| Index: third_party/libwebp/enc/quant.c
|
| diff --git a/third_party/libwebp/enc/quant.c b/third_party/libwebp/enc/quant.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..9130a41609baa781ca1a6633a56e2c0a2659fbe1
|
| --- /dev/null
|
| +++ b/third_party/libwebp/enc/quant.c
|
| @@ -0,0 +1,1170 @@
|
| +// Copyright 2011 Google Inc. All Rights Reserved.
|
| +//
|
| +// Use of this source code is governed by a BSD-style license
|
| +// that can be found in the COPYING file in the root of the source
|
| +// tree. An additional intellectual property rights grant can be found
|
| +// in the file PATENTS. All contributing project authors may
|
| +// be found in the AUTHORS file in the root of the source tree.
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Quantization
|
| +//
|
| +// Author: Skal (pascal.massimino@gmail.com)
|
| +
|
| +#include <assert.h>
|
| +#include <math.h>
|
| +#include <stdlib.h> // for abs()
|
| +
|
| +#include "./vp8enci.h"
|
| +#include "./cost.h"
|
| +
|
| +#define DO_TRELLIS_I4 1
|
| +#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
|
| +#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
|
| +#define USE_TDISTO 1
|
| +
|
| +#define MID_ALPHA 64 // neutral value for susceptibility
|
| +#define MIN_ALPHA 30 // lowest usable value for susceptibility
|
| +#define MAX_ALPHA 100 // higher meaningful value for susceptibility
|
| +
|
| +#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
|
| + // power-law modulation. Must be strictly less than 1.
|
| +
|
| +#define I4_PENALTY 4000 // Rate-penalty for quick i4/i16 decision
|
| +
|
| +// number of non-zero coeffs below which we consider the block very flat
|
| +// (and apply a penalty to complex predictions)
|
| +#define FLATNESS_LIMIT_I16 10 // I16 mode
|
| +#define FLATNESS_LIMIT_I4 3 // I4 mode
|
| +#define FLATNESS_LIMIT_UV 2 // UV mode
|
| +#define FLATNESS_PENALTY 140 // roughly ~1bit per block
|
| +
|
| +#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
|
| +
|
| +// #define DEBUG_BLOCK
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +#if defined(DEBUG_BLOCK)
|
| +
|
| +#include <stdio.h>
|
| +#include <stdlib.h>
|
| +
|
| +static void PrintBlockInfo(const VP8EncIterator* const it,
|
| + const VP8ModeScore* const rd) {
|
| + int i, j;
|
| + const int is_i16 = (it->mb_->type_ == 1);
|
| + printf("SOURCE / OUTPUT / ABS DELTA\n");
|
| + for (j = 0; j < 24; ++j) {
|
| + if (j == 16) printf("\n"); // newline before the U/V block
|
| + for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_in_[i + j * BPS]);
|
| + printf(" ");
|
| + for (i = 0; i < 16; ++i) printf("%3d ", it->yuv_out_[i + j * BPS]);
|
| + printf(" ");
|
| + for (i = 0; i < 16; ++i) {
|
| + printf("%1d ", abs(it->yuv_out_[i + j * BPS] - it->yuv_in_[i + j * BPS]));
|
| + }
|
| + printf("\n");
|
| + }
|
| + printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n",
|
| + (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz,
|
| + (int)rd->score);
|
| + if (is_i16) {
|
| + printf("Mode: %d\n", rd->mode_i16);
|
| + printf("y_dc_levels:");
|
| + for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]);
|
| + printf("\n");
|
| + } else {
|
