valid_range < 0) { | |
2133 if (!cc->is_negated()) { | |
2134 macro_assembler->GoTo(on_failure); | |
2135 } | |
2136 if (check_offset) { | |
2137 macro_assembler->CheckPosition(cp_offset, on_failure); | |
2138 } | |
2139 return; | |
2140 } | |
2141 | |
2142 if (last_valid_range == 0 && | |
2143 ranges->at(0).IsEverything(max_char)) { | |
2144 if (cc->is_negated()) { | |
2145 macro_assembler->GoTo(on_failure); | |
2146 } else { | |
2147 // This is a common case hit by non-anchored expressions. | |
2148 if (check_offset) { | |
2149 macro_assembler->CheckPosition(cp_offset, on_failure); | |
2150 } | |
2151 } | |
2152 return; | |
2153 } | |
2154 if (last_valid_range == 0 && | |
2155 !cc->is_negated() && | |
2156 ranges->at(0).IsEverything(max_char)) { | |
2157 // This is a common case hit by non-anchored expressions. | |
2158 if (check_offset) { | |
2159 macro_assembler->CheckPosition(cp_offset, on_failure); | |
2160 } | |
2161 return; | |
2162 } | |
2163 | |
2164 if (!preloaded) { | |
2165 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); | |
2166 } | |
2167 | |
2168 if (cc->is_standard(zone) && | |
2169 macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), | |
2170 on_failure)) { | |
2171 return; | |
2172 } | |
2173 | |
2174 | |
2175 // A new list with ascending entries. Each entry is a code unit | |
2176 // where there is a boundary between code units that are part of | |
2177 // the class and code units that are not. Normally we insert an | |
2178 // entry at zero which goes to the failure label, but if there | |
2179 // was already one there we fall through for success on that entry. | |
2180 // Subsequent entries have alternating meaning (success/failure). | |
2181 ZoneList<int>* range_boundaries = | |
2182 new(zone) ZoneList<int>(last_valid_range, zone); | |
2183 | |
2184 bool zeroth_entry_is_failure = !cc->is_negated(); | |
2185 | |
2186 for (int i = 0; i <= last_valid_range; i++) { | |
2187 CharacterRange& range = ranges->at(i); | |
2188 if (range.from() == 0) { | |
2189 DCHECK_EQ(i, 0); | |
2190 zeroth_entry_is_failure = !zeroth_entry_is_failure; | |
2191 } else { | |
2192 range_boundaries->Add(range.from(), zone); | |
2193 } | |
2194 range_boundaries->Add(range.to() + 1, zone); | |
2195 } | |
2196 int end_index = range_boundaries->length() - 1; | |
2197 if (range_boundaries->at(end_index) > max_char) { | |
2198 end_index--; | |
2199 } | |
2200 | |
2201 Label fall_through; | |
2202 GenerateBranches(macro_assembler, | |
2203 range_boundaries, | |
2204 0, // start_index. | |
2205 end_index, | |
2206 0, // min_char. | |
2207 max_char, | |
2208 &fall_through, | |
2209 zeroth_entry_is_failure ? &fall_through : on_failure, | |
2210 zeroth_entry_is_failure ? on_failure : &fall_through); | |
2211 macro_assembler->Bind(&fall_through); | |
2212 } | |
2213 | |
2214 | |
2215 RegExpNode::~RegExpNode() { | |
2216 } | |
2217 | |
2218 | |
2219 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, | |
2220 Trace* trace) { | |
2221 // If we are generating a greedy loop then don't stop and don't reuse code. | |
2222 if (trace->stop_node() != NULL) { | |
2223 return CONTINUE; | |
2224 } | |
2225 | |
2226 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
2227 if (trace->is_trivial()) { | |
2228 if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) { | |
2229 // If a generic version is already scheduled to be generated or we have | |
2230 // recursed too deeply then just generate a jump to that code. | |
2231 macro_assembler->GoTo(&label_); | |
2232 // This will queue it up for generation of a generic version if it hasn't | |
2233 // already been queued. | |
2234 compiler->AddWork(this); | |
2235 return DONE; | |
2236 } | |
2237 // Generate generic version of the node and bind the label for later use. | |
2238 macro_assembler->Bind(&label_); | |
2239 return CONTINUE; | |
2240 } | |
2241 | |
2242 // We are being asked to make a non-generic version. Keep track of how many | |
2243 // non-generic versions we generate so as not to overdo it. | |
2244 trace_count_++; | |
2245 if (KeepRecursing(compiler) && compiler->optimize() && | |
2246 trace_count_ < kMaxCopiesCodeGenerated) { | |
2247 return CONTINUE; | |
2248 } | |
2249 | |
2250 // If we get here code has been generated for this node too many times or | |
2251 // recursion is too deep. Time to switch to a generic version. The code for | |
2252 // generic versions above can handle deep recursion properly. | |
2253 bool was_limiting = compiler->limiting_recursion(); | |
2254 compiler->set_limiting_recursion(true); | |
2255 trace->Flush(compiler, this); | |
2256 compiler->set_limiting_recursion(was_limiting); | |
2257 return DONE; | |
2258 } | |
2259 | |
2260 | |
2261 bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) { | |
2262 return !compiler->limiting_recursion() && | |
2263 compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion; | |
2264 } | |
2265 | |
2266 | |
2267 int ActionNode::EatsAtLeast(int still_to_find, | |
2268 int budget, | |
2269 bool not_at_start) { | |
2270 if (budget <= 0) return 0; | |
2271 if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! | |
2272 return on_success()->EatsAtLeast(still_to_find, | |
2273 budget - 1, | |
2274 not_at_start); | |
2275 } | |
2276 | |
2277 | |
2278 void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, | |
2279 BoyerMooreLookahead* bm, bool not_at_start) { | |
2280 if (action_type_ == BEGIN_SUBMATCH) { | |
2281 bm->SetRest(offset); | |
2282 } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { | |
2283 on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); | |
2284 } | |
2285 SaveBMInfo(bm, not_at_start, offset); | |
2286 } | |
2287 | |
2288 | |
2289 int AssertionNode::EatsAtLeast(int still_to_find, | |
2290 int budget, | |
2291 bool not_at_start) { | |
2292 if (budget <= 0) return 0; | |
2293 // If we know we are not at the start and we are asked "how many characters | |
2294 // will you match if you succeed?" then we can answer anything since false | |
2295 // implies false. So lets just return the max answer (still_to_find) since | |
2296 // that won't prevent us from preloading a lot of characters for the other | |
2297 // branches in the node graph. | |
2298 if (assertion_type() == AT_START && not_at_start) return still_to_find; | |
2299 return on_success()->EatsAtLeast(still_to_find, | |
2300 budget - 1, | |
2301 not_at_start); | |
2302 } | |
2303 | |
2304 | |
2305 void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, | |
2306 BoyerMooreLookahead* bm, bool not_at_start) { | |
2307 // Match the behaviour of EatsAtLeast on this node. | |
2308 if (assertion_type() == AT_START && not_at_start) return; | |
2309 on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); | |
2310 SaveBMInfo(bm, not_at_start, offset); | |
2311 } | |
2312 | |
2313 | |
2314 int BackReferenceNode::EatsAtLeast(int still_to_find, | |
2315 int budget, | |
2316 bool not_at_start) { | |
2317 if (budget <= 0) return 0; | |
2318 return on_success()->EatsAtLeast(still_to_find, | |
2319 budget - 1, | |
2320 not_at_start); | |
2321 } | |
2322 | |
2323 | |
2324 int TextNode::EatsAtLeast(int still_to_find, | |
2325 int budget, | |
2326 bool not_at_start) { | |
2327 int answer = Length(); | |
2328 if (answer >= still_to_find) return answer; | |
2329 if (budget <= 0) return answer; | |
2330 // We are not at start after this node so we set the last argument to 'true'. | |
2331 return answer + on_success()->EatsAtLeast(still_to_find - answer, | |
2332 budget - 1, | |
2333 true); | |
2334 } | |
2335 | |
2336 | |
2337 int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, | |
2338 int budget, | |
2339 bool not_at_start) { | |
2340 if (budget <= 0) return 0; | |
2341 // Alternative 0 is the negative lookahead, alternative 1 is what comes | |
2342 // afterwards. | |
2343 RegExpNode* node = alternatives_->at(1).node(); | |
2344 return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); | |
2345 } | |
2346 | |
2347 | |
2348 void NegativeLookaheadChoiceNode::GetQuickCheckDetails( | |
2349 QuickCheckDetails* details, | |
2350 RegExpCompiler* compiler, | |
2351 int filled_in, | |
2352 bool not_at_start) { | |
2353 // Alternative 0 is the negative lookahead, alternative 1 is what comes | |
2354 // afterwards. | |
2355 RegExpNode* node = alternatives_->at(1).node(); | |
2356 return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); | |
2357 } | |
2358 | |
2359 | |
2360 int ChoiceNode::EatsAtLeastHelper(int still_to_find, | |
2361 int budget, | |
2362 RegExpNode* ignore_this_node, | |
2363 bool not_at_start) { | |
2364 if (budget <= 0) return 0; | |
2365 int min = 100; | |
2366 int choice_count = alternatives_->length(); | |
2367 budget = (budget - 1) / choice_count; | |
2368 for (int i = 0; i < choice_count; i++) { | |
2369 RegExpNode* node = alternatives_->at(i).node(); | |
2370 if (node == ignore_this_node) continue; | |
2371 int node_eats_at_least = | |
2372 node->EatsAtLeast(still_to_find, budget, not_at_start); | |
2373 if (node_eats_at_least < min) min = node_eats_at_least; | |
2374 if (min == 0) return 0; | |
2375 } | |
2376 return min; | |
2377 } | |
2378 | |
2379 | |
2380 int LoopChoiceNode::EatsAtLeast(int still_to_find, | |
2381 int budget, | |
2382 bool not_at_start) { | |
2383 return EatsAtLeastHelper(still_to_find, | |
2384 budget - 1, | |
2385 loop_node_, | |
2386 not_at_start); | |
2387 } | |
2388 | |
2389 | |
2390 int ChoiceNode::EatsAtLeast(int still_to_find, | |
2391 int budget, | |
2392 bool not_at_start) { | |
2393 return EatsAtLeastHelper(still_to_find, | |
2394 budget, | |
2395 NULL, | |
2396 not_at_start); | |
2397 } | |
2398 | |
2399 | |
2400 // Takes the left-most 1-bit and smears it out, setting all bits to its right. | |
2401 static inline uint32_t SmearBitsRight(uint32_t v) { | |
2402 v |= v >> 1; | |
2403 v |= v >> 2; | |
2404 v |= v >> 4; | |
2405 v |= v >> 8; | |
2406 v |= v >> 16; | |
2407 return v; | |
2408 } | |
2409 | |
2410 | |
2411 bool QuickCheckDetails::Rationalize(bool asc) { | |
2412 bool found_useful_op = false; | |
2413 uint32_t char_mask; | |
2414 if (asc) { | |
2415 char_mask = String::kMaxOneByteCharCode; | |
2416 } else { | |
2417 char_mask = String::kMaxUtf16CodeUnit; | |
2418 } | |
2419 mask_ = 0; | |
2420 value_ = 0; | |
2421 int char_shift = 0; | |
2422 for (int i = 0; i < characters_; i++) { | |
2423 Position* pos = &positions_[i]; | |
2424 if ((pos->mask & String::kMaxOneByteCharCode) != 0) { | |
2425 found_useful_op = true; | |
2426 } | |
2427 mask_ |= (pos->mask & char_mask) << char_shift; | |
2428 value_ |= (pos->value & char_mask) << char_shift; | |
2429 char_shift += asc ? 8 : 16; | |
2430 } | |
2431 return found_useful_op; | |
2432 } | |
2433 | |
2434 | |
2435 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, | |
2436 Trace* bounds_check_trace, | |
2437 Trace* trace, | |
2438 bool preload_has_checked_bounds, | |
2439 Label* on_possible_success, | |
2440 QuickCheckDetails* details, | |
2441 bool fall_through_on_failure) { | |
2442 if (details->characters() == 0) return false; | |
2443 GetQuickCheckDetails( | |
2444 details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); | |
2445 if (details->cannot_match()) return false; | |
2446 if (!details->Rationalize(compiler->one_byte())) return false; | |
2447 DCHECK(details->characters() == 1 || | |
2448 compiler->macro_assembler()->CanReadUnaligned()); | |
2449 uint32_t mask = details->mask(); | |
2450 uint32_t value = details->value(); | |
2451 | |
2452 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
2453 | |
2454 if (trace->characters_preloaded() != details->characters()) { | |
2455 DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); | |
2456 // We are attempting to preload the minimum number of characters | |
2457 // any choice would eat, so if the bounds check fails, then none of the | |
2458 // choices can succeed, so we can just immediately backtrack, rather | |
2459 // than go to the next choice. | |
2460 assembler->LoadCurrentCharacter(trace->cp_offset(), | |
2461 bounds_check_trace->backtrack(), | |
2462 !preload_has_checked_bounds, | |
2463 details->characters()); | |
2464 } | |
2465 | |
2466 | |
2467 bool need_mask = true; | |
2468 | |
2469 if (details->characters() == 1) { | |
2470 // If number of characters preloaded is 1 then we used a byte or 16 bit | |
2471 // load so the value is already masked down. | |
2472 uint32_t char_mask; | |
2473 if (compiler->one_byte()) { | |
2474 char_mask = String::kMaxOneByteCharCode; | |
2475 } else { | |
2476 char_mask = String::kMaxUtf16CodeUnit; | |
2477 } | |
2478 if ((mask & char_mask) == char_mask) need_mask = false; | |
2479 mask &= char_mask; | |
2480 } else { | |
2481 // For 2-character preloads in one-byte mode or 1-character preloads in | |
2482 // two-byte mode we also use a 16 bit load with zero extend. | |
2483 if (details->characters() == 2 && compiler->one_byte()) { | |
2484 if ((mask & 0xffff) == 0xffff) need_mask = false; | |
2485 } else if (details->characters() == 1 && !compiler->one_byte()) { | |
2486 if ((mask & 0xffff) == 0xffff) need_mask = false; | |
2487 } else { | |
2488 if (mask == 0xffffffff) need_mask = false; | |
2489 } | |
2490 } | |
2491 | |
2492 if (fall_through_on_failure) { | |
2493 if (need_mask) { | |
2494 assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); | |
2495 } else { | |
2496 assembler->CheckCharacter(value, on_possible_success); | |
2497 } | |
2498 } else { | |
2499 if (need_mask) { | |
2500 assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); | |
2501 } else { | |
2502 assembler->CheckNotCharacter(value, trace->backtrack()); | |
2503 } | |
2504 } | |
2505 return true; | |
2506 } | |
2507 | |
2508 | |
2509 // Here is the meat of GetQuickCheckDetails (see also the comment on the | |
2510 // super-class in the .h file). | |
2511 // | |
2512 // We iterate along the text object, building up for each character a | |
2513 // mask and value that can be used to test for a quick failure to match. | |
2514 // The masks and values for the positions will be combined into a single | |
2515 // machine word for the current character width in order to be used in | |
2516 // generating a quick check. | |
2517 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, | |
2518 RegExpCompiler* compiler, | |
2519 int characters_filled_in, | |
2520 bool not_at_start) { | |
2521 Isolate* isolate = compiler->macro_assembler()->isolate(); | |
2522 DCHECK(characters_filled_in < details->characters()); | |
2523 int characters = details->characters(); | |
2524 int char_mask; | |
2525 if (compiler->one_byte()) { | |
2526 char_mask = String::kMaxOneByteCharCode; | |
2527 } else { | |
2528 char_mask = String::kMaxUtf16CodeUnit; | |
2529 } | |
2530 for (int k = 0; k < elms_->length(); k++) { | |
2531 TextElement elm = elms_->at(k); | |
2532 if (elm.text_type() == TextElement::ATOM) { | |
2533 Vector<const uc16> quarks = elm.atom()->data(); | |
2534 for (int i = 0; i < characters && i < quarks.length(); i++) { | |
2535 QuickCheckDetails::Position* pos = | |
2536 details->positions(characters_filled_in); | |
2537 uc16 c = quarks[i]; | |
2538 if (compiler->ignore_case()) { | |
2539 unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
2540 int length = GetCaseIndependentLetters(isolate, c, | |
2541 compiler->one_byte(), chars); | |
2542 if (length == 0) { | |
2543 // This can happen because all case variants are non-Latin1, but we | |
2544 // know the input is Latin1. | |
2545 details->set_cannot_match(); | |
2546 pos->determines_perfectly = false; | |
2547 return; | |
2548 } | |
2549 if (length == 1) { | |
2550 // This letter has no case equivalents, so it's nice and simple | |
2551 // and the mask-compare will determine definitely whether we have | |
2552 // a match at this character position. | |
2553 pos->mask = char_mask; | |
2554 pos->value = c; | |
2555 pos->determines_perfectly = true; | |
2556 } else { | |
2557 uint32_t common_bits = char_mask; | |
2558 uint32_t bits = chars[0]; | |
2559 for (int j = 1; j < length; j++) { | |
2560 uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); | |
2561 common_bits ^= differing_bits; | |
2562 bits &= common_bits; | |
2563 } | |
2564 // If length is 2 and common bits has only one zero in it then | |
2565 // our mask and compare instruction will determine definitely | |
2566 // whether we have a match at this character position. Otherwise | |
2567 // it can only be an approximate check. | |
2568 uint32_t one_zero = (common_bits | ~char_mask); | |
2569 if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { | |
2570 pos->determines_perfectly = true; | |
2571 } | |
2572 pos->mask = common_bits; | |
2573 pos->value = bits; | |
2574 } | |
2575 } else { | |
2576 // Don't ignore case. Nice simple case where the mask-compare will | |
2577 // determine definitely whether we have a match at this character | |
2578 // position. | |
2579 if (c > char_mask) { | |
2580 details->set_cannot_match(); | |
2581 pos->determines_perfectly = false; | |
2582 return; | |
2583 } | |
2584 pos->mask = char_mask; | |
2585 pos->value = c; | |
2586 pos->determines_perfectly = true; | |
2587 } | |
2588 characters_filled_in++; | |
2589 DCHECK(characters_filled_in <= details->characters()); | |
2590 if (characters_filled_in == details->characters()) { | |
2591 return; | |
2592 } | |
2593 } | |
2594 } else { | |
2595 QuickCheckDetails::Position* pos = | |
2596 details->positions(characters_filled_in); | |
2597 RegExpCharacterClass* tree = elm.char_class(); | |
2598 ZoneList<CharacterRange>* ranges = tree->ranges(zone()); | |
2599 if (tree->is_negated()) { | |
2600 // A quick check uses multi-character mask and compare. There is no | |
2601 // useful way to incorporate a negative char class into this scheme | |
2602 // so we just conservatively create a mask and value that will always | |
2603 // succeed. | |
2604 pos->mask = 0; | |
2605 pos->value = 0; | |
2606 } else { | |
2607 int first_range = 0; | |
2608 while (ranges->at(first_range).from() > char_mask) { | |
2609 first_range++; | |
2610 if (first_range == ranges->length()) { | |
2611 details->set_cannot_match(); | |
2612 pos->determines_perfectly = false; | |
2613 return; | |
2614 } | |
2615 } | |
2616 CharacterRange range = ranges->at(first_range); | |
2617 uc16 from = range.from(); | |
2618 uc16 to = range.to(); | |
2619 if (to > char_mask) { | |
2620 to = char_mask; | |
2621 } | |
2622 uint32_t differing_bits = (from ^ to); | |
2623 // A mask and compare is only perfect if the differing bits form a | |
2624 // number like 00011111 with one single block of trailing 1s. | |
2625 if ((differing_bits & (differing_bits + 1)) == 0 && | |
2626 from + differing_bits == to) { | |
2627 pos->determines_perfectly = true; | |
2628 } | |
2629 uint32_t common_bits = ~SmearBitsRight(differing_bits); | |
2630 uint32_t bits = (from & common_bits); | |
2631 for (int i = first_range + 1; i < ranges->length(); i++) { | |
2632 CharacterRange range = ranges->at(i); | |
2633 uc16 from = range.from(); | |
2634 uc16 to = range.to(); | |
2635 if (from > char_mask) continue; | |
2636 if (to > char_mask) to = char_mask; | |
2637 // Here we are combining more ranges into the mask and compare | |
2638 // value. With each new range the mask becomes more sparse and | |
2639 // so the chances of a false positive rise. A character class | |
2640 // with multiple ranges is assumed never to be equivalent to a | |
2641 // mask and compare operation. | |
2642 pos->determines_perfectly = false; | |
2643 uint32_t new_common_bits = (from ^ to); | |
2644 new_common_bits = ~SmearBitsRight(new_common_bits); | |
2645 common_bits &= new_common_bits; | |
2646 bits &= new_common_bits; | |
2647 uint32_t differing_bits = (from & common_bits) ^ bits; | |
2648 common_bits ^= differing_bits; | |
2649 bits &= common_bits; | |
2650 } | |
2651 pos->mask = common_bits; | |
2652 pos->value = bits; | |
2653 } | |
2654 characters_filled_in++; | |
2655 DCHECK(characters_filled_in <= details->characters()); | |
2656 if (characters_filled_in == details->characters()) { | |
2657 return; | |
2658 } | |
2659 } | |
2660 } | |
2661 DCHECK(characters_filled_in != details->characters()); | |
2662 if (!details->cannot_match()) { | |
2663 on_success()-> GetQuickCheckDetails(details, | |
2664 compiler, | |
2665 characters_filled_in, | |
2666 true); | |
2667 } | |
2668 } | |
2669 | |
2670 | |
2671 void QuickCheckDetails::Clear() { | |
2672 for (int i = 0; i < characters_; i++) { | |
2673 positions_[i].mask = 0; | |
