OLD | NEW |
(Empty) | |
| 1 // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 // |
| 3 // Use of this source code is governed by a BSD-style license |
| 4 // that can be found in the COPYING file in the root of the source |
| 5 // tree. An additional intellectual property rights grant can be found |
| 6 // in the file PATENTS. All contributing project authors may |
| 7 // be found in the AUTHORS file in the root of the source tree. |
| 8 // ----------------------------------------------------------------------------- |
| 9 // |
| 10 // Quantization |
| 11 // |
| 12 // Author: Skal (pascal.massimino@gmail.com) |
| 13 |
| 14 #include <assert.h> |
| 15 #include <math.h> |
| 16 #include <stdlib.h> // for abs() |
| 17 |
| 18 #include "./vp8enci.h" |
| 19 #include "./cost.h" |
| 20 |
| 21 #define DO_TRELLIS_I4 1 |
| 22 #define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. |
| 23 #define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. |
| 24 #define USE_TDISTO 1 |
| 25 |
| 26 #define MID_ALPHA 64 // neutral value for susceptibility |
| 27 #define MIN_ALPHA 30 // lowest usable value for susceptibility |
| 28 #define MAX_ALPHA 100 // higher meaningful value for susceptibility |
| 29 |
| 30 #define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP |
| 31 // power-law modulation. Must be strictly less than 1. |
| 32 |
| 33 #define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision |
| 34 |
| 35 // number of non-zero coeffs below which we consider the block very flat |
| 36 // (and apply a penalty to complex predictions) |
| 37 #define FLATNESS_LIMIT_I16 10 // I16 mode |
| 38 #define FLATNESS_LIMIT_I4 3 // I4 mode |
| 39 #define FLATNESS_LIMIT_UV 2 // UV mode |
| 40 #define FLATNESS_PENALTY 140 // roughly ~1bit per block |
| 41 |
| 42 #define MULT_8B(a, b) (((a) * (b) + 128) >> 8) |
| 43 |
| 44 // #define DEBUG_BLOCK |
| 45 |
| 46 //------------------------------------------------------------------------------ |
| 47 |
| 48 #if defined(DEBUG_BLOCK) |
| 49 |
| 50 #include <stdio.h> |
| 51 #include <stdlib.h> |
| 52 |
| 53 static void PrintBlockInfo(const VP8EncIterator* const it, |
| 54 const VP8ModeScore* const rd) { |
| 55 int i, j; |
| 56 const int is_i16 = (it->mb_->type_ == 1); |
| 57 printf("SOURCE / OUTPUT / ABS DELTA\n"); |
| 58 for (j = 0; j < 24; ++j) { |
| 59 if (j == 16) printf("\n"); // newline before the U/V block |
| 60 for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]); |
| 61 printf(" "); |
| 62 for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]); |
| 63 printf(" "); |
| 64 for (i = 0; i < 16; ++i) { |
| 65 printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS])); |
| 66 } |
| 67 printf("\n"); |
| 68 } |
| 69 printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", |
| 70 (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, |
| 71 (int)rd->score); |
| 72 if (is_i16) { |
| 73 printf("Mode: %d\n", rd->mode_i16); |
| 74 printf("y_dc_levels:"); |
| 75 for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); |
| 76 printf("\n"); |
| 77 } else { |
| 78 printf("Modes[16]: "); |
| 79 for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); |
| 80 printf("\n"); |
| 81 } |
| 82 printf("y_ac_levels:\n"); |
| 83 for (j = 0; j < 16; ++j) { |
| 84 for (i = is_i16 ? 1 : 0; i < 16; ++i) { |
| 85 printf("%4d ", rd->y_ac_levels[j][i]); |
| 86 } |
| 87 printf("\n"); |
| 88 } |
| 89 printf("\n"); |
| 90 printf("uv_levels (mode=%d):\n", rd->mode_uv); |
| 91 for (j = 0; j < 8; ++j) { |
| 92 for (i = 0; i < 16; ++i) { |
| 93 printf("%4d ", rd->uv_levels[j][i]); |
| 94 } |
| 95 printf("\n"); |
| 96 } |
| 97 } |
| 98 |
| 99 #endif // DEBUG_BLOCK |
| 100 |
| 101 //------------------------------------------------------------------------------ |
| 102 |
| 103 static WEBP_INLINE int clip(int v, int m, int M) { |
| 104 return v < m ? m : v > M ? M : v; |
| 105 } |
| 106 |
| 107 static const uint8_t kZigzag[16] = { |
| 108 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 |
| 109 }; |
| 110 |
| 111 static const uint8_t kDcTable[128] = { |
| 112 4, 5, 6, 7, 8, 9, 10, 10, |
| 113 11, 12, 13, 14, 15, 16, 17, 17, |
| 114 18, 19, 20, 20, 21, 21, 22, 22, |
| 115 23, 23, 24, 25, 25, 26, 27, 28, |
| 116 29, 30, 31, 32, 33, 34, 35, 36, |
| 117 37, 37, 38, 39, 40, 41, 42, 43, |
| 118 44, 45, 46, 46, 47, 48, 49, 50, |
| 119 51, 52, 53, 54, 55, 56, 57, 58, |
| 120 59, 60, 61, 62, 63, 64, 65, 66, |
| 121 67, 68, 69, 70, 71, 72, 73, 74, |
| 122 75, 76, 76, 77, 78, 79, 80, 81, |
| 123 82, 83, 84, 85, 86, 87, 88, 89, |
| 124 91, 93, 95, 96, 98, 100, 101, 102, |
| 125 104, 106, 108, 110, 112, 114, 116, 118, |
| 126 122, 124, 126, 128, 130, 132, 134, 136, |
| 127 138, 140, 143, 145, 148, 151, 154, 157 |
| 128 }; |
| 129 |
| 130 static const uint16_t kAcTable[128] = { |
| 131 4, 5, 6, 7, 8, 9, 10, 11, |
| 132 12, 13, 14, 15, 16, 17, 18, 19, |
| 133 20, 21, 22, 23, 24, 25, 26, 27, |
| 134 28, 29, 30, 31, 32, 33, 34, 35, |
| 135 36, 37, 38, 39, 40, 41, 42, 43, |
| 136 44, 45, 46, 47, 48, 49, 50, 51, |
| 137 52, 53, 54, 55, 56, 57, 58, 60, |
| 138 62, 64, 66, 68, 70, 72, 74, 76, |
| 139 78, 80, 82, 84, 86, 88, 90, 92, |
| 140 94, 96, 98, 100, 102, 104, 106, 108, |
| 141 110, 112, 114, 116, 119, 122, 125, 128, |
| 142 131, 134, 137, 140, 143, 146, 149, 152, |
| 143 155, 158, 161, 164, 167, 170, 173, 177, |
| 144 181, 185, 189, 193, 197, 201, 205, 209, |
| 145 213, 217, 221, 225, 229, 234, 239, 245, |
| 146 249, 254, 259, 264, 269, 274, 279, 284 |
| 147 }; |
| 148 |
| 149 static const uint16_t kAcTable2[128] = { |
| 150 8, 8, 9, 10, 12, 13, 15, 17, |
| 151 18, 20, 21, 23, 24, 26, 27, 29, |
| 152 31, 32, 34, 35, 37, 38, 40, 41, |
