Index: third_party/libwebp/enc/quant.c |
diff --git a/third_party/libwebp/enc/quant.c b/third_party/libwebp/enc/quant.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9130a41609baa781ca1a6633a56e2c0a2659fbe1 |
--- /dev/null |
+++ b/third_party/libwebp/enc/quant.c |
@@ -0,0 +1,1170 @@ |
+// Copyright 2011 Google Inc. All Rights Reserved. |
+// |
+// Use of this source code is governed by a BSD-style license |
+// that can be found in the COPYING file in the root of the source |
+// tree. An additional intellectual property rights grant can be found |
+// in the file PATENTS. All contributing project authors may |
+// be found in the AUTHORS file in the root of the source tree. |
+// ----------------------------------------------------------------------------- |
+// |
+// Quantization |
+// |
+// Author: Skal (pascal.massimino@gmail.com) |
+ |
+#include <assert.h> |
+#include <math.h> |
+#include <stdlib.h> // for abs() |
+ |
+#include "./vp8enci.h" |
+#include "./cost.h" |
+ |
+#define DO_TRELLIS_I4 1 |
+#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. |
+#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. |
+#define USE_TDISTO 1 |
+ |
+#define MID_ALPHA 64 // neutral value for susceptibility |
+#define MIN_ALPHA 30 // lowest usable value for susceptibility |
+#define MAX_ALPHA 100 // higher meaningful value for susceptibility |
+ |
+#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP |
+ // power-law modulation. Must be strictly less than 1. |
+ |
+#define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision |
+ |
+// number of non-zero coeffs below which we consider the block very flat |
+// (and apply a penalty to complex predictions) |
+#define FLATNESS_LIMIT_I16 10 // I16 mode |
+#define FLATNESS_LIMIT_I4 3 // I4 mode |
+#define FLATNESS_LIMIT_UV 2 // UV mode |
+#define FLATNESS_PENALTY 140 // roughly ~1bit per block |
+ |
+#define MULT_8B(a, b) (((a) * (b) + 128) >> 8) |
+ |
+// #define DEBUG_BLOCK |
+ |
+//------------------------------------------------------------------------------ |
+ |
+#if defined(DEBUG_BLOCK) |
+ |
+#include <stdio.h> |
+#include <stdlib.h> |
+ |
+static void PrintBlockInfo(const VP8EncIterator* const it, |
+ const VP8ModeScore* const rd) { |
+ int i, j; |
+ const int is_i16 = (it->mb_->type_ == 1); |
+ printf("SOURCE / OUTPUT / ABS DELTA\n"); |
+ for (j = 0; j < 24; ++j) { |
+ if (j == 16) printf("\n"); // newline before the U/V block |
+ for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]); |
+ printf(" "); |
+ for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]); |
+ printf(" "); |
+ for (i = 0; i < 16; ++i) { |
+ printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS])); |
+ } |
+ printf("\n"); |
+ } |
+ printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", |
+ (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, |
+ (int)rd->score); |
+ if (is_i16) { |
+ printf("Mode: %d\n", rd->mode_i16); |
+ printf("y_dc_levels:"); |
+ for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); |
+ printf("\n"); |
+ } else { |
+ printf("Modes[16]: "); |
+ for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); |
+ printf("\n"); |
+ } |
+ printf("y_ac_levels:\n"); |
+ for (j = 0; j < 16; ++j) { |
+ for (i = is_i16 ? 1 : 0; i < 16; ++i) { |
+ printf("%4d ", rd->y_ac_levels[j][i]); |
+ } |
+ printf("\n"); |
+ } |
+ printf("\n"); |
+ printf("uv_levels (mode=%d):\n", rd->mode_uv); |
+ for (j = 0; j < 8; ++j) { |
+ for (i = 0; i < 16; ++i) { |
+ printf("%4d ", rd->uv_levels[j][i]); |
+ } |
+ printf("\n"); |
+ } |
+} |
+ |
+#endif // DEBUG_BLOCK |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static WEBP_INLINE int clip(int v, int m, int M) { |
+ return v < m ? m : v > M ? M : v; |
+} |
+ |
+static const uint8_t kZigzag[16] = { |
+ 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
+}; |
+ |
+static const uint8_t kDcTable[128] = { |
+ 4, 5, 6, 7, 8, 9, 10, 10, |
+ 11, 12, 13, 14, 15, 16, 17, 17, |
+ 18, 19, 20, 20, 21, 21, 22, 22, |
+ 23, 23, 24, 25, 25, 26, 27, 28, |
+ 29, 30, 31, 32, 33, 34, 35, 36, |
+ 37, 37, 38, 39, 40, 41, 42, 43, |
+ 44, 45, 46, 46, 47, 48, 49, 50, |
+ 51, 52, 53, 54, 55, 56, 57, 58, |
+ 59, 60, 61, 62, 63, 64, 65, 66, |
+ 67, 68, 69, 70, 71, 72, 73, 74, |
+ 75, 76, 76, 77, 78, 79, 80, 81, |
+ 82, 83, 84, 85, 86, 87, 88, 89, |
+ 91, 93, 95, 96, 98, 100, 101, 102, |
+ 104, 106, 108, 110, 112, 114, 116, 118, |
+ 122, 124, 126, 128, 130, 132, 134, 136, |
+ 138, 140, 143, 145, 148, 151, 154, 157 |
+}; |
+ |
+static const uint16_t kAcTable[128] = { |
+ 4, 5, 6, 7, 8, 9, 10, 11, |
+ 12, 13, 14, 15, 16, 17, 18, 19, |
+ 20, 21, 22, 23, 24, 25, 26, 27, |
+ 28, 29, 30, 31, 32, 33, 34, 35, |
+ 36, 37, 38, 39, 40, 41, 42, 43, |
+ 44, 45, 46, 47, 48, 49, 50, 51, |
+ 52, 53, 54, 55, 56, 57, 58, 60, |
+ 62, 64, 66, 68, 70, 72, 74, 76, |
+ 78, 80, 82, 84, 86, 88, 90, 92, |
+ 94, 96, 98, 100, 102, 104, 106, 108, |
+ 110, 112, 114, 116, 119, 122, 125, 128, |
+ 131, 134, 137, 140, 143, 146, 149, 152, |