| + printf("Modes[16]: ");
|
| + for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]);
|
| + printf("\n");
|
| + }
|
| + printf("y_ac_levels:\n");
|
| + for (j = 0; j < 16; ++j) {
|
| + for (i = is_i16 ? 1 : 0; i < 16; ++i) {
|
| + printf("%4d ", rd->y_ac_levels[j][i]);
|
| + }
|
| + printf("\n");
|
| + }
|
| + printf("\n");
|
| + printf("uv_levels (mode=%d):\n", rd->mode_uv);
|
| + for (j = 0; j < 8; ++j) {
|
| + for (i = 0; i < 16; ++i) {
|
| + printf("%4d ", rd->uv_levels[j][i]);
|
| + }
|
| + printf("\n");
|
| + }
|
| +}
|
| +
|
| +#endif // DEBUG_BLOCK
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +static WEBP_INLINE int clip(int v, int m, int M) {
|
| + return v < m ? m : v > M ? M : v;
|
| +}
|
| +
|
| +static const uint8_t kZigzag[16] = {
|
| + 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
|
| +};
|
| +
|
| +static const uint8_t kDcTable[128] = {
|
| + 4, 5, 6, 7, 8, 9, 10, 10,
|
| + 11, 12, 13, 14, 15, 16, 17, 17,
|
| + 18, 19, 20, 20, 21, 21, 22, 22,
|
| + 23, 23, 24, 25, 25, 26, 27, 28,
|
| + 29, 30, 31, 32, 33, 34, 35, 36,
|
| + 37, 37, 38, 39, 40, 41, 42, 43,
|
| + 44, 45, 46, 46, 47, 48, 49, 50,
|
| + 51, 52, 53, 54, 55, 56, 57, 58,
|
| + 59, 60, 61, 62, 63, 64, 65, 66,
|
| + 67, 68, 69, 70, 71, 72, 73, 74,
|
| + 75, 76, 76, 77, 78, 79, 80, 81,
|
| + 82, 83, 84, 85, 86, 87, 88, 89,
|
| + 91, 93, 95, 96, 98, 100, 101, 102,
|
| + 104, 106, 108, 110, 112, 114, 116, 118,
|
| + 122, 124, 126, 128, 130, 132, 134, 136,
|
| + 138, 140, 143, 145, 148, 151, 154, 157
|
| +};
|
| +
|
| +static const uint16_t kAcTable[128] = {
|
| + 4, 5, 6, 7, 8, 9, 10, 11,
|
| + 12, 13, 14, 15, 16, 17, 18, 19,
|
| + 20, 21, 22, 23, 24, 25, 26, 27,
|
| + 28, 29, 30, 31, 32, 33, 34, 35,
|
| + 36, 37, 38, 39, 40, 41, 42, 43,
|
| + 44, 45, 46, 47, 48, 49, 50, 51,
|
| + 52, 53, 54, 55, 56, 57, 58, 60,
|
| + 62, 64, 66, 68, 70, 72, 74, 76,
|
| + 78, 80, 82, 84, 86, 88, 90, 92,
|
| + 94, 96, 98, 100, 102, 104, 106, 108,
|
| + 110, 112, 114, 116, 119, 122, 125, 128,
|
| + 131, 134, 137, 140, 143, 146, 149, 152,
|
| + 155, 158, 161, 164, 167, 170, 173, 177,
|
| + 181, 185, 189, 193, 197, 201, 205, 209,
|
| + 213, 217, 221, 225, 229, 234, 239, 245,
|
| + 249, 254, 259, 264, 269, 274, 279, 284
|
| +};
|
| +
|
| +static const uint16_t kAcTable2[128] = {
|
| + 8, 8, 9, 10, 12, 13, 15, 17,
|
| + 18, 20, 21, 23, 24, 26, 27, 29,
|
| + 31, 32, 34, 35, 37, 38, 40, 41,
|
| + 43, 44, 46, 48, 49, 51, 52, 54,
|
| + 55, 57, 58, 60, 62, 63, 65, 66,
|
| + 68, 69, 71, 72, 74, 75, 77, 79,
|
| + 80, 82, 83, 85, 86, 88, 89, 93,
|
| + 96, 99, 102, 105, 108, 111, 114, 117,
|
| + 120, 124, 127, 130, 133, 136, 139, 142,
|
| + 145, 148, 151, 155, 158, 161, 164, 167,
|
| + 170, 173, 176, 179, 184, 189, 193, 198,
|
| + 203, 207, 212, 217, 221, 226, 230, 235,
|
| + 240, 244, 249, 254, 258, 263, 268, 274,
|
| + 280, 286, 292, 299, 305, 311, 317, 323,
|
| + 330, 336, 342, 348, 354, 362, 370, 379,
|
| + 385, 393, 401, 409, 416, 424, 432, 440
|
| +};
|
| +
|
| +static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac]
|
| + { 96, 110 }, { 96, 108 }, { 110, 115 }
|
| +};
|
| +
|
| +// Sharpening by (slightly) raising the hi-frequency coeffs.
