Index: src/jsregexp.h |
diff --git a/src/jsregexp.h b/src/jsregexp.h |
deleted file mode 100644 |
index ff7759bfec631bde43a0f59b2f61622bfdd79c62..0000000000000000000000000000000000000000 |
--- a/src/jsregexp.h |
+++ /dev/null |
@@ -1,1664 +0,0 @@ |
-// Copyright 2012 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#ifndef V8_JSREGEXP_H_ |
-#define V8_JSREGEXP_H_ |
- |
-#include "src/allocation.h" |
-#include "src/assembler.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-class NodeVisitor; |
-class RegExpCompiler; |
-class RegExpMacroAssembler; |
-class RegExpNode; |
-class RegExpTree; |
-class BoyerMooreLookahead; |
- |
-class RegExpImpl { |
- public: |
- // Whether V8 is compiled with native regexp support or not. |
- static bool UsesNativeRegExp() { |
-#ifdef V8_INTERPRETED_REGEXP |
- return false; |
-#else |
- return true; |
-#endif |
- } |
- |
- // Creates a regular expression literal in the old space. |
- // This function calls the garbage collector if necessary. |
- MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral( |
- Handle<JSFunction> constructor, |
- Handle<String> pattern, |
- Handle<String> flags); |
- |
- // Returns a string representation of a regular expression. |
- // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. |
- // This function calls the garbage collector if necessary. |
- static Handle<String> ToString(Handle<Object> value); |
- |
- // Parses the RegExp pattern and prepares the JSRegExp object with |
- // generic data and choice of implementation - as well as what |
- // the implementation wants to store in the data field. |
- // Returns false if compilation fails. |
- MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re, |
- Handle<String> pattern, |
- JSRegExp::Flags flags); |
- |
- // See ECMA-262 section 15.10.6.2. |
- // This function calls the garbage collector if necessary. |
- MUST_USE_RESULT static MaybeHandle<Object> Exec( |
- Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- int index, |
- Handle<JSArray> lastMatchInfo); |
- |
- // Prepares a JSRegExp object with Irregexp-specific data. |
- static void IrregexpInitialize(Handle<JSRegExp> re, |
- Handle<String> pattern, |
- JSRegExp::Flags flags, |
- int capture_register_count); |
- |
- |
- static void AtomCompile(Handle<JSRegExp> re, |
- Handle<String> pattern, |
- JSRegExp::Flags flags, |
- Handle<String> match_pattern); |
- |
- |
- static int AtomExecRaw(Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- int index, |
- int32_t* output, |
- int output_size); |
- |
- |
- static Handle<Object> AtomExec(Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- int index, |
- Handle<JSArray> lastMatchInfo); |
- |
- enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; |
- |
- // Prepare a RegExp for being executed one or more times (using |
- // IrregexpExecOnce) on the subject. |
- // This ensures that the regexp is compiled for the subject, and that |
- // the subject is flat. |
- // Returns the number of integer spaces required by IrregexpExecOnce |
- // as its "registers" argument. If the regexp cannot be compiled, |
- // an exception is set as pending, and this function returns negative. |
- static int IrregexpPrepare(Handle<JSRegExp> regexp, |
- Handle<String> subject); |
- |
- // Execute a regular expression on the subject, starting from index. |
- // If matching succeeds, return the number of matches. This can be larger |
- // than one in the case of global regular expressions. |
- // The captures and subcaptures are stored into the registers vector. |
- // If matching fails, returns RE_FAILURE. |
- // If execution fails, sets a pending exception and returns RE_EXCEPTION. |
- static int IrregexpExecRaw(Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- int index, |
- int32_t* output, |
- int output_size); |
- |
- // Execute an Irregexp bytecode pattern. |
- // On a successful match, the result is a JSArray containing |
- // captured positions. On a failure, the result is the null value. |
- // Returns an empty handle in case of an exception. |
- MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( |
- Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- int index, |
- Handle<JSArray> lastMatchInfo); |
- |
- // Set last match info. If match is NULL, then setting captures is omitted. |
- static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info, |
- Handle<String> subject, |
- int capture_count, |
- int32_t* match); |
- |
- |
- class GlobalCache { |
- public: |
- GlobalCache(Handle<JSRegExp> regexp, |
- Handle<String> subject, |
- bool is_global, |
- Isolate* isolate); |
- |
- INLINE(~GlobalCache()); |
- |
- // Fetch the next entry in the cache for global regexp match results. |
- // This does not set the last match info. Upon failure, NULL is returned. |
- // The cause can be checked with Result(). The previous |
- // result is still in available in memory when a failure happens. |
- INLINE(int32_t* FetchNext()); |
- |
- INLINE(int32_t* LastSuccessfulMatch()); |
- |
- INLINE(bool HasException()) { return num_matches_ < 0; } |
- |
- private: |
- int num_matches_; |
- int max_matches_; |
- int current_match_index_; |
- int registers_per_match_; |
- // Pointer to the last set of captures. |
- int32_t* register_array_; |
- int register_array_size_; |
- Handle<JSRegExp> regexp_; |
- Handle<String> subject_; |
- }; |
- |
- |
- // Array index in the lastMatchInfo array. |
- static const int kLastCaptureCount = 0; |
- static const int kLastSubject = 1; |
- static const int kLastInput = 2; |
- static const int kFirstCapture = 3; |
- static const int kLastMatchOverhead = 3; |
- |
- // Direct offset into the lastMatchInfo array. |
- static const int kLastCaptureCountOffset = |
- FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; |
- static const int kLastSubjectOffset = |
- FixedArray::kHeaderSize + kLastSubject * kPointerSize; |
- static const int kLastInputOffset = |
- FixedArray::kHeaderSize + kLastInput * kPointerSize; |
- static const int kFirstCaptureOffset = |
- FixedArray::kHeaderSize + kFirstCapture * kPointerSize; |
- |
- // Used to access the lastMatchInfo array. |
- static int GetCapture(FixedArray* array, int index) { |
- return Smi::cast(array->get(index + kFirstCapture))->value(); |
- } |
- |
- static void SetLastCaptureCount(FixedArray* array, int to) { |
- array->set(kLastCaptureCount, Smi::FromInt(to)); |
- } |
- |
- static void SetLastSubject(FixedArray* array, String* to) { |
- array->set(kLastSubject, to); |
- } |
- |
- static void SetLastInput(FixedArray* array, String* to) { |
- array->set(kLastInput, to); |
- } |
- |
- static void SetCapture(FixedArray* array, int index, int to) { |
- array->set(index + kFirstCapture, Smi::FromInt(to)); |
- } |
- |
- static int GetLastCaptureCount(FixedArray* array) { |
- return Smi::cast(array->get(kLastCaptureCount))->value(); |
- } |