| 153 43, 44, 46, 48, 49, 51, 52, 54, |
| 154 55, 57, 58, 60, 62, 63, 65, 66, |
| 155 68, 69, 71, 72, 74, 75, 77, 79, |
| 156 80, 82, 83, 85, 86, 88, 89, 93, |
| 157 96, 99, 102, 105, 108, 111, 114, 117, |
| 158 120, 124, 127, 130, 133, 136, 139, 142, |
| 159 145, 148, 151, 155, 158, 161, 164, 167, |
| 160 170, 173, 176, 179, 184, 189, 193, 198, |
| 161 203, 207, 212, 217, 221, 226, 230, 235, |
| 162 240, 244, 249, 254, 258, 263, 268, 274, |
| 163 280, 286, 292, 299, 305, 311, 317, 323, |
| 164 330, 336, 342, 348, 354, 362, 370, 379, |
| 165 385, 393, 401, 409, 416, 424, 432, 440 |
| 166 }; |
| 167 |
| 168 static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] |
| 169 { 96, 110 }, { 96, 108 }, { 110, 115 } |
| 170 }; |
| 171 |
| 172 // Sharpening by (slightly) raising the hi-frequency coeffs. |
| 173 // Hack-ish but helpful for mid-bitrate range. Use with care. |
| 174 #define SHARPEN_BITS 11 // number of descaling bits for sharpening bias |
| 175 static const uint8_t kFreqSharpening[16] = { |
| 176 0, 30, 60, 90, |
| 177 30, 60, 90, 90, |
| 178 60, 90, 90, 90, |
| 179 90, 90, 90, 90 |
| 180 }; |
| 181 |
| 182 //------------------------------------------------------------------------------ |
| 183 // Initialize quantization parameters in VP8Matrix |
| 184 |
| 185 // Returns the average quantizer |
| 186 static int ExpandMatrix(VP8Matrix* const m, int type) { |
| 187 int i, sum; |
| 188 for (i = 0; i < 2; ++i) { |
| 189 const int is_ac_coeff = (i > 0); |
| 190 const int bias = kBiasMatrices[type][is_ac_coeff]; |
| 191 m->iq_[i] = (1 << QFIX) / m->q_[i]; |
| 192 m->bias_[i] = BIAS(bias); |
| 193 // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: |
| 194 // * zero if coeff <= zthresh |
| 195 // * non-zero if coeff > zthresh |
| 196 m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; |
| 197 } |
| 198 for (i = 2; i < 16; ++i) { |
| 199 m->q_[i] = m->q_[1]; |
| 200 m->iq_[i] = m->iq_[1]; |
| 201 m->bias_[i] = m->bias_[1]; |
| 202 m->zthresh_[i] = m->zthresh_[1]; |
| 203 } |
| 204 for (sum = 0, i = 0; i < 16; ++i) { |
| 205 if (type == 0) { // we only use sharpening for AC luma coeffs |
| 206 m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; |
| 207 } else { |
| 208 m->sharpen_[i] = 0; |
| 209 } |
| 210 sum += m->q_[i]; |
| 211 } |
| 212 return (sum + 8) >> 4; |
| 213 } |
| 214 |
| 215 static void SetupMatrices(VP8Encoder* enc) { |
| 216 int i; |
| 217 const int tlambda_scale = |
| 218 (enc->method_ >= 4) ? enc->config_->sns_strength |
| 219 : 0; |
| 220 const int num_segments = enc->segment_hdr_.num_segments_; |
| 221 for (i = 0; i < num_segments; ++i) { |
| 222 VP8SegmentInfo* const m = &enc->dqm_[i]; |
| 223 const int q = m->quant_; |
| 224 int q4, q16, quv; |
| 225 m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; |
| 226 m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; |
| 227 |
| 228 m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; |
| 229 m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; |
| 230 |
| 231 m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; |
| 232 m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; |
| 233 |
| 234 q4 = ExpandMatrix(&m->y1_, 0); |
| 235 q16 = ExpandMatrix(&m->y2_, 1); |
| 236 quv = ExpandMatrix(&m->uv_, 2); |
| 237 |
| 238 m->lambda_i4_ = (3 * q4 * q4) >> 7; |
| 239 m->lambda_i16_ = (3 * q16 * q16); |
| 240 m->lambda_uv_ = (3 * quv * quv) >> 6; |
| 241 m->lambda_mode_ = (1 * q4 * q4) >> 7; |
| 242 m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3; |
| 243 m->lambda_trellis_i16_ = (q16 * q16) >> 2; |
| 244 m->lambda_trellis_uv_ = (quv *quv) << 1; |
| 245 m->tlambda_ = (tlambda_scale * q4) >> 5; |
| 246 |
| 247 m->min_disto_ = 10 * m->y1_.q_[0]; // quantization-aware min disto |
| 248 m->max_edge_ = 0; |
| 249 } |
| 250 } |
| 251 |
| 252 //------------------------------------------------------------------------------ |
| 253 // Initialize filtering parameters |
| 254 |
| 255 // Very small filter-strength values have close to no visual effect. So we can |
| 256 // save a little decoding-CPU by turning filtering off for these. |
| 257 #define FSTRENGTH_CUTOFF 2 |
| 258 |
| 259 static void SetupFilterStrength(VP8Encoder* const enc) { |
| 260 int i; |
| 261 // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. |
| 262 const int level0 = 5 * enc->config_->filter_strength; |
| 263 for (i = 0; i < NUM_MB_SEGMENTS; ++i) { |
| 264 VP8SegmentInfo* const m = &enc->dqm_[i]; |
| 265 // We focus on the quantization of AC coeffs. |
| 266 const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; |
| 267 const int base_strength = |
| 268 VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); |
| 269 // Segments with lower complexity ('beta') will be less filtered. |
| 270 const int f = base_strength * level0 / (256 + m->beta_); |
| 271 m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; |
| 272 } |
| 273 // We record the initial strength (mainly for the case of 1-segment only). |
| 274 enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; |
| 275 enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); |
| 276 enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; |
| 277 } |
| 278 |
| 279 //------------------------------------------------------------------------------ |
| 280 |
| 281 // Note: if you change the values below, remember that the max range |
| 282 // allowed by the syntax for DQ_UV is [-16,16]. |
| 283 #define MAX_DQ_UV (6) |
| 284 #define MIN_DQ_UV (-4) |
| 285 |
| 286 // We want to emulate jpeg-like behaviour where the expected "good" quality |
| 287 // is around q=75. Internally, our "good" middle is around c=50. So we |