+ 155, 158, 161, 164, 167, 170, 173, 177, |
+ 181, 185, 189, 193, 197, 201, 205, 209, |
+ 213, 217, 221, 225, 229, 234, 239, 245, |
+ 249, 254, 259, 264, 269, 274, 279, 284 |
+}; |
+ |
+static const uint16_t kAcTable2[128] = { |
+ 8, 8, 9, 10, 12, 13, 15, 17, |
+ 18, 20, 21, 23, 24, 26, 27, 29, |
+ 31, 32, 34, 35, 37, 38, 40, 41, |
+ 43, 44, 46, 48, 49, 51, 52, 54, |
+ 55, 57, 58, 60, 62, 63, 65, 66, |
+ 68, 69, 71, 72, 74, 75, 77, 79, |
+ 80, 82, 83, 85, 86, 88, 89, 93, |
+ 96, 99, 102, 105, 108, 111, 114, 117, |
+ 120, 124, 127, 130, 133, 136, 139, 142, |
+ 145, 148, 151, 155, 158, 161, 164, 167, |
+ 170, 173, 176, 179, 184, 189, 193, 198, |
+ 203, 207, 212, 217, 221, 226, 230, 235, |
+ 240, 244, 249, 254, 258, 263, 268, 274, |
+ 280, 286, 292, 299, 305, 311, 317, 323, |
+ 330, 336, 342, 348, 354, 362, 370, 379, |
+ 385, 393, 401, 409, 416, 424, 432, 440 |
+}; |
+ |
+static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] |
+ { 96, 110 }, { 96, 108 }, { 110, 115 } |
+}; |
+ |
+// Sharpening by (slightly) raising the hi-frequency coeffs. |
+// Hack-ish but helpful for mid-bitrate range. Use with care. |
+#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias |
+static const uint8_t kFreqSharpening[16] = { |
+ 0, 30, 60, 90, |
+ 30, 60, 90, 90, |
+ 60, 90, 90, 90, |
+ 90, 90, 90, 90 |
+}; |
+ |
+//------------------------------------------------------------------------------ |
+// Initialize quantization parameters in VP8Matrix |
+ |
+// Returns the average quantizer |
+static int ExpandMatrix(VP8Matrix* const m, int type) { |
+ int i, sum; |
+ for (i = 0; i < 2; ++i) { |
+ const int is_ac_coeff = (i > 0); |
+ const int bias = kBiasMatrices[type][is_ac_coeff]; |
+ m->iq_[i] = (1 << QFIX) / m->q_[i]; |
+ m->bias_[i] = BIAS(bias); |
+ // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: |
+ // * zero if coeff <= zthresh |
+ // * non-zero if coeff > zthresh |
+ m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; |
+ } |
+ for (i = 2; i < 16; ++i) { |
+ m->q_[i] = m->q_[1]; |
+ m->iq_[i] = m->iq_[1]; |
+ m->bias_[i] = m->bias_[1]; |
+ m->zthresh_[i] = m->zthresh_[1]; |
+ } |
+ for (sum = 0, i = 0; i < 16; ++i) { |
+ if (type == 0) { // we only use sharpening for AC luma coeffs |
+ m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; |
+ } else { |
+ m->sharpen_[i] = 0; |
+ } |
+ sum += m->q_[i]; |
+ } |
+ return (sum + 8) >> 4; |
+} |
+ |
+static void SetupMatrices(VP8Encoder* enc) { |
+ int i; |
+ const int tlambda_scale = |
+ (enc->method_ >= 4) ? enc->config_->sns_strength |
+ : 0; |
+ const int num_segments = enc->segment_hdr_.num_segments_; |
+ for (i = 0; i < num_segments; ++i) { |
+ VP8SegmentInfo* const m = &enc->dqm_[i]; |
+ const int q = m->quant_; |
+ int q4, q16, quv; |
+ m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; |
+ m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; |
+ |
+ m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; |
+ m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; |
+ |
+ m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; |
+ m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; |
+ |
+ q4 = ExpandMatrix(&m->y1_, 0); |
+ q16 = ExpandMatrix(&m->y2_, 1); |
+ quv = ExpandMatrix(&m->uv_, 2); |
+ |
+ m->lambda_i4_ = (3 * q4 * q4) >> 7; |
+ m->lambda_i16_ = (3 * q16 * q16); |
+ m->lambda_uv_ = (3 * quv * quv) >> 6; |
+ m->lambda_mode_ = (1 * q4 * q4) >> 7; |
+ m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; |
+ m->lambda_trellis_i16_ = (q16 * q16) >> 2; |
+ m->lambda_trellis_uv_ = (quv *quv) << 1; |
+ m->tlambda_ = (tlambda_scale * q4) >> 5; |
+ |
+ m->min_disto_ = 10 * m->y1_.q_[0]; // quantization-aware min disto |
+ m->max_edge_ = 0; |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Initialize filtering parameters |
+ |
+// Very small filter-strength values have close to no visual effect. So we can |
+// save a little decoding-CPU by turning filtering off for these. |
+#define FSTRENGTH_CUTOFF 2 |
+ |
+static void SetupFilterStrength(VP8Encoder* const enc) { |
+ int i; |
+ // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. |
+ const int level0 = 5 * enc->config_->filter_strength; |
+ for (i = 0; i < NUM_MB_SEGMENTS; ++i) { |
+ VP8SegmentInfo* const m = &enc->dqm_[i]; |
+ // We focus on the quantization of AC coeffs. |
+ const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; |
+ const int base_strength = |
+ VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); |
+ // Segments with lower complexity ('beta') will be less filtered. |
+ const int f = base_strength * level0 / (256 + m->beta_); |
+ m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; |
+ } |
+ // We record the initial strength (mainly for the case of 1-segment only). |
+ enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; |
+ enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); |
+ enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// Note: if you change the values below, remember that the max range |