- |
- // For acting on the JSRegExp data FixedArray. |
- static int IrregexpMaxRegisterCount(FixedArray* re); |
- static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); |
- static int IrregexpNumberOfCaptures(FixedArray* re); |
- static int IrregexpNumberOfRegisters(FixedArray* re); |
- static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); |
- static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); |
- |
- // Limit the space regexps take up on the heap. In order to limit this we |
- // would like to keep track of the amount of regexp code on the heap. This |
- // is not tracked, however. As a conservative approximation we track the |
- // total regexp code compiled including code that has subsequently been freed |
- // and the total executable memory at any point. |
- static const int kRegExpExecutableMemoryLimit = 16 * MB; |
- static const int kRegExpCompiledLimit = 1 * MB; |
- static const int kRegExpTooLargeToOptimize = 20 * KB; |
- |
- private: |
- static bool CompileIrregexp(Handle<JSRegExp> re, |
- Handle<String> sample_subject, bool is_one_byte); |
- static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, |
- Handle<String> sample_subject, |
- bool is_one_byte); |
-}; |
- |
- |
-// Represents the location of one element relative to the intersection of |
-// two sets. Corresponds to the four areas of a Venn diagram. |
-enum ElementInSetsRelation { |
- kInsideNone = 0, |
- kInsideFirst = 1, |
- kInsideSecond = 2, |
- kInsideBoth = 3 |
-}; |
- |
- |
-// Represents code units in the range from from_ to to_, both ends are |
-// inclusive. |
-class CharacterRange { |
- public: |
- CharacterRange() : from_(0), to_(0) { } |
- // For compatibility with the CHECK_OK macro |
- CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT |
- CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } |
- static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges, |
- Zone* zone); |
- static Vector<const int> GetWordBounds(); |
- static inline CharacterRange Singleton(uc16 value) { |
- return CharacterRange(value, value); |
- } |
- static inline CharacterRange Range(uc16 from, uc16 to) { |
- DCHECK(from <= to); |
- return CharacterRange(from, to); |
- } |
- static inline CharacterRange Everything() { |
- return CharacterRange(0, 0xFFFF); |
- } |
- bool Contains(uc16 i) { return from_ <= i && i <= to_; } |
- uc16 from() const { return from_; } |
- void set_from(uc16 value) { from_ = value; } |
- uc16 to() const { return to_; } |
- void set_to(uc16 value) { to_ = value; } |
- bool is_valid() { return from_ <= to_; } |
- bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } |
- bool IsSingleton() { return (from_ == to_); } |
- void AddCaseEquivalents(Isolate* isolate, Zone* zone, |
- ZoneList<CharacterRange>* ranges, bool is_one_byte); |
- static void Split(ZoneList<CharacterRange>* base, |
- Vector<const int> overlay, |
- ZoneList<CharacterRange>** included, |
- ZoneList<CharacterRange>** excluded, |
- Zone* zone); |
- // Whether a range list is in canonical form: Ranges ordered by from value, |
- // and ranges non-overlapping and non-adjacent. |
- static bool IsCanonical(ZoneList<CharacterRange>* ranges); |
- // Convert range list to canonical form. The characters covered by the ranges |
- // will still be the same, but no character is in more than one range, and |
- // adjacent ranges are merged. The resulting list may be shorter than the |
- // original, but cannot be longer. |
- static void Canonicalize(ZoneList<CharacterRange>* ranges); |
- // Negate the contents of a character range in canonical form. |
- static void Negate(ZoneList<CharacterRange>* src, |
- ZoneList<CharacterRange>* dst, |
- Zone* zone); |
- static const int kStartMarker = (1 << 24); |
- static const int kPayloadMask = (1 << 24) - 1; |
- |
- private: |
- uc16 from_; |
- uc16 to_; |
-}; |
- |
- |
-// A set of unsigned integers that behaves especially well on small |
-// integers (< 32). May do zone-allocation. |
-class OutSet: public ZoneObject { |
- public: |
- OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } |
- OutSet* Extend(unsigned value, Zone* zone); |
- bool Get(unsigned value) const; |
- static const unsigned kFirstLimit = 32; |
- |
- private: |
- // Destructively set a value in this set. In most cases you want |
- // to use Extend instead to ensure that only one instance exists |
- // that contains the same values. |
- void Set(unsigned value, Zone* zone); |
- |
- // The successors are a list of sets that contain the same values |
- // as this set and the one more value that is not present in this |
- // set. |
- ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } |
- |
- OutSet(uint32_t first, ZoneList<unsigned>* remaining) |
- : first_(first), remaining_(remaining), successors_(NULL) { } |
- uint32_t first_; |
- ZoneList<unsigned>* remaining_; |
- ZoneList<OutSet*>* successors_; |
- friend class Trace; |
-}; |
- |
- |
-// A mapping from integers, specified as ranges, to a set of integers. |
-// Used for mapping character ranges to choices. |
-class DispatchTable : public ZoneObject { |
- public: |
- explicit DispatchTable(Zone* zone) : tree_(zone) { } |
- |
- class Entry { |
- public: |
- Entry() : from_(0), to_(0), out_set_(NULL) { } |
- Entry(uc16 from, uc16 to, OutSet* out_set) |
- : from_(from), to_(to), out_set_(out_set) { } |
- uc16 from() { return from_; } |
- uc16 to() { return to_; } |
- void set_to(uc16 value) { to_ = value; } |
- void AddValue(int value, Zone* zone) { |
- out_set_ = out_set_->Extend(value, zone); |
- } |
- OutSet* out_set() { return out_set_; } |
- private: |
- uc16 from_; |
- uc16 to_; |
- OutSet* out_set_; |
- }; |
- |
- class Config { |
- public: |
- typedef uc16 Key; |
- typedef Entry Value; |
- static const uc16 kNoKey; |
- static const Entry NoValue() { return Value(); } |
- static inline int Compare(uc16 a, uc16 b) { |
- if (a == b) |
- return 0; |
- else if (a < b) |
- return -1; |
- else |
- return 1; |
- } |
- }; |
- |
- void AddRange(CharacterRange range, int value, Zone* zone); |
- OutSet* Get(uc16 value); |
- void Dump(); |
- |
- template <typename Callback> |
- void ForEach(Callback* callback) { |
- return tree()->ForEach(callback); |
- } |
- |
- private: |
- // There can't be a static empty set since it allocates its |
- // successors in a zone and caches them. |
- OutSet* empty() { return &empty_; } |
- OutSet empty_; |
- ZoneSplayTree<Config>* tree() { return &tree_; } |
- ZoneSplayTree<Config> tree_; |
-}; |
- |
- |
-#define FOR_EACH_NODE_TYPE(VISIT) \ |
- VISIT(End) \ |
- VISIT(Action) \ |
- VISIT(Choice) \ |
- VISIT(BackReference) \ |
- VISIT(Assertion) \ |
- VISIT(Text) |
- |
- |
-#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ |
- VISIT(Disjunction) \ |
- VISIT(Alternative) \ |
- VISIT(Assertion) \ |
- VISIT(CharacterClass) \ |
- VISIT(Atom) \ |
- VISIT(Quantifier) \ |