2674 positions_[i].value = 0; | |
2675 positions_[i].determines_perfectly = false; | |
2676 } | |
2677 characters_ = 0; | |
2678 } | |
2679 | |
2680 | |
2681 void QuickCheckDetails::Advance(int by, bool one_byte) { | |
2682 DCHECK(by >= 0); | |
2683 if (by >= characters_) { | |
2684 Clear(); | |
2685 return; | |
2686 } | |
2687 for (int i = 0; i < characters_ - by; i++) { | |
2688 positions_[i] = positions_[by + i]; | |
2689 } | |
2690 for (int i = characters_ - by; i < characters_; i++) { | |
2691 positions_[i].mask = 0; | |
2692 positions_[i].value = 0; | |
2693 positions_[i].determines_perfectly = false; | |
2694 } | |
2695 characters_ -= by; | |
2696 // We could change mask_ and value_ here but we would never advance unless | |
2697 // they had already been used in a check and they won't be used again because | |
2698 // it would gain us nothing. So there's no point. | |
2699 } | |
2700 | |
2701 | |
2702 void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { | |
2703 DCHECK(characters_ == other->characters_); | |
2704 if (other->cannot_match_) { | |
2705 return; | |
2706 } | |
2707 if (cannot_match_) { | |
2708 *this = *other; | |
2709 return; | |
2710 } | |
2711 for (int i = from_index; i < characters_; i++) { | |
2712 QuickCheckDetails::Position* pos = positions(i); | |
2713 QuickCheckDetails::Position* other_pos = other->positions(i); | |
2714 if (pos->mask != other_pos->mask || | |
2715 pos->value != other_pos->value || | |
2716 !other_pos->determines_perfectly) { | |
2717 // Our mask-compare operation will be approximate unless we have the | |
2718 // exact same operation on both sides of the alternation. | |
2719 pos->determines_perfectly = false; | |
2720 } | |
2721 pos->mask &= other_pos->mask; | |
2722 pos->value &= pos->mask; | |
2723 other_pos->value &= pos->mask; | |
2724 uc16 differing_bits = (pos->value ^ other_pos->value); | |
2725 pos->mask &= ~differing_bits; | |
2726 pos->value &= pos->mask; | |
2727 } | |
2728 } | |
2729 | |
2730 | |
2731 class VisitMarker { | |
2732 public: | |
2733 explicit VisitMarker(NodeInfo* info) : info_(info) { | |
2734 DCHECK(!info->visited); | |
2735 info->visited = true; | |
2736 } | |
2737 ~VisitMarker() { | |
2738 info_->visited = false; | |
2739 } | |
2740 private: | |
2741 NodeInfo* info_; | |
2742 }; | |
2743 | |
2744 | |
2745 RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) { | |
2746 if (info()->replacement_calculated) return replacement(); | |
2747 if (depth < 0) return this; | |
2748 DCHECK(!info()->visited); | |
2749 VisitMarker marker(info()); | |
2750 return FilterSuccessor(depth - 1, ignore_case); | |
2751 } | |
2752 | |
2753 | |
2754 RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) { | |
2755 RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case); | |
2756 if (next == NULL) return set_replacement(NULL); | |
2757 on_success_ = next; | |
2758 return set_replacement(this); | |
2759 } | |
2760 | |
2761 | |
2762 // We need to check for the following characters: 0x39c 0x3bc 0x178. | |
2763 static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { | |
2764 // TODO(dcarney): this could be a lot more efficient. | |
2765 return range.Contains(0x39c) || | |
2766 range.Contains(0x3bc) || range.Contains(0x178); | |
2767 } | |
2768 | |
2769 | |
2770 static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { | |
2771 for (int i = 0; i < ranges->length(); i++) { | |
2772 // TODO(dcarney): this could be a lot more efficient. | |
2773 if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; | |
2774 } | |
2775 return false; | |
2776 } | |
2777 | |
2778 | |
2779 RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) { | |
2780 if (info()->replacement_calculated) return replacement(); | |
2781 if (depth < 0) return this; | |
2782 DCHECK(!info()->visited); | |
2783 VisitMarker marker(info()); | |
2784 int element_count = elms_->length(); | |
2785 for (int i = 0; i < element_count; i++) { | |
2786 TextElement elm = elms_->at(i); | |
2787 if (elm.text_type() == TextElement::ATOM) { | |
2788 Vector<const uc16> quarks = elm.atom()->data(); | |
2789 for (int j = 0; j < quarks.length(); j++) { | |
2790 uint16_t c = quarks[j]; | |
2791 if (c <= String::kMaxOneByteCharCode) continue; | |
2792 if (!ignore_case) return set_replacement(NULL); | |
2793 // Here, we need to check for characters whose upper and lower cases | |
2794 // are outside the Latin-1 range. | |
2795 uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c); | |
2796 // Character is outside Latin-1 completely | |
2797 if (converted == 0) return set_replacement(NULL); | |
2798 // Convert quark to Latin-1 in place. | |
2799 uint16_t* copy = const_cast<uint16_t*>(quarks.start()); | |
2800 copy[j] = converted; | |
2801 } | |
2802 } else { | |
2803 DCHECK(elm.text_type() == TextElement::CHAR_CLASS); | |
2804 RegExpCharacterClass* cc = elm.char_class(); | |
2805 ZoneList<CharacterRange>* ranges = cc->ranges(zone()); | |
2806 if (!CharacterRange::IsCanonical(ranges)) { | |
2807 CharacterRange::Canonicalize(ranges); | |
2808 } | |
2809 // Now they are in order so we only need to look at the first. | |
2810 int range_count = ranges->length(); | |
2811 if (cc->is_negated()) { | |
2812 if (range_count != 0 && | |
2813 ranges->at(0).from() == 0 && | |
2814 ranges->at(0).to() >= String::kMaxOneByteCharCode) { | |
2815 // This will be handled in a later filter. | |
2816 if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; | |
2817 return set_replacement(NULL); | |
2818 } | |
2819 } else { | |
2820 if (range_count == 0 || | |
2821 ranges->at(0).from() > String::kMaxOneByteCharCode) { | |
2822 // This will be handled in a later filter. | |
2823 if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; | |
2824 return set_replacement(NULL); | |
2825 } | |
2826 } | |
2827 } | |
2828 } | |
2829 return FilterSuccessor(depth - 1, ignore_case); | |
2830 } | |
2831 | |
2832 | |
2833 RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) { | |
2834 if (info()->replacement_calculated) return replacement(); | |
2835 if (depth < 0) return this; | |
2836 if (info()->visited) return this; | |
2837 { | |
2838 VisitMarker marker(info()); | |
2839 | |
2840 RegExpNode* continue_replacement = | |
2841 continue_node_->FilterOneByte(depth - 1, ignore_case); | |
2842 // If we can't continue after the loop then there is no sense in doing the | |
2843 // loop. | |
2844 if (continue_replacement == NULL) return set_replacement(NULL); | |
2845 } | |
2846 | |
2847 return ChoiceNode::FilterOneByte(depth - 1, ignore_case); | |
2848 } | |
2849 | |
2850 | |
2851 RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { | |
2852 if (info()->replacement_calculated) return replacement(); | |
2853 if (depth < 0) return this; | |
2854 if (info()->visited) return this; | |
2855 VisitMarker marker(info()); | |
2856 int choice_count = alternatives_->length(); | |
2857 | |
2858 for (int i = 0; i < choice_count; i++) { | |
2859 GuardedAlternative alternative = alternatives_->at(i); | |
2860 if (alternative.guards() != NULL && alternative.guards()->length() != 0) { | |
2861 set_replacement(this); | |
2862 return this; | |
2863 } | |
2864 } | |
2865 | |
2866 int surviving = 0; | |
2867 RegExpNode* survivor = NULL; | |
2868 for (int i = 0; i < choice_count; i++) { | |
2869 GuardedAlternative alternative = alternatives_->at(i); | |
2870 RegExpNode* replacement = | |
2871 alternative.node()->FilterOneByte(depth - 1, ignore_case); | |
2872 DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. | |
2873 if (replacement != NULL) { | |
2874 alternatives_->at(i).set_node(replacement); | |
2875 surviving++; | |
2876 survivor = replacement; | |
2877 } | |
2878 } | |
2879 if (surviving < 2) return set_replacement(survivor); | |
2880 | |
2881 set_replacement(this); | |
2882 if (surviving == choice_count) { | |
2883 return this; | |
2884 } | |
2885 // Only some of the nodes survived the filtering. We need to rebuild the | |
2886 // alternatives list. | |
2887 ZoneList<GuardedAlternative>* new_alternatives = | |
2888 new(zone()) ZoneList<GuardedAlternative>(surviving, zone()); | |
2889 for (int i = 0; i < choice_count; i++) { | |
2890 RegExpNode* replacement = | |
2891 alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case); | |
2892 if (replacement != NULL) { | |
2893 alternatives_->at(i).set_node(replacement); | |
2894 new_alternatives->Add(alternatives_->at(i), zone()); | |
2895 } | |
2896 } | |
2897 alternatives_ = new_alternatives; | |
2898 return this; | |
2899 } | |
2900 | |
2901 | |
2902 RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth, | |
2903 bool ignore_case) { | |
2904 if (info()->replacement_calculated) return replacement(); | |
2905 if (depth < 0) return this; | |
2906 if (info()->visited) return this; | |
2907 VisitMarker marker(info()); | |
2908 // Alternative 0 is the negative lookahead, alternative 1 is what comes | |
2909 // afterwards. | |
2910 RegExpNode* node = alternatives_->at(1).node(); | |
2911 RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case); | |
2912 if (replacement == NULL) return set_replacement(NULL); | |
2913 alternatives_->at(1).set_node(replacement); | |
2914 | |
2915 RegExpNode* neg_node = alternatives_->at(0).node(); | |
2916 RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case); | |
2917 // If the negative lookahead is always going to fail then | |
2918 // we don't need to check it. | |
2919 if (neg_replacement == NULL) return set_replacement(replacement); | |
2920 alternatives_->at(0).set_node(neg_replacement); | |
2921 return set_replacement(this); | |
2922 } | |
2923 | |
2924 | |
2925 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, | |
2926 RegExpCompiler* compiler, | |
2927 int characters_filled_in, | |
2928 bool not_at_start) { | |
2929 if (body_can_be_zero_length_ || info()->visited) return; | |
2930 VisitMarker marker(info()); | |
2931 return ChoiceNode::GetQuickCheckDetails(details, | |
2932 compiler, | |
2933 characters_filled_in, | |
2934 not_at_start); | |
2935 } | |
2936 | |
2937 | |
2938 void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, | |
2939 BoyerMooreLookahead* bm, bool not_at_start) { | |
2940 if (body_can_be_zero_length_ || budget <= 0) { | |
2941 bm->SetRest(offset); | |
2942 SaveBMInfo(bm, not_at_start, offset); | |
2943 return; | |
2944 } | |
2945 ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); | |
2946 SaveBMInfo(bm, not_at_start, offset); | |
2947 } | |
2948 | |
2949 | |
2950 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, | |
2951 RegExpCompiler* compiler, | |
2952 int characters_filled_in, | |
2953 bool not_at_start) { | |
2954 not_at_start = (not_at_start || not_at_start_); | |
2955 int choice_count = alternatives_->length(); | |
2956 DCHECK(choice_count > 0); | |
2957 alternatives_->at(0).node()->GetQuickCheckDetails(details, | |
2958 compiler, | |
2959 characters_filled_in, | |
2960 not_at_start); | |
2961 for (int i = 1; i < choice_count; i++) { | |
2962 QuickCheckDetails new_details(details->characters()); | |
2963 RegExpNode* node = alternatives_->at(i).node(); | |
2964 node->GetQuickCheckDetails(&new_details, compiler, | |
2965 characters_filled_in, | |
2966 not_at_start); | |
2967 // Here we merge the quick match details of the two branches. | |
2968 details->Merge(&new_details, characters_filled_in); | |
2969 } | |
2970 } | |
2971 | |
2972 | |
2973 // Check for [0-9A-Z_a-z]. | |
2974 static void EmitWordCheck(RegExpMacroAssembler* assembler, | |
2975 Label* word, | |
2976 Label* non_word, | |
2977 bool fall_through_on_word) { | |
2978 if (assembler->CheckSpecialCharacterClass( | |
2979 fall_through_on_word ? 'w' : 'W', | |
2980 fall_through_on_word ? non_word : word)) { | |
2981 // Optimized implementation available. | |
2982 return; | |
2983 } | |
2984 assembler->CheckCharacterGT('z', non_word); | |
2985 assembler->CheckCharacterLT('0', non_word); | |
2986 assembler->CheckCharacterGT('a' - 1, word); | |
2987 assembler->CheckCharacterLT('9' + 1, word); | |
2988 assembler->CheckCharacterLT('A', non_word); | |
2989 assembler->CheckCharacterLT('Z' + 1, word); | |
2990 if (fall_through_on_word) { | |
2991 assembler->CheckNotCharacter('_', non_word); | |
2992 } else { | |
2993 assembler->CheckCharacter('_', word); | |
2994 } | |
2995 } | |
2996 | |
2997 | |
2998 // Emit the code to check for a ^ in multiline mode (1-character lookbehind | |
2999 // that matches newline or the start of input). | |
3000 static void EmitHat(RegExpCompiler* compiler, | |
3001 RegExpNode* on_success, | |
3002 Trace* trace) { | |
3003 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
3004 // We will be loading the previous character into the current character | |
3005 // register. | |
3006 Trace new_trace(*trace); | |
3007 new_trace.InvalidateCurrentCharacter(); | |
3008 | |
3009 Label ok; | |
3010 if (new_trace.cp_offset() == 0) { | |
3011 // The start of input counts as a newline in this context, so skip to | |
3012 // ok if we are at the start. | |
3013 assembler->CheckAtStart(&ok); | |
3014 } | |
3015 // We already checked that we are not at the start of input so it must be | |
3016 // OK to load the previous character. | |
3017 assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, | |
3018 new_trace.backtrack(), | |
3019 false); | |
3020 if (!assembler->CheckSpecialCharacterClass('n', | |
3021 new_trace.backtrack())) { | |
3022 // Newline means \n, \r, 0x2028 or 0x2029. | |
3023 if (!compiler->one_byte()) { | |
3024 assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); | |
3025 } | |
3026 assembler->CheckCharacter('\n', &ok); | |
3027 assembler->CheckNotCharacter('\r', new_trace.backtrack()); | |
3028 } | |
3029 assembler->Bind(&ok); | |
3030 on_success->Emit(compiler, &new_trace); | |
3031 } | |
3032 | |
3033 | |
3034 // Emit the code to handle \b and \B (word-boundary or non-word-boundary). | |
3035 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { | |
3036 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
3037 Isolate* isolate = assembler->isolate(); | |
3038 Trace::TriBool next_is_word_character = Trace::UNKNOWN; | |
3039 bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); | |
3040 BoyerMooreLookahead* lookahead = bm_info(not_at_start); | |
3041 if (lookahead == NULL) { | |
3042 int eats_at_least = | |
3043 Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, | |
3044 kRecursionBudget, | |
3045 not_at_start)); | |
3046 if (eats_at_least >= 1) { | |
3047 BoyerMooreLookahead* bm = | |
3048 new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); | |
3049 FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start); | |
3050 if (bm->at(0)->is_non_word()) | |
3051 next_is_word_character = Trace::FALSE_VALUE; | |
3052 if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; | |
3053 } | |
3054 } else { | |
3055 if (lookahead->at(0)->is_non_word()) | |
3056 next_is_word_character = Trace::FALSE_VALUE; | |
3057 if (lookahead->at(0)->is_word()) | |
3058 next_is_word_character = Trace::TRUE_VALUE; | |
3059 } | |
3060 bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); | |
3061 if (next_is_word_character == Trace::UNKNOWN) { | |
3062 Label before_non_word; | |
3063 Label before_word; | |
3064 if (trace->characters_preloaded() != 1) { | |
3065 assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); | |
3066 } | |
3067 // Fall through on non-word. | |
3068 EmitWordCheck(assembler, &before_word, &before_non_word, false); | |
3069 // Next character is not a word character. | |
3070 assembler->Bind(&before_non_word); | |
3071 Label ok; | |
3072 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); | |
3073 assembler->GoTo(&ok); | |
3074 | |
3075 assembler->Bind(&before_word); | |
3076 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); | |
3077 assembler->Bind(&ok); | |
3078 } else if (next_is_word_character == Trace::TRUE_VALUE) { | |
3079 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); | |
3080 } else { | |
3081 DCHECK(next_is_word_character == Trace::FALSE_VALUE); | |
3082 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); | |
3083 } | |
3084 } | |
3085 | |
3086 | |
3087 void AssertionNode::BacktrackIfPrevious( | |
3088 RegExpCompiler* compiler, | |
3089 Trace* trace, | |
3090 AssertionNode::IfPrevious backtrack_if_previous) { | |
3091 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
3092 Trace new_trace(*trace); | |
3093 new_trace.InvalidateCurrentCharacter(); | |
3094 | |
3095 Label fall_through, dummy; | |
3096 | |
3097 Label* non_word = backtrack_if_previous == kIsNonWord ? | |
3098 new_trace.backtrack() : | |
3099 &fall_through; | |
3100 Label* word = backtrack_if_previous == kIsNonWord ? | |
3101 &fall_through : | |
3102 new_trace.backtrack(); | |
3103 | |
3104 if (new_trace.cp_offset() == 0) { | |
3105 // The start of input counts as a non-word character, so the question is | |
3106 // decided if we are at the start. | |
3107 assembler->CheckAtStart(non_word); | |
3108 } | |
3109 // We already checked that we are not at the start of input so it must be | |
3110 // OK to load the previous character. | |
3111 assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); | |
3112 EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); | |
3113 | |
3114 assembler->Bind(&fall_through); | |
3115 on_success()->Emit(compiler, &new_trace); | |
3116 } | |
3117 | |
3118 | |
3119 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, | |
3120 RegExpCompiler* compiler, | |
3121 int filled_in, | |
3122 bool not_at_start) { | |
3123 if (assertion_type_ == AT_START && not_at_start) { | |
3124 details->set_cannot_match(); | |
3125 return; | |
3126 } | |
3127 return on_success()->GetQuickCheckDetails(details, | |
3128 compiler, | |
3129 filled_in, | |
3130 not_at_start); | |
3131 } | |
3132 | |
3133 | |
3134 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
3135 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
3136 switch (assertion_type_) { | |
3137 case AT_END: { | |
3138 Label ok; | |
3139 assembler->CheckPosition(trace->cp_offset(), &ok); | |
3140 assembler->GoTo(trace->backtrack()); | |
3141 assembler->Bind(&ok); | |
3142 break; | |
3143 } | |
3144 case AT_START: { | |
3145 if (trace->at_start() == Trace::FALSE_VALUE) { | |
3146 assembler->GoTo(trace->backtrack()); | |
3147 return; | |
3148 } | |
3149 if (trace->at_start() == Trace::UNKNOWN) { | |
3150 assembler->CheckNotAtStart(trace->backtrack()); | |
3151 Trace at_start_trace = *trace; | |
3152 at_start_trace.set_at_start(true); | |
3153 on_success()->Emit(compiler, &at_start_trace); | |
3154 return; | |
3155 } | |
3156 } | |
3157 break; | |
3158 case AFTER_NEWLINE: | |
3159 EmitHat(compiler, on_success(), trace); | |
3160 return; | |
3161 case AT_BOUNDARY: | |
3162 case AT_NON_BOUNDARY: { | |
3163 EmitBoundaryCheck(compiler, trace); | |
3164 return; | |
3165 } | |
3166 } | |
3167 on_success()->Emit(compiler, trace); | |
3168 } | |
3169 | |
3170 | |
3171 static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { | |
3172 if (quick_check == NULL) return false; | |
3173 if (offset >= quick_check->characters()) return false; | |
3174 return quick_check->positions(offset)->determines_perfectly; | |
3175 } | |
3176 | |
3177 | |
3178 static void UpdateBoundsCheck(int index, int* checked_up_to) { | |
3179 if (index > *checked_up_to) { | |
3180 *checked_up_to = index; | |
3181 } | |
3182 } | |
3183 | |
3184 | |
3185 // We call this repeatedly to generate code for each pass over the text node. | |
3186 // The passes are in increasing order of difficulty because we hope one | |
3187 // of the first passes will fail in which case we are saved the work of the | |
3188 // later passes. for example for the case independent regexp /%[asdfghjkl]a/ | |
3189 // we will check the '%' in the first pass, the case independent 'a' in the | |
3190 // second pass and the character class in the last pass. | |
3191 // | |
3192 // The passes are done from right to left, so for example to test for /bar/ | |
3193 // we will first test for an 'r' with offset 2, then an 'a' with offset 1 | |
3194 // and then a 'b' with offset 0. This means we can avoid the end-of-input | |
3195 // bounds check most of the time. In the example we only need to check for | |
3196 // end-of-input when loading the putative 'r'. | |
3197 // | |
3198 // A slight complication involves the fact that the first character may already | |
3199 // be fetched into a register by the previous node. In this case we want to | |
3200 // do the test for that character first. We do this in separate passes. The | |