| 288 // map accordingly using linear piece-wise function |
| 289 static double QualityToCompression(double c) { |
| 290 const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; |
| 291 // The file size roughly scales as pow(quantizer, 3.). Actually, the |
| 292 // exponent is somewhere between 2.8 and 3.2, but we're mostly interested |
| 293 // in the mid-quant range. So we scale the compressibility inversely to |
| 294 // this power-law: quant ~= compression ^ 1/3. This law holds well for |
| 295 // low quant. Finer modeling for high-quant would make use of kAcTable[] |
| 296 // more explicitly. |
| 297 const double v = pow(linear_c, 1 / 3.); |
| 298 return v; |
| 299 } |
| 300 |
| 301 static double QualityToJPEGCompression(double c, double alpha) { |
| 302 // We map the complexity 'alpha' and quality setting 'c' to a compression |
| 303 // exponent empirically matched to the compression curve of libjpeg6b. |
| 304 // On average, the WebP output size will be roughly similar to that of a |
| 305 // JPEG file compressed with same quality factor. |
| 306 const double amin = 0.30; |
| 307 const double amax = 0.85; |
| 308 const double exp_min = 0.4; |
| 309 const double exp_max = 0.9; |
| 310 const double slope = (exp_min - exp_max) / (amax - amin); |
| 311 // Linearly interpolate 'expn' from exp_min to exp_max |
| 312 // in the [amin, amax] range. |
| 313 const double expn = (alpha > amax) ? exp_min |
| 314 : (alpha < amin) ? exp_max |
| 315 : exp_max + slope * (alpha - amin); |
| 316 const double v = pow(c, expn); |
| 317 return v; |
| 318 } |
| 319 |
| 320 static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, |
| 321 const VP8SegmentInfo* const S2) { |
| 322 return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); |
| 323 } |
| 324 |
| 325 static void SimplifySegments(VP8Encoder* const enc) { |
| 326 int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; |
| 327 const int num_segments = enc->segment_hdr_.num_segments_; |
| 328 int num_final_segments = 1; |
| 329 int s1, s2; |
| 330 for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments |
| 331 const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; |
| 332 int found = 0; |
| 333 // check if we already have similar segment |
| 334 for (s2 = 0; s2 < num_final_segments; ++s2) { |
| 335 const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; |
| 336 if (SegmentsAreEquivalent(S1, S2)) { |
| 337 found = 1; |
| 338 break; |
| 339 } |
| 340 } |
| 341 map[s1] = s2; |
| 342 if (!found) { |
| 343 if (num_final_segments != s1) { |
| 344 enc->dqm_[num_final_segments] = enc->dqm_[s1]; |
| 345 } |
| 346 ++num_final_segments; |
| 347 } |
| 348 } |
| 349 if (num_final_segments < num_segments) { // Remap |
| 350 int i = enc->mb_w_ * enc->mb_h_; |
| 351 while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; |
| 352 enc->segment_hdr_.num_segments_ = num_final_segments; |
| 353 // Replicate the trailing segment infos (it's mostly cosmetics) |
| 354 for (i = num_final_segments; i < num_segments; ++i) { |
| 355 enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; |
| 356 } |
| 357 } |
| 358 } |
| 359 |
| 360 void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { |
| 361 int i; |
| 362 int dq_uv_ac, dq_uv_dc; |
| 363 const int num_segments = enc->segment_hdr_.num_segments_; |
| 364 const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; |
| 365 const double Q = quality / 100.; |
| 366 const double c_base = enc->config_->emulate_jpeg_size ? |
| 367 QualityToJPEGCompression(Q, enc->alpha_ / 255.) : |
| 368 QualityToCompression(Q); |
| 369 for (i = 0; i < num_segments; ++i) { |
| 370 // We modulate the base coefficient to accommodate for the quantization |
| 371 // susceptibility and allow denser segments to be quantized more. |
| 372 const double expn = 1. - amp * enc->dqm_[i].alpha_; |
| 373 const double c = pow(c_base, expn); |
| 374 const int q = (int)(127. * (1. - c)); |
| 375 assert(expn > 0.); |
| 376 enc->dqm_[i].quant_ = clip(q, 0, 127); |
| 377 } |
| 378 |
| 379 // purely indicative in the bitstream (except for the 1-segment case) |
| 380 enc->base_quant_ = enc->dqm_[0].quant_; |
| 381 |
| 382 // fill-in values for the unused segments (required by the syntax) |
| 383 for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { |
| 384 enc->dqm_[i].quant_ = enc->base_quant_; |
| 385 } |
| 386 |
| 387 // uv_alpha_ is normally spread around ~60. The useful range is |
| 388 // typically ~30 (quite bad) to ~100 (ok to decimate UV more). |
| 389 // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. |
| 390 dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) |
| 391 / (MAX_ALPHA - MIN_ALPHA); |
| 392 // we rescale by the user-defined strength of adaptation |
| 393 dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; |
| 394 // and make it safe. |
| 395 dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); |
| 396 // We also boost the dc-uv-quant a little, based on sns-strength, since |
| 397 // U/V channels are quite more reactive to high quants (flat DC-blocks |
| 398 // tend to appear, and are unpleasant). |
| 399 dq_uv_dc = -4 * enc->config_->sns_strength / 100; |
| 400 dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed |
| 401 |
| 402 enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum |
| 403 enc->dq_y2_dc_ = 0; |
| 404 enc->dq_y2_ac_ = 0; |
| 405 enc->dq_uv_dc_ = dq_uv_dc; |
| 406 enc->dq_uv_ac_ = dq_uv_ac; |
| 407 |
| 408 SetupFilterStrength(enc); // initialize segments' filtering, eventually |
| 409 |
| 410 if (num_segments > 1) SimplifySegments(enc); |
| 411 |
| 412 SetupMatrices(enc); // finalize quantization matrices |