- VISIT(Capture) \ |
- VISIT(Lookahead) \ |
- VISIT(BackReference) \ |
- VISIT(Empty) \ |
- VISIT(Text) |
- |
- |
-#define FORWARD_DECLARE(Name) class RegExp##Name; |
-FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) |
-#undef FORWARD_DECLARE |
- |
- |
-class TextElement final BASE_EMBEDDED { |
- public: |
- enum TextType { |
- ATOM, |
- CHAR_CLASS |
- }; |
- |
- static TextElement Atom(RegExpAtom* atom); |
- static TextElement CharClass(RegExpCharacterClass* char_class); |
- |
- int cp_offset() const { return cp_offset_; } |
- void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
- int length() const; |
- |
- TextType text_type() const { return text_type_; } |
- |
- RegExpTree* tree() const { return tree_; } |
- |
- RegExpAtom* atom() const { |
- DCHECK(text_type() == ATOM); |
- return reinterpret_cast<RegExpAtom*>(tree()); |
- } |
- |
- RegExpCharacterClass* char_class() const { |
- DCHECK(text_type() == CHAR_CLASS); |
- return reinterpret_cast<RegExpCharacterClass*>(tree()); |
- } |
- |
- private: |
- TextElement(TextType text_type, RegExpTree* tree) |
- : cp_offset_(-1), text_type_(text_type), tree_(tree) {} |
- |
- int cp_offset_; |
- TextType text_type_; |
- RegExpTree* tree_; |
-}; |
- |
- |
-class Trace; |
-struct PreloadState; |
-class GreedyLoopState; |
-class AlternativeGenerationList; |
- |
-struct NodeInfo { |
- NodeInfo() |
- : being_analyzed(false), |
- been_analyzed(false), |
- follows_word_interest(false), |
- follows_newline_interest(false), |
- follows_start_interest(false), |
- at_end(false), |
- visited(false), |
- replacement_calculated(false) { } |
- |
- // Returns true if the interests and assumptions of this node |
- // matches the given one. |
- bool Matches(NodeInfo* that) { |
- return (at_end == that->at_end) && |
- (follows_word_interest == that->follows_word_interest) && |
- (follows_newline_interest == that->follows_newline_interest) && |
- (follows_start_interest == that->follows_start_interest); |
- } |
- |
- // Updates the interests of this node given the interests of the |
- // node preceding it. |
- void AddFromPreceding(NodeInfo* that) { |
- at_end |= that->at_end; |
- follows_word_interest |= that->follows_word_interest; |
- follows_newline_interest |= that->follows_newline_interest; |
- follows_start_interest |= that->follows_start_interest; |
- } |
- |
- bool HasLookbehind() { |
- return follows_word_interest || |
- follows_newline_interest || |
- follows_start_interest; |
- } |
- |
- // Sets the interests of this node to include the interests of the |
- // following node. |
- void AddFromFollowing(NodeInfo* that) { |
- follows_word_interest |= that->follows_word_interest; |
- follows_newline_interest |= that->follows_newline_interest; |
- follows_start_interest |= that->follows_start_interest; |
- } |
- |
- void ResetCompilationState() { |
- being_analyzed = false; |
- been_analyzed = false; |
- } |
- |
- bool being_analyzed: 1; |
- bool been_analyzed: 1; |
- |
- // These bits are set of this node has to know what the preceding |
- // character was. |
- bool follows_word_interest: 1; |
- bool follows_newline_interest: 1; |
- bool follows_start_interest: 1; |
- |
- bool at_end: 1; |
- bool visited: 1; |
- bool replacement_calculated: 1; |
-}; |
- |
- |
-// Details of a quick mask-compare check that can look ahead in the |
-// input stream. |
-class QuickCheckDetails { |
- public: |
- QuickCheckDetails() |
- : characters_(0), |
- mask_(0), |
- value_(0), |
- cannot_match_(false) { } |
- explicit QuickCheckDetails(int characters) |
- : characters_(characters), |
- mask_(0), |
- value_(0), |
- cannot_match_(false) { } |
- bool Rationalize(bool one_byte); |
- // Merge in the information from another branch of an alternation. |
- void Merge(QuickCheckDetails* other, int from_index); |
- // Advance the current position by some amount. |
- void Advance(int by, bool one_byte); |
- void Clear(); |
- bool cannot_match() { return cannot_match_; } |
- void set_cannot_match() { cannot_match_ = true; } |
- struct Position { |
- Position() : mask(0), value(0), determines_perfectly(false) { } |
- uc16 mask; |
- uc16 value; |
- bool determines_perfectly; |
- }; |
- int characters() { return characters_; } |
- void set_characters(int characters) { characters_ = characters; } |
- Position* positions(int index) { |
- DCHECK(index >= 0); |
- DCHECK(index < characters_); |
- return positions_ + index; |
- } |
- uint32_t mask() { return mask_; } |
- uint32_t value() { return value_; } |
- |
- private: |
- // How many characters do we have quick check information from. This is |
- // the same for all branches of a choice node. |
- int characters_; |
- Position positions_[4]; |
- // These values are the condensate of the above array after Rationalize(). |
- uint32_t mask_; |
- uint32_t value_; |
- // If set to true, there is no way this quick check can match at all. |
- // E.g., if it requires to be at the start of the input, and isn't. |
- bool cannot_match_; |
-}; |
- |
- |
-extern int kUninitializedRegExpNodePlaceHolder; |
- |
- |
-class RegExpNode: public ZoneObject { |
- public: |
- explicit RegExpNode(Zone* zone) |
- : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) { |
- bm_info_[0] = bm_info_[1] = NULL; |
- } |
- virtual ~RegExpNode(); |
- virtual void Accept(NodeVisitor* visitor) = 0; |
- // Generates a goto to this node or actually generates the code at this point. |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
- // How many characters must this node consume at a minimum in order to |
- // succeed. If we have found at least 'still_to_find' characters that |
- // must be consumed there is no need to ask any following nodes whether |
- // they are sure to eat any more characters. The not_at_start argument is |
- // used to indicate that we know we are not at the start of the input. In |
- // this case anchored branches will always fail and can be ignored when |
- // determining how many characters are consumed on success. |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; |
- // Emits some quick code that checks whether the preloaded characters match. |
- // Falls through on certain failure, jumps to the label on possible success. |
- // If the node cannot make a quick check it does nothing and returns false. |
- bool EmitQuickCheck(RegExpCompiler* compiler, |
- Trace* bounds_check_trace, |
- Trace* trace, |
- bool preload_has_checked_bounds, |
- Label* on_possible_success, |
- QuickCheckDetails* details_return, |
- bool fall_through_on_failure); |
- // For a given number of characters this returns a mask and a value. The |
- // next n characters are anded with the mask and compared with the value. |
- // A comparison failure indicates the node cannot match the next n characters. |
- // A comparison success indicates the node may match. |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start) = 0; |