3201 // 'preloaded' argument indicates that we are doing such a 'pass'. If such a | |
3202 // pass has been performed then subsequent passes will have true in | |
3203 // first_element_checked to indicate that that character does not need to be | |
3204 // checked again. | |
3205 // | |
3206 // In addition to all this we are passed a Trace, which can | |
3207 // contain an AlternativeGeneration object. In this AlternativeGeneration | |
3208 // object we can see details of any quick check that was already passed in | |
3209 // order to get to the code we are now generating. The quick check can involve | |
3210 // loading characters, which means we do not need to recheck the bounds | |
3211 // up to the limit the quick check already checked. In addition the quick | |
3212 // check can have involved a mask and compare operation which may simplify | |
3213 // or obviate the need for further checks at some character positions. | |
3214 void TextNode::TextEmitPass(RegExpCompiler* compiler, | |
3215 TextEmitPassType pass, | |
3216 bool preloaded, | |
3217 Trace* trace, | |
3218 bool first_element_checked, | |
3219 int* checked_up_to) { | |
3220 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
3221 Isolate* isolate = assembler->isolate(); | |
3222 bool one_byte = compiler->one_byte(); | |
3223 Label* backtrack = trace->backtrack(); | |
3224 QuickCheckDetails* quick_check = trace->quick_check_performed(); | |
3225 int element_count = elms_->length(); | |
3226 for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { | |
3227 TextElement elm = elms_->at(i); | |
3228 int cp_offset = trace->cp_offset() + elm.cp_offset(); | |
3229 if (elm.text_type() == TextElement::ATOM) { | |
3230 Vector<const uc16> quarks = elm.atom()->data(); | |
3231 for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { | |
3232 if (first_element_checked && i == 0 && j == 0) continue; | |
3233 if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; | |
3234 EmitCharacterFunction* emit_function = NULL; | |
3235 switch (pass) { | |
3236 case NON_LATIN1_MATCH: | |
3237 DCHECK(one_byte); | |
3238 if (quarks[j] > String::kMaxOneByteCharCode) { | |
3239 assembler->GoTo(backtrack); | |
3240 return; | |
3241 } | |
3242 break; | |
3243 case NON_LETTER_CHARACTER_MATCH: | |
3244 emit_function = &EmitAtomNonLetter; | |
3245 break; | |
3246 case SIMPLE_CHARACTER_MATCH: | |
3247 emit_function = &EmitSimpleCharacter; | |
3248 break; | |
3249 case CASE_CHARACTER_MATCH: | |
3250 emit_function = &EmitAtomLetter; | |
3251 break; | |
3252 default: | |
3253 break; | |
3254 } | |
3255 if (emit_function != NULL) { | |
3256 bool bound_checked = emit_function(isolate, | |
3257 compiler, | |
3258 quarks[j], | |
3259 backtrack, | |
3260 cp_offset + j, | |
3261 *checked_up_to < cp_offset + j, | |
3262 preloaded); | |
3263 if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); | |
3264 } | |
3265 } | |
3266 } else { | |
3267 DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); | |
3268 if (pass == CHARACTER_CLASS_MATCH) { | |
3269 if (first_element_checked && i == 0) continue; | |
3270 if (DeterminedAlready(quick_check, elm.cp_offset())) continue; | |
3271 RegExpCharacterClass* cc = elm.char_class(); | |
3272 EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, | |
3273 *checked_up_to < cp_offset, preloaded, zone()); | |
3274 UpdateBoundsCheck(cp_offset, checked_up_to); | |
3275 } | |
3276 } | |
3277 } | |
3278 } | |
3279 | |
3280 | |
3281 int TextNode::Length() { | |
3282 TextElement elm = elms_->last(); | |
3283 DCHECK(elm.cp_offset() >= 0); | |
3284 return elm.cp_offset() + elm.length(); | |
3285 } | |
3286 | |
3287 | |
3288 bool TextNode::SkipPass(int int_pass, bool ignore_case) { | |
3289 TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); | |
3290 if (ignore_case) { | |
3291 return pass == SIMPLE_CHARACTER_MATCH; | |
3292 } else { | |
3293 return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; | |
3294 } | |
3295 } | |
3296 | |
3297 | |
3298 // This generates the code to match a text node. A text node can contain | |
3299 // straight character sequences (possibly to be matched in a case-independent | |
3300 // way) and character classes. For efficiency we do not do this in a single | |
3301 // pass from left to right. Instead we pass over the text node several times, | |
3302 // emitting code for some character positions every time. See the comment on | |
3303 // TextEmitPass for details. | |
3304 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
3305 LimitResult limit_result = LimitVersions(compiler, trace); | |
3306 if (limit_result == DONE) return; | |
3307 DCHECK(limit_result == CONTINUE); | |
3308 | |
3309 if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { | |
3310 compiler->SetRegExpTooBig(); | |
3311 return; | |
3312 } | |
3313 | |
3314 if (compiler->one_byte()) { | |
3315 int dummy = 0; | |
3316 TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); | |
3317 } | |
3318 | |
3319 bool first_elt_done = false; | |
3320 int bound_checked_to = trace->cp_offset() - 1; | |
3321 bound_checked_to += trace->bound_checked_up_to(); | |
3322 | |
3323 // If a character is preloaded into the current character register then | |
3324 // check that now. | |
3325 if (trace->characters_preloaded() == 1) { | |
3326 for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { | |
3327 if (!SkipPass(pass, compiler->ignore_case())) { | |
3328 TextEmitPass(compiler, | |
3329 static_cast<TextEmitPassType>(pass), | |
3330 true, | |
3331 trace, | |
3332 false, | |
3333 &bound_checked_to); | |
3334 } | |
3335 } | |
3336 first_elt_done = true; | |
3337 } | |
3338 | |
3339 for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { | |
3340 if (!SkipPass(pass, compiler->ignore_case())) { | |
3341 TextEmitPass(compiler, | |
3342 static_cast<TextEmitPassType>(pass), | |
3343 false, | |
3344 trace, | |
3345 first_elt_done, | |
3346 &bound_checked_to); | |
3347 } | |
3348 } | |
3349 | |
3350 Trace successor_trace(*trace); | |
3351 successor_trace.set_at_start(false); | |
3352 successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler); | |
3353 RecursionCheck rc(compiler); | |
3354 on_success()->Emit(compiler, &successor_trace); | |
3355 } | |
3356 | |
3357 | |
3358 void Trace::InvalidateCurrentCharacter() { | |
3359 characters_preloaded_ = 0; | |
3360 } | |
3361 | |
3362 | |
3363 void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { | |
3364 DCHECK(by > 0); | |
3365 // We don't have an instruction for shifting the current character register | |
3366 // down or for using a shifted value for anything so lets just forget that | |
3367 // we preloaded any characters into it. | |
3368 characters_preloaded_ = 0; | |
3369 // Adjust the offsets of the quick check performed information. This | |
3370 // information is used to find out what we already determined about the | |
3371 // characters by means of mask and compare. | |
3372 quick_check_performed_.Advance(by, compiler->one_byte()); | |
3373 cp_offset_ += by; | |
3374 if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { | |
3375 compiler->SetRegExpTooBig(); | |
3376 cp_offset_ = 0; | |
3377 } | |
3378 bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); | |
3379 } | |
3380 | |
3381 | |
3382 void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) { | |
3383 int element_count = elms_->length(); | |
3384 for (int i = 0; i < element_count; i++) { | |
3385 TextElement elm = elms_->at(i); | |
3386 if (elm.text_type() == TextElement::CHAR_CLASS) { | |
3387 RegExpCharacterClass* cc = elm.char_class(); | |
3388 // None of the standard character classes is different in the case | |
3389 // independent case and it slows us down if we don't know that. | |
3390 if (cc->is_standard(zone())) continue; | |
3391 ZoneList<CharacterRange>* ranges = cc->ranges(zone()); | |
3392 int range_count = ranges->length(); | |
3393 for (int j = 0; j < range_count; j++) { | |
3394 ranges->at(j).AddCaseEquivalents(isolate, zone(), ranges, is_one_byte); | |
3395 } | |
3396 } | |
3397 } | |
3398 } | |
3399 | |
3400 | |
3401 int TextNode::GreedyLoopTextLength() { | |
3402 TextElement elm = elms_->at(elms_->length() - 1); | |
3403 return elm.cp_offset() + elm.length(); | |
3404 } | |
3405 | |
3406 | |
3407 RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( | |
3408 RegExpCompiler* compiler) { | |
3409 if (elms_->length() != 1) return NULL; | |
3410 TextElement elm = elms_->at(0); | |
3411 if (elm.text_type() != TextElement::CHAR_CLASS) return NULL; | |
3412 RegExpCharacterClass* node = elm.char_class(); | |
3413 ZoneList<CharacterRange>* ranges = node->ranges(zone()); | |
3414 if (!CharacterRange::IsCanonical(ranges)) { | |
3415 CharacterRange::Canonicalize(ranges); | |
3416 } | |
3417 if (node->is_negated()) { | |
3418 return ranges->length() == 0 ? on_success() : NULL; | |
3419 } | |
3420 if (ranges->length() != 1) return NULL; | |
3421 uint32_t max_char; | |
3422 if (compiler->one_byte()) { | |
3423 max_char = String::kMaxOneByteCharCode; | |
3424 } else { | |
3425 max_char = String::kMaxUtf16CodeUnit; | |
3426 } | |
3427 return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; | |
3428 } | |
3429 | |
3430 | |
3431 // Finds the fixed match length of a sequence of nodes that goes from | |
3432 // this alternative and back to this choice node. If there are variable | |
3433 // length nodes or other complications in the way then return a sentinel | |
3434 // value indicating that a greedy loop cannot be constructed. | |
3435 int ChoiceNode::GreedyLoopTextLengthForAlternative( | |
3436 GuardedAlternative* alternative) { | |
3437 int length = 0; | |
3438 RegExpNode* node = alternative->node(); | |
3439 // Later we will generate code for all these text nodes using recursion | |
3440 // so we have to limit the max number. | |
3441 int recursion_depth = 0; | |
3442 while (node != this) { | |
3443 if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { | |
3444 return kNodeIsTooComplexForGreedyLoops; | |
3445 } | |
3446 int node_length = node->GreedyLoopTextLength(); | |
3447 if (node_length == kNodeIsTooComplexForGreedyLoops) { | |
3448 return kNodeIsTooComplexForGreedyLoops; | |
3449 } | |
3450 length += node_length; | |
3451 SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); | |
3452 node = seq_node->on_success(); | |
3453 } | |
3454 return length; | |
3455 } | |
3456 | |
3457 | |
3458 void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { | |
3459 DCHECK_NULL(loop_node_); | |
3460 AddAlternative(alt); | |
3461 loop_node_ = alt.node(); | |
3462 } | |
3463 | |
3464 | |
3465 void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { | |
3466 DCHECK_NULL(continue_node_); | |
3467 AddAlternative(alt); | |
3468 continue_node_ = alt.node(); | |
3469 } | |
3470 | |
3471 | |
3472 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
3473 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
3474 if (trace->stop_node() == this) { | |
3475 // Back edge of greedy optimized loop node graph. | |
3476 int text_length = | |
3477 GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); | |
3478 DCHECK(text_length != kNodeIsTooComplexForGreedyLoops); | |
3479 // Update the counter-based backtracking info on the stack. This is an | |
3480 // optimization for greedy loops (see below). | |
3481 DCHECK(trace->cp_offset() == text_length); | |
3482 macro_assembler->AdvanceCurrentPosition(text_length); | |
3483 macro_assembler->GoTo(trace->loop_label()); | |
3484 return; | |
3485 } | |
3486 DCHECK_NULL(trace->stop_node()); | |
3487 if (!trace->is_trivial()) { | |
3488 trace->Flush(compiler, this); | |
3489 return; | |
3490 } | |
3491 ChoiceNode::Emit(compiler, trace); | |
3492 } | |
3493 | |
3494 | |
3495 int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, | |
3496 int eats_at_least) { | |
3497 int preload_characters = Min(4, eats_at_least); | |
3498 if (compiler->macro_assembler()->CanReadUnaligned()) { | |
3499 bool one_byte = compiler->one_byte(); | |
3500 if (one_byte) { | |
3501 if (preload_characters > 4) preload_characters = 4; | |
3502 // We can't preload 3 characters because there is no machine instruction | |
3503 // to do that. We can't just load 4 because we could be reading | |
3504 // beyond the end of the string, which could cause a memory fault. | |
3505 if (preload_characters == 3) preload_characters = 2; | |
3506 } else { | |
3507 if (preload_characters > 2) preload_characters = 2; | |
3508 } | |
3509 } else { | |
3510 if (preload_characters > 1) preload_characters = 1; | |
3511 } | |
3512 return preload_characters; | |
3513 } | |
3514 | |
3515 | |
3516 // This class is used when generating the alternatives in a choice node. It | |
3517 // records the way the alternative is being code generated. | |
3518 class AlternativeGeneration: public Malloced { | |
3519 public: | |
3520 AlternativeGeneration() | |
3521 : possible_success(), | |
3522 expects_preload(false), | |
3523 after(), | |
3524 quick_check_details() { } | |
3525 Label possible_success; | |
3526 bool expects_preload; | |
3527 Label after; | |
3528 QuickCheckDetails quick_check_details; | |
3529 }; | |
3530 | |
3531 | |
3532 // Creates a list of AlternativeGenerations. If the list has a reasonable | |
3533 // size then it is on the stack, otherwise the excess is on the heap. | |
3534 class AlternativeGenerationList { | |
3535 public: | |
3536 AlternativeGenerationList(int count, Zone* zone) | |
3537 : alt_gens_(count, zone) { | |
3538 for (int i = 0; i < count && i < kAFew; i++) { | |
3539 alt_gens_.Add(a_few_alt_gens_ + i, zone); | |
3540 } | |
3541 for (int i = kAFew; i < count; i++) { | |
3542 alt_gens_.Add(new AlternativeGeneration(), zone); | |
3543 } | |
3544 } | |
3545 ~AlternativeGenerationList() { | |
3546 for (int i = kAFew; i < alt_gens_.length(); i++) { | |
3547 delete alt_gens_[i]; | |
3548 alt_gens_[i] = NULL; | |
3549 } | |
3550 } | |
3551 | |
3552 AlternativeGeneration* at(int i) { | |
3553 return alt_gens_[i]; | |
3554 } | |
3555 | |
3556 private: | |
3557 static const int kAFew = 10; | |
3558 ZoneList<AlternativeGeneration*> alt_gens_; | |
3559 AlternativeGeneration a_few_alt_gens_[kAFew]; | |
3560 }; | |
3561 | |
3562 | |
3563 // The '2' variant is has inclusive from and exclusive to. | |
3564 // This covers \s as defined in ECMA-262 5.1, 15.10.2.12, | |
3565 // which include WhiteSpace (7.2) or LineTerminator (7.3) values. | |
3566 static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, | |
3567 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, | |
3568 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, | |
3569 0xFEFF, 0xFF00, 0x10000 }; | |
3570 static const int kSpaceRangeCount = arraysize(kSpaceRanges); | |
3571 | |
3572 static const int kWordRanges[] = { | |
3573 '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; | |
3574 static const int kWordRangeCount = arraysize(kWordRanges); | |
3575 static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 }; | |
3576 static const int kDigitRangeCount = arraysize(kDigitRanges); | |
3577 static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; | |
3578 static const int kSurrogateRangeCount = arraysize(kSurrogateRanges); | |
3579 static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, | |
3580 0x2028, 0x202A, 0x10000 }; | |
3581 static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges); | |
3582 | |
3583 | |
3584 void BoyerMoorePositionInfo::Set(int character) { | |
3585 SetInterval(Interval(character, character)); | |
3586 } | |
3587 | |
3588 | |
3589 void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { | |
3590 s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); | |
3591 w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); | |
3592 d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); | |
3593 surrogate_ = | |
3594 AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); | |
3595 if (interval.to() - interval.from() >= kMapSize - 1) { | |
3596 if (map_count_ != kMapSize) { | |
3597 map_count_ = kMapSize; | |
3598 for (int i = 0; i < kMapSize; i++) map_->at(i) = true; | |
3599 } | |
3600 return; | |
3601 } | |
3602 for (int i = interval.from(); i <= interval.to(); i++) { | |
3603 int mod_character = (i & kMask); | |
3604 if (!map_->at(mod_character)) { | |
3605 map_count_++; | |
3606 map_->at(mod_character) = true; | |
3607 } | |
3608 if (map_count_ == kMapSize) return; | |
3609 } | |
3610 } | |
3611 | |
3612 | |
3613 void BoyerMoorePositionInfo::SetAll() { | |
3614 s_ = w_ = d_ = kLatticeUnknown; | |
3615 if (map_count_ != kMapSize) { | |
3616 map_count_ = kMapSize; | |
3617 for (int i = 0; i < kMapSize; i++) map_->at(i) = true; | |
3618 } | |
3619 } | |
3620 | |
3621 | |
3622 BoyerMooreLookahead::BoyerMooreLookahead( | |
3623 int length, RegExpCompiler* compiler, Zone* zone) | |
3624 : length_(length), | |
3625 compiler_(compiler) { | |
3626 if (compiler->one_byte()) { | |
3627 max_char_ = String::kMaxOneByteCharCode; | |
3628 } else { | |
3629 max_char_ = String::kMaxUtf16CodeUnit; | |
3630 } | |
3631 bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); | |
3632 for (int i = 0; i < length; i++) { | |
3633 bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone); | |
3634 } | |
3635 } | |
3636 | |
3637 | |
3638 // Find the longest range of lookahead that has the fewest number of different | |
3639 // characters that can occur at a given position. Since we are optimizing two | |
3640 // different parameters at once this is a tradeoff. | |
3641 bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { | |
3642 int biggest_points = 0; | |
3643 // If more than 32 characters out of 128 can occur it is unlikely that we can | |
3644 // be lucky enough to step forwards much of the time. | |
3645 const int kMaxMax = 32; | |
3646 for (int max_number_of_chars = 4; | |
3647 max_number_of_chars < kMaxMax; | |
3648 max_number_of_chars *= 2) { | |
3649 biggest_points = | |
3650 FindBestInterval(max_number_of_chars, biggest_points, from, to); | |
3651 } | |
3652 if (biggest_points == 0) return false; | |
3653 return true; | |
3654 } | |
3655 | |
3656 | |
3657 // Find the highest-points range between 0 and length_ where the character | |
3658 // information is not too vague. 'Too vague' means that there are more than | |
3659 // max_number_of_chars that can occur at this position. Calculates the number | |
3660 // of points as the product of width-of-the-range and | |
3661 // probability-of-finding-one-of-the-characters, where the probability is | |
3662 // calculated using the frequency distribution of the sample subject string. | |
3663 int BoyerMooreLookahead::FindBestInterval( | |
3664 int max_number_of_chars, int old_biggest_points, int* from, int* to) { | |
3665 int biggest_points = old_biggest_points; | |
3666 static const int kSize = RegExpMacroAssembler::kTableSize; | |
3667 for (int i = 0; i < length_; ) { | |
3668 while (i < length_ && Count(i) > max_number_of_chars) i++; | |
3669 if (i == length_) break; | |
3670 int remembered_from = i; | |
3671 bool union_map[kSize]; | |
3672 for (int j = 0; j < kSize; j++) union_map[j] = false; | |
3673 while (i < length_ && Count(i) <= max_number_of_chars) { | |
3674 BoyerMoorePositionInfo* map = bitmaps_->at(i); | |
3675 for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); | |
3676 i++; | |
3677 } | |
3678 int frequency = 0; | |
3679 for (int j = 0; j < kSize; j++) { | |
3680 if (union_map[j]) { | |
3681 // Add 1 to the frequency to give a small per-character boost for | |
3682 // the cases where our sampling is not good enough and many | |
3683 // characters have a frequency of zero. This means the frequency | |
3684 // can theoretically be up to 2*kSize though we treat it mostly as | |
3685 // a fraction of kSize. | |
3686 frequency += compiler_->frequency_collator()->Frequency(j) + 1; | |
3687 } | |
3688 } | |
3689 // We use the probability of skipping times the distance we are skipping to | |
3690 // judge the effectiveness of this. Actually we have a cut-off: By | |
3691 // dividing by 2 we switch off the skipping if the probability of skipping | |
3692 // is less than 50%. This is because the multibyte mask-and-compare | |
3693 // skipping in quickcheck is more likely to do well on this case. | |
3694 bool in_quickcheck_range = | |
3695 ((i - remembered_from < 4) || | |
3696 (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); | |
3697 // Called 'probability' but it is only a rough estimate and can actually | |
3698 // be outside the 0-kSize range. | |