+// allowed by the syntax for DQ_UV is [-16,16]. |
+#define MAX_DQ_UV (6) |
+#define MIN_DQ_UV (-4) |
+ |
+// We want to emulate jpeg-like behaviour where the expected "good" quality |
+// is around q=75. Internally, our "good" middle is around c=50. So we |
+// map accordingly using linear piece-wise function |
+static double QualityToCompression(double c) { |
+ const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; |
+ // The file size roughly scales as pow(quantizer, 3.). Actually, the |
+ // exponent is somewhere between 2.8 and 3.2, but we're mostly interested |
+ // in the mid-quant range. So we scale the compressibility inversely to |
+ // this power-law: quant ~= compression ^ 1/3. This law holds well for |
+ // low quant. Finer modeling for high-quant would make use of kAcTable[] |
+ // more explicitly. |
+ const double v = pow(linear_c, 1 / 3.); |
+ return v; |
+} |
+ |
+static double QualityToJPEGCompression(double c, double alpha) { |
+ // We map the complexity 'alpha' and quality setting 'c' to a compression |
+ // exponent empirically matched to the compression curve of libjpeg6b. |
+ // On average, the WebP output size will be roughly similar to that of a |
+ // JPEG file compressed with same quality factor. |
+ const double amin = 0.30; |
+ const double amax = 0.85; |
+ const double exp_min = 0.4; |
+ const double exp_max = 0.9; |
+ const double slope = (exp_min - exp_max) / (amax - amin); |
+ // Linearly interpolate 'expn' from exp_min to exp_max |
+ // in the [amin, amax] range. |
+ const double expn = (alpha > amax) ? exp_min |
+ : (alpha < amin) ? exp_max |
+ : exp_max + slope * (alpha - amin); |
+ const double v = pow(c, expn); |
+ return v; |
+} |
+ |
+static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, |
+ const VP8SegmentInfo* const S2) { |
+ return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); |
+} |
+ |
+static void SimplifySegments(VP8Encoder* const enc) { |
+ int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; |
+ const int num_segments = enc->segment_hdr_.num_segments_; |
+ int num_final_segments = 1; |
+ int s1, s2; |
+ for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments |
+ const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; |
+ int found = 0; |
+ // check if we already have similar segment |
+ for (s2 = 0; s2 < num_final_segments; ++s2) { |
+ const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; |
+ if (SegmentsAreEquivalent(S1, S2)) { |
+ found = 1; |
+ break; |
+ } |
+ } |
+ map[s1] = s2; |
+ if (!found) { |
+ if (num_final_segments != s1) { |
+ enc->dqm_[num_final_segments] = enc->dqm_[s1]; |
+ } |
+ ++num_final_segments; |
+ } |
+ } |
+ if (num_final_segments < num_segments) { // Remap |
+ int i = enc->mb_w_ * enc->mb_h_; |
+ while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; |
+ enc->segment_hdr_.num_segments_ = num_final_segments; |
+ // Replicate the trailing segment infos (it's mostly cosmetics) |
+ for (i = num_final_segments; i < num_segments; ++i) { |
+ enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; |
+ } |
+ } |
+} |
+ |
+void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { |
+ int i; |
+ int dq_uv_ac, dq_uv_dc; |
+ const int num_segments = enc->segment_hdr_.num_segments_; |
+ const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; |
+ const double Q = quality / 100.; |
+ const double c_base = enc->config_->emulate_jpeg_size ? |
+ QualityToJPEGCompression(Q, enc->alpha_ / 255.) : |
+ QualityToCompression(Q); |
+ for (i = 0; i < num_segments; ++i) { |
+ // We modulate the base coefficient to accommodate for the quantization |
+ // susceptibility and allow denser segments to be quantized more. |
+ const double expn = 1. - amp * enc->dqm_[i].alpha_; |
+ const double c = pow(c_base, expn); |
+ const int q = (int)(127. * (1. - c)); |
+ assert(expn > 0.); |
+ enc->dqm_[i].quant_ = clip(q, 0, 127); |
+ } |
+ |
+ // purely indicative in the bitstream (except for the 1-segment case) |
+ enc->base_quant_ = enc->dqm_[0].quant_; |
+ |
+ // fill-in values for the unused segments (required by the syntax) |
+ for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { |
+ enc->dqm_[i].quant_ = enc->base_quant_; |
+ } |
+ |
+ // uv_alpha_ is normally spread around ~60. The useful range is |
+ // typically ~30 (quite bad) to ~100 (ok to decimate UV more). |
+ // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. |
+ dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) |
+ / (MAX_ALPHA - MIN_ALPHA); |
+ // we rescale by the user-defined strength of adaptation |
+ dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; |
+ // and make it safe. |
+ dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); |
+ // We also boost the dc-uv-quant a little, based on sns-strength, since |
+ // U/V channels are quite more reactive to high quants (flat DC-blocks |
+ // tend to appear, and are unpleasant). |
+ dq_uv_dc = -4 * enc->config_->sns_strength / 100; |
+ dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed |
+ |
+ enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum |
+ enc->dq_y2_dc_ = 0; |
+ enc->dq_y2_ac_ = 0; |
+ enc->dq_uv_dc_ = dq_uv_dc; |
+ enc->dq_uv_ac_ = dq_uv_ac; |
+ |
+ SetupFilterStrength(enc); // initialize segments' filtering, eventually |
+ |
+ if (num_segments > 1) SimplifySegments(enc); |
+ |
+ SetupMatrices(enc); // finalize quantization matrices |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Form the predictions in cache |
+ |
+// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index |
+const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; |
+const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; |
+ |
+// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index |
+const int VP8I4ModeOffsets[NUM_BMODES] = { |
+ I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 |
+}; |
+ |
+void VP8MakeLuma16Preds(const VP8EncIterator* const it) { |
+ const uint8_t* const left = it->x_ ? it->y_left_ : NULL; |
+ const uint8_t* const top = it->y_ ? it->y_top_ : NULL; |
+ VP8EncPredLuma16(it->yuv_p_, left, top); |
+} |
+ |
+void VP8MakeChroma8Preds(const VP8EncIterator* const it) { |
+ const uint8_t* const left = it->x_ ? it->u_left_ : NULL; |
+ const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; |
+ VP8EncPredChroma8(it->yuv_p_, left, top); |
+} |
+ |
+void VP8MakeIntra4Preds(const VP8EncIterator* const it) { |
+ VP8EncPredLuma4(it->yuv_p_, it->i4_top_); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Quantize |
+ |
+// Layout: |
+// +----+ |
+// |YYYY| 0 |
+// |YYYY| 4 |
+// |YYYY| 8 |
+// |YYYY| 12 |
+// +----+ |
+// |UUVV| 16 |
+// |UUVV| 20 |
+// +----+ |
+ |
+const int VP8Scan[16] = { // Luma |
+ 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
+ 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
+ 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
+ 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
+}; |
+ |
+static const int VP8ScanUV[4 + 4] = { |
+ 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
+ 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
+}; |
+ |
+//------------------------------------------------------------------------------ |
+// Distortion measurement |
+ |
+static const uint16_t kWeightY[16] = { |
+ 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 |
+}; |
+ |
+static const uint16_t kWeightTrellis[16] = { |
+#if USE_TDISTO == 0 |
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
+#else |
+ 30, 27, 19, 11, |
+ 27, 24, 17, 10, |
+ 19, 17, 12, 8, |
+ 11, 10, 8, 6 |
+#endif |
+}; |
+ |
+// Init/Copy the common fields in score. |
+static void InitScore(VP8ModeScore* const rd) { |
+ rd->D = 0; |
+ rd->SD = 0; |
+ rd->R = 0; |
+ rd->H = 0; |
+ rd->nz = 0; |
+ rd->score = MAX_COST; |
+} |
+ |
+static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
+ dst->D = src->D; |
+ dst->SD = src->SD; |
+ dst->R = src->R; |
+ dst->H = src->H; |
+ dst->nz = src->nz; // note that nz is not accumulated, but just copied. |
+ dst->score = src->score; |
+} |
+ |
+static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
+ dst->D += src->D; |
+ dst->SD += src->SD; |
+ dst->R += src->R; |
+ dst->H += src->H; |
+ dst->nz |= src->nz; // here, new nz bits are accumulated. |
+ dst->score += src->score; |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Performs trellis-optimized quantization. |
+ |
+// Trellis node |
+typedef struct { |
+ int8_t prev; // best previous node |
+ int8_t sign; // sign of coeff_i |
+ int16_t level; // level |
+} Node; |
+ |
+// Score state |
+typedef struct { |
+ score_t score; // partial RD score |
+ const uint16_t* costs; // shortcut to cost tables |
+} ScoreState; |
+ |
+// If a coefficient was quantized to a value Q (using a neutral bias), |
+// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] |
+// We don't test negative values though. |
+#define MIN_DELTA 0 // how much lower level to try |
+#define MAX_DELTA 1 // how much higher |
+#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) |
+#define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) |
+#define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) |
+ |
+static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { |
+ // TODO: incorporate the "* 256" in the tables? |
+ rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD); |
+} |
+ |
+static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, |
+ score_t distortion) { |
+ return rate * lambda + 256 * distortion; |
+} |
+ |
+static int TrellisQuantizeBlock(const VP8Encoder* const enc, |
+ int16_t in[16], int16_t out[16], |
+ int ctx0, int coeff_type, |
+ const VP8Matrix* const mtx, |
+ int lambda) { |
+ const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; |
+ const CostArray* const costs = enc->proba_.level_cost_[coeff_type]; |
+ const int first = (coeff_type == 0) ? 1 : 0; |
+ Node nodes[16][NUM_NODES]; |
+ ScoreState score_states[2][NUM_NODES]; |
+ ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); |
+ ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); |
+ int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous |
+ score_t best_score; |
+ int n, m, p, last; |
+ |
+ { |
+ score_t cost; |
+ const int thresh = mtx->q_[1] * mtx->q_[1] / 4; |
+ const int last_proba = probas[VP8EncBands[first]][ctx0][0]; |
+ |
+ // compute the position of the last interesting coefficient |
+ last = first - 1; |
+ for (n = 15; n >= first; --n) { |
+ const int j = kZigzag[n]; |
+ const int err = in[j] * in[j]; |
+ if (err > thresh) { |
+ last = n; |
+ break; |
+ } |
+ } |
+ // we don't need to go inspect up to n = 16 coeffs. We can just go up |
+ // to last + 1 (inclusive) without losing much. |
+ if (last < 15) ++last; |
+ |
+ // compute 'skip' score. This is the max score one can do. |
+ cost = VP8BitCost(0, last_proba); |
+ best_score = RDScoreTrellis(lambda, cost, 0); |
+ |
+ // initialize source node. |
+ for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
+ const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; |
+ ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); |
+ ss_cur[m].costs = costs[VP8EncBands[first]][ctx0]; |
+ } |
+ } |
+ |
+ // traverse trellis. |
+ for (n = first; n <= last; ++n) { |
+ const int j = kZigzag[n]; |
+ const uint32_t Q = mtx->q_[j]; |
+ const uint32_t iQ = mtx->iq_[j]; |
+ const uint32_t B = BIAS(0x00); // neutral bias |
+ // note: it's important to take sign of the _original_ coeff, |
+ // so we don't have to consider level < 0 afterward. |
+ const int sign = (in[j] < 0); |
+ const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
+ int level0 = QUANTDIV(coeff0, iQ, B); |
+ if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; |
+ |
+ { // Swap current and previous score states |
+ ScoreState* const tmp = ss_cur; |
+ ss_cur = ss_prev; |
+ ss_prev = tmp; |
+ } |
+ |
+ // test all alternate level values around level0. |
+ for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
+ Node* const cur = &NODE(n, m); |
+ int level = level0 + m; |
+ const int ctx = (level > 2) ? 2 : level; |
+ const int band = VP8EncBands[n + 1]; |
+ score_t base_score, last_pos_score; |
+ score_t best_cur_score = MAX_COST; |
+ int best_prev = 0; // default, in case |
+ |
+ ss_cur[m].score = MAX_COST; |
+ ss_cur[m].costs = costs[band][ctx]; |
+ if (level > MAX_LEVEL || level < 0) { // node is dead? |
+ continue; |
+ } |
+ |
+ // Compute extra rate cost if last coeff's position is < 15 |
+ { |
+ const score_t last_pos_cost = |
+ (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; |
+ last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); |
+ } |
+ |
+ { |
+ // Compute delta_error = how much coding this level will |
+ // subtract to max_error as distortion. |
+ // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 |
+ const int new_error = coeff0 - level * Q; |
+ const int delta_error = |
+ kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); |
+ base_score = RDScoreTrellis(lambda, 0, delta_error); |
+ } |
+ |
+ // Inspect all possible non-dead predecessors. Retain only the best one. |
+ for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { |
+ // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically |
+ // eliminated since their score can't be better than the current best. |
+ const score_t cost = VP8LevelCost(ss_prev[p].costs, level); |
+ // Examine node assuming it's a non-terminal one. |
+ const score_t score = |
+ base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); |
+ if (score < best_cur_score) { |
+ best_cur_score = score; |
+ best_prev = p; |
+ } |
+ } |
+ // Store best finding in current node. |
+ cur->sign = sign; |
+ cur->level = level; |
+ cur->prev = best_prev; |
+ ss_cur[m].score = best_cur_score; |
+ |
+ // Now, record best terminal node (and thus best entry in the graph). |
+ if (level != 0) { |
+ const score_t score = best_cur_score + last_pos_score; |
+ if (score < best_score) { |
+ best_score = score; |
+ best_path[0] = n; // best eob position |
+ best_path[1] = m; // best node index |
+ best_path[2] = best_prev; // best predecessor |
+ } |
+ } |
+ } |
+ } |
+ |
+ // Fresh start |
+ memset(in + first, 0, (16 - first) * sizeof(*in)); |
+ memset(out + first, 0, (16 - first) * sizeof(*out)); |
+ if (best_path[0] == -1) { |
+ return 0; // skip! |
+ } |
+ |
+ { |
+ // Unwind the best path. |
+ // Note: best-prev on terminal node is not necessarily equal to the |
+ // best_prev for non-terminal. So we patch best_path[2] in. |
+ int nz = 0; |
+ int best_node = best_path[1]; |
+ n = best_path[0]; |
+ NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal |
+ |
+ for (; n >= first; --n) { |
+ const Node* const node = &NODE(n, best_node); |
+ const int j = kZigzag[n]; |
+ out[n] = node->sign ? -node->level : node->level; |
+ nz |= node->level; |
+ in[j] = out[n] * mtx->q_[j]; |
+ best_node = node->prev; |
+ } |
+ return (nz != 0); |
+ } |
+} |
+ |
+#undef NODE |
+ |