- static const int kNodeIsTooComplexForGreedyLoops = -1; |
- virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
- // Only returns the successor for a text node of length 1 that matches any |
- // character and that has no guards on it. |
- virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
- RegExpCompiler* compiler) { |
- return NULL; |
- } |
- |
- // Collects information on the possible code units (mod 128) that can match if |
- // we look forward. This is used for a Boyer-Moore-like string searching |
- // implementation. TODO(erikcorry): This should share more code with |
- // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit |
- // the number of nodes we are willing to look at in order to create this data. |
- static const int kRecursionBudget = 200; |
- bool KeepRecursing(RegExpCompiler* compiler); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start) { |
- UNREACHABLE(); |
- } |
- |
- // If we know that the input is one-byte then there are some nodes that can |
- // never match. This method returns a node that can be substituted for |
- // itself, or NULL if the node can never match. |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { |
- return this; |
- } |
- // Helper for FilterOneByte. |
- RegExpNode* replacement() { |
- DCHECK(info()->replacement_calculated); |
- return replacement_; |
- } |
- RegExpNode* set_replacement(RegExpNode* replacement) { |
- info()->replacement_calculated = true; |
- replacement_ = replacement; |
- return replacement; // For convenience. |
- } |
- |
- // We want to avoid recalculating the lookahead info, so we store it on the |
- // node. Only info that is for this node is stored. We can tell that the |
- // info is for this node when offset == 0, so the information is calculated |
- // relative to this node. |
- void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { |
- if (offset == 0) set_bm_info(not_at_start, bm); |
- } |
- |
- Label* label() { return &label_; } |
- // If non-generic code is generated for a node (i.e. the node is not at the |
- // start of the trace) then it cannot be reused. This variable sets a limit |
- // on how often we allow that to happen before we insist on starting a new |
- // trace and generating generic code for a node that can be reused by flushing |
- // the deferred actions in the current trace and generating a goto. |
- static const int kMaxCopiesCodeGenerated = 10; |
- |
- bool on_work_list() { return on_work_list_; } |
- void set_on_work_list(bool value) { on_work_list_ = value; } |
- |
- NodeInfo* info() { return &info_; } |
- |
- BoyerMooreLookahead* bm_info(bool not_at_start) { |
- return bm_info_[not_at_start ? 1 : 0]; |
- } |
- |
- Zone* zone() const { return zone_; } |
- |
- protected: |
- enum LimitResult { DONE, CONTINUE }; |
- RegExpNode* replacement_; |
- |
- LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
- |
- void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { |
- bm_info_[not_at_start ? 1 : 0] = bm; |
- } |
- |
- private: |
- static const int kFirstCharBudget = 10; |
- Label label_; |
- bool on_work_list_; |
- NodeInfo info_; |
- // This variable keeps track of how many times code has been generated for |
- // this node (in different traces). We don't keep track of where the |
- // generated code is located unless the code is generated at the start of |
- // a trace, in which case it is generic and can be reused by flushing the |
- // deferred operations in the current trace and generating a goto. |
- int trace_count_; |
- BoyerMooreLookahead* bm_info_[2]; |
- |
- Zone* zone_; |
-}; |
- |
- |
-// A simple closed interval. |
-class Interval { |
- public: |
- Interval() : from_(kNone), to_(kNone) { } |
- Interval(int from, int to) : from_(from), to_(to) { } |
- Interval Union(Interval that) { |
- if (that.from_ == kNone) |
- return *this; |
- else if (from_ == kNone) |
- return that; |
- else |
- return Interval(Min(from_, that.from_), Max(to_, that.to_)); |
- } |
- bool Contains(int value) { |
- return (from_ <= value) && (value <= to_); |
- } |
- bool is_empty() { return from_ == kNone; } |
- int from() const { return from_; } |
- int to() const { return to_; } |
- static Interval Empty() { return Interval(); } |
- static const int kNone = -1; |
- private: |
- int from_; |
- int to_; |
-}; |
- |
- |
-class SeqRegExpNode: public RegExpNode { |
- public: |
- explicit SeqRegExpNode(RegExpNode* on_success) |
- : RegExpNode(on_success->zone()), on_success_(on_success) { } |
- RegExpNode* on_success() { return on_success_; } |
- void set_on_success(RegExpNode* node) { on_success_ = node; } |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start) { |
- on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); |
- if (offset == 0) set_bm_info(not_at_start, bm); |
- } |
- |
- protected: |
- RegExpNode* FilterSuccessor(int depth, bool ignore_case); |
- |
- private: |
- RegExpNode* on_success_; |
-}; |
- |
- |
-class ActionNode: public SeqRegExpNode { |
- public: |
- enum ActionType { |
- SET_REGISTER, |
- INCREMENT_REGISTER, |
- STORE_POSITION, |
- BEGIN_SUBMATCH, |
- POSITIVE_SUBMATCH_SUCCESS, |
- EMPTY_MATCH_CHECK, |
- CLEAR_CAPTURES |
- }; |
- static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); |
- static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); |
- static ActionNode* StorePosition(int reg, |
- bool is_capture, |
- RegExpNode* on_success); |
- static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
- static ActionNode* BeginSubmatch(int stack_pointer_reg, |
- int position_reg, |
- RegExpNode* on_success); |
- static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, |
- int restore_reg, |
- int clear_capture_count, |
- int clear_capture_from, |
- RegExpNode* on_success); |
- static ActionNode* EmptyMatchCheck(int start_register, |
- int repetition_register, |
- int repetition_limit, |
- RegExpNode* on_success); |
- virtual void Accept(NodeVisitor* visitor); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int filled_in, |
- bool not_at_start) { |
- return on_success()->GetQuickCheckDetails( |
- details, compiler, filled_in, not_at_start); |
- } |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- ActionType action_type() { return action_type_; } |
- // TODO(erikcorry): We should allow some action nodes in greedy loops. |
- virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
- |
- private: |
- union { |
- struct { |
- int reg; |
- int value; |
- } u_store_register; |
- struct { |
- int reg; |
- } u_increment_register; |
- struct { |
- int reg; |
- bool is_capture; |
- } u_position_register; |
- struct { |
- int stack_pointer_register; |
- int current_position_register; |
- int clear_register_count; |
- int clear_register_from; |
- } u_submatch; |
- struct { |
- int start_register; |
- int repetition_register; |
- int repetition_limit; |