3699 int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; | |
3700 int points = (i - remembered_from) * probability; | |
3701 if (points > biggest_points) { | |
3702 *from = remembered_from; | |
3703 *to = i - 1; | |
3704 biggest_points = points; | |
3705 } | |
3706 } | |
3707 return biggest_points; | |
3708 } | |
3709 | |
3710 | |
3711 // Take all the characters that will not prevent a successful match if they | |
3712 // occur in the subject string in the range between min_lookahead and | |
3713 // max_lookahead (inclusive) measured from the current position. If the | |
3714 // character at max_lookahead offset is not one of these characters, then we | |
3715 // can safely skip forwards by the number of characters in the range. | |
3716 int BoyerMooreLookahead::GetSkipTable(int min_lookahead, | |
3717 int max_lookahead, | |
3718 Handle<ByteArray> boolean_skip_table) { | |
3719 const int kSize = RegExpMacroAssembler::kTableSize; | |
3720 | |
3721 const int kSkipArrayEntry = 0; | |
3722 const int kDontSkipArrayEntry = 1; | |
3723 | |
3724 for (int i = 0; i < kSize; i++) { | |
3725 boolean_skip_table->set(i, kSkipArrayEntry); | |
3726 } | |
3727 int skip = max_lookahead + 1 - min_lookahead; | |
3728 | |
3729 for (int i = max_lookahead; i >= min_lookahead; i--) { | |
3730 BoyerMoorePositionInfo* map = bitmaps_->at(i); | |
3731 for (int j = 0; j < kSize; j++) { | |
3732 if (map->at(j)) { | |
3733 boolean_skip_table->set(j, kDontSkipArrayEntry); | |
3734 } | |
3735 } | |
3736 } | |
3737 | |
3738 return skip; | |
3739 } | |
3740 | |
3741 | |
3742 // See comment above on the implementation of GetSkipTable. | |
3743 void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { | |
3744 const int kSize = RegExpMacroAssembler::kTableSize; | |
3745 | |
3746 int min_lookahead = 0; | |
3747 int max_lookahead = 0; | |
3748 | |
3749 if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; | |
3750 | |
3751 bool found_single_character = false; | |
3752 int single_character = 0; | |
3753 for (int i = max_lookahead; i >= min_lookahead; i--) { | |
3754 BoyerMoorePositionInfo* map = bitmaps_->at(i); | |
3755 if (map->map_count() > 1 || | |
3756 (found_single_character && map->map_count() != 0)) { | |
3757 found_single_character = false; | |
3758 break; | |
3759 } | |
3760 for (int j = 0; j < kSize; j++) { | |
3761 if (map->at(j)) { | |
3762 found_single_character = true; | |
3763 single_character = j; | |
3764 break; | |
3765 } | |
3766 } | |
3767 } | |
3768 | |
3769 int lookahead_width = max_lookahead + 1 - min_lookahead; | |
3770 | |
3771 if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { | |
3772 // The mask-compare can probably handle this better. | |
3773 return; | |
3774 } | |
3775 | |
3776 if (found_single_character) { | |
3777 Label cont, again; | |
3778 masm->Bind(&again); | |
3779 masm->LoadCurrentCharacter(max_lookahead, &cont, true); | |
3780 if (max_char_ > kSize) { | |
3781 masm->CheckCharacterAfterAnd(single_character, | |
3782 RegExpMacroAssembler::kTableMask, | |
3783 &cont); | |
3784 } else { | |
3785 masm->CheckCharacter(single_character, &cont); | |
3786 } | |
3787 masm->AdvanceCurrentPosition(lookahead_width); | |
3788 masm->GoTo(&again); | |
3789 masm->Bind(&cont); | |
3790 return; | |
3791 } | |
3792 | |
3793 Factory* factory = masm->isolate()->factory(); | |
3794 Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED); | |
3795 int skip_distance = GetSkipTable( | |
3796 min_lookahead, max_lookahead, boolean_skip_table); | |
3797 DCHECK(skip_distance != 0); | |
3798 | |
3799 Label cont, again; | |
3800 masm->Bind(&again); | |
3801 masm->LoadCurrentCharacter(max_lookahead, &cont, true); | |
3802 masm->CheckBitInTable(boolean_skip_table, &cont); | |
3803 masm->AdvanceCurrentPosition(skip_distance); | |
3804 masm->GoTo(&again); | |
3805 masm->Bind(&cont); | |
3806 } | |
3807 | |
3808 | |
3809 /* Code generation for choice nodes. | |
3810 * | |
3811 * We generate quick checks that do a mask and compare to eliminate a | |
3812 * choice. If the quick check succeeds then it jumps to the continuation to | |
3813 * do slow checks and check subsequent nodes. If it fails (the common case) | |
3814 * it falls through to the next choice. | |
3815 * | |
3816 * Here is the desired flow graph. Nodes directly below each other imply | |
3817 * fallthrough. Alternatives 1 and 2 have quick checks. Alternative | |
3818 * 3 doesn't have a quick check so we have to call the slow check. | |
3819 * Nodes are marked Qn for quick checks and Sn for slow checks. The entire | |
3820 * regexp continuation is generated directly after the Sn node, up to the | |
3821 * next GoTo if we decide to reuse some already generated code. Some | |
3822 * nodes expect preload_characters to be preloaded into the current | |
3823 * character register. R nodes do this preloading. Vertices are marked | |
3824 * F for failures and S for success (possible success in the case of quick | |
3825 * nodes). L, V, < and > are used as arrow heads. | |
3826 * | |
3827 * ----------> R | |
3828 * | | |
3829 * V | |
3830 * Q1 -----> S1 | |
3831 * | S / | |
3832 * F| / | |
3833 * | F/ | |
3834 * | / | |
3835 * | R | |
3836 * | / | |
3837 * V L | |
3838 * Q2 -----> S2 | |
3839 * | S / | |
3840 * F| / | |
3841 * | F/ | |
3842 * | / | |
3843 * | R | |
3844 * | / | |
3845 * V L | |
3846 * S3 | |
3847 * | | |
3848 * F| | |
3849 * | | |
3850 * R | |
3851 * | | |
3852 * backtrack V | |
3853 * <----------Q4 | |
3854 * \ F | | |
3855 * \ |S | |
3856 * \ F V | |
3857 * \-----S4 | |
3858 * | |
3859 * For greedy loops we push the current position, then generate the code that | |
3860 * eats the input specially in EmitGreedyLoop. The other choice (the | |
3861 * continuation) is generated by the normal code in EmitChoices, and steps back | |
3862 * in the input to the starting position when it fails to match. The loop code | |
3863 * looks like this (U is the unwind code that steps back in the greedy loop). | |
3864 * | |
3865 * _____ | |
3866 * / \ | |
3867 * V | | |
3868 * ----------> S1 | | |
3869 * /| | | |
3870 * / |S | | |
3871 * F/ \_____/ | |
3872 * / | |
3873 * |<----- | |
3874 * | \ | |
3875 * V |S | |
3876 * Q2 ---> U----->backtrack | |
3877 * | F / | |
3878 * S| / | |
3879 * V F / | |
3880 * S2--/ | |
3881 */ | |
3882 | |
3883 GreedyLoopState::GreedyLoopState(bool not_at_start) { | |
3884 counter_backtrack_trace_.set_backtrack(&label_); | |
3885 if (not_at_start) counter_backtrack_trace_.set_at_start(false); | |
3886 } | |
3887 | |
3888 | |
3889 void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { | |
3890 #ifdef DEBUG | |
3891 int choice_count = alternatives_->length(); | |
3892 for (int i = 0; i < choice_count - 1; i++) { | |
3893 GuardedAlternative alternative = alternatives_->at(i); | |
3894 ZoneList<Guard*>* guards = alternative.guards(); | |
3895 int guard_count = (guards == NULL) ? 0 : guards->length(); | |
3896 for (int j = 0; j < guard_count; j++) { | |
3897 DCHECK(!trace->mentions_reg(guards->at(j)->reg())); | |
3898 } | |
3899 } | |
3900 #endif | |
3901 } | |
3902 | |
3903 | |
3904 void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, | |
3905 Trace* current_trace, | |
3906 PreloadState* state) { | |
3907 if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) { | |
3908 // Save some time by looking at most one machine word ahead. | |
3909 state->eats_at_least_ = | |
3910 EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget, | |
3911 current_trace->at_start() == Trace::FALSE_VALUE); | |
3912 } | |
3913 state->preload_characters_ = | |
3914 CalculatePreloadCharacters(compiler, state->eats_at_least_); | |
3915 | |
3916 state->preload_is_current_ = | |
3917 (current_trace->characters_preloaded() == state->preload_characters_); | |
3918 state->preload_has_checked_bounds_ = state->preload_is_current_; | |
3919 } | |
3920 | |
3921 | |
3922 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
3923 int choice_count = alternatives_->length(); | |
3924 | |
3925 AssertGuardsMentionRegisters(trace); | |
3926 | |
3927 LimitResult limit_result = LimitVersions(compiler, trace); | |
3928 if (limit_result == DONE) return; | |
3929 DCHECK(limit_result == CONTINUE); | |
3930 | |
3931 // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for | |
3932 // other choice nodes we only flush if we are out of code size budget. | |
3933 if (trace->flush_budget() == 0 && trace->actions() != NULL) { | |
3934 trace->Flush(compiler, this); | |
3935 return; | |
3936 } | |
3937 | |
3938 RecursionCheck rc(compiler); | |
3939 | |
3940 PreloadState preload; | |
3941 preload.init(); | |
3942 GreedyLoopState greedy_loop_state(not_at_start()); | |
3943 | |
3944 int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); | |
3945 AlternativeGenerationList alt_gens(choice_count, zone()); | |
3946 | |
3947 if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { | |
3948 trace = EmitGreedyLoop(compiler, | |
3949 trace, | |
3950 &alt_gens, | |
3951 &preload, | |
3952 &greedy_loop_state, | |
3953 text_length); | |
3954 } else { | |
3955 // TODO(erikcorry): Delete this. We don't need this label, but it makes us | |
3956 // match the traces produced pre-cleanup. | |
3957 Label second_choice; | |
3958 compiler->macro_assembler()->Bind(&second_choice); | |
3959 | |
3960 preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); | |
3961 | |
3962 EmitChoices(compiler, | |
3963 &alt_gens, | |
3964 0, | |
3965 trace, | |
3966 &preload); | |
3967 } | |
3968 | |
3969 // At this point we need to generate slow checks for the alternatives where | |
3970 // the quick check was inlined. We can recognize these because the associated | |
3971 // label was bound. | |
3972 int new_flush_budget = trace->flush_budget() / choice_count; | |
3973 for (int i = 0; i < choice_count; i++) { | |
3974 AlternativeGeneration* alt_gen = alt_gens.at(i); | |
3975 Trace new_trace(*trace); | |
3976 // If there are actions to be flushed we have to limit how many times | |
3977 // they are flushed. Take the budget of the parent trace and distribute | |
3978 // it fairly amongst the children. | |
3979 if (new_trace.actions() != NULL) { | |
3980 new_trace.set_flush_budget(new_flush_budget); | |
3981 } | |
3982 bool next_expects_preload = | |
3983 i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; | |
3984 EmitOutOfLineContinuation(compiler, | |
3985 &new_trace, | |
3986 alternatives_->at(i), | |
3987 alt_gen, | |
3988 preload.preload_characters_, | |
3989 next_expects_preload); | |
3990 } | |
3991 } | |
3992 | |
3993 | |
3994 Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, | |
3995 Trace* trace, | |
3996 AlternativeGenerationList* alt_gens, | |
3997 PreloadState* preload, | |
3998 GreedyLoopState* greedy_loop_state, | |
3999 int text_length) { | |
4000 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
4001 // Here we have special handling for greedy loops containing only text nodes | |
4002 // and other simple nodes. These are handled by pushing the current | |
4003 // position on the stack and then incrementing the current position each | |
4004 // time around the switch. On backtrack we decrement the current position | |
4005 // and check it against the pushed value. This avoids pushing backtrack | |
4006 // information for each iteration of the loop, which could take up a lot of | |
4007 // space. | |
4008 DCHECK(trace->stop_node() == NULL); | |
4009 macro_assembler->PushCurrentPosition(); | |
4010 Label greedy_match_failed; | |
4011 Trace greedy_match_trace; | |
4012 if (not_at_start()) greedy_match_trace.set_at_start(false); | |
4013 greedy_match_trace.set_backtrack(&greedy_match_failed); | |
4014 Label loop_label; | |
4015 macro_assembler->Bind(&loop_label); | |
4016 greedy_match_trace.set_stop_node(this); | |
4017 greedy_match_trace.set_loop_label(&loop_label); | |
4018 alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); | |
4019 macro_assembler->Bind(&greedy_match_failed); | |
4020 | |
4021 Label second_choice; // For use in greedy matches. | |
4022 macro_assembler->Bind(&second_choice); | |
4023 | |
4024 Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); | |
4025 | |
4026 EmitChoices(compiler, | |
4027 alt_gens, | |
4028 1, | |
4029 new_trace, | |
4030 preload); | |
4031 | |
4032 macro_assembler->Bind(greedy_loop_state->label()); | |
4033 // If we have unwound to the bottom then backtrack. | |
4034 macro_assembler->CheckGreedyLoop(trace->backtrack()); | |
4035 // Otherwise try the second priority at an earlier position. | |
4036 macro_assembler->AdvanceCurrentPosition(-text_length); | |
4037 macro_assembler->GoTo(&second_choice); | |
4038 return new_trace; | |
4039 } | |
4040 | |
4041 int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, | |
4042 Trace* trace) { | |
4043 int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; | |
4044 if (alternatives_->length() != 2) return eats_at_least; | |
4045 | |
4046 GuardedAlternative alt1 = alternatives_->at(1); | |
4047 if (alt1.guards() != NULL && alt1.guards()->length() != 0) { | |
4048 return eats_at_least; | |
4049 } | |
4050 RegExpNode* eats_anything_node = alt1.node(); | |
4051 if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) { | |
4052 return eats_at_least; | |
4053 } | |
4054 | |
4055 // Really we should be creating a new trace when we execute this function, | |
4056 // but there is no need, because the code it generates cannot backtrack, and | |
4057 // we always arrive here with a trivial trace (since it's the entry to a | |
4058 // loop. That also implies that there are no preloaded characters, which is | |
4059 // good, because it means we won't be violating any assumptions by | |
4060 // overwriting those characters with new load instructions. | |
4061 DCHECK(trace->is_trivial()); | |
4062 | |
4063 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
4064 Isolate* isolate = macro_assembler->isolate(); | |
4065 // At this point we know that we are at a non-greedy loop that will eat | |
4066 // any character one at a time. Any non-anchored regexp has such a | |
4067 // loop prepended to it in order to find where it starts. We look for | |
4068 // a pattern of the form ...abc... where we can look 6 characters ahead | |
4069 // and step forwards 3 if the character is not one of abc. Abc need | |
4070 // not be atoms, they can be any reasonably limited character class or | |
4071 // small alternation. | |
4072 BoyerMooreLookahead* bm = bm_info(false); | |
4073 if (bm == NULL) { | |
4074 eats_at_least = Min(kMaxLookaheadForBoyerMoore, | |
4075 EatsAtLeast(kMaxLookaheadForBoyerMoore, | |
4076 kRecursionBudget, | |
4077 false)); | |
4078 if (eats_at_least >= 1) { | |
4079 bm = new(zone()) BoyerMooreLookahead(eats_at_least, | |
4080 compiler, | |
4081 zone()); | |
4082 GuardedAlternative alt0 = alternatives_->at(0); | |
4083 alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false); | |
4084 } | |
4085 } | |
4086 if (bm != NULL) { | |
4087 bm->EmitSkipInstructions(macro_assembler); | |
4088 } | |
4089 return eats_at_least; | |
4090 } | |
4091 | |
4092 | |
4093 void ChoiceNode::EmitChoices(RegExpCompiler* compiler, | |
4094 AlternativeGenerationList* alt_gens, | |
4095 int first_choice, | |
4096 Trace* trace, | |
4097 PreloadState* preload) { | |
4098 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
4099 SetUpPreLoad(compiler, trace, preload); | |
4100 | |
4101 // For now we just call all choices one after the other. The idea ultimately | |
4102 // is to use the Dispatch table to try only the relevant ones. | |
4103 int choice_count = alternatives_->length(); | |
4104 | |
4105 int new_flush_budget = trace->flush_budget() / choice_count; | |
4106 | |
4107 for (int i = first_choice; i < choice_count; i++) { | |
4108 bool is_last = i == choice_count - 1; | |
4109 bool fall_through_on_failure = !is_last; | |
4110 GuardedAlternative alternative = alternatives_->at(i); | |
4111 AlternativeGeneration* alt_gen = alt_gens->at(i); | |
4112 alt_gen->quick_check_details.set_characters(preload->preload_characters_); | |
4113 ZoneList<Guard*>* guards = alternative.guards(); | |
4114 int guard_count = (guards == NULL) ? 0 : guards->length(); | |
4115 Trace new_trace(*trace); | |
4116 new_trace.set_characters_preloaded(preload->preload_is_current_ ? | |
4117 preload->preload_characters_ : | |
4118 0); | |
4119 if (preload->preload_has_checked_bounds_) { | |
4120 new_trace.set_bound_checked_up_to(preload->preload_characters_); | |
4121 } | |
4122 new_trace.quick_check_performed()->Clear(); | |
4123 if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); | |
4124 if (!is_last) { | |
4125 new_trace.set_backtrack(&alt_gen->after); | |
4126 } | |
4127 alt_gen->expects_preload = preload->preload_is_current_; | |
4128 bool generate_full_check_inline = false; | |
4129 if (compiler->optimize() && | |
4130 try_to_emit_quick_check_for_alternative(i == 0) && | |
4131 alternative.node()->EmitQuickCheck( | |
4132 compiler, trace, &new_trace, preload->preload_has_checked_bounds_, | |
4133 &alt_gen->possible_success, &alt_gen->quick_check_details, | |
4134 fall_through_on_failure)) { | |
4135 // Quick check was generated for this choice. | |
4136 preload->preload_is_current_ = true; | |
4137 preload->preload_has_checked_bounds_ = true; | |
4138 // If we generated the quick check to fall through on possible success, | |
4139 // we now need to generate the full check inline. | |
4140 if (!fall_through_on_failure) { | |
4141 macro_assembler->Bind(&alt_gen->possible_success); | |
4142 new_trace.set_quick_check_performed(&alt_gen->quick_check_details); | |
4143 new_trace.set_characters_preloaded(preload->preload_characters_); | |
4144 new_trace.set_bound_checked_up_to(preload->preload_characters_); | |
4145 generate_full_check_inline = true; | |
4146 } | |
4147 } else if (alt_gen->quick_check_details.cannot_match()) { | |
4148 if (!fall_through_on_failure) { | |
4149 macro_assembler->GoTo(trace->backtrack()); | |
4150 } | |
4151 continue; | |
4152 } else { | |
4153 // No quick check was generated. Put the full code here. | |
4154 // If this is not the first choice then there could be slow checks from | |
4155 // previous cases that go here when they fail. There's no reason to | |
4156 // insist that they preload characters since the slow check we are about | |
4157 // to generate probably can't use it. | |
4158 if (i != first_choice) { | |
4159 alt_gen->expects_preload = false; | |
4160 new_trace.InvalidateCurrentCharacter(); | |
4161 } | |
4162 generate_full_check_inline = true; | |
4163 } | |
4164 if (generate_full_check_inline) { | |
4165 if (new_trace.actions() != NULL) { | |
4166 new_trace.set_flush_budget(new_flush_budget); | |
4167 } | |
4168 for (int j = 0; j < guard_count; j++) { | |
4169 GenerateGuard(macro_assembler, guards->at(j), &new_trace); | |
4170 } | |
4171 alternative.node()->Emit(compiler, &new_trace); | |
4172 preload->preload_is_current_ = false; | |
4173 } | |
4174 macro_assembler->Bind(&alt_gen->after); | |
4175 } | |
4176 } | |
4177 | |
4178 | |
4179 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, | |
4180 Trace* trace, | |
4181 GuardedAlternative alternative, | |
4182 AlternativeGeneration* alt_gen, | |
4183 int preload_characters, | |
4184 bool next_expects_preload) { | |
4185 if (!alt_gen->possible_success.is_linked()) return; | |
4186 | |
4187 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); | |
4188 macro_assembler->Bind(&alt_gen->possible_success); | |
4189 Trace out_of_line_trace(*trace); | |
4190 out_of_line_trace.set_characters_preloaded(preload_characters); | |
4191 out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); | |
4192 if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); | |
4193 ZoneList<Guard*>* guards = alternative.guards(); | |
4194 int guard_count = (guards == NULL) ? 0 : guards->length(); | |
4195 if (next_expects_preload) { | |
4196 Label reload_current_char; | |
4197 out_of_line_trace.set_backtrack(&reload_current_char); | |
4198 for (int j = 0; j < guard_count; j++) { | |
4199 GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); | |
4200 } | |
4201 alternative.node()->Emit(compiler, &out_of_line_trace); | |
4202 macro_assembler->Bind(&reload_current_char); | |
4203 // Reload the current character, since the next quick check expects that. | |
4204 // We don't need to check bounds here because we only get into this | |
4205 // code through a quick check which already did the checked load. | |
4206 macro_assembler->LoadCurrentCharacter(trace->cp_offset(), | |
4207 NULL, | |
4208 false, | |