|
| +// Hack-ish but helpful for mid-bitrate range. Use with care.
|
| +#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias
|
| +static const uint8_t kFreqSharpening[16] = {
|
| + 0, 30, 60, 90,
|
| + 30, 60, 90, 90,
|
| + 60, 90, 90, 90,
|
| + 90, 90, 90, 90
|
| +};
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Initialize quantization parameters in VP8Matrix
|
| +
|
| +// Returns the average quantizer
|
| +static int ExpandMatrix(VP8Matrix* const m, int type) {
|
| + int i, sum;
|
| + for (i = 0; i < 2; ++i) {
|
| + const int is_ac_coeff = (i > 0);
|
| + const int bias = kBiasMatrices[type][is_ac_coeff];
|
| + m->iq_[i] = (1 << QFIX) / m->q_[i];
|
| + m->bias_[i] = BIAS(bias);
|
| + // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is:
|
| + // * zero if coeff <= zthresh
|
| + // * non-zero if coeff > zthresh
|
| + m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i];
|
| + }
|
| + for (i = 2; i < 16; ++i) {
|
| + m->q_[i] = m->q_[1];
|
| + m->iq_[i] = m->iq_[1];
|
| + m->bias_[i] = m->bias_[1];
|
| + m->zthresh_[i] = m->zthresh_[1];
|
| + }
|
| + for (sum = 0, i = 0; i < 16; ++i) {
|
| + if (type == 0) { // we only use sharpening for AC luma coeffs
|
| + m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS;
|
| + } else {
|
| + m->sharpen_[i] = 0;
|
| + }
|
| + sum += m->q_[i];
|
| + }
|
| + return (sum + 8) >> 4;
|
| +}
|
| +
|
| +static void SetupMatrices(VP8Encoder* enc) {
|
| + int i;
|
| + const int tlambda_scale =
|
| + (enc->method_ >= 4) ? enc->config_->sns_strength
|
| + : 0;
|
| + const int num_segments = enc->segment_hdr_.num_segments_;
|
| + for (i = 0; i < num_segments; ++i) {
|
| + VP8SegmentInfo* const m = &enc->dqm_[i];
|
| + const int q = m->quant_;
|
| + int q4, q16, quv;
|
| + m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
|
| + m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
|
| +
|
| + m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
|
| + m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
|
| +
|
| + m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
|
| + m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
|
| +
|
| + q4 = ExpandMatrix(&m->y1_, 0);
|
| + q16 = ExpandMatrix(&m->y2_, 1);
|
| + quv = ExpandMatrix(&m->uv_, 2);
|
| +
|
| + m->lambda_i4_ = (3 * q4 * q4) >> 7;
|
| + m->lambda_i16_ = (3 * q16 * q16);
|
| + m->lambda_uv_ = (3 * quv * quv) >> 6;
|
| + m->lambda_mode_ = (1 * q4 * q4) >> 7;
|
| + m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3;
|
| + m->lambda_trellis_i16_ = (q16 * q16) >> 2;
|
| + m->lambda_trellis_uv_ = (quv *quv) << 1;
|
| + m->tlambda_ = (tlambda_scale * q4) >> 5;
|
| +
|
| + m->min_disto_ = 10 * m->y1_.q_[0]; // quantization-aware min disto
|
| + m->max_edge_ = 0;
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Initialize filtering parameters
|
| +
|
| +// Very small filter-strength values have close to no visual effect. So we can
|
| +// save a little decoding-CPU by turning filtering off for these.