+//------------------------------------------------------------------------------ |
+// Performs: difference, transform, quantize, back-transform, add |
+// all at once. Output is the reconstructed block in *yuv_out, and the |
+// quantized levels in *levels. |
+ |
+static int ReconstructIntra16(VP8EncIterator* const it, |
+ VP8ModeScore* const rd, |
+ uint8_t* const yuv_out, |
+ int mode) { |
+ const VP8Encoder* const enc = it->enc_; |
+ const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
+ const uint8_t* const src = it->yuv_in_ + Y_OFF; |
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
+ int nz = 0; |
+ int n; |
+ int16_t tmp[16][16], dc_tmp[16]; |
+ |
+ for (n = 0; n < 16; ++n) { |
+ VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); |
+ } |
+ VP8FTransformWHT(tmp[0], dc_tmp); |
+ nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; |
+ |
+ if (DO_TRELLIS_I16 && it->do_trellis_) { |
+ int x, y; |
+ VP8IteratorNzToBytes(it); |
+ for (y = 0, n = 0; y < 4; ++y) { |
+ for (x = 0; x < 4; ++x, ++n) { |
+ const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
+ const int non_zero = |
+ TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, |
+ &dqm->y1_, dqm->lambda_trellis_i16_); |
+ it->top_nz_[x] = it->left_nz_[y] = non_zero; |
+ rd->y_ac_levels[n][0] = 0; |
+ nz |= non_zero << n; |
+ } |
+ } |
+ } else { |
+ for (n = 0; n < 16; ++n) { |
+ // Zero-out the first coeff, so that: a) nz is correct below, and |
+ // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. |
+ tmp[n][0] = 0; |
+ nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; |
+ assert(rd->y_ac_levels[n][0] == 0); |
+ } |
+ } |
+ |
+ // Transform back |
+ VP8TransformWHT(dc_tmp, tmp[0]); |
+ for (n = 0; n < 16; n += 2) { |
+ VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); |
+ } |
+ |
+ return nz; |
+} |
+ |
+static int ReconstructIntra4(VP8EncIterator* const it, |
+ int16_t levels[16], |
+ const uint8_t* const src, |
+ uint8_t* const yuv_out, |
+ int mode) { |
+ const VP8Encoder* const enc = it->enc_; |
+ const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
+ int nz = 0; |
+ int16_t tmp[16]; |
+ |
+ VP8FTransform(src, ref, tmp); |
+ if (DO_TRELLIS_I4 && it->do_trellis_) { |
+ const int x = it->i4_ & 3, y = it->i4_ >> 2; |
+ const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
+ nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, |
+ dqm->lambda_trellis_i4_); |
+ } else { |
+ nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); |
+ } |
+ VP8ITransform(ref, tmp, yuv_out, 0); |
+ return nz; |
+} |
+ |
+static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, |
+ uint8_t* const yuv_out, int mode) { |
+ const VP8Encoder* const enc = it->enc_; |
+ const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
+ const uint8_t* const src = it->yuv_in_ + U_OFF; |
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
+ int nz = 0; |
+ int n; |
+ int16_t tmp[8][16]; |
+ |
+ for (n = 0; n < 8; ++n) { |
+ VP8FTransform(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); |
+ } |
+ if (DO_TRELLIS_UV && it->do_trellis_) { |
+ int ch, x, y; |
+ for (ch = 0, n = 0; ch <= 2; ch += 2) { |
+ for (y = 0; y < 2; ++y) { |
+ for (x = 0; x < 2; ++x, ++n) { |
+ const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
+ const int non_zero = |
+ TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, |
+ &dqm->uv_, dqm->lambda_trellis_uv_); |
+ it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; |
+ nz |= non_zero << n; |
+ } |
+ } |
+ } |
+ } else { |
+ for (n = 0; n < 8; ++n) { |
+ nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; |
+ } |
+ } |
+ |
+ for (n = 0; n < 8; n += 2) { |
+ VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); |
+ } |
+ return (nz << 16); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. |
+// Pick the mode is lower RD-cost = Rate + lambda * Distortion. |
+ |
+static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { |
+ // We look at the first three AC coefficients to determine what is the average |
+ // delta between each sub-4x4 block. |
+ const int v0 = abs(DCs[1]); |
+ const int v1 = abs(DCs[4]); |
+ const int v2 = abs(DCs[5]); |
+ int max_v = (v0 > v1) ? v1 : v0; |
+ max_v = (v2 > max_v) ? v2 : max_v; |
+ if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; |
+} |
+ |
+static void SwapPtr(uint8_t** a, uint8_t** b) { |
+ uint8_t* const tmp = *a; |
+ *a = *b; |
+ *b = tmp; |
+} |
+ |
+static void SwapOut(VP8EncIterator* const it) { |
+ SwapPtr(&it->yuv_out_, &it->yuv_out2_); |
+} |
+ |
+static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { |
+ score_t score = 0; |
+ while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? |
+ int i; |
+ for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC |
+ score += (levels[i] != 0); |
+ if (score > thresh) return 0; |
+ } |
+ levels += 16; |
+ } |
+ return 1; |
+} |
+ |
+static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { |
+ const int kNumBlocks = 16; |
+ VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
+ const int lambda = dqm->lambda_i16_; |
+ const int tlambda = dqm->tlambda_; |
+ const uint8_t* const src = it->yuv_in_ + Y_OFF; |
+ VP8ModeScore rd16; |
+ int mode; |
+ |
+ rd->mode_i16 = -1; |
+ for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
+ uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer |
+ int nz; |
+ |
+ // Reconstruct |
+ nz = ReconstructIntra16(it, &rd16, tmp_dst, mode); |
+ |
+ // Measure RD-score |
+ rd16.D = VP8SSE16x16(src, tmp_dst); |
+ rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) |
+ : 0; |
+ rd16.H = VP8FixedCostsI16[mode]; |
+ rd16.R = VP8GetCostLuma16(it, &rd16); |
+ if (mode > 0 && |
+ IsFlat(rd16.y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { |
+ // penalty to avoid flat area to be mispredicted by complex mode |
+ rd16.R += FLATNESS_PENALTY * kNumBlocks; |
+ } |
+ |
+ // Since we always examine Intra16 first, we can overwrite *rd directly. |
+ SetRDScore(lambda, &rd16); |
+ if (mode == 0 || rd16.score < rd->score) { |
+ CopyScore(rd, &rd16); |
+ rd->mode_i16 = mode; |
+ rd->nz = nz; |
+ memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels)); |
+ memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels)); |
+ SwapOut(it); |
+ } |
+ } |
+ SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. |
+ VP8SetIntra16Mode(it, rd->mode_i16); |
+ |
+ // we have a blocky macroblock (only DCs are non-zero) with fairly high |
+ // distortion, record max delta so we can later adjust the minimal filtering |
+ // strength needed to smooth these blocks out. |
+ if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) { |
+ StoreMaxDelta(dqm, rd->y_dc_levels); |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+// return the cost array corresponding to the surrounding prediction modes. |
+static const uint16_t* GetCostModeI4(VP8EncIterator* const it, |
+ const uint8_t modes[16]) { |
+ const int preds_w = it->enc_->preds_w_; |
+ const int x = (it->i4_ & 3), y = it->i4_ >> 2; |
+ const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; |
+ const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; |
+ return VP8FixedCostsI4[top][left]; |
+} |
+ |
+static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { |
+ const VP8Encoder* const enc = it->enc_; |
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
+ const int lambda = dqm->lambda_i4_; |
+ const int tlambda = dqm->tlambda_; |
+ const uint8_t* const src0 = it->yuv_in_ + Y_OFF; |
+ uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF; |
+ int total_header_bits = 0; |
+ VP8ModeScore rd_best; |
+ |
+ if (enc->max_i4_header_bits_ == 0) { |
+ return 0; |
+ } |
+ |
+ InitScore(&rd_best); |
+ rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) |
+ SetRDScore(dqm->lambda_mode_, &rd_best); |
+ VP8IteratorStartI4(it); |
+ do { |
+ const int kNumBlocks = 1; |
+ VP8ModeScore rd_i4; |
+ int mode; |
+ int best_mode = -1; |
+ const uint8_t* const src = src0 + VP8Scan[it->i4_]; |
+ const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
+ uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; |
+ uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. |
+ |
+ InitScore(&rd_i4); |
+ VP8MakeIntra4Preds(it); |
+ for (mode = 0; mode < NUM_BMODES; ++mode) { |
+ VP8ModeScore rd_tmp; |
+ int16_t tmp_levels[16]; |
+ |
+ // Reconstruct |
+ rd_tmp.nz = |
+ ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; |
+ |
+ // Compute RD-score |
+ rd_tmp.D = VP8SSE4x4(src, tmp_dst); |
+ rd_tmp.SD = |
+ tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) |
+ : 0; |
+ rd_tmp.H = mode_costs[mode]; |
+ rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); |
+ if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { |
+ rd_tmp.R += FLATNESS_PENALTY * kNumBlocks; |
+ } |
+ |
+ SetRDScore(lambda, &rd_tmp); |
+ if (best_mode < 0 || rd_tmp.score < rd_i4.score) { |
+ CopyScore(&rd_i4, &rd_tmp); |
+ best_mode = mode; |
+ SwapPtr(&tmp_dst, &best_block); |
+ memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels)); |
+ } |
+ } |
+ SetRDScore(dqm->lambda_mode_, &rd_i4); |
+ AddScore(&rd_best, &rd_i4); |
+ if (rd_best.score >= rd->score) { |
+ return 0; |
+ } |
+ total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; |
+ if (total_header_bits > enc->max_i4_header_bits_) { |
+ return 0; |
+ } |
+ // Copy selected samples if not in the right place already. |
+ if (best_block != best_blocks + VP8Scan[it->i4_]) { |
+ VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); |
+ } |
+ rd->modes_i4[it->i4_] = best_mode; |
+ it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); |
+ } while (VP8IteratorRotateI4(it, best_blocks)); |
+ |
+ // finalize state |
+ CopyScore(rd, &rd_best); |
+ VP8SetIntra4Mode(it, rd->modes_i4); |
+ SwapOut(it); |
+ memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); |
+ return 1; // select intra4x4 over intra16x16 |
+} |
+ |
+//------------------------------------------------------------------------------ |
+ |