| 413 } |
| 414 |
| 415 //------------------------------------------------------------------------------ |
| 416 // Form the predictions in cache |
| 417 |
| 418 // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index |
| 419 const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; |
| 420 const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; |
| 421 |
| 422 // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index |
| 423 const int VP8I4ModeOffsets[NUM_BMODES] = { |
| 424 I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 |
| 425 }; |
| 426 |
| 427 void VP8MakeLuma16Preds(const VP8EncIterator* const it) { |
| 428 const uint8_t* const left = it->x_ ? it->y_left_ : NULL; |
| 429 const uint8_t* const top = it->y_ ? it->y_top_ : NULL; |
| 430 VP8EncPredLuma16(it->yuv_p_, left, top); |
| 431 } |
| 432 |
| 433 void VP8MakeChroma8Preds(const VP8EncIterator* const it) { |
| 434 const uint8_t* const left = it->x_ ? it->u_left_ : NULL; |
| 435 const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; |
| 436 VP8EncPredChroma8(it->yuv_p_, left, top); |
| 437 } |
| 438 |
| 439 void VP8MakeIntra4Preds(const VP8EncIterator* const it) { |
| 440 VP8EncPredLuma4(it->yuv_p_, it->i4_top_); |
| 441 } |
| 442 |
| 443 //------------------------------------------------------------------------------ |
| 444 // Quantize |
| 445 |
| 446 // Layout: |
| 447 // +----+ |
| 448 // |YYYY| 0 |
| 449 // |YYYY| 4 |
| 450 // |YYYY| 8 |
| 451 // |YYYY| 12 |
| 452 // +----+ |
| 453 // |UUVV| 16 |
| 454 // |UUVV| 20 |
| 455 // +----+ |
| 456 |
| 457 const int VP8Scan[16] = { // Luma |
| 458 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, |
| 459 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, |
| 460 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, |
| 461 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, |
| 462 }; |
| 463 |
| 464 static const int VP8ScanUV[4 + 4] = { |
| 465 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U |
| 466 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V |
| 467 }; |
| 468 |
| 469 //------------------------------------------------------------------------------ |
| 470 // Distortion measurement |
| 471 |
| 472 static const uint16_t kWeightY[16] = { |
| 473 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 |
| 474 }; |
| 475 |
| 476 static const uint16_t kWeightTrellis[16] = { |
| 477 #if USE_TDISTO == 0 |
| 478 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 |
| 479 #else |
| 480 30, 27, 19, 11, |
| 481 27, 24, 17, 10, |
| 482 19, 17, 12, 8, |
| 483 11, 10, 8, 6 |
| 484 #endif |
| 485 }; |
| 486 |
| 487 // Init/Copy the common fields in score. |
| 488 static void InitScore(VP8ModeScore* const rd) { |
| 489 rd->D = 0; |
| 490 rd->SD = 0; |
| 491 rd->R = 0; |
| 492 rd->H = 0; |
| 493 rd->nz = 0; |
| 494 rd->score = MAX_COST; |
| 495 } |
| 496 |
| 497 static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| 498 dst->D = src->D; |
| 499 dst->SD = src->SD; |
| 500 dst->R = src->R; |
| 501 dst->H = src->H; |
| 502 dst->nz = src->nz; // note that nz is not accumulated, but just copied. |
| 503 dst->score = src->score; |
| 504 } |
| 505 |
| 506 static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { |
| 507 dst->D += src->D; |
| 508 dst->SD += src->SD; |
| 509 dst->R += src->R; |
| 510 dst->H += src->H; |
| 511 dst->nz |= src->nz; // here, new nz bits are accumulated. |
| 512 dst->score += src->score; |
| 513 } |
| 514 |
| 515 //------------------------------------------------------------------------------ |
| 516 // Performs trellis-optimized quantization. |
| 517 |
| 518 // Trellis node |
| 519 typedef struct { |
| 520 int8_t prev; // best previous node |
| 521 int8_t sign; // sign of coeff_i |
| 522 int16_t level; // level |
| 523 } Node; |
| 524 |
| 525 // Score state |
| 526 typedef struct { |
| 527 score_t score; // partial RD score |
| 528 const uint16_t* costs; // shortcut to cost tables |
| 529 } ScoreState; |
| 530 |
| 531 // If a coefficient was quantized to a value Q (using a neutral bias), |
| 532 // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] |
| 533 // We don't test negative values though. |
| 534 #define MIN_DELTA 0 // how much lower level to try |
| 535 #define MAX_DELTA 1 // how much higher |
| 536 #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) |
| 537 #define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) |
| 538 #define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) |
| 539 |
| 540 static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { |
| 541 // TODO: incorporate the "* 256" in the tables? |
| 542 rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD); |
| 543 } |
| 544 |
| 545 static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, |
| 546 score_t distortion) { |
| 547 return rate * lambda + 256 * distortion; |
| 548 } |
| 549 |
| 550 static int TrellisQuantizeBlock(const VP8Encoder* const enc, |
| 551 int16_t in[16], int16_t out[16], |
| 552 int ctx0, int coeff_type, |
| 553 const VP8Matrix* const mtx, |
| 554 int lambda) { |
| 555 const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; |
| 556 const CostArray* const costs = enc->proba_.level_cost_[coeff_type]; |
| 557 const int first = (coeff_type == 0) ? 1 : 0; |
| 558 Node nodes[16][NUM_NODES]; |
| 559 ScoreState score_states[2][NUM_NODES]; |
| 560 ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); |
| 561 ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); |
| 562 int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous |
| 563 score_t best_score; |
| 564 int n, m, p, last; |
| 565 |
| 566 { |
| 567 score_t cost; |