|
| +#define FSTRENGTH_CUTOFF 2
|
| +
|
| +static void SetupFilterStrength(VP8Encoder* const enc) {
|
| + int i;
|
| + // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering.
|
| + const int level0 = 5 * enc->config_->filter_strength;
|
| + for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
|
| + VP8SegmentInfo* const m = &enc->dqm_[i];
|
| + // We focus on the quantization of AC coeffs.
|
| + const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2;
|
| + const int base_strength =
|
| + VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep);
|
| + // Segments with lower complexity ('beta') will be less filtered.
|
| + const int f = base_strength * level0 / (256 + m->beta_);
|
| + m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
|
| + }
|
| + // We record the initial strength (mainly for the case of 1-segment only).
|
| + enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
|
| + enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
|
| + enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +// Note: if you change the values below, remember that the max range
|
| +// allowed by the syntax for DQ_UV is [-16,16].
|
| +#define MAX_DQ_UV (6)
|
| +#define MIN_DQ_UV (-4)
|
| +
|
| +// We want to emulate jpeg-like behaviour where the expected "good" quality
|
| +// is around q=75. Internally, our "good" middle is around c=50. So we
|
| +// map accordingly using linear piece-wise function
|
| +static double QualityToCompression(double c) {
|
| + const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
|
| + // The file size roughly scales as pow(quantizer, 3.). Actually, the
|
| + // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
|
| + // in the mid-quant range. So we scale the compressibility inversely to
|
| + // this power-law: quant ~= compression ^ 1/3. This law holds well for
|
| + // low quant. Finer modeling for high-quant would make use of kAcTable[]
|
| + // more explicitly.
|
| + const double v = pow(linear_c, 1 / 3.);
|
| + return v;
|
| +}
|
| +
|
| +static double QualityToJPEGCompression(double c, double alpha) {
|
| + // We map the complexity 'alpha' and quality setting 'c' to a compression
|
| + // exponent empirically matched to the compression curve of libjpeg6b.
|
| + // On average, the WebP output size will be roughly similar to that of a
|
| + // JPEG file compressed with same quality factor.
|
| + const double amin = 0.30;
|
| + const double amax = 0.85;
|
| + const double exp_min = 0.4;
|
| + const double exp_max = 0.9;
|
| + const double slope = (exp_min - exp_max) / (amax - amin);
|
| + // Linearly interpolate 'expn' from exp_min to exp_max
|
| + // in the [amin, amax] range.
|
| + const double expn = (alpha > amax) ? exp_min
|
| + : (alpha < amin) ? exp_max
|
| + : exp_max + slope * (alpha - amin);
|
| + const double v = pow(c, expn);
|
| + return v;
|
| +}
|
| +
|
| +static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
|
| + const VP8SegmentInfo* const S2) {
|
| + return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
|
| +}
|
| +
|
| +static void SimplifySegments(VP8Encoder* const enc) {
|
| + int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
|
| + const int num_segments = enc->segment_hdr_.num_segments_;
|
| + int num_final_segments = 1;
|
| + int s1, s2;
|
| + for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments
|
| + const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
|
| + int found = 0;
|
| + // check if we already have similar segment
|
| + for (s2 = 0; s2 < num_final_segments; ++s2) {
|
| + const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
|
| + if (SegmentsAreEquivalent(S1, S2)) {
|
| + found = 1;
|
| + break;
|
| + }
|
| + }
|
| + map[s1] = s2;
|
| + if (!found) {
|
| + if (num_final_segments != s1) {
|
| + enc->dqm_[num_final_segments] = enc->dqm_[s1];
|
| + }
|
| + ++num_final_segments;
|
| + }
|
| + }
|
| + if (num_final_segments < num_segments) { // Remap
|
| + int i = enc->mb_w_ * enc->mb_h_;
|
| + while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
|
| + enc->segment_hdr_.num_segments_ = num_final_segments;
|
| + // Replicate the trailing segment infos (it's mostly cosmetics)
|
| + for (i = num_final_segments; i < num_segments; ++i) {
|
| + enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
|
| + }
|
| + }
|
| +}
|
| +
|
| +void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
|
| + int i;
|
| + int dq_uv_ac, dq_uv_dc;
|
| + const int num_segments = enc->segment_hdr_.num_segments_;
|
| + const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
|
| + const double Q = quality / 100.;
|
| + const double c_base = enc->config_->emulate_jpeg_size ?