+static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { |
+ const int kNumBlocks = 8; |
+ const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
+ const int lambda = dqm->lambda_uv_; |
+ const uint8_t* const src = it->yuv_in_ + U_OFF; |
+ uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer |
+ uint8_t* const dst0 = it->yuv_out_ + U_OFF; |
+ VP8ModeScore rd_best; |
+ int mode; |
+ |
+ rd->mode_uv = -1; |
+ InitScore(&rd_best); |
+ for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
+ VP8ModeScore rd_uv; |
+ |
+ // Reconstruct |
+ rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); |
+ |
+ // Compute RD-score |
+ rd_uv.D = VP8SSE16x8(src, tmp_dst); |
+ rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. |
+ rd_uv.H = VP8FixedCostsUV[mode]; |
+ rd_uv.R = VP8GetCostUV(it, &rd_uv); |
+ if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { |
+ rd_uv.R += FLATNESS_PENALTY * kNumBlocks; |
+ } |
+ |
+ SetRDScore(lambda, &rd_uv); |
+ if (mode == 0 || rd_uv.score < rd_best.score) { |
+ CopyScore(&rd_best, &rd_uv); |
+ rd->mode_uv = mode; |
+ memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); |
+ memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ? |
+ } |
+ } |
+ VP8SetIntraUVMode(it, rd->mode_uv); |
+ AddScore(rd, &rd_best); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Final reconstruction and quantization. |
+ |
+static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { |
+ const VP8Encoder* const enc = it->enc_; |
+ const int is_i16 = (it->mb_->type_ == 1); |
+ int nz = 0; |
+ |
+ if (is_i16) { |
+ nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); |
+ } else { |
+ VP8IteratorStartI4(it); |
+ do { |
+ const int mode = |
+ it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; |
+ const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
+ uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_]; |
+ VP8MakeIntra4Preds(it); |
+ nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
+ src, dst, mode) << it->i4_; |
+ } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF)); |
+ } |
+ |
+ nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_); |
+ rd->nz = nz; |
+} |
+ |
+// Refine intra16/intra4 sub-modes based on distortion only (not rate). |
+static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) { |
+ const int is_i16 = (it->mb_->type_ == 1); |
+ score_t best_score = MAX_COST; |
+ |
+ if (try_both_i4_i16 || is_i16) { |
+ int mode; |
+ int best_mode = -1; |
+ for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
+ const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
+ const uint8_t* const src = it->yuv_in_ + Y_OFF; |
+ const score_t score = VP8SSE16x16(src, ref); |
+ if (score < best_score) { |
+ best_mode = mode; |
+ best_score = score; |
+ } |
+ } |
+ VP8SetIntra16Mode(it, best_mode); |
+ } |
+ if (try_both_i4_i16 || !is_i16) { |
+ uint8_t modes_i4[16]; |
+ // We don't evaluate the rate here, but just account for it through a |
+ // constant penalty (i4 mode usually needs more bits compared to i16). |
+ score_t score_i4 = (score_t)I4_PENALTY; |
+ |
+ VP8IteratorStartI4(it); |
+ do { |
+ int mode; |
+ int best_sub_mode = -1; |
+ score_t best_sub_score = MAX_COST; |
+ const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
+ |
+ // TODO(skal): we don't really need the prediction pixels here, |
+ // but just the distortion against 'src'. |
+ VP8MakeIntra4Preds(it); |
+ for (mode = 0; mode < NUM_BMODES; ++mode) { |
+ const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
+ const score_t score = VP8SSE4x4(src, ref); |
+ if (score < best_sub_score) { |
+ best_sub_mode = mode; |
+ best_sub_score = score; |
+ } |
+ } |
+ modes_i4[it->i4_] = best_sub_mode; |
+ score_i4 += best_sub_score; |
+ if (score_i4 >= best_score) break; |
+ } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); |
+ if (score_i4 < best_score) { |
+ VP8SetIntra4Mode(it, modes_i4); |
+ } |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// Entry point |
+ |
+int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, |
+ VP8RDLevel rd_opt) { |
+ int is_skipped; |
+ const int method = it->enc_->method_; |
+ |
+ InitScore(rd); |
+ |
+ // We can perform predictions for Luma16x16 and Chroma8x8 already. |
+ // Luma4x4 predictions needs to be done as-we-go. |
+ VP8MakeLuma16Preds(it); |
+ VP8MakeChroma8Preds(it); |
+ |
+ if (rd_opt > RD_OPT_NONE) { |
+ it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); |
+ PickBestIntra16(it, rd); |
+ if (method >= 2) { |
+ PickBestIntra4(it, rd); |
+ } |
+ PickBestUV(it, rd); |
+ if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now |
+ it->do_trellis_ = 1; |
+ SimpleQuantize(it, rd); |
+ } |
+ } else { |
+ // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower). |
+ // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode). |
+ DistoRefine(it, (method >= 2)); |
+ SimpleQuantize(it, rd); |
+ } |
+ is_skipped = (rd->nz == 0); |
+ VP8SetSkip(it, is_skipped); |
+ return is_skipped; |
+} |
+ |