4209 preload_characters); | |
4210 macro_assembler->GoTo(&(alt_gen->after)); | |
4211 } else { | |
4212 out_of_line_trace.set_backtrack(&(alt_gen->after)); | |
4213 for (int j = 0; j < guard_count; j++) { | |
4214 GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); | |
4215 } | |
4216 alternative.node()->Emit(compiler, &out_of_line_trace); | |
4217 } | |
4218 } | |
4219 | |
4220 | |
4221 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
4222 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
4223 LimitResult limit_result = LimitVersions(compiler, trace); | |
4224 if (limit_result == DONE) return; | |
4225 DCHECK(limit_result == CONTINUE); | |
4226 | |
4227 RecursionCheck rc(compiler); | |
4228 | |
4229 switch (action_type_) { | |
4230 case STORE_POSITION: { | |
4231 Trace::DeferredCapture | |
4232 new_capture(data_.u_position_register.reg, | |
4233 data_.u_position_register.is_capture, | |
4234 trace); | |
4235 Trace new_trace = *trace; | |
4236 new_trace.add_action(&new_capture); | |
4237 on_success()->Emit(compiler, &new_trace); | |
4238 break; | |
4239 } | |
4240 case INCREMENT_REGISTER: { | |
4241 Trace::DeferredIncrementRegister | |
4242 new_increment(data_.u_increment_register.reg); | |
4243 Trace new_trace = *trace; | |
4244 new_trace.add_action(&new_increment); | |
4245 on_success()->Emit(compiler, &new_trace); | |
4246 break; | |
4247 } | |
4248 case SET_REGISTER: { | |
4249 Trace::DeferredSetRegister | |
4250 new_set(data_.u_store_register.reg, data_.u_store_register.value); | |
4251 Trace new_trace = *trace; | |
4252 new_trace.add_action(&new_set); | |
4253 on_success()->Emit(compiler, &new_trace); | |
4254 break; | |
4255 } | |
4256 case CLEAR_CAPTURES: { | |
4257 Trace::DeferredClearCaptures | |
4258 new_capture(Interval(data_.u_clear_captures.range_from, | |
4259 data_.u_clear_captures.range_to)); | |
4260 Trace new_trace = *trace; | |
4261 new_trace.add_action(&new_capture); | |
4262 on_success()->Emit(compiler, &new_trace); | |
4263 break; | |
4264 } | |
4265 case BEGIN_SUBMATCH: | |
4266 if (!trace->is_trivial()) { | |
4267 trace->Flush(compiler, this); | |
4268 } else { | |
4269 assembler->WriteCurrentPositionToRegister( | |
4270 data_.u_submatch.current_position_register, 0); | |
4271 assembler->WriteStackPointerToRegister( | |
4272 data_.u_submatch.stack_pointer_register); | |
4273 on_success()->Emit(compiler, trace); | |
4274 } | |
4275 break; | |
4276 case EMPTY_MATCH_CHECK: { | |
4277 int start_pos_reg = data_.u_empty_match_check.start_register; | |
4278 int stored_pos = 0; | |
4279 int rep_reg = data_.u_empty_match_check.repetition_register; | |
4280 bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); | |
4281 bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); | |
4282 if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { | |
4283 // If we know we haven't advanced and there is no minimum we | |
4284 // can just backtrack immediately. | |
4285 assembler->GoTo(trace->backtrack()); | |
4286 } else if (know_dist && stored_pos < trace->cp_offset()) { | |
4287 // If we know we've advanced we can generate the continuation | |
4288 // immediately. | |
4289 on_success()->Emit(compiler, trace); | |
4290 } else if (!trace->is_trivial()) { | |
4291 trace->Flush(compiler, this); | |
4292 } else { | |
4293 Label skip_empty_check; | |
4294 // If we have a minimum number of repetitions we check the current | |
4295 // number first and skip the empty check if it's not enough. | |
4296 if (has_minimum) { | |
4297 int limit = data_.u_empty_match_check.repetition_limit; | |
4298 assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); | |
4299 } | |
4300 // If the match is empty we bail out, otherwise we fall through | |
4301 // to the on-success continuation. | |
4302 assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, | |
4303 trace->backtrack()); | |
4304 assembler->Bind(&skip_empty_check); | |
4305 on_success()->Emit(compiler, trace); | |
4306 } | |
4307 break; | |
4308 } | |
4309 case POSITIVE_SUBMATCH_SUCCESS: { | |
4310 if (!trace->is_trivial()) { | |
4311 trace->Flush(compiler, this); | |
4312 return; | |
4313 } | |
4314 assembler->ReadCurrentPositionFromRegister( | |
4315 data_.u_submatch.current_position_register); | |
4316 assembler->ReadStackPointerFromRegister( | |
4317 data_.u_submatch.stack_pointer_register); | |
4318 int clear_register_count = data_.u_submatch.clear_register_count; | |
4319 if (clear_register_count == 0) { | |
4320 on_success()->Emit(compiler, trace); | |
4321 return; | |
4322 } | |
4323 int clear_registers_from = data_.u_submatch.clear_register_from; | |
4324 Label clear_registers_backtrack; | |
4325 Trace new_trace = *trace; | |
4326 new_trace.set_backtrack(&clear_registers_backtrack); | |
4327 on_success()->Emit(compiler, &new_trace); | |
4328 | |
4329 assembler->Bind(&clear_registers_backtrack); | |
4330 int clear_registers_to = clear_registers_from + clear_register_count - 1; | |
4331 assembler->ClearRegisters(clear_registers_from, clear_registers_to); | |
4332 | |
4333 DCHECK(trace->backtrack() == NULL); | |
4334 assembler->Backtrack(); | |
4335 return; | |
4336 } | |
4337 default: | |
4338 UNREACHABLE(); | |
4339 } | |
4340 } | |
4341 | |
4342 | |
4343 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { | |
4344 RegExpMacroAssembler* assembler = compiler->macro_assembler(); | |
4345 if (!trace->is_trivial()) { | |
4346 trace->Flush(compiler, this); | |
4347 return; | |
4348 } | |
4349 | |
4350 LimitResult limit_result = LimitVersions(compiler, trace); | |
4351 if (limit_result == DONE) return; | |
4352 DCHECK(limit_result == CONTINUE); | |
4353 | |
4354 RecursionCheck rc(compiler); | |
4355 | |
4356 DCHECK_EQ(start_reg_ + 1, end_reg_); | |
4357 if (compiler->ignore_case()) { | |
4358 assembler->CheckNotBackReferenceIgnoreCase(start_reg_, | |
4359 trace->backtrack()); | |
4360 } else { | |
4361 assembler->CheckNotBackReference(start_reg_, trace->backtrack()); | |
4362 } | |
4363 on_success()->Emit(compiler, trace); | |
4364 } | |
4365 | |
4366 | |
4367 // ------------------------------------------------------------------- | |
4368 // Dot/dotty output | |
4369 | |
4370 | |
4371 #ifdef DEBUG | |
4372 | |
4373 | |
4374 class DotPrinter: public NodeVisitor { | |
4375 public: | |
4376 DotPrinter(std::ostream& os, bool ignore_case) // NOLINT | |
4377 : os_(os), | |
4378 ignore_case_(ignore_case) {} | |
4379 void PrintNode(const char* label, RegExpNode* node); | |
4380 void Visit(RegExpNode* node); | |
4381 void PrintAttributes(RegExpNode* from); | |
4382 void PrintOnFailure(RegExpNode* from, RegExpNode* to); | |
4383 #define DECLARE_VISIT(Type) \ | |
4384 virtual void Visit##Type(Type##Node* that); | |
4385 FOR_EACH_NODE_TYPE(DECLARE_VISIT) | |
4386 #undef DECLARE_VISIT | |
4387 private: | |
4388 std::ostream& os_; | |
4389 bool ignore_case_; | |
4390 }; | |
4391 | |
4392 | |
4393 void DotPrinter::PrintNode(const char* label, RegExpNode* node) { | |
4394 os_ << "digraph G {\n graph [label=\""; | |
4395 for (int i = 0; label[i]; i++) { | |
4396 switch (label[i]) { | |
4397 case '\\': | |
4398 os_ << "\\\\"; | |
4399 break; | |
4400 case '"': | |
4401 os_ << "\""; | |
4402 break; | |
4403 default: | |
4404 os_ << label[i]; | |
4405 break; | |
4406 } | |
4407 } | |
4408 os_ << "\"];\n"; | |
4409 Visit(node); | |
4410 os_ << "}" << std::endl; | |
4411 } | |
4412 | |
4413 | |
4414 void DotPrinter::Visit(RegExpNode* node) { | |
4415 if (node->info()->visited) return; | |
4416 node->info()->visited = true; | |
4417 node->Accept(this); | |
4418 } | |
4419 | |
4420 | |
4421 void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { | |
4422 os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n"; | |
4423 Visit(on_failure); | |
4424 } | |
4425 | |
4426 | |
4427 class TableEntryBodyPrinter { | |
4428 public: | |
4429 TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice) // NOLINT | |
4430 : os_(os), | |
4431 choice_(choice) {} | |
4432 void Call(uc16 from, DispatchTable::Entry entry) { | |
4433 OutSet* out_set = entry.out_set(); | |
4434 for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { | |
4435 if (out_set->Get(i)) { | |
4436 os_ << " n" << choice() << ":s" << from << "o" << i << " -> n" | |
4437 << choice()->alternatives()->at(i).node() << ";\n"; | |
4438 } | |
4439 } | |
4440 } | |
4441 private: | |
4442 ChoiceNode* choice() { return choice_; } | |
4443 std::ostream& os_; | |
4444 ChoiceNode* choice_; | |
4445 }; | |
4446 | |
4447 | |
4448 class TableEntryHeaderPrinter { | |
4449 public: | |
4450 explicit TableEntryHeaderPrinter(std::ostream& os) // NOLINT | |
4451 : first_(true), | |
4452 os_(os) {} | |
4453 void Call(uc16 from, DispatchTable::Entry entry) { | |
4454 if (first_) { | |
4455 first_ = false; | |
4456 } else { | |
4457 os_ << "|"; | |
4458 } | |
4459 os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{"; | |
4460 OutSet* out_set = entry.out_set(); | |
4461 int priority = 0; | |
4462 for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { | |
4463 if (out_set->Get(i)) { | |
4464 if (priority > 0) os_ << "|"; | |
4465 os_ << "<s" << from << "o" << i << "> " << priority; | |
4466 priority++; | |
4467 } | |
4468 } | |
4469 os_ << "}}"; | |
4470 } | |
4471 | |
4472 private: | |
4473 bool first_; | |
4474 std::ostream& os_; | |
4475 }; | |
4476 | |
4477 | |
4478 class AttributePrinter { | |
4479 public: | |
4480 explicit AttributePrinter(std::ostream& os) // NOLINT | |
4481 : os_(os), | |
4482 first_(true) {} | |
4483 void PrintSeparator() { | |
4484 if (first_) { | |
4485 first_ = false; | |
4486 } else { | |
4487 os_ << "|"; | |
4488 } | |
4489 } | |
4490 void PrintBit(const char* name, bool value) { | |
4491 if (!value) return; | |
4492 PrintSeparator(); | |
4493 os_ << "{" << name << "}"; | |
4494 } | |
4495 void PrintPositive(const char* name, int value) { | |
4496 if (value < 0) return; | |
4497 PrintSeparator(); | |
4498 os_ << "{" << name << "|" << value << "}"; | |
4499 } | |
4500 | |
4501 private: | |
4502 std::ostream& os_; | |
4503 bool first_; | |
4504 }; | |
4505 | |
4506 | |
4507 void DotPrinter::PrintAttributes(RegExpNode* that) { | |
4508 os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, " | |
4509 << "margin=0.1, fontsize=10, label=\"{"; | |
4510 AttributePrinter printer(os_); | |
4511 NodeInfo* info = that->info(); | |
4512 printer.PrintBit("NI", info->follows_newline_interest); | |
4513 printer.PrintBit("WI", info->follows_word_interest); | |
4514 printer.PrintBit("SI", info->follows_start_interest); | |
4515 Label* label = that->label(); | |
4516 if (label->is_bound()) | |
4517 printer.PrintPositive("@", label->pos()); | |
4518 os_ << "}\"];\n" | |
4519 << " a" << that << " -> n" << that | |
4520 << " [style=dashed, color=grey, arrowhead=none];\n"; | |
4521 } | |
4522 | |
4523 | |
4524 static const bool kPrintDispatchTable = false; | |
4525 void DotPrinter::VisitChoice(ChoiceNode* that) { | |
4526 if (kPrintDispatchTable) { | |
4527 os_ << " n" << that << " [shape=Mrecord, label=\""; | |
4528 TableEntryHeaderPrinter header_printer(os_); | |
4529 that->GetTable(ignore_case_)->ForEach(&header_printer); | |
4530 os_ << "\"]\n"; | |
4531 PrintAttributes(that); | |
4532 TableEntryBodyPrinter body_printer(os_, that); | |
4533 that->GetTable(ignore_case_)->ForEach(&body_printer); | |
4534 } else { | |
4535 os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n"; | |
4536 for (int i = 0; i < that->alternatives()->length(); i++) { | |
4537 GuardedAlternative alt = that->alternatives()->at(i); | |
4538 os_ << " n" << that << " -> n" << alt.node(); | |
4539 } | |
4540 } | |
4541 for (int i = 0; i < that->alternatives()->length(); i++) { | |
4542 GuardedAlternative alt = that->alternatives()->at(i); | |
4543 alt.node()->Accept(this); | |
4544 } | |
4545 } | |
4546 | |
4547 | |
4548 void DotPrinter::VisitText(TextNode* that) { | |
4549 Zone* zone = that->zone(); | |
4550 os_ << " n" << that << " [label=\""; | |
4551 for (int i = 0; i < that->elements()->length(); i++) { | |
4552 if (i > 0) os_ << " "; | |
4553 TextElement elm = that->elements()->at(i); | |
4554 switch (elm.text_type()) { | |
4555 case TextElement::ATOM: { | |
4556 Vector<const uc16> data = elm.atom()->data(); | |
4557 for (int i = 0; i < data.length(); i++) { | |
4558 os_ << static_cast<char>(data[i]); | |
4559 } | |
4560 break; | |
4561 } | |
4562 case TextElement::CHAR_CLASS: { | |
4563 RegExpCharacterClass* node = elm.char_class(); | |
4564 os_ << "["; | |
4565 if (node->is_negated()) os_ << "^"; | |
4566 for (int j = 0; j < node->ranges(zone)->length(); j++) { | |
4567 CharacterRange range = node->ranges(zone)->at(j); | |
4568 os_ << AsUC16(range.from()) << "-" << AsUC16(range.to()); | |
4569 } | |
4570 os_ << "]"; | |
4571 break; | |
4572 } | |
4573 default: | |
4574 UNREACHABLE(); | |
4575 } | |
4576 } | |
4577 os_ << "\", shape=box, peripheries=2];\n"; | |
4578 PrintAttributes(that); | |
4579 os_ << " n" << that << " -> n" << that->on_success() << ";\n"; | |
4580 Visit(that->on_success()); | |
4581 } | |
4582 | |
4583 | |
4584 void DotPrinter::VisitBackReference(BackReferenceNode* that) { | |
4585 os_ << " n" << that << " [label=\"$" << that->start_register() << "..$" | |
4586 << that->end_register() << "\", shape=doubleoctagon];\n"; | |
4587 PrintAttributes(that); | |
4588 os_ << " n" << that << " -> n" << that->on_success() << ";\n"; | |
4589 Visit(that->on_success()); | |
4590 } | |
4591 | |
4592 | |
4593 void DotPrinter::VisitEnd(EndNode* that) { | |
4594 os_ << " n" << that << " [style=bold, shape=point];\n"; | |
4595 PrintAttributes(that); | |
4596 } | |
4597 | |
4598 | |
4599 void DotPrinter::VisitAssertion(AssertionNode* that) { | |
4600 os_ << " n" << that << " ["; | |
4601 switch (that->assertion_type()) { | |
4602 case AssertionNode::AT_END: | |
4603 os_ << "label=\"$\", shape=septagon"; | |
4604 break; | |
4605 case AssertionNode::AT_START: | |
4606 os_ << "label=\"^\", shape=septagon"; | |
4607 break; | |
4608 case AssertionNode::AT_BOUNDARY: | |
4609 os_ << "label=\"\\b\", shape=septagon"; | |
4610 break; | |
4611 case AssertionNode::AT_NON_BOUNDARY: | |
4612 os_ << "label=\"\\B\", shape=septagon"; | |
4613 break; | |
4614 case AssertionNode::AFTER_NEWLINE: | |
4615 os_ << "label=\"(?<=\\n)\", shape=septagon"; | |
4616 break; | |
4617 } | |
4618 os_ << "];\n"; | |
4619 PrintAttributes(that); | |
4620 RegExpNode* successor = that->on_success(); | |
4621 os_ << " n" << that << " -> n" << successor << ";\n"; | |
4622 Visit(successor); | |
4623 } | |
4624 | |
4625 | |
4626 void DotPrinter::VisitAction(ActionNode* that) { | |
4627 os_ << " n" << that << " ["; | |
4628 switch (that->action_type_) { | |
4629 case ActionNode::SET_REGISTER: | |
4630 os_ << "label=\"$" << that->data_.u_store_register.reg | |
4631 << ":=" << that->data_.u_store_register.value << "\", shape=octagon"; | |
4632 break; | |
4633 case ActionNode::INCREMENT_REGISTER: | |
4634 os_ << "label=\"$" << that->data_.u_increment_register.reg | |
4635 << "++\", shape=octagon"; | |
4636 break; | |
4637 case ActionNode::STORE_POSITION: | |
4638 os_ << "label=\"$" << that->data_.u_position_register.reg | |
4639 << ":=$pos\", shape=octagon"; | |
4640 break; | |
4641 case ActionNode::BEGIN_SUBMATCH: | |
4642 os_ << "label=\"$" << that->data_.u_submatch.current_position_register | |
4643 << ":=$pos,begin\", shape=septagon"; | |
4644 break; | |
4645 case ActionNode::POSITIVE_SUBMATCH_SUCCESS: | |
4646 os_ << "label=\"escape\", shape=septagon"; | |
4647 break; | |
4648 case ActionNode::EMPTY_MATCH_CHECK: | |
4649 os_ << "label=\"$" << that->data_.u_empty_match_check.start_register | |
4650 << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register | |
4651 << "<" << that->data_.u_empty_match_check.repetition_limit | |
4652 << "?\", shape=septagon"; | |
4653 break; | |
4654 case ActionNode::CLEAR_CAPTURES: { | |
4655 os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from | |
4656 << " to $" << that->data_.u_clear_captures.range_to | |
4657 << "\", shape=septagon"; | |
4658 break; | |
4659 } | |
4660 } | |
4661 os_ << "];\n"; | |
4662 PrintAttributes(that); | |
4663 RegExpNode* successor = that->on_success(); | |
4664 os_ << " n" << that << " -> n" << successor << ";\n"; | |
4665 Visit(successor); | |
4666 } | |
4667 | |
4668 | |
4669 class DispatchTableDumper { | |
4670 public: | |
4671 explicit DispatchTableDumper(std::ostream& os) : os_(os) {} | |
4672 void Call(uc16 key, DispatchTable::Entry entry); | |
4673 private: | |
4674 std::ostream& os_; | |
4675 }; | |
4676 | |
4677 | |
4678 void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { | |
4679 os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {"; | |
4680 OutSet* set = entry.out_set(); | |
4681 bool first = true; | |
4682 for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { | |
4683 if (set->Get(i)) { | |
4684 if (first) { | |
4685 first = false; | |
4686 } else { | |
4687 os_ << ", "; | |
4688 } | |
4689 os_ << i; | |
4690 } | |
4691 } | |
4692 os_ << "}\n"; | |
4693 } | |
4694 | |
4695 | |
4696 void DispatchTable::Dump() { | |
4697 OFStream os(stderr); | |
4698 DispatchTableDumper dumper(os); | |
4699 tree()->ForEach(&dumper); | |
4700 } | |
4701 | |
4702 | |
4703 void RegExpEngine::DotPrint(const char* label, | |
4704 RegExpNode* node, | |
4705 bool ignore_case) { | |
4706 OFStream os(stdout); | |
4707 DotPrinter printer(os, ignore_case); | |
4708 printer.PrintNode(label, node); | |
4709 } | |
4710 | |
4711 | |
4712 #endif // DEBUG | |
4713 | |
4714 | |
4715 // ------------------------------------------------------------------- | |
4716 // Tree to graph conversion | |
4717 | |
4718 RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, | |
4719 RegExpNode* on_success) { | |
4720 ZoneList<TextElement>* elms = | |
4721 new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); | |
4722 elms->Add(TextElement::Atom(this), compiler->zone()); | |
4723 return new(compiler->zone()) TextNode(elms, on_success); | |
4724 } | |
4725 | |
4726 | |
4727 RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, | |
4728 RegExpNode* on_success) { | |
4729 return new(compiler->zone()) TextNode(elements(), on_success); | |
4730 } | |
4731 | |
4732 | |
4733 static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, | |
4734 const int* special_class, | |
4735 int length) { | |
4736 length--; // Remove final 0x10000. | |
4737 DCHECK(special_class[length] == 0x10000); | |
4738 DCHECK(ranges->length() != 0); | |
4739 DCHECK(length != 0); | |
4740 DCHECK(special_class[0] != 0); | |
4741 if (ranges->length() != (length >> 1) + 1) { | |
4742 return false; | |
4743 } | |
4744 CharacterRange range = ranges->at(0); | |
4745 if (range.from() != 0) { | |
4746 return false; | |
4747 } | |
4748 for (int i = 0; i < length; i += 2) { | |
4749 if (special_class[i] != (range.to() + 1)) { | |
4750 return false; | |
4751 } | |
4752 range = ranges->at((i >> 1) + 1); | |
4753 if (special_class[i+1] != range.from()) { | |
4754 return false; | |
4755 } | |
4756 } | |
4757 if (range.to() != 0xffff) { | |
4758 return false; | |
4759 } | |
4760 return true; | |
4761 } | |
4762 | |
4763 | |
4764 static bool CompareRanges(ZoneList<CharacterRange>* ranges, | |
4765 const int* special_class, | |
4766 int length) { | |
4767 length--; // Remove final 0x10000. | |
4768 DCHECK(special_class[length] == 0x10000); | |
4769 if (ranges->length() * 2 != length) { | |
4770 return false; | |
4771 } | |
4772 for (int i = 0; i < length; i += 2) { | |
4773 CharacterRange range = ranges->at(i >> 1); | |
4774 if (range.from() != special_class[i] || | |
4775 range.to() != special_class[i + 1] - 1) { | |
4776 return false; | |
4777 } | |
4778 } | |
4779 return true; | |
4780 } | |
4781 | |
4782 | |
4783 bool RegExpCharacterClass::is_standard(Zone* zone) { | |
4784 // TODO(lrn): Remove need for this function, by not throwing away information | |
4785 // along the way. | |
4786 if (is_negated_) { | |
4787 return false; | |
4788 } | |
4789 if (set_.is_standard()) { | |
4790 return true; | |
4791 } | |
4792 if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { | |
4793 set_.set_standard_set_type('s'); | |
4794 return true; | |
4795 } | |
4796 if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { | |
4797 set_.set_standard_set_type('S'); | |
4798 return true; | |
4799 } | |
4800 if (CompareInverseRanges(set_.ranges(zone), | |
4801 kLineTerminatorRanges, | |
4802 kLineTerminatorRangeCount)) { | |
4803 set_.set_standard_set_type('.'); | |
4804 return true; | |