- } u_empty_match_check; |
- struct { |
- int range_from; |
- int range_to; |
- } u_clear_captures; |
- } data_; |
- ActionNode(ActionType action_type, RegExpNode* on_success) |
- : SeqRegExpNode(on_success), |
- action_type_(action_type) { } |
- ActionType action_type_; |
- friend class DotPrinter; |
-}; |
- |
- |
-class TextNode: public SeqRegExpNode { |
- public: |
- TextNode(ZoneList<TextElement>* elms, |
- RegExpNode* on_success) |
- : SeqRegExpNode(on_success), |
- elms_(elms) { } |
- TextNode(RegExpCharacterClass* that, |
- RegExpNode* on_success) |
- : SeqRegExpNode(on_success), |
- elms_(new(zone()) ZoneList<TextElement>(1, zone())) { |
- elms_->Add(TextElement::CharClass(that), zone()); |
- } |
- virtual void Accept(NodeVisitor* visitor); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start); |
- ZoneList<TextElement>* elements() { return elms_; } |
- void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); |
- virtual int GreedyLoopTextLength(); |
- virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
- RegExpCompiler* compiler); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- void CalculateOffsets(); |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
- |
- private: |
- enum TextEmitPassType { |
- NON_LATIN1_MATCH, // Check for characters that can't match. |
- SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
- NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
- CASE_CHARACTER_MATCH, // Case-independent single character check. |
- CHARACTER_CLASS_MATCH // Character class. |
- }; |
- static bool SkipPass(int pass, bool ignore_case); |
- static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
- static const int kLastPass = CHARACTER_CLASS_MATCH; |
- void TextEmitPass(RegExpCompiler* compiler, |
- TextEmitPassType pass, |
- bool preloaded, |
- Trace* trace, |
- bool first_element_checked, |
- int* checked_up_to); |
- int Length(); |
- ZoneList<TextElement>* elms_; |
-}; |
- |
- |
-class AssertionNode: public SeqRegExpNode { |
- public: |
- enum AssertionType { |
- AT_END, |
- AT_START, |
- AT_BOUNDARY, |
- AT_NON_BOUNDARY, |
- AFTER_NEWLINE |
- }; |
- static AssertionNode* AtEnd(RegExpNode* on_success) { |
- return new(on_success->zone()) AssertionNode(AT_END, on_success); |
- } |
- static AssertionNode* AtStart(RegExpNode* on_success) { |
- return new(on_success->zone()) AssertionNode(AT_START, on_success); |
- } |
- static AssertionNode* AtBoundary(RegExpNode* on_success) { |
- return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); |
- } |
- static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
- return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); |
- } |
- static AssertionNode* AfterNewline(RegExpNode* on_success) { |
- return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); |
- } |
- virtual void Accept(NodeVisitor* visitor); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int filled_in, |
- bool not_at_start); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- AssertionType assertion_type() { return assertion_type_; } |
- |
- private: |
- void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); |
- enum IfPrevious { kIsNonWord, kIsWord }; |
- void BacktrackIfPrevious(RegExpCompiler* compiler, |
- Trace* trace, |
- IfPrevious backtrack_if_previous); |
- AssertionNode(AssertionType t, RegExpNode* on_success) |
- : SeqRegExpNode(on_success), assertion_type_(t) { } |
- AssertionType assertion_type_; |
-}; |
- |
- |
-class BackReferenceNode: public SeqRegExpNode { |
- public: |
- BackReferenceNode(int start_reg, |
- int end_reg, |
- RegExpNode* on_success) |
- : SeqRegExpNode(on_success), |
- start_reg_(start_reg), |
- end_reg_(end_reg) { } |
- virtual void Accept(NodeVisitor* visitor); |
- int start_register() { return start_reg_; } |
- int end_register() { return end_reg_; } |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, |
- int recursion_depth, |
- bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start) { |
- return; |
- } |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- |
- private: |
- int start_reg_; |
- int end_reg_; |
-}; |
- |
- |
-class EndNode: public RegExpNode { |
- public: |
- enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
- explicit EndNode(Action action, Zone* zone) |
- : RegExpNode(zone), action_(action) { } |
- virtual void Accept(NodeVisitor* visitor); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, |
- int recursion_depth, |
- bool not_at_start) { return 0; } |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start) { |
- // Returning 0 from EatsAtLeast should ensure we never get here. |
- UNREACHABLE(); |
- } |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start) { |
- // Returning 0 from EatsAtLeast should ensure we never get here. |
- UNREACHABLE(); |
- } |
- |
- private: |
- Action action_; |
-}; |
- |
- |
-class NegativeSubmatchSuccess: public EndNode { |
- public: |
- NegativeSubmatchSuccess(int stack_pointer_reg, |
- int position_reg, |
- int clear_capture_count, |
- int clear_capture_start, |
- Zone* zone) |
- : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), |
- stack_pointer_register_(stack_pointer_reg), |
- current_position_register_(position_reg), |
- clear_capture_count_(clear_capture_count), |
- clear_capture_start_(clear_capture_start) { } |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- |
- private: |
- int stack_pointer_register_; |
- int current_position_register_; |
- int clear_capture_count_; |
- int clear_capture_start_; |
-}; |
- |
- |
-class Guard: public ZoneObject { |
- public: |
- enum Relation { LT, GEQ }; |
- Guard(int reg, Relation op, int value) |
- : reg_(reg), |
- op_(op), |
- value_(value) { } |
- int reg() { return reg_; } |
- Relation op() { return op_; } |
- int value() { return value_; } |
- |
- private: |
- int reg_; |
- Relation op_; |
- int value_; |
-}; |
- |
- |
-class GuardedAlternative { |
- public: |
- explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } |
- void AddGuard(Guard* guard, Zone* zone); |
- RegExpNode* node() { return node_; } |
- void set_node(RegExpNode* node) { node_ = node; } |
- ZoneList<Guard*>* guards() { return guards_; } |
- |
- private: |
- RegExpNode* node_; |
- ZoneList<Guard*>* guards_; |
-}; |
- |
- |
-class AlternativeGeneration; |
- |
- |
-class ChoiceNode: public RegExpNode { |
- public: |
- explicit ChoiceNode(int expected_size, Zone* zone) |
- : RegExpNode(zone), |
- alternatives_(new(zone) |
- ZoneList<GuardedAlternative>(expected_size, zone)), |
- table_(NULL), |
- not_at_start_(false), |
- being_calculated_(false) { } |
- virtual void Accept(NodeVisitor* visitor); |
- void AddAlternative(GuardedAlternative node) { |
- alternatives()->Add(node, zone()); |
- } |
- ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } |
- DispatchTable* GetTable(bool ignore_case); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- int EatsAtLeastHelper(int still_to_find, |
- int budget, |
- RegExpNode* ignore_this_node, |
- bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- |
- bool being_calculated() { return being_calculated_; } |
- bool not_at_start() { return not_at_start_; } |
- void set_not_at_start() { not_at_start_ = true; } |
- void set_being_calculated(bool b) { being_calculated_ = b; } |
- virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
- return true; |
- } |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
- |
- protected: |
- int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); |
- ZoneList<GuardedAlternative>* alternatives_; |
- |
- private: |
- friend class DispatchTableConstructor; |
- friend class Analysis; |
- void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
- Guard* guard, |
- Trace* trace); |
- int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); |
- void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
- Trace* trace, |
- GuardedAlternative alternative, |
- AlternativeGeneration* alt_gen, |
- int preload_characters, |
- bool next_expects_preload); |
- void SetUpPreLoad(RegExpCompiler* compiler, |
- Trace* current_trace, |
- PreloadState* preloads); |
- void AssertGuardsMentionRegisters(Trace* trace); |
- int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); |
- Trace* EmitGreedyLoop(RegExpCompiler* compiler, |
- Trace* trace, |
- AlternativeGenerationList* alt_gens, |
- PreloadState* preloads, |
- GreedyLoopState* greedy_loop_state, |
- int text_length); |
- void EmitChoices(RegExpCompiler* compiler, |
- AlternativeGenerationList* alt_gens, |
- int first_choice, |
- Trace* trace, |
- PreloadState* preloads); |
- DispatchTable* table_; |
- // If true, this node is never checked at the start of the input. |
- // Allows a new trace to start with at_start() set to false. |
- bool not_at_start_; |
- bool being_calculated_; |
-}; |
- |
- |
-class NegativeLookaheadChoiceNode: public ChoiceNode { |
- public: |
- explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, |
- GuardedAlternative then_do_this, |
- Zone* zone) |
- : ChoiceNode(2, zone) { |
- AddAlternative(this_must_fail); |
- AddAlternative(then_do_this); |
- } |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start) { |
- alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm, |
- not_at_start); |
- if (offset == 0) set_bm_info(not_at_start, bm); |
- } |
- // For a negative lookahead we don't emit the quick check for the |
- // alternative that is expected to fail. This is because quick check code |
- // starts by loading enough characters for the alternative that takes fewest |
- // characters, but on a negative lookahead the negative branch did not take |
- // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
- virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
- return !is_first; |
- } |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
-}; |
- |
- |
-class LoopChoiceNode: public ChoiceNode { |
- public: |
- explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone) |
- : ChoiceNode(2, zone), |
- loop_node_(NULL), |
- continue_node_(NULL), |
- body_can_be_zero_length_(body_can_be_zero_length) |
- { } |
- void AddLoopAlternative(GuardedAlternative alt); |
- void AddContinueAlternative(GuardedAlternative alt); |
- virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
- virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
- RegExpCompiler* compiler, |
- int characters_filled_in, |
- bool not_at_start); |
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
- BoyerMooreLookahead* bm, bool not_at_start); |
- RegExpNode* loop_node() { return loop_node_; } |
- RegExpNode* continue_node() { return continue_node_; } |
- bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
- virtual void Accept(NodeVisitor* visitor); |
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
- |
- private: |
- // AddAlternative is made private for loop nodes because alternatives |
- // should not be added freely, we need to keep track of which node |
- // goes back to the node itself. |
- void AddAlternative(GuardedAlternative node) { |
- ChoiceNode::AddAlternative(node); |
- } |
- |
- RegExpNode* loop_node_; |
- RegExpNode* continue_node_; |
- bool body_can_be_zero_length_; |
-}; |
- |
- |
-// Improve the speed that we scan for an initial point where a non-anchored |
-// regexp can match by using a Boyer-Moore-like table. This is done by |
-// identifying non-greedy non-capturing loops in the nodes that eat any |
-// character one at a time. For example in the middle of the regexp |
-// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly |
-// inserted at the start of any non-anchored regexp. |
-// |
-// When we have found such a loop we look ahead in the nodes to find the set of |
-// characters that can come at given distances. For example for the regexp |
-// /.?foo/ we know that there are at least 3 characters ahead of us, and the |
-// sets of characters that can occur are [any, [f, o], [o]]. We find a range in |
-// the lookahead info where the set of characters is reasonably constrained. In |
-// our example this is from index 1 to 2 (0 is not constrained). We can now |
-// look 3 characters ahead and if we don't find one of [f, o] (the union of |
-// [f, o] and [o]) then we can skip forwards by the range size (in this case 2). |
-// |
-// For Unicode input strings we do the same, but modulo 128. |
-// |
-// We also look at the first string fed to the regexp and use that to get a hint |
-// of the character frequencies in the inputs. This affects the assessment of |
-// whether the set of characters is 'reasonably constrained'. |
-// |
-// We also have another lookahead mechanism (called quick check in the code), |
-// which uses a wide load of multiple characters followed by a mask and compare |
-// to determine whether a match is possible at this point. |
-enum ContainedInLattice { |
- kNotYet = 0, |
- kLatticeIn = 1, |
- kLatticeOut = 2, |
- kLatticeUnknown = 3 // Can also mean both in and out. |
-}; |
- |
- |
-inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { |
- return static_cast<ContainedInLattice>(a | b); |
-} |
- |
- |
-ContainedInLattice AddRange(ContainedInLattice a, |
- const int* ranges, |
- int ranges_size, |
- Interval new_range); |
- |
- |
-class BoyerMoorePositionInfo : public ZoneObject { |
- public: |
- explicit BoyerMoorePositionInfo(Zone* zone) |
- : map_(new(zone) ZoneList<bool>(kMapSize, zone)), |
- map_count_(0), |
- w_(kNotYet), |
- s_(kNotYet), |
- d_(kNotYet), |
- surrogate_(kNotYet) { |
- for (int i = 0; i < kMapSize; i++) { |
- map_->Add(false, zone); |
- } |
- } |
- |
- bool& at(int i) { return map_->at(i); } |
- |
- static const int kMapSize = 128; |
- static const int kMask = kMapSize - 1; |
- |
- int map_count() const { return map_count_; } |