| 568 const int thresh = mtx->q_[1] * mtx->q_[1] / 4; |
| 569 const int last_proba = probas[VP8EncBands[first]][ctx0][0]; |
| 570 |
| 571 // compute the position of the last interesting coefficient |
| 572 last = first - 1; |
| 573 for (n = 15; n >= first; --n) { |
| 574 const int j = kZigzag[n]; |
| 575 const int err = in[j] * in[j]; |
| 576 if (err > thresh) { |
| 577 last = n; |
| 578 break; |
| 579 } |
| 580 } |
| 581 // we don't need to go inspect up to n = 16 coeffs. We can just go up |
| 582 // to last + 1 (inclusive) without losing much. |
| 583 if (last < 15) ++last; |
| 584 |
| 585 // compute 'skip' score. This is the max score one can do. |
| 586 cost = VP8BitCost(0, last_proba); |
| 587 best_score = RDScoreTrellis(lambda, cost, 0); |
| 588 |
| 589 // initialize source node. |
| 590 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| 591 const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; |
| 592 ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); |
| 593 ss_cur[m].costs = costs[VP8EncBands[first]][ctx0]; |
| 594 } |
| 595 } |
| 596 |
| 597 // traverse trellis. |
| 598 for (n = first; n <= last; ++n) { |
| 599 const int j = kZigzag[n]; |
| 600 const uint32_t Q = mtx->q_[j]; |
| 601 const uint32_t iQ = mtx->iq_[j]; |
| 602 const uint32_t B = BIAS(0x00); // neutral bias |
| 603 // note: it's important to take sign of the _original_ coeff, |
| 604 // so we don't have to consider level < 0 afterward. |
| 605 const int sign = (in[j] < 0); |
| 606 const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; |
| 607 int level0 = QUANTDIV(coeff0, iQ, B); |
| 608 if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; |
| 609 |
| 610 { // Swap current and previous score states |
| 611 ScoreState* const tmp = ss_cur; |
| 612 ss_cur = ss_prev; |
| 613 ss_prev = tmp; |
| 614 } |
| 615 |
| 616 // test all alternate level values around level0. |
| 617 for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { |
| 618 Node* const cur = &NODE(n, m); |
| 619 int level = level0 + m; |
| 620 const int ctx = (level > 2) ? 2 : level; |
| 621 const int band = VP8EncBands[n + 1]; |
| 622 score_t base_score, last_pos_score; |
| 623 score_t best_cur_score = MAX_COST; |
| 624 int best_prev = 0; // default, in case |
| 625 |
| 626 ss_cur[m].score = MAX_COST; |
| 627 ss_cur[m].costs = costs[band][ctx]; |
| 628 if (level > MAX_LEVEL || level < 0) { // node is dead? |
| 629 continue; |
| 630 } |
| 631 |
| 632 // Compute extra rate cost if last coeff's position is < 15 |
| 633 { |
| 634 const score_t last_pos_cost = |
| 635 (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; |
| 636 last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); |
| 637 } |
| 638 |
| 639 { |
| 640 // Compute delta_error = how much coding this level will |
| 641 // subtract to max_error as distortion. |
| 642 // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 |
| 643 const int new_error = coeff0 - level * Q; |
| 644 const int delta_error = |
| 645 kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); |
| 646 base_score = RDScoreTrellis(lambda, 0, delta_error); |
| 647 } |
| 648 |
| 649 // Inspect all possible non-dead predecessors. Retain only the best one. |
| 650 for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { |
| 651 // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically |
| 652 // eliminated since their score can't be better than the current best. |
| 653 const score_t cost = VP8LevelCost(ss_prev[p].costs, level); |
| 654 // Examine node assuming it's a non-terminal one. |
| 655 const score_t score = |
| 656 base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); |
| 657 if (score < best_cur_score) { |
| 658 best_cur_score = score; |
| 659 best_prev = p; |
| 660 } |
| 661 } |
| 662 // Store best finding in current node. |
| 663 cur->sign = sign; |
| 664 cur->level = level; |
| 665 cur->prev = best_prev; |
| 666 ss_cur[m].score = best_cur_score; |
| 667 |
| 668 // Now, record best terminal node (and thus best entry in the graph). |
| 669 if (level != 0) { |
| 670 const score_t score = best_cur_score + last_pos_score; |
| 671 if (score < best_score) { |
| 672 best_score = score; |
| 673 best_path[0] = n; // best eob position |
| 674 best_path[1] = m; // best node index |
| 675 best_path[2] = best_prev; // best predecessor |
| 676 } |
| 677 } |
| 678 } |
| 679 } |
| 680 |
| 681 // Fresh start |
| 682 memset(in + first, 0, (16 - first) * sizeof(*in)); |
| 683 memset(out + first, 0, (16 - first) * sizeof(*out)); |
| 684 if (best_path[0] == -1) { |
| 685 return 0; // skip! |
| 686 } |
| 687 |
| 688 { |
| 689 // Unwind the best path. |
| 690 // Note: best-prev on terminal node is not necessarily equal to the |
| 691 // best_prev for non-terminal. So we patch best_path[2] in. |
| 692 int nz = 0; |
| 693 int best_node = best_path[1]; |
| 694 n = best_path[0]; |
| 695 NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal |
| 696 |
| 697 for (; n >= first; --n) { |
| 698 const Node* const node = &NODE(n, best_node); |
| 699 const int j = kZigzag[n]; |
| 700 out[n] = node->sign ? -node->level : node->level; |
| 701 nz |= node->level; |
| 702 in[j] = out[n] * mtx->q_[j]; |
| 703 best_node = node->prev; |
| 704 } |
| 705 return (nz != 0); |
| 706 } |
| 707 } |
| 708 |
| 709 #undef NODE |
| 710 |
| 711 //------------------------------------------------------------------------------ |
| 712 // Performs: difference, transform, quantize, back-transform, add |
| 713 // all at once. Output is the reconstructed block in *yuv_out, and the |
| 714 // quantized levels in *levels. |
| 715 |
| 716 static int ReconstructIntra16(VP8EncIterator* const it, |