4805 } | |
4806 if (CompareRanges(set_.ranges(zone), | |
4807 kLineTerminatorRanges, | |
4808 kLineTerminatorRangeCount)) { | |
4809 set_.set_standard_set_type('n'); | |
4810 return true; | |
4811 } | |
4812 if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { | |
4813 set_.set_standard_set_type('w'); | |
4814 return true; | |
4815 } | |
4816 if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { | |
4817 set_.set_standard_set_type('W'); | |
4818 return true; | |
4819 } | |
4820 return false; | |
4821 } | |
4822 | |
4823 | |
4824 RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, | |
4825 RegExpNode* on_success) { | |
4826 return new(compiler->zone()) TextNode(this, on_success); | |
4827 } | |
4828 | |
4829 | |
4830 int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) { | |
4831 RegExpAtom* atom1 = (*a)->AsAtom(); | |
4832 RegExpAtom* atom2 = (*b)->AsAtom(); | |
4833 uc16 character1 = atom1->data().at(0); | |
4834 uc16 character2 = atom2->data().at(0); | |
4835 if (character1 < character2) return -1; | |
4836 if (character1 > character2) return 1; | |
4837 return 0; | |
4838 } | |
4839 | |
4840 | |
4841 static unibrow::uchar Canonical( | |
4842 unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, | |
4843 unibrow::uchar c) { | |
4844 unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth]; | |
4845 int length = canonicalize->get(c, '\0', chars); | |
4846 DCHECK_LE(length, 1); | |
4847 unibrow::uchar canonical = c; | |
4848 if (length == 1) canonical = chars[0]; | |
4849 return canonical; | |
4850 } | |
4851 | |
4852 | |
4853 int CompareFirstCharCaseIndependent( | |
4854 unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, | |
4855 RegExpTree* const* a, RegExpTree* const* b) { | |
4856 RegExpAtom* atom1 = (*a)->AsAtom(); | |
4857 RegExpAtom* atom2 = (*b)->AsAtom(); | |
4858 unibrow::uchar character1 = atom1->data().at(0); | |
4859 unibrow::uchar character2 = atom2->data().at(0); | |
4860 if (character1 == character2) return 0; | |
4861 if (character1 >= 'a' || character2 >= 'a') { | |
4862 character1 = Canonical(canonicalize, character1); | |
4863 character2 = Canonical(canonicalize, character2); | |
4864 } | |
4865 return static_cast<int>(character1) - static_cast<int>(character2); | |
4866 } | |
4867 | |
4868 | |
4869 // We can stable sort runs of atoms, since the order does not matter if they | |
4870 // start with different characters. | |
4871 // Returns true if any consecutive atoms were found. | |
4872 bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) { | |
4873 ZoneList<RegExpTree*>* alternatives = this->alternatives(); | |
4874 int length = alternatives->length(); | |
4875 bool found_consecutive_atoms = false; | |
4876 for (int i = 0; i < length; i++) { | |
4877 while (i < length) { | |
4878 RegExpTree* alternative = alternatives->at(i); | |
4879 if (alternative->IsAtom()) break; | |
4880 i++; | |
4881 } | |
4882 // i is length or it is the index of an atom. | |
4883 if (i == length) break; | |
4884 int first_atom = i; | |
4885 i++; | |
4886 while (i < length) { | |
4887 RegExpTree* alternative = alternatives->at(i); | |
4888 if (!alternative->IsAtom()) break; | |
4889 i++; | |
4890 } | |
4891 // Sort atoms to get ones with common prefixes together. | |
4892 // This step is more tricky if we are in a case-independent regexp, | |
4893 // because it would change /is|I/ to /I|is/, and order matters when | |
4894 // the regexp parts don't match only disjoint starting points. To fix | |
4895 // this we have a version of CompareFirstChar that uses case- | |
4896 // independent character classes for comparison. | |
4897 DCHECK_LT(first_atom, alternatives->length()); | |
4898 DCHECK_LE(i, alternatives->length()); | |
4899 DCHECK_LE(first_atom, i); | |
4900 if (compiler->ignore_case()) { | |
4901 unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = | |
4902 compiler->isolate()->regexp_macro_assembler_canonicalize(); | |
4903 auto compare_closure = | |
4904 [canonicalize](RegExpTree* const* a, RegExpTree* const* b) { | |
4905 return CompareFirstCharCaseIndependent(canonicalize, a, b); | |
4906 }; | |
4907 alternatives->StableSort(compare_closure, first_atom, i - first_atom); | |
4908 } else { | |
4909 alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom); | |
4910 } | |
4911 if (i - first_atom > 1) found_consecutive_atoms = true; | |
4912 } | |
4913 return found_consecutive_atoms; | |
4914 } | |
4915 | |
4916 | |
4917 // Optimizes ab|ac|az to a(?:b|c|d). | |
4918 void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) { | |
4919 Zone* zone = compiler->zone(); | |
4920 ZoneList<RegExpTree*>* alternatives = this->alternatives(); | |
4921 int length = alternatives->length(); | |
4922 | |
4923 int write_posn = 0; | |
4924 int i = 0; | |
4925 while (i < length) { | |
4926 RegExpTree* alternative = alternatives->at(i); | |
4927 if (!alternative->IsAtom()) { | |
4928 alternatives->at(write_posn++) = alternatives->at(i); | |
4929 i++; | |
4930 continue; | |
4931 } | |
4932 RegExpAtom* atom = alternative->AsAtom(); | |
4933 unibrow::uchar common_prefix = atom->data().at(0); | |
4934 int first_with_prefix = i; | |
4935 int prefix_length = atom->length(); | |
4936 i++; | |
4937 while (i < length) { | |
4938 alternative = alternatives->at(i); | |
4939 if (!alternative->IsAtom()) break; | |
4940 atom = alternative->AsAtom(); | |
4941 unibrow::uchar new_prefix = atom->data().at(0); | |
4942 if (new_prefix != common_prefix) { | |
4943 if (!compiler->ignore_case()) break; | |
4944 unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = | |
4945 compiler->isolate()->regexp_macro_assembler_canonicalize(); | |
4946 new_prefix = Canonical(canonicalize, new_prefix); | |
4947 common_prefix = Canonical(canonicalize, common_prefix); | |
4948 if (new_prefix != common_prefix) break; | |
4949 } | |
4950 prefix_length = Min(prefix_length, atom->length()); | |
4951 i++; | |
4952 } | |
4953 if (i > first_with_prefix + 2) { | |
4954 // Found worthwhile run of alternatives with common prefix of at least one | |
4955 // character. The sorting function above did not sort on more than one | |
4956 // character for reasons of correctness, but there may still be a longer | |
4957 // common prefix if the terms were similar or presorted in the input. | |
4958 // Find out how long the common prefix is. | |
4959 int run_length = i - first_with_prefix; | |
4960 atom = alternatives->at(first_with_prefix)->AsAtom(); | |
4961 for (int j = 1; j < run_length && prefix_length > 1; j++) { | |
4962 RegExpAtom* old_atom = | |
4963 alternatives->at(j + first_with_prefix)->AsAtom(); | |
4964 for (int k = 1; k < prefix_length; k++) { | |
4965 if (atom->data().at(k) != old_atom->data().at(k)) { | |
4966 prefix_length = k; | |
4967 break; | |
4968 } | |
4969 } | |
4970 } | |
4971 RegExpAtom* prefix = | |
4972 new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length)); | |
4973 ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone); | |
4974 pair->Add(prefix, zone); | |
4975 ZoneList<RegExpTree*>* suffixes = | |
4976 new (zone) ZoneList<RegExpTree*>(run_length, zone); | |
4977 for (int j = 0; j < run_length; j++) { | |
4978 RegExpAtom* old_atom = | |
4979 alternatives->at(j + first_with_prefix)->AsAtom(); | |
4980 int len = old_atom->length(); | |
4981 if (len == prefix_length) { | |
4982 suffixes->Add(new (zone) RegExpEmpty(), zone); | |
4983 } else { | |
4984 RegExpTree* suffix = new (zone) RegExpAtom( | |
4985 old_atom->data().SubVector(prefix_length, old_atom->length())); | |
4986 suffixes->Add(suffix, zone); | |
4987 } | |
4988 } | |
4989 pair->Add(new (zone) RegExpDisjunction(suffixes), zone); | |
4990 alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair); | |
4991 } else { | |
4992 // Just copy any non-worthwhile alternatives. | |
4993 for (int j = first_with_prefix; j < i; j++) { | |
4994 alternatives->at(write_posn++) = alternatives->at(j); | |
4995 } | |
4996 } | |
4997 } | |
4998 alternatives->Rewind(write_posn); // Trim end of array. | |
4999 } | |
5000 | |
5001 | |
5002 // Optimizes b|c|z to [bcz]. | |
5003 void RegExpDisjunction::FixSingleCharacterDisjunctions( | |
5004 RegExpCompiler* compiler) { | |
5005 Zone* zone = compiler->zone(); | |
5006 ZoneList<RegExpTree*>* alternatives = this->alternatives(); | |
5007 int length = alternatives->length(); | |
5008 | |
5009 int write_posn = 0; | |
5010 int i = 0; | |
5011 while (i < length) { | |
5012 RegExpTree* alternative = alternatives->at(i); | |
5013 if (!alternative->IsAtom()) { | |
5014 alternatives->at(write_posn++) = alternatives->at(i); | |
5015 i++; | |
5016 continue; | |
5017 } | |
5018 RegExpAtom* atom = alternative->AsAtom(); | |
5019 if (atom->length() != 1) { | |
5020 alternatives->at(write_posn++) = alternatives->at(i); | |
5021 i++; | |
5022 continue; | |
5023 } | |
5024 int first_in_run = i; | |
5025 i++; | |
5026 while (i < length) { | |
5027 alternative = alternatives->at(i); | |
5028 if (!alternative->IsAtom()) break; | |
5029 atom = alternative->AsAtom(); | |
5030 if (atom->length() != 1) break; | |
5031 i++; | |
5032 } | |
5033 if (i > first_in_run + 1) { | |
5034 // Found non-trivial run of single-character alternatives. | |
5035 int run_length = i - first_in_run; | |
5036 ZoneList<CharacterRange>* ranges = | |
5037 new (zone) ZoneList<CharacterRange>(2, zone); | |
5038 for (int j = 0; j < run_length; j++) { | |
5039 RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom(); | |
5040 DCHECK_EQ(old_atom->length(), 1); | |
5041 ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone); | |
5042 } | |
5043 alternatives->at(write_posn++) = | |
5044 new (zone) RegExpCharacterClass(ranges, false); | |
5045 } else { | |
5046 // Just copy any trivial alternatives. | |
5047 for (int j = first_in_run; j < i; j++) { | |
5048 alternatives->at(write_posn++) = alternatives->at(j); | |
5049 } | |
5050 } | |
5051 } | |
5052 alternatives->Rewind(write_posn); // Trim end of array. | |
5053 } | |
5054 | |
5055 | |
5056 RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, | |
5057 RegExpNode* on_success) { | |
5058 ZoneList<RegExpTree*>* alternatives = this->alternatives(); | |
5059 | |
5060 if (alternatives->length() > 2) { | |
5061 bool found_consecutive_atoms = SortConsecutiveAtoms(compiler); | |
5062 if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler); | |
5063 FixSingleCharacterDisjunctions(compiler); | |
5064 if (alternatives->length() == 1) { | |
5065 return alternatives->at(0)->ToNode(compiler, on_success); | |
5066 } | |
5067 } | |
5068 | |
5069 int length = alternatives->length(); | |
5070 | |
5071 ChoiceNode* result = | |
5072 new(compiler->zone()) ChoiceNode(length, compiler->zone()); | |
5073 for (int i = 0; i < length; i++) { | |
5074 GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, | |
5075 on_success)); | |
5076 result->AddAlternative(alternative); | |
5077 } | |
5078 return result; | |
5079 } | |
5080 | |
5081 | |
5082 RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, | |
5083 RegExpNode* on_success) { | |
5084 return ToNode(min(), | |
5085 max(), | |
5086 is_greedy(), | |
5087 body(), | |
5088 compiler, | |
5089 on_success); | |
5090 } | |
5091 | |
5092 | |
5093 // Scoped object to keep track of how much we unroll quantifier loops in the | |
5094 // regexp graph generator. | |
5095 class RegExpExpansionLimiter { | |
5096 public: | |
5097 static const int kMaxExpansionFactor = 6; | |
5098 RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) | |
5099 : compiler_(compiler), | |
5100 saved_expansion_factor_(compiler->current_expansion_factor()), | |
5101 ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { | |
5102 DCHECK(factor > 0); | |
5103 if (ok_to_expand_) { | |
5104 if (factor > kMaxExpansionFactor) { | |
5105 // Avoid integer overflow of the current expansion factor. | |
5106 ok_to_expand_ = false; | |
5107 compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); | |
5108 } else { | |
5109 int new_factor = saved_expansion_factor_ * factor; | |
5110 ok_to_expand_ = (new_factor <= kMaxExpansionFactor); | |
5111 compiler->set_current_expansion_factor(new_factor); | |
5112 } | |
5113 } | |
5114 } | |
5115 | |
5116 ~RegExpExpansionLimiter() { | |
5117 compiler_->set_current_expansion_factor(saved_expansion_factor_); | |
5118 } | |
5119 | |
5120 bool ok_to_expand() { return ok_to_expand_; } | |
5121 | |
5122 private: | |
5123 RegExpCompiler* compiler_; | |
5124 int saved_expansion_factor_; | |
5125 bool ok_to_expand_; | |
5126 | |
5127 DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); | |
5128 }; | |
5129 | |
5130 | |
5131 RegExpNode* RegExpQuantifier::ToNode(int min, | |
5132 int max, | |
5133 bool is_greedy, | |
5134 RegExpTree* body, | |
5135 RegExpCompiler* compiler, | |
5136 RegExpNode* on_success, | |
5137 bool not_at_start) { | |
5138 // x{f, t} becomes this: | |
5139 // | |
5140 // (r++)<-. | |
5141 // | ` | |
5142 // | (x) | |
5143 // v ^ | |
5144 // (r=0)-->(?)---/ [if r < t] | |
5145 // | | |
5146 // [if r >= f] \----> ... | |
5147 // | |
5148 | |
5149 // 15.10.2.5 RepeatMatcher algorithm. | |
5150 // The parser has already eliminated the case where max is 0. In the case | |
5151 // where max_match is zero the parser has removed the quantifier if min was | |
5152 // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. | |
5153 | |
5154 // If we know that we cannot match zero length then things are a little | |
5155 // simpler since we don't need to make the special zero length match check | |
5156 // from step 2.1. If the min and max are small we can unroll a little in | |
5157 // this case. | |
5158 static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} | |
5159 static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} | |
5160 if (max == 0) return on_success; // This can happen due to recursion. | |
5161 bool body_can_be_empty = (body->min_match() == 0); | |
5162 int body_start_reg = RegExpCompiler::kNoRegister; | |
5163 Interval capture_registers = body->CaptureRegisters(); | |
5164 bool needs_capture_clearing = !capture_registers.is_empty(); | |
5165 Zone* zone = compiler->zone(); | |
5166 | |
5167 if (body_can_be_empty) { | |
5168 body_start_reg = compiler->AllocateRegister(); | |
5169 } else if (compiler->optimize() && !needs_capture_clearing) { | |
5170 // Only unroll if there are no captures and the body can't be | |
5171 // empty. | |
5172 { | |
5173 RegExpExpansionLimiter limiter( | |
5174 compiler, min + ((max != min) ? 1 : 0)); | |
5175 if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { | |
5176 int new_max = (max == kInfinity) ? max : max - min; | |
5177 // Recurse once to get the loop or optional matches after the fixed | |
5178 // ones. | |
5179 RegExpNode* answer = ToNode( | |
5180 0, new_max, is_greedy, body, compiler, on_success, true); | |
5181 // Unroll the forced matches from 0 to min. This can cause chains of | |
5182 // TextNodes (which the parser does not generate). These should be | |
5183 // combined if it turns out they hinder good code generation. | |
5184 for (int i = 0; i < min; i++) { | |
5185 answer = body->ToNode(compiler, answer); | |
5186 } | |
5187 return answer; | |
5188 } | |
5189 } | |
5190 if (max <= kMaxUnrolledMaxMatches && min == 0) { | |
5191 DCHECK(max > 0); // Due to the 'if' above. | |
5192 RegExpExpansionLimiter limiter(compiler, max); | |
5193 if (limiter.ok_to_expand()) { | |
5194 // Unroll the optional matches up to max. | |
5195 RegExpNode* answer = on_success; | |
5196 for (int i = 0; i < max; i++) { | |
5197 ChoiceNode* alternation = new(zone) ChoiceNode(2, zone); | |
5198 if (is_greedy) { | |
5199 alternation->AddAlternative( | |
5200 GuardedAlternative(body->ToNode(compiler, answer))); | |
5201 alternation->AddAlternative(GuardedAlternative(on_success)); | |
5202 } else { | |
5203 alternation->AddAlternative(GuardedAlternative(on_success)); | |
5204 alternation->AddAlternative( | |
5205 GuardedAlternative(body->ToNode(compiler, answer))); | |
5206 } | |
5207 answer = alternation; | |
5208 if (not_at_start) alternation->set_not_at_start(); | |
5209 } | |
5210 return answer; | |
5211 } | |
5212 } | |
5213 } | |
5214 bool has_min = min > 0; | |
5215 bool has_max = max < RegExpTree::kInfinity; | |
5216 bool needs_counter = has_min || has_max; | |
5217 int reg_ctr = needs_counter | |
5218 ? compiler->AllocateRegister() | |
5219 : RegExpCompiler::kNoRegister; | |
5220 LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0, | |
5221 zone); | |
5222 if (not_at_start) center->set_not_at_start(); | |
5223 RegExpNode* loop_return = needs_counter | |
5224 ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) | |
5225 : static_cast<RegExpNode*>(center); | |
5226 if (body_can_be_empty) { | |
5227 // If the body can be empty we need to check if it was and then | |
5228 // backtrack. | |
5229 loop_return = ActionNode::EmptyMatchCheck(body_start_reg, | |
5230 reg_ctr, | |
5231 min, | |
5232 loop_return); | |
5233 } | |
5234 RegExpNode* body_node = body->ToNode(compiler, loop_return); | |
5235 if (body_can_be_empty) { | |
5236 // If the body can be empty we need to store the start position | |
5237 // so we can bail out if it was empty. | |
5238 body_node = ActionNode::StorePosition(body_start_reg, false, body_node); | |
5239 } | |
5240 if (needs_capture_clearing) { | |
5241 // Before entering the body of this loop we need to clear captures. | |
5242 body_node = ActionNode::ClearCaptures(capture_registers, body_node); | |
5243 } | |
5244 GuardedAlternative body_alt(body_node); | |
5245 if (has_max) { | |
5246 Guard* body_guard = | |
5247 new(zone) Guard(reg_ctr, Guard::LT, max); | |
5248 body_alt.AddGuard(body_guard, zone); | |
5249 } | |
5250 GuardedAlternative rest_alt(on_success); | |
5251 if (has_min) { | |
5252 Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); | |
5253 rest_alt.AddGuard(rest_guard, zone); | |
5254 } | |
5255 if (is_greedy) { | |
5256 center->AddLoopAlternative(body_alt); | |
5257 center->AddContinueAlternative(rest_alt); | |
5258 } else { | |
5259 center->AddContinueAlternative(rest_alt); | |
5260 center->AddLoopAlternative(body_alt); | |
5261 } | |
5262 if (needs_counter) { | |
5263 return ActionNode::SetRegister(reg_ctr, 0, center); | |
5264 } else { | |
5265 return center; | |
5266 } | |
5267 } | |
5268 | |
5269 | |
5270 RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, | |
5271 RegExpNode* on_success) { | |
5272 NodeInfo info; | |
5273 Zone* zone = compiler->zone(); | |
5274 | |
5275 switch (assertion_type()) { | |
5276 case START_OF_LINE: | |
5277 return AssertionNode::AfterNewline(on_success); | |
5278 case START_OF_INPUT: | |
5279 return AssertionNode::AtStart(on_success); | |
5280 case BOUNDARY: | |
5281 return AssertionNode::AtBoundary(on_success); | |
5282 case NON_BOUNDARY: | |
5283 return AssertionNode::AtNonBoundary(on_success); | |
5284 case END_OF_INPUT: | |
5285 return AssertionNode::AtEnd(on_success); | |
5286 case END_OF_LINE: { | |
5287 // Compile $ in multiline regexps as an alternation with a positive | |
5288 // lookahead in one side and an end-of-input on the other side. | |
5289 // We need two registers for the lookahead. | |
5290 int stack_pointer_register = compiler->AllocateRegister(); | |
5291 int position_register = compiler->AllocateRegister(); | |
5292 // The ChoiceNode to distinguish between a newline and end-of-input. | |
5293 ChoiceNode* result = new(zone) ChoiceNode(2, zone); | |
5294 // Create a newline atom. | |
5295 ZoneList<CharacterRange>* newline_ranges = | |
5296 new(zone) ZoneList<CharacterRange>(3, zone); | |
5297 CharacterRange::AddClassEscape('n', newline_ranges, zone); | |
5298 RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n'); | |
5299 TextNode* newline_matcher = new(zone) TextNode( | |
5300 newline_atom, | |
5301 ActionNode::PositiveSubmatchSuccess(stack_pointer_register, | |
5302 position_register, | |
5303 0, // No captures inside. | |
5304 -1, // Ignored if no captures. | |
5305 on_success)); | |
5306 // Create an end-of-input matcher. | |
5307 RegExpNode* end_of_line = ActionNode::BeginSubmatch( | |
5308 stack_pointer_register, | |
5309 position_register, | |
5310 newline_matcher); | |
5311 // Add the two alternatives to the ChoiceNode. | |
5312 GuardedAlternative eol_alternative(end_of_line); | |
5313 result->AddAlternative(eol_alternative); | |
5314 GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); | |
5315 result->AddAlternative(end_alternative); | |
5316 return result; | |
5317 } | |
5318 default: | |
5319 UNREACHABLE(); | |