- |
- void Set(int character); |
- void SetInterval(const Interval& interval); |
- void SetAll(); |
- bool is_non_word() { return w_ == kLatticeOut; } |
- bool is_word() { return w_ == kLatticeIn; } |
- |
- private: |
- ZoneList<bool>* map_; |
- int map_count_; // Number of set bits in the map. |
- ContainedInLattice w_; // The \w character class. |
- ContainedInLattice s_; // The \s character class. |
- ContainedInLattice d_; // The \d character class. |
- ContainedInLattice surrogate_; // Surrogate UTF-16 code units. |
-}; |
- |
- |
-class BoyerMooreLookahead : public ZoneObject { |
- public: |
- BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); |
- |
- int length() { return length_; } |
- int max_char() { return max_char_; } |
- RegExpCompiler* compiler() { return compiler_; } |
- |
- int Count(int map_number) { |
- return bitmaps_->at(map_number)->map_count(); |
- } |
- |
- BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } |
- |
- void Set(int map_number, int character) { |
- if (character > max_char_) return; |
- BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
- info->Set(character); |
- } |
- |
- void SetInterval(int map_number, const Interval& interval) { |
- if (interval.from() > max_char_) return; |
- BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
- if (interval.to() > max_char_) { |
- info->SetInterval(Interval(interval.from(), max_char_)); |
- } else { |
- info->SetInterval(interval); |
- } |
- } |
- |
- void SetAll(int map_number) { |
- bitmaps_->at(map_number)->SetAll(); |
- } |
- |
- void SetRest(int from_map) { |
- for (int i = from_map; i < length_; i++) SetAll(i); |
- } |
- void EmitSkipInstructions(RegExpMacroAssembler* masm); |
- |
- private: |
- // This is the value obtained by EatsAtLeast. If we do not have at least this |
- // many characters left in the sample string then the match is bound to fail. |
- // Therefore it is OK to read a character this far ahead of the current match |
- // point. |
- int length_; |
- RegExpCompiler* compiler_; |
- // 0xff for Latin1, 0xffff for UTF-16. |
- int max_char_; |
- ZoneList<BoyerMoorePositionInfo*>* bitmaps_; |
- |
- int GetSkipTable(int min_lookahead, |
- int max_lookahead, |
- Handle<ByteArray> boolean_skip_table); |
- bool FindWorthwhileInterval(int* from, int* to); |
- int FindBestInterval( |
- int max_number_of_chars, int old_biggest_points, int* from, int* to); |
-}; |
- |
- |
-// There are many ways to generate code for a node. This class encapsulates |
-// the current way we should be generating. In other words it encapsulates |
-// the current state of the code generator. The effect of this is that we |
-// generate code for paths that the matcher can take through the regular |
-// expression. A given node in the regexp can be code-generated several times |
-// as it can be part of several traces. For example for the regexp: |
-// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
-// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
-// to match foo is generated only once (the traces have a common prefix). The |
-// code to store the capture is deferred and generated (twice) after the places |
-// where baz has been matched. |
-class Trace { |
- public: |
- // A value for a property that is either known to be true, know to be false, |
- // or not known. |
- enum TriBool { |
- UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 |
- }; |
- |
- class DeferredAction { |
- public: |
- DeferredAction(ActionNode::ActionType action_type, int reg) |
- : action_type_(action_type), reg_(reg), next_(NULL) { } |
- DeferredAction* next() { return next_; } |
- bool Mentions(int reg); |
- int reg() { return reg_; } |
- ActionNode::ActionType action_type() { return action_type_; } |
- private: |
- ActionNode::ActionType action_type_; |
- int reg_; |
- DeferredAction* next_; |
- friend class Trace; |
- }; |
- |
- class DeferredCapture : public DeferredAction { |
- public: |
- DeferredCapture(int reg, bool is_capture, Trace* trace) |
- : DeferredAction(ActionNode::STORE_POSITION, reg), |
- cp_offset_(trace->cp_offset()), |
- is_capture_(is_capture) { } |
- int cp_offset() { return cp_offset_; } |
- bool is_capture() { return is_capture_; } |
- private: |
- int cp_offset_; |
- bool is_capture_; |
- void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
- }; |
- |
- class DeferredSetRegister : public DeferredAction { |
- public: |
- DeferredSetRegister(int reg, int value) |
- : DeferredAction(ActionNode::SET_REGISTER, reg), |
- value_(value) { } |
- int value() { return value_; } |
- private: |
- int value_; |
- }; |
- |
- class DeferredClearCaptures : public DeferredAction { |
- public: |
- explicit DeferredClearCaptures(Interval range) |
- : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), |
- range_(range) { } |
- Interval range() { return range_; } |
- private: |
- Interval range_; |
- }; |
- |
- class DeferredIncrementRegister : public DeferredAction { |
- public: |
- explicit DeferredIncrementRegister(int reg) |
- : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } |
- }; |
- |
- Trace() |
- : cp_offset_(0), |
- actions_(NULL), |
- backtrack_(NULL), |
- stop_node_(NULL), |
- loop_label_(NULL), |
- characters_preloaded_(0), |
- bound_checked_up_to_(0), |
- flush_budget_(100), |
- at_start_(UNKNOWN) { } |
- |
- // End the trace. This involves flushing the deferred actions in the trace |
- // and pushing a backtrack location onto the backtrack stack. Once this is |
- // done we can start a new trace or go to one that has already been |
- // generated. |
- void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
- int cp_offset() { return cp_offset_; } |
- DeferredAction* actions() { return actions_; } |
- // A trivial trace is one that has no deferred actions or other state that |
- // affects the assumptions used when generating code. There is no recorded |
- // backtrack location in a trivial trace, so with a trivial trace we will |
- // generate code that, on a failure to match, gets the backtrack location |
- // from the backtrack stack rather than using a direct jump instruction. We |
- // always start code generation with a trivial trace and non-trivial traces |
- // are created as we emit code for nodes or add to the list of deferred |
- // actions in the trace. The location of the code generated for a node using |
- // a trivial trace is recorded in a label in the node so that gotos can be |
- // generated to that code. |
- bool is_trivial() { |
- return backtrack_ == NULL && |
- actions_ == NULL && |
- cp_offset_ == 0 && |
- characters_preloaded_ == 0 && |
- bound_checked_up_to_ == 0 && |
- quick_check_performed_.characters() == 0 && |
- at_start_ == UNKNOWN; |
- } |
- TriBool at_start() { return at_start_; } |
- void set_at_start(bool at_start) { |
- at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE; |
- } |