|
| + QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
|
| + QualityToCompression(Q);
|
| + for (i = 0; i < num_segments; ++i) {
|
| + // We modulate the base coefficient to accommodate for the quantization
|
| + // susceptibility and allow denser segments to be quantized more.
|
| + const double expn = 1. - amp * enc->dqm_[i].alpha_;
|
| + const double c = pow(c_base, expn);
|
| + const int q = (int)(127. * (1. - c));
|
| + assert(expn > 0.);
|
| + enc->dqm_[i].quant_ = clip(q, 0, 127);
|
| + }
|
| +
|
| + // purely indicative in the bitstream (except for the 1-segment case)
|
| + enc->base_quant_ = enc->dqm_[0].quant_;
|
| +
|
| + // fill-in values for the unused segments (required by the syntax)
|
| + for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
|
| + enc->dqm_[i].quant_ = enc->base_quant_;
|
| + }
|
| +
|
| + // uv_alpha_ is normally spread around ~60. The useful range is
|
| + // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
|
| + // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
|
| + dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
|
| + / (MAX_ALPHA - MIN_ALPHA);
|
| + // we rescale by the user-defined strength of adaptation
|
| + dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
|
| + // and make it safe.
|
| + dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
|
| + // We also boost the dc-uv-quant a little, based on sns-strength, since
|
| + // U/V channels are quite more reactive to high quants (flat DC-blocks
|
| + // tend to appear, and are unpleasant).
|
| + dq_uv_dc = -4 * enc->config_->sns_strength / 100;
|
| + dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
|
| +
|
| + enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
|
| + enc->dq_y2_dc_ = 0;
|
| + enc->dq_y2_ac_ = 0;
|
| + enc->dq_uv_dc_ = dq_uv_dc;
|
| + enc->dq_uv_ac_ = dq_uv_ac;
|
| +
|
| + SetupFilterStrength(enc); // initialize segments' filtering, eventually
|
| +
|
| + if (num_segments > 1) SimplifySegments(enc);
|
| +
|
| + SetupMatrices(enc); // finalize quantization matrices
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Form the predictions in cache
|
| +
|
| +// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
|
| +const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
|
| +const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
|
| +
|
| +// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
|
| +const int VP8I4ModeOffsets[NUM_BMODES] = {
|
| + I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
|
| +};
|
| +
|
| +void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
|
| + const uint8_t* const left = it->x_ ? it->y_left_ : NULL;
|
| + const uint8_t* const top = it->y_ ? it->y_top_ : NULL;
|
| + VP8EncPredLuma16(it->yuv_p_, left, top);
|
| +}
|
| +
|
| +void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
|
| + const uint8_t* const left = it->x_ ? it->u_left_ : NULL;
|
| + const uint8_t* const top = it->y_ ? it->uv_top_ : NULL;
|
| + VP8EncPredChroma8(it->yuv_p_, left, top);
|
| +}
|
| +
|
| +void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
|
| + VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Quantize
|
| +
|
| +// Layout:
|
| +// +----+
|
| +// |YYYY| 0
|
| +// |YYYY| 4
|
| +// |YYYY| 8
|
| +// |YYYY| 12
|
| +// +----+
|
| +// |UUVV| 16
|
| +// |UUVV| 20
|
| +// +----+
|
| +
|
| +const int VP8Scan[16] = { // Luma
|
| + 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
|
| + 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
|
| + 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
|
| + 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
|
| +};
|
| +
|
| +static const int VP8ScanUV[4 + 4] = {
|
| + 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
|
| + 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
|
| +};
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Distortion measurement
|
| +
|
| +static const uint16_t kWeightY[16] = {
|
| + 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
|
| +};
|
| +
|
| +static const uint16_t kWeightTrellis[16] = {
|
| +#if USE_TDISTO == 0
|
| + 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
|
| +#else
|
| + 30, 27, 19, 11,
|
| + 27, 24, 17, 10,
|
| + 19, 17, 12, 8,
|
| + 11, 10, 8, 6
|
| +#endif
|
| +};
|
| +
|
| +// Init/Copy the common fields in score.