5320 } | |
5321 return on_success; | |
5322 } | |
5323 | |
5324 | |
5325 RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, | |
5326 RegExpNode* on_success) { | |
5327 return new(compiler->zone()) | |
5328 BackReferenceNode(RegExpCapture::StartRegister(index()), | |
5329 RegExpCapture::EndRegister(index()), | |
5330 on_success); | |
5331 } | |
5332 | |
5333 | |
5334 RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, | |
5335 RegExpNode* on_success) { | |
5336 return on_success; | |
5337 } | |
5338 | |
5339 | |
5340 RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, | |
5341 RegExpNode* on_success) { | |
5342 int stack_pointer_register = compiler->AllocateRegister(); | |
5343 int position_register = compiler->AllocateRegister(); | |
5344 | |
5345 const int registers_per_capture = 2; | |
5346 const int register_of_first_capture = 2; | |
5347 int register_count = capture_count_ * registers_per_capture; | |
5348 int register_start = | |
5349 register_of_first_capture + capture_from_ * registers_per_capture; | |
5350 | |
5351 RegExpNode* success; | |
5352 if (is_positive()) { | |
5353 RegExpNode* node = ActionNode::BeginSubmatch( | |
5354 stack_pointer_register, | |
5355 position_register, | |
5356 body()->ToNode( | |
5357 compiler, | |
5358 ActionNode::PositiveSubmatchSuccess(stack_pointer_register, | |
5359 position_register, | |
5360 register_count, | |
5361 register_start, | |
5362 on_success))); | |
5363 return node; | |
5364 } else { | |
5365 // We use a ChoiceNode for a negative lookahead because it has most of | |
5366 // the characteristics we need. It has the body of the lookahead as its | |
5367 // first alternative and the expression after the lookahead of the second | |
5368 // alternative. If the first alternative succeeds then the | |
5369 // NegativeSubmatchSuccess will unwind the stack including everything the | |
5370 // choice node set up and backtrack. If the first alternative fails then | |
5371 // the second alternative is tried, which is exactly the desired result | |
5372 // for a negative lookahead. The NegativeLookaheadChoiceNode is a special | |
5373 // ChoiceNode that knows to ignore the first exit when calculating quick | |
5374 // checks. | |
5375 Zone* zone = compiler->zone(); | |
5376 | |
5377 GuardedAlternative body_alt( | |
5378 body()->ToNode( | |
5379 compiler, | |
5380 success = new(zone) NegativeSubmatchSuccess(stack_pointer_register, | |
5381 position_register, | |
5382 register_count, | |
5383 register_start, | |
5384 zone))); | |
5385 ChoiceNode* choice_node = | |
5386 new(zone) NegativeLookaheadChoiceNode(body_alt, | |
5387 GuardedAlternative(on_success), | |
5388 zone); | |
5389 return ActionNode::BeginSubmatch(stack_pointer_register, | |
5390 position_register, | |
5391 choice_node); | |
5392 } | |
5393 } | |
5394 | |
5395 | |
5396 RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, | |
5397 RegExpNode* on_success) { | |
5398 return ToNode(body(), index(), compiler, on_success); | |
5399 } | |
5400 | |
5401 | |
5402 RegExpNode* RegExpCapture::ToNode(RegExpTree* body, | |
5403 int index, | |
5404 RegExpCompiler* compiler, | |
5405 RegExpNode* on_success) { | |
5406 int start_reg = RegExpCapture::StartRegister(index); | |
5407 int end_reg = RegExpCapture::EndRegister(index); | |
5408 RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); | |
5409 RegExpNode* body_node = body->ToNode(compiler, store_end); | |
5410 return ActionNode::StorePosition(start_reg, true, body_node); | |
5411 } | |
5412 | |
5413 | |
5414 RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, | |
5415 RegExpNode* on_success) { | |
5416 ZoneList<RegExpTree*>* children = nodes(); | |
5417 RegExpNode* current = on_success; | |
5418 for (int i = children->length() - 1; i >= 0; i--) { | |
5419 current = children->at(i)->ToNode(compiler, current); | |
5420 } | |
5421 return current; | |
5422 } | |
5423 | |
5424 | |
5425 static void AddClass(const int* elmv, | |
5426 int elmc, | |
5427 ZoneList<CharacterRange>* ranges, | |
5428 Zone* zone) { | |
5429 elmc--; | |
5430 DCHECK(elmv[elmc] == 0x10000); | |
5431 for (int i = 0; i < elmc; i += 2) { | |
5432 DCHECK(elmv[i] < elmv[i + 1]); | |
5433 ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone); | |
5434 } | |
5435 } | |
5436 | |
5437 | |
5438 static void AddClassNegated(const int *elmv, | |
5439 int elmc, | |
5440 ZoneList<CharacterRange>* ranges, | |
5441 Zone* zone) { | |
5442 elmc--; | |
5443 DCHECK(elmv[elmc] == 0x10000); | |
5444 DCHECK(elmv[0] != 0x0000); | |
5445 DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit); | |
5446 uc16 last = 0x0000; | |
5447 for (int i = 0; i < elmc; i += 2) { | |
5448 DCHECK(last <= elmv[i] - 1); | |
5449 DCHECK(elmv[i] < elmv[i + 1]); | |
5450 ranges->Add(CharacterRange(last, elmv[i] - 1), zone); | |
5451 last = elmv[i + 1]; | |
5452 } | |
5453 ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone); | |
5454 } | |
5455 | |
5456 | |
5457 void CharacterRange::AddClassEscape(uc16 type, | |
5458 ZoneList<CharacterRange>* ranges, | |
5459 Zone* zone) { | |
5460 switch (type) { | |
5461 case 's': | |
5462 AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); | |
5463 break; | |
5464 case 'S': | |
5465 AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); | |
5466 break; | |
5467 case 'w': | |
5468 AddClass(kWordRanges, kWordRangeCount, ranges, zone); | |
5469 break; | |
5470 case 'W': | |
5471 AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); | |
5472 break; | |
5473 case 'd': | |
5474 AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); | |
5475 break; | |
5476 case 'D': | |
5477 AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); | |
5478 break; | |
5479 case '.': | |
5480 AddClassNegated(kLineTerminatorRanges, | |
5481 kLineTerminatorRangeCount, | |
5482 ranges, | |
5483 zone); | |
5484 break; | |
5485 // This is not a character range as defined by the spec but a | |
5486 // convenient shorthand for a character class that matches any | |
5487 // character. | |
5488 case '*': | |
5489 ranges->Add(CharacterRange::Everything(), zone); | |
5490 break; | |
5491 // This is the set of characters matched by the $ and ^ symbols | |
5492 // in multiline mode. | |
5493 case 'n': | |
5494 AddClass(kLineTerminatorRanges, | |
5495 kLineTerminatorRangeCount, | |
5496 ranges, | |
5497 zone); | |
5498 break; | |
5499 default: | |
5500 UNREACHABLE(); | |
5501 } | |
5502 } | |
5503 | |
5504 | |
5505 Vector<const int> CharacterRange::GetWordBounds() { | |
5506 return Vector<const int>(kWordRanges, kWordRangeCount - 1); | |
5507 } | |
5508 | |
5509 | |
5510 class CharacterRangeSplitter { | |
5511 public: | |
5512 CharacterRangeSplitter(ZoneList<CharacterRange>** included, | |
5513 ZoneList<CharacterRange>** excluded, | |
5514 Zone* zone) | |
5515 : included_(included), | |
5516 excluded_(excluded), | |
5517 zone_(zone) { } | |
5518 void Call(uc16 from, DispatchTable::Entry entry); | |
5519 | |
5520 static const int kInBase = 0; | |
5521 static const int kInOverlay = 1; | |
5522 | |
5523 private: | |
5524 ZoneList<CharacterRange>** included_; | |
5525 ZoneList<CharacterRange>** excluded_; | |
5526 Zone* zone_; | |
5527 }; | |
5528 | |
5529 | |
5530 void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) { | |
5531 if (!entry.out_set()->Get(kInBase)) return; | |
5532 ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay) | |
5533 ? included_ | |
5534 : excluded_; | |
5535 if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_); | |
5536 (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_); | |
5537 } | |
5538 | |
5539 | |
5540 void CharacterRange::Split(ZoneList<CharacterRange>* base, | |
5541 Vector<const int> overlay, | |
5542 ZoneList<CharacterRange>** included, | |
5543 ZoneList<CharacterRange>** excluded, | |
5544 Zone* zone) { | |
5545 DCHECK_NULL(*included); | |
5546 DCHECK_NULL(*excluded); | |
5547 DispatchTable table(zone); | |
5548 for (int i = 0; i < base->length(); i++) | |
5549 table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone); | |
5550 for (int i = 0; i < overlay.length(); i += 2) { | |
5551 table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1), | |
5552 CharacterRangeSplitter::kInOverlay, zone); | |
5553 } | |
5554 CharacterRangeSplitter callback(included, excluded, zone); | |
5555 table.ForEach(&callback); | |
5556 } | |
5557 | |
5558 | |
5559 void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone, | |
5560 ZoneList<CharacterRange>* ranges, | |
5561 bool is_one_byte) { | |
5562 uc16 bottom = from(); | |
5563 uc16 top = to(); | |
5564 if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) { | |
5565 if (bottom > String::kMaxOneByteCharCode) return; | |
5566 if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; | |
5567 } | |
5568 unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
5569 if (top == bottom) { | |
5570 // If this is a singleton we just expand the one character. | |
5571 int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); | |
5572 for (int i = 0; i < length; i++) { | |
5573 uc32 chr = chars[i]; | |
5574 if (chr != bottom) { | |
5575 ranges->Add(CharacterRange::Singleton(chars[i]), zone); | |
5576 } | |
5577 } | |
5578 } else { | |
5579 // If this is a range we expand the characters block by block, | |
5580 // expanding contiguous subranges (blocks) one at a time. | |
5581 // The approach is as follows. For a given start character we | |
5582 // look up the remainder of the block that contains it (represented | |
5583 // by the end point), for instance we find 'z' if the character | |
5584 // is 'c'. A block is characterized by the property | |
5585 // that all characters uncanonicalize in the same way, except that | |
5586 // each entry in the result is incremented by the distance from the first | |
5587 // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and | |
5588 // the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. | |
5589 // Once we've found the end point we look up its uncanonicalization | |
5590 // and produce a range for each element. For instance for [c-f] | |
5591 // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only | |
5592 // add a range if it is not already contained in the input, so [c-f] | |
5593 // will be skipped but [C-F] will be added. If this range is not | |
5594 // completely contained in a block we do this for all the blocks | |
5595 // covered by the range (handling characters that is not in a block | |
5596 // as a "singleton block"). | |
5597 unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
5598 int pos = bottom; | |
5599 while (pos <= top) { | |
5600 int length = isolate->jsregexp_canonrange()->get(pos, '\0', range); | |
5601 uc16 block_end; | |
5602 if (length == 0) { | |
5603 block_end = pos; | |
5604 } else { | |
5605 DCHECK_EQ(1, length); | |
5606 block_end = range[0]; | |
5607 } | |
5608 int end = (block_end > top) ? top : block_end; | |
5609 length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range); | |
5610 for (int i = 0; i < length; i++) { | |
5611 uc32 c = range[i]; | |
5612 uc16 range_from = c - (block_end - pos); | |
5613 uc16 range_to = c - (block_end - end); | |
5614 if (!(bottom <= range_from && range_to <= top)) { | |
5615 ranges->Add(CharacterRange(range_from, range_to), zone); | |
5616 } | |
5617 } | |
5618 pos = end + 1; | |
5619 } | |
5620 } | |
5621 } | |
5622 | |
5623 | |
5624 bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { | |
5625 DCHECK_NOT_NULL(ranges); | |
5626 int n = ranges->length(); | |
5627 if (n <= 1) return true; | |
5628 int max = ranges->at(0).to(); | |
5629 for (int i = 1; i < n; i++) { | |
5630 CharacterRange next_range = ranges->at(i); | |
5631 if (next_range.from() <= max + 1) return false; | |
5632 max = next_range.to(); | |
5633 } | |
5634 return true; | |
5635 } | |
5636 | |
5637 | |
5638 ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { | |
5639 if (ranges_ == NULL) { | |
5640 ranges_ = new(zone) ZoneList<CharacterRange>(2, zone); | |
5641 CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone); | |
5642 } | |
5643 return ranges_; | |
5644 } | |
5645 | |
5646 | |
5647 // Move a number of elements in a zonelist to another position | |
5648 // in the same list. Handles overlapping source and target areas. | |
5649 static void MoveRanges(ZoneList<CharacterRange>* list, | |
5650 int from, | |
5651 int to, | |
5652 int count) { | |
5653 // Ranges are potentially overlapping. | |
5654 if (from < to) { | |
5655 for (int i = count - 1; i >= 0; i--) { | |
5656 list->at(to + i) = list->at(from + i); | |
5657 } | |
5658 } else { | |
5659 for (int i = 0; i < count; i++) { | |
5660 list->at(to + i) = list->at(from + i); | |
5661 } | |
5662 } | |
5663 } | |
5664 | |
5665 | |
5666 static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, | |
5667 int count, | |
5668 CharacterRange insert) { | |
5669 // Inserts a range into list[0..count[, which must be sorted | |
5670 // by from value and non-overlapping and non-adjacent, using at most | |
5671 // list[0..count] for the result. Returns the number of resulting | |
5672 // canonicalized ranges. Inserting a range may collapse existing ranges into | |
5673 // fewer ranges, so the return value can be anything in the range 1..count+1. | |
5674 uc16 from = insert.from(); | |
5675 uc16 to = insert.to(); | |
5676 int start_pos = 0; | |
5677 int end_pos = count; | |
5678 for (int i = count - 1; i >= 0; i--) { | |
5679 CharacterRange current = list->at(i); | |
5680 if (current.from() > to + 1) { | |
5681 end_pos = i; | |
5682 } else if (current.to() + 1 < from) { | |
5683 start_pos = i + 1; | |
5684 break; | |
5685 } | |
5686 } | |
5687 | |
5688 // Inserted range overlaps, or is adjacent to, ranges at positions | |
5689 // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are | |
5690 // not affected by the insertion. | |
5691 // If start_pos == end_pos, the range must be inserted before start_pos. | |
5692 // if start_pos < end_pos, the entire range from start_pos to end_pos | |
5693 // must be merged with the insert range. | |
5694 | |
5695 if (start_pos == end_pos) { | |
5696 // Insert between existing ranges at position start_pos. | |
5697 if (start_pos < count) { | |
5698 MoveRanges(list, start_pos, start_pos + 1, count - start_pos); | |
5699 } | |
5700 list->at(start_pos) = insert; | |
5701 return count + 1; | |
5702 } | |
5703 if (start_pos + 1 == end_pos) { | |
5704 // Replace single existing range at position start_pos. | |
5705 CharacterRange to_replace = list->at(start_pos); | |
5706 int new_from = Min(to_replace.from(), from); | |
5707 int new_to = Max(to_replace.to(), to); | |
5708 list->at(start_pos) = CharacterRange(new_from, new_to); | |
5709 return count; | |
5710 } | |
5711 // Replace a number of existing ranges from start_pos to end_pos - 1. | |
5712 // Move the remaining ranges down. | |
5713 | |
5714 int new_from = Min(list->at(start_pos).from(), from); | |
5715 int new_to = Max(list->at(end_pos - 1).to(), to); | |
5716 if (end_pos < count) { | |
5717 MoveRanges(list, end_pos, start_pos + 1, count - end_pos); | |
5718 } | |
5719 list->at(start_pos) = CharacterRange(new_from, new_to); | |
5720 return count - (end_pos - start_pos) + 1; | |
5721 } | |
5722 | |
5723 | |
5724 void CharacterSet::Canonicalize() { | |
5725 // Special/default classes are always considered canonical. The result | |
5726 // of calling ranges() will be sorted. | |
5727 if (ranges_ == NULL) return; | |
5728 CharacterRange::Canonicalize(ranges_); | |
5729 } | |
5730 | |
5731 | |
5732 void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { | |
5733 if (character_ranges->length() <= 1) return; | |
5734 // Check whether ranges are already canonical (increasing, non-overlapping, | |
5735 // non-adjacent). | |
5736 int n = character_ranges->length(); | |
5737 int max = character_ranges->at(0).to(); | |
5738 int i = 1; | |
5739 while (i < n) { | |
5740 CharacterRange current = character_ranges->at(i); | |
5741 if (current.from() <= max + 1) { | |
5742 break; | |
5743 } | |
5744 max = current.to(); | |
5745 i++; | |
5746 } | |
5747 // Canonical until the i'th range. If that's all of them, we are done. | |
5748 if (i == n) return; | |
5749 | |
5750 // The ranges at index i and forward are not canonicalized. Make them so by | |
5751 // doing the equivalent of insertion sort (inserting each into the previous | |
5752 // list, in order). | |
5753 // Notice that inserting a range can reduce the number of ranges in the | |
5754 // result due to combining of adjacent and overlapping ranges. | |
5755 int read = i; // Range to insert. | |
5756 int num_canonical = i; // Length of canonicalized part of list. | |
5757 do { | |
5758 num_canonical = InsertRangeInCanonicalList(character_ranges, | |
5759 num_canonical, | |
5760 character_ranges->at(read)); | |
5761 read++; | |
5762 } while (read < n); | |
5763 character_ranges->Rewind(num_canonical); | |
5764 | |
5765 DCHECK(CharacterRange::IsCanonical(character_ranges)); | |
5766 } | |
5767 | |
5768 | |
5769 void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, | |
5770 ZoneList<CharacterRange>* negated_ranges, | |
5771 Zone* zone) { | |
5772 DCHECK(CharacterRange::IsCanonical(ranges)); | |
5773 DCHECK_EQ(0, negated_ranges->length()); | |
5774 int range_count = ranges->length(); | |
5775 uc16 from = 0; | |
5776 int i = 0; | |
5777 if (range_count > 0 && ranges->at(0).from() == 0) { | |
5778 from = ranges->at(0).to(); | |
5779 i = 1; | |
5780 } | |
5781 while (i < range_count) { | |
5782 CharacterRange range = ranges->at(i); | |
5783 negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone); | |
5784 from = range.to(); | |
5785 i++; | |
5786 } | |
5787 if (from < String::kMaxUtf16CodeUnit) { | |
5788 negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit), | |
5789 zone); | |
5790 } | |
5791 } | |
5792 | |
5793 | |
5794 // ------------------------------------------------------------------- | |
5795 // Splay tree | |
5796 | |
5797 | |
5798 OutSet* OutSet::Extend(unsigned value, Zone* zone) { | |
5799 if (Get(value)) | |
5800 return this; | |
5801 if (successors(zone) != NULL) { | |
5802 for (int i = 0; i < successors(zone)->length(); i++) { | |
5803 OutSet* successor = successors(zone)->at(i); | |
5804 if (successor->Get(value)) | |
5805 return successor; | |
5806 } | |
5807 } else { | |
5808 successors_ = new(zone) ZoneList<OutSet*>(2, zone); | |
5809 } | |
5810 OutSet* result = new(zone) OutSet(first_, remaining_); | |
5811 result->Set(value, zone); | |
5812 successors(zone)->Add(result, zone); | |
5813 return result; | |
5814 } | |
5815 | |
5816 | |
5817 void OutSet::Set(unsigned value, Zone *zone) { | |
5818 if (value < kFirstLimit) { | |
5819 first_ |= (1 << value); | |
5820 } else { | |
5821 if (remaining_ == NULL) | |
5822 remaining_ = new(zone) ZoneList<unsigned>(1, zone); | |
5823 if (remaining_->is_empty() || !remaining_->Contains(value)) | |
5824 remaining_->Add(value, zone); | |
5825 } | |
5826 } | |
5827 | |
5828 | |
5829 bool OutSet::Get(unsigned value) const { | |
5830 if (value < kFirstLimit) { | |
5831 return (first_ & (1 << value)) != 0; | |
5832 } else if (remaining_ == NULL) { | |
5833 return false; | |
5834 } else { | |
5835 return remaining_->Contains(value); | |
5836 } | |
5837 } | |
5838 | |
5839 | |
5840 const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; | |
5841 | |
5842 | |
5843 void DispatchTable::AddRange(CharacterRange full_range, int value, | |
5844 Zone* zone) { | |
5845 CharacterRange current = full_range; | |
5846 if (tree()->is_empty()) { | |
5847 // If this is the first range we just insert into the table. | |
5848 ZoneSplayTree<Config>::Locator loc; | |
5849 bool inserted = tree()->Insert(current.from(), &loc); | |
5850 DCHECK(inserted); | |
5851 USE(inserted); | |
5852 loc.set_value(Entry(current.from(), current.to(), | |
5853 empty()->Extend(value, zone))); | |
5854 return; | |
5855 } | |
5856 // First see if there is a range to the left of this one that | |
5857 // overlaps. | |
5858 ZoneSplayTree<Config>::Locator loc; | |
5859 if (tree()->FindGreatestLessThan(current.from(), &loc)) { | |
5860 Entry* entry = &loc.value(); | |
5861 // If we've found a range that overlaps with this one, and it | |
5862 // starts strictly to the left of this one, we have to fix it | |
5863 // because the following code only handles ranges that start on | |
5864 // or after the start point of the range we're adding. | |
5865 if (entry->from() < current.from() && entry->to() >= current.from()) { | |