- Label* backtrack() { return backtrack_; } |
- Label* loop_label() { return loop_label_; } |
- RegExpNode* stop_node() { return stop_node_; } |
- int characters_preloaded() { return characters_preloaded_; } |
- int bound_checked_up_to() { return bound_checked_up_to_; } |
- int flush_budget() { return flush_budget_; } |
- QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
- bool mentions_reg(int reg); |
- // Returns true if a deferred position store exists to the specified |
- // register and stores the offset in the out-parameter. Otherwise |
- // returns false. |
- bool GetStoredPosition(int reg, int* cp_offset); |
- // These set methods and AdvanceCurrentPositionInTrace should be used only on |
- // new traces - the intention is that traces are immutable after creation. |
- void add_action(DeferredAction* new_action) { |
- DCHECK(new_action->next_ == NULL); |
- new_action->next_ = actions_; |
- actions_ = new_action; |
- } |
- void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } |
- void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
- void set_loop_label(Label* label) { loop_label_ = label; } |
- void set_characters_preloaded(int count) { characters_preloaded_ = count; } |
- void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } |
- void set_flush_budget(int to) { flush_budget_ = to; } |
- void set_quick_check_performed(QuickCheckDetails* d) { |
- quick_check_performed_ = *d; |
- } |
- void InvalidateCurrentCharacter(); |
- void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); |
- |
- private: |
- int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); |
- void PerformDeferredActions(RegExpMacroAssembler* macro, |
- int max_register, |
- const OutSet& affected_registers, |
- OutSet* registers_to_pop, |
- OutSet* registers_to_clear, |
- Zone* zone); |
- void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
- int max_register, |
- const OutSet& registers_to_pop, |
- const OutSet& registers_to_clear); |
- int cp_offset_; |
- DeferredAction* actions_; |
- Label* backtrack_; |
- RegExpNode* stop_node_; |
- Label* loop_label_; |
- int characters_preloaded_; |
- int bound_checked_up_to_; |
- QuickCheckDetails quick_check_performed_; |
- int flush_budget_; |
- TriBool at_start_; |
-}; |
- |
- |
-class GreedyLoopState { |
- public: |
- explicit GreedyLoopState(bool not_at_start); |
- |
- Label* label() { return &label_; } |
- Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } |
- |
- private: |
- Label label_; |
- Trace counter_backtrack_trace_; |
-}; |
- |
- |
-struct PreloadState { |
- static const int kEatsAtLeastNotYetInitialized = -1; |
- bool preload_is_current_; |
- bool preload_has_checked_bounds_; |
- int preload_characters_; |
- int eats_at_least_; |
- void init() { |
- eats_at_least_ = kEatsAtLeastNotYetInitialized; |
- } |
-}; |
- |
- |
-class NodeVisitor { |
- public: |
- virtual ~NodeVisitor() { } |
-#define DECLARE_VISIT(Type) \ |
- virtual void Visit##Type(Type##Node* that) = 0; |
-FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
-#undef DECLARE_VISIT |
- virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
-}; |
- |
- |
-// Node visitor used to add the start set of the alternatives to the |
-// dispatch table of a choice node. |
-class DispatchTableConstructor: public NodeVisitor { |
- public: |
- DispatchTableConstructor(DispatchTable* table, bool ignore_case, |
- Zone* zone) |
- : table_(table), |
- choice_index_(-1), |
- ignore_case_(ignore_case), |
- zone_(zone) { } |
- |
- void BuildTable(ChoiceNode* node); |
- |
- void AddRange(CharacterRange range) { |
- table()->AddRange(range, choice_index_, zone_); |
- } |
- |
- void AddInverse(ZoneList<CharacterRange>* ranges); |
- |
-#define DECLARE_VISIT(Type) \ |
- virtual void Visit##Type(Type##Node* that); |
-FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
-#undef DECLARE_VISIT |
- |
- DispatchTable* table() { return table_; } |
- void set_choice_index(int value) { choice_index_ = value; } |
- |
- protected: |
- DispatchTable* table_; |
- int choice_index_; |
- bool ignore_case_; |
- Zone* zone_; |
-}; |
- |
- |
-// Assertion propagation moves information about assertions such as |
-// \b to the affected nodes. For instance, in /.\b./ information must |
-// be propagated to the first '.' that whatever follows needs to know |
-// if it matched a word or a non-word, and to the second '.' that it |
-// has to check if it succeeds a word or non-word. In this case the |
-// result will be something like: |
-// |
-// +-------+ +------------+ |
-// | . | | . | |
-// +-------+ ---> +------------+ |
-// | word? | | check word | |
-// +-------+ +------------+ |
-class Analysis: public NodeVisitor { |
- public: |
- Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte) |
- : isolate_(isolate), |
- ignore_case_(ignore_case), |
- is_one_byte_(is_one_byte), |
- error_message_(NULL) {} |
- void EnsureAnalyzed(RegExpNode* node); |
- |
-#define DECLARE_VISIT(Type) \ |
- virtual void Visit##Type(Type##Node* that); |
-FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
-#undef DECLARE_VISIT |
- virtual void VisitLoopChoice(LoopChoiceNode* that); |
- |
- bool has_failed() { return error_message_ != NULL; } |
- const char* error_message() { |
- DCHECK(error_message_ != NULL); |
- return error_message_; |
- } |
- void fail(const char* error_message) { |
- error_message_ = error_message; |
- } |
- |
- Isolate* isolate() const { return isolate_; } |
- |
- private: |
- Isolate* isolate_; |
- bool ignore_case_; |
- bool is_one_byte_; |
- const char* error_message_; |
- |
- DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
-}; |
- |
- |
-struct RegExpCompileData { |
- RegExpCompileData() |
- : tree(NULL), |
- node(NULL), |
- simple(true), |
- contains_anchor(false), |
- capture_count(0) { } |
- RegExpTree* tree; |
- RegExpNode* node; |
- bool simple; |
- bool contains_anchor; |
- Handle<String> error; |
- int capture_count; |
-}; |
- |
- |
-class RegExpEngine: public AllStatic { |
- public: |
- struct CompilationResult { |
- CompilationResult(Isolate* isolate, const char* error_message) |
- : error_message(error_message), |
- code(isolate->heap()->the_hole_value()), |
- num_registers(0) {} |
- CompilationResult(Object* code, int registers) |
- : error_message(NULL), code(code), num_registers(registers) {} |
- const char* error_message; |
- Object* code; |
- int num_registers; |
- }; |
- |
- static CompilationResult Compile(Isolate* isolate, Zone* zone, |
- RegExpCompileData* input, bool ignore_case, |
- bool global, bool multiline, bool sticky, |
- Handle<String> pattern, |
- Handle<String> sample_subject, |
- bool is_one_byte); |
- |
- static bool TooMuchRegExpCode(Handle<String> pattern); |
- |
- static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
-}; |
- |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_JSREGEXP_H_ |