| 717 VP8ModeScore* const rd, |
| 718 uint8_t* const yuv_out, |
| 719 int mode) { |
| 720 const VP8Encoder* const enc = it->enc_; |
| 721 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
| 722 const uint8_t* const src = it->yuv_in_ + Y_OFF; |
| 723 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 724 int nz = 0; |
| 725 int n; |
| 726 int16_t tmp[16][16], dc_tmp[16]; |
| 727 |
| 728 for (n = 0; n < 16; ++n) { |
| 729 VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); |
| 730 } |
| 731 VP8FTransformWHT(tmp[0], dc_tmp); |
| 732 nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; |
| 733 |
| 734 if (DO_TRELLIS_I16 && it->do_trellis_) { |
| 735 int x, y; |
| 736 VP8IteratorNzToBytes(it); |
| 737 for (y = 0, n = 0; y < 4; ++y) { |
| 738 for (x = 0; x < 4; ++x, ++n) { |
| 739 const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| 740 const int non_zero = |
| 741 TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, |
| 742 &dqm->y1_, dqm->lambda_trellis_i16_); |
| 743 it->top_nz_[x] = it->left_nz_[y] = non_zero; |
| 744 rd->y_ac_levels[n][0] = 0; |
| 745 nz |= non_zero << n; |
| 746 } |
| 747 } |
| 748 } else { |
| 749 for (n = 0; n < 16; ++n) { |
| 750 // Zero-out the first coeff, so that: a) nz is correct below, and |
| 751 // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. |
| 752 tmp[n][0] = 0; |
| 753 nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; |
| 754 assert(rd->y_ac_levels[n][0] == 0); |
| 755 } |
| 756 } |
| 757 |
| 758 // Transform back |
| 759 VP8TransformWHT(dc_tmp, tmp[0]); |
| 760 for (n = 0; n < 16; n += 2) { |
| 761 VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); |
| 762 } |
| 763 |
| 764 return nz; |
| 765 } |
| 766 |
| 767 static int ReconstructIntra4(VP8EncIterator* const it, |
| 768 int16_t levels[16], |
| 769 const uint8_t* const src, |
| 770 uint8_t* const yuv_out, |
| 771 int mode) { |
| 772 const VP8Encoder* const enc = it->enc_; |
| 773 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
| 774 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 775 int nz = 0; |
| 776 int16_t tmp[16]; |
| 777 |
| 778 VP8FTransform(src, ref, tmp); |
| 779 if (DO_TRELLIS_I4 && it->do_trellis_) { |
| 780 const int x = it->i4_ & 3, y = it->i4_ >> 2; |
| 781 const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
| 782 nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, |
| 783 dqm->lambda_trellis_i4_); |
| 784 } else { |
| 785 nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); |
| 786 } |
| 787 VP8ITransform(ref, tmp, yuv_out, 0); |
| 788 return nz; |
| 789 } |
| 790 |
| 791 static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, |
| 792 uint8_t* const yuv_out, int mode) { |
| 793 const VP8Encoder* const enc = it->enc_; |
| 794 const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; |
| 795 const uint8_t* const src = it->yuv_in_ + U_OFF; |
| 796 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 797 int nz = 0; |
| 798 int n; |
| 799 int16_t tmp[8][16]; |
| 800 |
| 801 for (n = 0; n < 8; ++n) { |
| 802 VP8FTransform(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); |
| 803 } |
| 804 if (DO_TRELLIS_UV && it->do_trellis_) { |
| 805 int ch, x, y; |
| 806 for (ch = 0, n = 0; ch <= 2; ch += 2) { |
| 807 for (y = 0; y < 2; ++y) { |
| 808 for (x = 0; x < 2; ++x, ++n) { |
| 809 const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
| 810 const int non_zero = |
| 811 TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, |
| 812 &dqm->uv_, dqm->lambda_trellis_uv_); |
| 813 it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; |
| 814 nz |= non_zero << n; |
| 815 } |
| 816 } |
| 817 } |
| 818 } else { |
| 819 for (n = 0; n < 8; ++n) { |
| 820 nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; |
| 821 } |
| 822 } |
| 823 |
| 824 for (n = 0; n < 8; n += 2) { |
| 825 VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); |
| 826 } |
| 827 return (nz << 16); |
| 828 } |
| 829 |
| 830 //------------------------------------------------------------------------------ |
| 831 // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. |
| 832 // Pick the mode is lower RD-cost = Rate + lambda * Distortion. |
| 833 |
| 834 static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { |
| 835 // We look at the first three AC coefficients to determine what is the average |
| 836 // delta between each sub-4x4 block. |
| 837 const int v0 = abs(DCs[1]); |
| 838 const int v1 = abs(DCs[4]); |
| 839 const int v2 = abs(DCs[5]); |
| 840 int max_v = (v0 > v1) ? v1 : v0; |
| 841 max_v = (v2 > max_v) ? v2 : max_v; |
| 842 if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; |
| 843 } |
| 844 |
| 845 static void SwapPtr(uint8_t** a, uint8_t** b) { |
| 846 uint8_t* const tmp = *a; |
| 847 *a = *b; |
| 848 *b = tmp; |
| 849 } |
| 850 |
| 851 static void SwapOut(VP8EncIterator* const it) { |
| 852 SwapPtr(&it->yuv_out_, &it->yuv_out2_); |
| 853 } |
| 854 |
| 855 static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { |
| 856 score_t score = 0; |
| 857 while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? |
| 858 int i; |
| 859 for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC |
| 860 score += (levels[i] != 0); |
| 861 if (score > thresh) return 0; |
| 862 } |
| 863 levels += 16; |
| 864 } |
| 865 return 1; |
| 866 } |
| 867 |
| 868 static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 869 const int kNumBlocks = 16; |
| 870 VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
| 871 const int lambda = dqm->lambda_i16_; |
| 872 const int tlambda = dqm->tlambda_; |
| 873 const uint8_t* const src = it->yuv_in_ + Y_OFF; |
| 874 VP8ModeScore rd16; |