5866 // Snap the overlapping range in half around the start point of | |
5867 // the range we're adding. | |
5868 CharacterRange left(entry->from(), current.from() - 1); | |
5869 CharacterRange right(current.from(), entry->to()); | |
5870 // The left part of the overlapping range doesn't overlap. | |
5871 // Truncate the whole entry to be just the left part. | |
5872 entry->set_to(left.to()); | |
5873 // The right part is the one that overlaps. We add this part | |
5874 // to the map and let the next step deal with merging it with | |
5875 // the range we're adding. | |
5876 ZoneSplayTree<Config>::Locator loc; | |
5877 bool inserted = tree()->Insert(right.from(), &loc); | |
5878 DCHECK(inserted); | |
5879 USE(inserted); | |
5880 loc.set_value(Entry(right.from(), | |
5881 right.to(), | |
5882 entry->out_set())); | |
5883 } | |
5884 } | |
5885 while (current.is_valid()) { | |
5886 if (tree()->FindLeastGreaterThan(current.from(), &loc) && | |
5887 (loc.value().from() <= current.to()) && | |
5888 (loc.value().to() >= current.from())) { | |
5889 Entry* entry = &loc.value(); | |
5890 // We have overlap. If there is space between the start point of | |
5891 // the range we're adding and where the overlapping range starts | |
5892 // then we have to add a range covering just that space. | |
5893 if (current.from() < entry->from()) { | |
5894 ZoneSplayTree<Config>::Locator ins; | |
5895 bool inserted = tree()->Insert(current.from(), &ins); | |
5896 DCHECK(inserted); | |
5897 USE(inserted); | |
5898 ins.set_value(Entry(current.from(), | |
5899 entry->from() - 1, | |
5900 empty()->Extend(value, zone))); | |
5901 current.set_from(entry->from()); | |
5902 } | |
5903 DCHECK_EQ(current.from(), entry->from()); | |
5904 // If the overlapping range extends beyond the one we want to add | |
5905 // we have to snap the right part off and add it separately. | |
5906 if (entry->to() > current.to()) { | |
5907 ZoneSplayTree<Config>::Locator ins; | |
5908 bool inserted = tree()->Insert(current.to() + 1, &ins); | |
5909 DCHECK(inserted); | |
5910 USE(inserted); | |
5911 ins.set_value(Entry(current.to() + 1, | |
5912 entry->to(), | |
5913 entry->out_set())); | |
5914 entry->set_to(current.to()); | |
5915 } | |
5916 DCHECK(entry->to() <= current.to()); | |
5917 // The overlapping range is now completely contained by the range | |
5918 // we're adding so we can just update it and move the start point | |
5919 // of the range we're adding just past it. | |
5920 entry->AddValue(value, zone); | |
5921 // Bail out if the last interval ended at 0xFFFF since otherwise | |
5922 // adding 1 will wrap around to 0. | |
5923 if (entry->to() == String::kMaxUtf16CodeUnit) | |
5924 break; | |
5925 DCHECK(entry->to() + 1 > current.from()); | |
5926 current.set_from(entry->to() + 1); | |
5927 } else { | |
5928 // There is no overlap so we can just add the range | |
5929 ZoneSplayTree<Config>::Locator ins; | |
5930 bool inserted = tree()->Insert(current.from(), &ins); | |
5931 DCHECK(inserted); | |
5932 USE(inserted); | |
5933 ins.set_value(Entry(current.from(), | |
5934 current.to(), | |
5935 empty()->Extend(value, zone))); | |
5936 break; | |
5937 } | |
5938 } | |
5939 } | |
5940 | |
5941 | |
5942 OutSet* DispatchTable::Get(uc16 value) { | |
5943 ZoneSplayTree<Config>::Locator loc; | |
5944 if (!tree()->FindGreatestLessThan(value, &loc)) | |
5945 return empty(); | |
5946 Entry* entry = &loc.value(); | |
5947 if (value <= entry->to()) | |
5948 return entry->out_set(); | |
5949 else | |
5950 return empty(); | |
5951 } | |
5952 | |
5953 | |
5954 // ------------------------------------------------------------------- | |
5955 // Analysis | |
5956 | |
5957 | |
5958 void Analysis::EnsureAnalyzed(RegExpNode* that) { | |
5959 StackLimitCheck check(isolate()); | |
5960 if (check.HasOverflowed()) { | |
5961 fail("Stack overflow"); | |
5962 return; | |
5963 } | |
5964 if (that->info()->been_analyzed || that->info()->being_analyzed) | |
5965 return; | |
5966 that->info()->being_analyzed = true; | |
5967 that->Accept(this); | |
5968 that->info()->being_analyzed = false; | |
5969 that->info()->been_analyzed = true; | |
5970 } | |
5971 | |
5972 | |
5973 void Analysis::VisitEnd(EndNode* that) { | |
5974 // nothing to do | |
5975 } | |
5976 | |
5977 | |
5978 void TextNode::CalculateOffsets() { | |
5979 int element_count = elements()->length(); | |
5980 // Set up the offsets of the elements relative to the start. This is a fixed | |
5981 // quantity since a TextNode can only contain fixed-width things. | |
5982 int cp_offset = 0; | |
5983 for (int i = 0; i < element_count; i++) { | |
5984 TextElement& elm = elements()->at(i); | |
5985 elm.set_cp_offset(cp_offset); | |
5986 cp_offset += elm.length(); | |
5987 } | |
5988 } | |
5989 | |
5990 | |
5991 void Analysis::VisitText(TextNode* that) { | |
5992 if (ignore_case_) { | |
5993 that->MakeCaseIndependent(isolate(), is_one_byte_); | |
5994 } | |
5995 EnsureAnalyzed(that->on_success()); | |
5996 if (!has_failed()) { | |
5997 that->CalculateOffsets(); | |
5998 } | |
5999 } | |
6000 | |
6001 | |
6002 void Analysis::VisitAction(ActionNode* that) { | |
6003 RegExpNode* target = that->on_success(); | |
6004 EnsureAnalyzed(target); | |
6005 if (!has_failed()) { | |
6006 // If the next node is interested in what it follows then this node | |
6007 // has to be interested too so it can pass the information on. | |
6008 that->info()->AddFromFollowing(target->info()); | |
6009 } | |
6010 } | |
6011 | |
6012 | |
6013 void Analysis::VisitChoice(ChoiceNode* that) { | |
6014 NodeInfo* info = that->info(); | |
6015 for (int i = 0; i < that->alternatives()->length(); i++) { | |
6016 RegExpNode* node = that->alternatives()->at(i).node(); | |
6017 EnsureAnalyzed(node); | |
6018 if (has_failed()) return; | |
6019 // Anything the following nodes need to know has to be known by | |
6020 // this node also, so it can pass it on. | |
6021 info->AddFromFollowing(node->info()); | |
6022 } | |
6023 } | |
6024 | |
6025 | |
6026 void Analysis::VisitLoopChoice(LoopChoiceNode* that) { | |
6027 NodeInfo* info = that->info(); | |
6028 for (int i = 0; i < that->alternatives()->length(); i++) { | |
6029 RegExpNode* node = that->alternatives()->at(i).node(); | |
6030 if (node != that->loop_node()) { | |
6031 EnsureAnalyzed(node); | |
6032 if (has_failed()) return; | |
6033 info->AddFromFollowing(node->info()); | |
6034 } | |
6035 } | |
6036 // Check the loop last since it may need the value of this node | |
6037 // to get a correct result. | |
6038 EnsureAnalyzed(that->loop_node()); | |
6039 if (!has_failed()) { | |
6040 info->AddFromFollowing(that->loop_node()->info()); | |
6041 } | |
6042 } | |
6043 | |
6044 | |
6045 void Analysis::VisitBackReference(BackReferenceNode* that) { | |
6046 EnsureAnalyzed(that->on_success()); | |
6047 } | |
6048 | |
6049 | |
6050 void Analysis::VisitAssertion(AssertionNode* that) { | |
6051 EnsureAnalyzed(that->on_success()); | |
6052 } | |
6053 | |
6054 | |
6055 void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, | |
6056 BoyerMooreLookahead* bm, | |
6057 bool not_at_start) { | |
6058 // Working out the set of characters that a backreference can match is too | |
6059 // hard, so we just say that any character can match. | |
6060 bm->SetRest(offset); | |
6061 SaveBMInfo(bm, not_at_start, offset); | |
6062 } | |
6063 | |
6064 | |
6065 STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == | |
6066 RegExpMacroAssembler::kTableSize); | |
6067 | |
6068 | |
6069 void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, | |
6070 BoyerMooreLookahead* bm, bool not_at_start) { | |
6071 ZoneList<GuardedAlternative>* alts = alternatives(); | |
6072 budget = (budget - 1) / alts->length(); | |
6073 for (int i = 0; i < alts->length(); i++) { | |
6074 GuardedAlternative& alt = alts->at(i); | |
6075 if (alt.guards() != NULL && alt.guards()->length() != 0) { | |
6076 bm->SetRest(offset); // Give up trying to fill in info. | |
6077 SaveBMInfo(bm, not_at_start, offset); | |
6078 return; | |
6079 } | |
6080 alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start); | |
6081 } | |
6082 SaveBMInfo(bm, not_at_start, offset); | |
6083 } | |
6084 | |
6085 | |
6086 void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget, | |
6087 BoyerMooreLookahead* bm, bool not_at_start) { | |
6088 if (initial_offset >= bm->length()) return; | |
6089 int offset = initial_offset; | |
6090 int max_char = bm->max_char(); | |
6091 for (int i = 0; i < elements()->length(); i++) { | |
6092 if (offset >= bm->length()) { | |
6093 if (initial_offset == 0) set_bm_info(not_at_start, bm); | |
6094 return; | |
6095 } | |
6096 TextElement text = elements()->at(i); | |
6097 if (text.text_type() == TextElement::ATOM) { | |
6098 RegExpAtom* atom = text.atom(); | |
6099 for (int j = 0; j < atom->length(); j++, offset++) { | |
6100 if (offset >= bm->length()) { | |
6101 if (initial_offset == 0) set_bm_info(not_at_start, bm); | |
6102 return; | |
6103 } | |
6104 uc16 character = atom->data()[j]; | |
6105 if (bm->compiler()->ignore_case()) { | |
6106 unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | |
6107 int length = GetCaseIndependentLetters( | |
6108 isolate, character, bm->max_char() == String::kMaxOneByteCharCode, | |
6109 chars); | |
6110 for (int j = 0; j < length; j++) { | |
6111 bm->Set(offset, chars[j]); | |
6112 } | |
6113 } else { | |
6114 if (character <= max_char) bm->Set(offset, character); | |
6115 } | |
6116 } | |
6117 } else { | |
6118 DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); | |
6119 RegExpCharacterClass* char_class = text.char_class(); | |
6120 ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); | |
6121 if (char_class->is_negated()) { | |
6122 bm->SetAll(offset); | |
6123 } else { | |
6124 for (int k = 0; k < ranges->length(); k++) { | |
6125 CharacterRange& range = ranges->at(k); | |
6126 if (range.from() > max_char) continue; | |
6127 int to = Min(max_char, static_cast<int>(range.to())); | |
6128 bm->SetInterval(offset, Interval(range.from(), to)); | |
6129 } | |
6130 } | |
6131 offset++; | |
6132 } | |
6133 } | |
6134 if (offset >= bm->length()) { | |
6135 if (initial_offset == 0) set_bm_info(not_at_start, bm); | |
6136 return; | |
6137 } | |
6138 on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, | |
6139 true); // Not at start after a text node. | |
6140 if (initial_offset == 0) set_bm_info(not_at_start, bm); | |
6141 } | |
6142 | |
6143 | |
6144 // ------------------------------------------------------------------- | |
6145 // Dispatch table construction | |
6146 | |
6147 | |
6148 void DispatchTableConstructor::VisitEnd(EndNode* that) { | |
6149 AddRange(CharacterRange::Everything()); | |
6150 } | |
6151 | |
6152 | |
6153 void DispatchTableConstructor::BuildTable(ChoiceNode* node) { | |
6154 node->set_being_calculated(true); | |
6155 ZoneList<GuardedAlternative>* alternatives = node->alternatives(); | |
6156 for (int i = 0; i < alternatives->length(); i++) { | |
6157 set_choice_index(i); | |
6158 alternatives->at(i).node()->Accept(this); | |
6159 } | |
6160 node->set_being_calculated(false); | |
6161 } | |
6162 | |
6163 | |
6164 class AddDispatchRange { | |
6165 public: | |
6166 explicit AddDispatchRange(DispatchTableConstructor* constructor) | |
6167 : constructor_(constructor) { } | |
6168 void Call(uc32 from, DispatchTable::Entry entry); | |
6169 private: | |
6170 DispatchTableConstructor* constructor_; | |
6171 }; | |
6172 | |
6173 | |
6174 void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { | |
6175 CharacterRange range(from, entry.to()); | |
6176 constructor_->AddRange(range); | |
6177 } | |
6178 | |
6179 | |
6180 void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { | |
6181 if (node->being_calculated()) | |
6182 return; | |
6183 DispatchTable* table = node->GetTable(ignore_case_); | |
6184 AddDispatchRange adder(this); | |
6185 table->ForEach(&adder); | |
6186 } | |
6187 | |
6188 | |
6189 void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { | |
6190 // TODO(160): Find the node that we refer back to and propagate its start | |
6191 // set back to here. For now we just accept anything. | |
6192 AddRange(CharacterRange::Everything()); | |
6193 } | |
6194 | |
6195 | |
6196 void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { | |
6197 RegExpNode* target = that->on_success(); | |
6198 target->Accept(this); | |
6199 } | |
6200 | |
6201 | |
6202 static int CompareRangeByFrom(const CharacterRange* a, | |
6203 const CharacterRange* b) { | |
6204 return Compare<uc16>(a->from(), b->from()); | |
6205 } | |
6206 | |
6207 | |
6208 void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { | |
6209 ranges->Sort(CompareRangeByFrom); | |
6210 uc16 last = 0; | |
6211 for (int i = 0; i < ranges->length(); i++) { | |
6212 CharacterRange range = ranges->at(i); | |
6213 if (last < range.from()) | |
6214 AddRange(CharacterRange(last, range.from() - 1)); | |
6215 if (range.to() >= last) { | |
6216 if (range.to() == String::kMaxUtf16CodeUnit) { | |
6217 return; | |
6218 } else { | |
6219 last = range.to() + 1; | |
6220 } | |
6221 } | |
6222 } | |
6223 AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit)); | |
6224 } | |
6225 | |
6226 | |
6227 void DispatchTableConstructor::VisitText(TextNode* that) { | |
6228 TextElement elm = that->elements()->at(0); | |
6229 switch (elm.text_type()) { | |
6230 case TextElement::ATOM: { | |
6231 uc16 c = elm.atom()->data()[0]; | |
6232 AddRange(CharacterRange(c, c)); | |
6233 break; | |
6234 } | |
6235 case TextElement::CHAR_CLASS: { | |
6236 RegExpCharacterClass* tree = elm.char_class(); | |
6237 ZoneList<CharacterRange>* ranges = tree->ranges(that->zone()); | |
6238 if (tree->is_negated()) { | |
6239 AddInverse(ranges); | |
6240 } else { | |
6241 for (int i = 0; i < ranges->length(); i++) | |
6242 AddRange(ranges->at(i)); | |
6243 } | |
6244 break; | |
6245 } | |
6246 default: { | |
6247 UNIMPLEMENTED(); | |
6248 } | |
6249 } | |
6250 } | |
6251 | |
6252 | |
6253 void DispatchTableConstructor::VisitAction(ActionNode* that) { | |
6254 RegExpNode* target = that->on_success(); | |
6255 target->Accept(this); | |
6256 } | |
6257 | |
6258 | |
6259 RegExpEngine::CompilationResult RegExpEngine::Compile( | |
6260 Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case, | |
6261 bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern, | |
6262 Handle<String> sample_subject, bool is_one_byte) { | |
6263 if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { | |
6264 return IrregexpRegExpTooBig(isolate); | |
6265 } | |
6266 RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case, | |
6267 is_one_byte); | |
6268 | |
6269 if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern)); | |
6270 | |
6271 // Sample some characters from the middle of the string. | |
6272 static const int kSampleSize = 128; | |
6273 | |
6274 sample_subject = String::Flatten(sample_subject); | |
6275 int chars_sampled = 0; | |
6276 int half_way = (sample_subject->length() - kSampleSize) / 2; | |
6277 for (int i = Max(0, half_way); | |
6278 i < sample_subject->length() && chars_sampled < kSampleSize; | |
6279 i++, chars_sampled++) { | |
6280 compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); | |
6281 } | |
6282 | |
6283 // Wrap the body of the regexp in capture #0. | |
6284 RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, | |
6285 0, | |
6286 &compiler, | |
6287 compiler.accept()); | |
6288 RegExpNode* node = captured_body; | |
6289 bool is_end_anchored = data->tree->IsAnchoredAtEnd(); | |
6290 bool is_start_anchored = data->tree->IsAnchoredAtStart(); | |
6291 int max_length = data->tree->max_match(); | |
6292 if (!is_start_anchored && !is_sticky) { | |
6293 // Add a .*? at the beginning, outside the body capture, unless | |
6294 // this expression is anchored at the beginning or sticky. | |
6295 RegExpNode* loop_node = | |
6296 RegExpQuantifier::ToNode(0, | |
6297 RegExpTree::kInfinity, | |
6298 false, | |
6299 new(zone) RegExpCharacterClass('*'), | |
6300 &compiler, | |
6301 captured_body, | |
6302 data->contains_anchor); | |
6303 | |
6304 if (data->contains_anchor) { | |
6305 // Unroll loop once, to take care of the case that might start | |
6306 // at the start of input. | |
6307 ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone); | |
6308 first_step_node->AddAlternative(GuardedAlternative(captured_body)); | |
6309 first_step_node->AddAlternative(GuardedAlternative( | |
6310 new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node))); | |
6311 node = first_step_node; | |
6312 } else { | |
6313 node = loop_node; | |
6314 } | |
6315 } | |
6316 if (is_one_byte) { | |
6317 node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case); | |
6318 // Do it again to propagate the new nodes to places where they were not | |
6319 // put because they had not been calculated yet. | |
6320 if (node != NULL) { | |
6321 node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case); | |
6322 } | |
6323 } | |
6324 | |
6325 if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone); | |
6326 data->node = node; | |
6327 Analysis analysis(isolate, ignore_case, is_one_byte); | |
6328 analysis.EnsureAnalyzed(node); | |
6329 if (analysis.has_failed()) { | |
6330 const char* error_message = analysis.error_message(); | |
6331 return CompilationResult(isolate, error_message); | |
6332 } | |
6333 | |
6334 // Create the correct assembler for the architecture. | |
6335 #ifndef V8_INTERPRETED_REGEXP | |
6336 // Native regexp implementation. | |
6337 | |
6338 NativeRegExpMacroAssembler::Mode mode = | |
6339 is_one_byte ? NativeRegExpMacroAssembler::LATIN1 | |
6340 : NativeRegExpMacroAssembler::UC16; | |
6341 | |
6342 #if V8_TARGET_ARCH_IA32 | |
6343 RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode, | |
6344 (data->capture_count + 1) * 2); | |
6345 #elif V8_TARGET_ARCH_X64 | |
6346 RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode, | |
6347 (data->capture_count + 1) * 2); | |
6348 #elif V8_TARGET_ARCH_ARM | |
6349 RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode, | |
6350 (data->capture_count + 1) * 2); | |
6351 #elif V8_TARGET_ARCH_ARM64 | |
6352 RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode, | |
6353 (data->capture_count + 1) * 2); | |
6354 #elif V8_TARGET_ARCH_PPC | |
6355 RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode, | |
6356 (data->capture_count + 1) * 2); | |
6357 #elif V8_TARGET_ARCH_MIPS | |
6358 RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode, | |
6359 (data->capture_count + 1) * 2); | |
6360 #elif V8_TARGET_ARCH_MIPS64 | |
6361 RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode, | |
6362 (data->capture_count + 1) * 2); | |
6363 #elif V8_TARGET_ARCH_X87 | |
6364 RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode, | |
6365 (data->capture_count + 1) * 2); | |
6366 #else | |
6367 #error "Unsupported architecture" | |
6368 #endif | |
6369 | |
6370 #else // V8_INTERPRETED_REGEXP | |
6371 // Interpreted regexp implementation. | |
6372 EmbeddedVector<byte, 1024> codes; | |
6373 RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone); | |
6374 #endif // V8_INTERPRETED_REGEXP | |
6375 | |
6376 macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern)); | |
6377 | |
6378 // Inserted here, instead of in Assembler, because it depends on information | |
6379 // in the AST that isn't replicated in the Node structure. | |
6380 static const int kMaxBacksearchLimit = 1024; | |
6381 if (is_end_anchored && | |
6382 !is_start_anchored && | |
6383 max_length < kMaxBacksearchLimit) { | |
6384 macro_assembler.SetCurrentPositionFromEnd(max_length); | |
6385 } | |
6386 | |
6387 if (is_global) { | |
6388 macro_assembler.set_global_mode( | |
6389 (data->tree->min_match() > 0) | |
6390 ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK | |
6391 : RegExpMacroAssembler::GLOBAL); | |
6392 } | |
6393 | |
6394 return compiler.Assemble(¯o_assembler, | |
6395 node, | |
6396 data->capture_count, | |
6397 pattern); | |
6398 } | |
6399 | |
6400 | |
6401 bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) { | |
6402 Heap* heap = pattern->GetHeap(); | |
6403 bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize; | |
6404 if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit && | |
6405 heap->isolate()->memory_allocator()->SizeExecutable() > | |
6406 RegExpImpl::kRegExpExecutableMemoryLimit) { | |
6407 too_much = true; | |
6408 } | |
6409 return too_much; | |
6410 } | |
6411 } // namespace internal | |
6412 } // namespace v8 | |
OLD | NEW |