| 875 int mode; |
| 876 |
| 877 rd->mode_i16 = -1; |
| 878 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 879 uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer |
| 880 int nz; |
| 881 |
| 882 // Reconstruct |
| 883 nz = ReconstructIntra16(it, &rd16, tmp_dst, mode); |
| 884 |
| 885 // Measure RD-score |
| 886 rd16.D = VP8SSE16x16(src, tmp_dst); |
| 887 rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) |
| 888 : 0; |
| 889 rd16.H = VP8FixedCostsI16[mode]; |
| 890 rd16.R = VP8GetCostLuma16(it, &rd16); |
| 891 if (mode > 0 && |
| 892 IsFlat(rd16.y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { |
| 893 // penalty to avoid flat area to be mispredicted by complex mode |
| 894 rd16.R += FLATNESS_PENALTY * kNumBlocks; |
| 895 } |
| 896 |
| 897 // Since we always examine Intra16 first, we can overwrite *rd directly. |
| 898 SetRDScore(lambda, &rd16); |
| 899 if (mode == 0 || rd16.score < rd->score) { |
| 900 CopyScore(rd, &rd16); |
| 901 rd->mode_i16 = mode; |
| 902 rd->nz = nz; |
| 903 memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels)); |
| 904 memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels)); |
| 905 SwapOut(it); |
| 906 } |
| 907 } |
| 908 SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. |
| 909 VP8SetIntra16Mode(it, rd->mode_i16); |
| 910 |
| 911 // we have a blocky macroblock (only DCs are non-zero) with fairly high |
| 912 // distortion, record max delta so we can later adjust the minimal filtering |
| 913 // strength needed to smooth these blocks out. |
| 914 if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) { |
| 915 StoreMaxDelta(dqm, rd->y_dc_levels); |
| 916 } |
| 917 } |
| 918 |
| 919 //------------------------------------------------------------------------------ |
| 920 |
| 921 // return the cost array corresponding to the surrounding prediction modes. |
| 922 static const uint16_t* GetCostModeI4(VP8EncIterator* const it, |
| 923 const uint8_t modes[16]) { |
| 924 const int preds_w = it->enc_->preds_w_; |
| 925 const int x = (it->i4_ & 3), y = it->i4_ >> 2; |
| 926 const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; |
| 927 const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; |
| 928 return VP8FixedCostsI4[top][left]; |
| 929 } |
| 930 |
| 931 static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 932 const VP8Encoder* const enc = it->enc_; |
| 933 const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; |
| 934 const int lambda = dqm->lambda_i4_; |
| 935 const int tlambda = dqm->tlambda_; |
| 936 const uint8_t* const src0 = it->yuv_in_ + Y_OFF; |
| 937 uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF; |
| 938 int total_header_bits = 0; |
| 939 VP8ModeScore rd_best; |
| 940 |
| 941 if (enc->max_i4_header_bits_ == 0) { |
| 942 return 0; |
| 943 } |
| 944 |
| 945 InitScore(&rd_best); |
| 946 rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) |
| 947 SetRDScore(dqm->lambda_mode_, &rd_best); |
| 948 VP8IteratorStartI4(it); |
| 949 do { |
| 950 const int kNumBlocks = 1; |
| 951 VP8ModeScore rd_i4; |
| 952 int mode; |
| 953 int best_mode = -1; |
| 954 const uint8_t* const src = src0 + VP8Scan[it->i4_]; |
| 955 const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); |
| 956 uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; |
| 957 uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. |
| 958 |
| 959 InitScore(&rd_i4); |
| 960 VP8MakeIntra4Preds(it); |
| 961 for (mode = 0; mode < NUM_BMODES; ++mode) { |
| 962 VP8ModeScore rd_tmp; |
| 963 int16_t tmp_levels[16]; |
| 964 |
| 965 // Reconstruct |
| 966 rd_tmp.nz = |
| 967 ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; |
| 968 |
| 969 // Compute RD-score |
| 970 rd_tmp.D = VP8SSE4x4(src, tmp_dst); |
| 971 rd_tmp.SD = |
| 972 tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) |
| 973 : 0; |
| 974 rd_tmp.H = mode_costs[mode]; |
| 975 rd_tmp.R = VP8GetCostLuma4(it, tmp_levels); |
| 976 if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { |
| 977 rd_tmp.R += FLATNESS_PENALTY * kNumBlocks; |
| 978 } |
| 979 |
| 980 SetRDScore(lambda, &rd_tmp); |
| 981 if (best_mode < 0 || rd_tmp.score < rd_i4.score) { |
| 982 CopyScore(&rd_i4, &rd_tmp); |
| 983 best_mode = mode; |
| 984 SwapPtr(&tmp_dst, &best_block); |
| 985 memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels)); |
| 986 } |
| 987 } |
| 988 SetRDScore(dqm->lambda_mode_, &rd_i4); |
| 989 AddScore(&rd_best, &rd_i4); |
| 990 if (rd_best.score >= rd->score) { |
| 991 return 0; |
| 992 } |
| 993 total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; |
| 994 if (total_header_bits > enc->max_i4_header_bits_) { |
| 995 return 0; |
| 996 } |
| 997 // Copy selected samples if not in the right place already. |
| 998 if (best_block != best_blocks + VP8Scan[it->i4_]) { |
| 999 VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); |
| 1000 } |
| 1001 rd->modes_i4[it->i4_] = best_mode; |
| 1002 it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); |
| 1003 } while (VP8IteratorRotateI4(it, best_blocks)); |
| 1004 |
| 1005 // finalize state |
| 1006 CopyScore(rd, &rd_best); |
| 1007 VP8SetIntra4Mode(it, rd->modes_i4); |
| 1008 SwapOut(it); |
| 1009 memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); |
| 1010 return 1; // select intra4x4 over intra16x16 |
| 1011 } |
| 1012 |
| 1013 //------------------------------------------------------------------------------ |
| 1014 |
| 1015 static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 1016 const int kNumBlocks = 8; |
| 1017 const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; |
| 1018 const int lambda = dqm->lambda_uv_; |
| 1019 const uint8_t* const src = it->yuv_in_ + U_OFF; |
| 1020 uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer |
| 1021 uint8_t* const dst0 = it->yuv_out_ + U_OFF; |
| 1022 VP8ModeScore rd_best; |
| 1023 int mode; |
| 1024 |
| 1025 rd->mode_uv = -1; |
| 1026 InitScore(&rd_best); |
| 1027 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 1028 VP8ModeScore rd_uv; |
| 1029 |
| 1030 // Reconstruct |
| 1031 rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); |
| 1032 |
| 1033 // Compute RD-score |
| 1034 rd_uv.D = VP8SSE16x8(src, tmp_dst); |
| 1035 rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas. |
| 1036 rd_uv.H = VP8FixedCostsUV[mode]; |
| 1037 rd_uv.R = VP8GetCostUV(it, &rd_uv); |
| 1038 if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { |
| 1039 rd_uv.R += FLATNESS_PENALTY * kNumBlocks; |
| 1040 } |
| 1041 |
| 1042 SetRDScore(lambda, &rd_uv); |
| 1043 if (mode == 0 || rd_uv.score < rd_best.score) { |
| 1044 CopyScore(&rd_best, &rd_uv); |
| 1045 rd->mode_uv = mode; |
| 1046 memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); |
| 1047 memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ? |
| 1048 } |
| 1049 } |
| 1050 VP8SetIntraUVMode(it, rd->mode_uv); |
| 1051 AddScore(rd, &rd_best); |
| 1052 } |
| 1053 |
| 1054 //------------------------------------------------------------------------------ |
| 1055 // Final reconstruction and quantization. |
| 1056 |
| 1057 static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { |
| 1058 const VP8Encoder* const enc = it->enc_; |
| 1059 const int is_i16 = (it->mb_->type_ == 1); |
| 1060 int nz = 0; |
| 1061 |
| 1062 if (is_i16) { |
| 1063 nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]); |
| 1064 } else { |
| 1065 VP8IteratorStartI4(it); |
| 1066 do { |
| 1067 const int mode = |
| 1068 it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; |
| 1069 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
| 1070 uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_]; |
| 1071 VP8MakeIntra4Preds(it); |
| 1072 nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], |
| 1073 src, dst, mode) << it->i4_; |
| 1074 } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF)); |
| 1075 } |
| 1076 |
| 1077 nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_); |
| 1078 rd->nz = nz; |
| 1079 } |
| 1080 |
| 1081 // Refine intra16/intra4 sub-modes based on distortion only (not rate). |
| 1082 static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) { |
| 1083 const int is_i16 = (it->mb_->type_ == 1); |
| 1084 score_t best_score = MAX_COST; |
| 1085 |
| 1086 if (try_both_i4_i16 || is_i16) { |
| 1087 int mode; |
| 1088 int best_mode = -1; |
| 1089 for (mode = 0; mode < NUM_PRED_MODES; ++mode) { |
| 1090 const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; |
| 1091 const uint8_t* const src = it->yuv_in_ + Y_OFF; |
| 1092 const score_t score = VP8SSE16x16(src, ref); |
| 1093 if (score < best_score) { |
| 1094 best_mode = mode; |
| 1095 best_score = score; |
| 1096 } |
| 1097 } |
| 1098 VP8SetIntra16Mode(it, best_mode); |
| 1099 } |
| 1100 if (try_both_i4_i16 || !is_i16) { |
| 1101 uint8_t modes_i4[16]; |
| 1102 // We don't evaluate the rate here, but just account for it through a |
| 1103 // constant penalty (i4 mode usually needs more bits compared to i16). |
| 1104 score_t score_i4 = (score_t)I4_PENALTY; |
| 1105 |
| 1106 VP8IteratorStartI4(it); |
| 1107 do { |
| 1108 int mode; |
| 1109 int best_sub_mode = -1; |
| 1110 score_t best_sub_score = MAX_COST; |
| 1111 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
| 1112 |
| 1113 // TODO(skal): we don't really need the prediction pixels here, |
| 1114 // but just the distortion against 'src'. |
| 1115 VP8MakeIntra4Preds(it); |
| 1116 for (mode = 0; mode < NUM_BMODES; ++mode) { |
| 1117 const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; |
| 1118 const score_t score = VP8SSE4x4(src, ref); |
| 1119 if (score < best_sub_score) { |
| 1120 best_sub_mode = mode; |
| 1121 best_sub_score = score; |
| 1122 } |
| 1123 } |
| 1124 modes_i4[it->i4_] = best_sub_mode; |
| 1125 score_i4 += best_sub_score; |
| 1126 if (score_i4 >= best_score) break; |
| 1127 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); |
| 1128 if (score_i4 < best_score) { |
| 1129 VP8SetIntra4Mode(it, modes_i4); |
| 1130 } |
| 1131 } |
| 1132 } |
| 1133 |
| 1134 //------------------------------------------------------------------------------ |
| 1135 // Entry point |
| 1136 |
| 1137 int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, |
| 1138 VP8RDLevel rd_opt) { |
| 1139 int is_skipped; |
| 1140 const int method = it->enc_->method_; |
| 1141 |
| 1142 InitScore(rd); |
| 1143 |
| 1144 // We can perform predictions for Luma16x16 and Chroma8x8 already. |
| 1145 // Luma4x4 predictions needs to be done as-we-go. |
| 1146 VP8MakeLuma16Preds(it); |
| 1147 VP8MakeChroma8Preds(it); |
| 1148 |
| 1149 if (rd_opt > RD_OPT_NONE) { |
| 1150 it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); |
| 1151 PickBestIntra16(it, rd); |
| 1152 if (method >= 2) { |
| 1153 PickBestIntra4(it, rd); |
| 1154 } |
| 1155 PickBestUV(it, rd); |
| 1156 if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now |
| 1157 it->do_trellis_ = 1; |
| 1158 SimpleQuantize(it, rd); |
| 1159 } |
| 1160 } else { |
| 1161 // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower). |
| 1162 // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode). |
| 1163 DistoRefine(it, (method >= 2)); |
| 1164 SimpleQuantize(it, rd); |
| 1165 } |
| 1166 is_skipped = (rd->nz == 0); |
| 1167 VP8SetSkip(it, is_skipped); |
| 1168 return is_skipped; |
| 1169 } |
| 1170 |
OLD | NEW |