|
| +static void InitScore(VP8ModeScore* const rd) {
|
| + rd->D = 0;
|
| + rd->SD = 0;
|
| + rd->R = 0;
|
| + rd->H = 0;
|
| + rd->nz = 0;
|
| + rd->score = MAX_COST;
|
| +}
|
| +
|
| +static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
| + dst->D = src->D;
|
| + dst->SD = src->SD;
|
| + dst->R = src->R;
|
| + dst->H = src->H;
|
| + dst->nz = src->nz; // note that nz is not accumulated, but just copied.
|
| + dst->score = src->score;
|
| +}
|
| +
|
| +static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
|
| + dst->D += src->D;
|
| + dst->SD += src->SD;
|
| + dst->R += src->R;
|
| + dst->H += src->H;
|
| + dst->nz |= src->nz; // here, new nz bits are accumulated.
|
| + dst->score += src->score;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Performs trellis-optimized quantization.
|
| +
|
| +// Trellis node
|
| +typedef struct {
|
| + int8_t prev; // best previous node
|
| + int8_t sign; // sign of coeff_i
|
| + int16_t level; // level
|
| +} Node;
|
| +
|
| +// Score state
|
| +typedef struct {
|
| + score_t score; // partial RD score
|
| + const uint16_t* costs; // shortcut to cost tables
|
| +} ScoreState;
|
| +
|
| +// If a coefficient was quantized to a value Q (using a neutral bias),
|
| +// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
|
| +// We don't test negative values though.
|
| +#define MIN_DELTA 0 // how much lower level to try
|
| +#define MAX_DELTA 1 // how much higher
|
| +#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
|
| +#define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA])
|
| +#define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA])
|
| +
|
| +static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
|
| + // TODO: incorporate the "* 256" in the tables?
|
| + rd->score = (rd->R + rd->H) * lambda + 256 * (rd->D + rd->SD);
|
| +}
|
| +
|
| +static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
|
| + score_t distortion) {
|
| + return rate * lambda + 256 * distortion;
|
| +}
|
| +
|
| +static int TrellisQuantizeBlock(const VP8Encoder* const enc,
|
| + int16_t in[16], int16_t out[16],
|
| + int ctx0, int coeff_type,
|
| + const VP8Matrix* const mtx,
|
| + int lambda) {
|
| + const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type];
|
| + const CostArray* const costs = enc->proba_.level_cost_[coeff_type];
|
| + const int first = (coeff_type == 0) ? 1 : 0;
|
| + Node nodes[16][NUM_NODES];
|
| + ScoreState score_states[2][NUM_NODES];
|
| + ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA);
|
| + ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA);
|
| + int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
|
| + score_t best_score;
|
| + int n, m, p, last;
|
| +
|
| + {
|
| + score_t cost;
|
| + const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
|
| + const int last_proba = probas[VP8EncBands[first]][ctx0][0];
|
| +
|
| + // compute the position of the last interesting coefficient
|
| + last = first - 1;
|
| + for (n = 15; n >= first; --n) {
|
| + const int j = kZigzag[n];
|
| + const int err = in[j] * in[j];
|
| + if (err > thresh) {
|
| + last = n;
|
| + break;
|
| + }
|
| + }
|
| + // we don't need to go inspect up to n = 16 coeffs. We can just go up
|
| + // to last + 1 (inclusive) without losing much.
|
| + if (last < 15) ++last;
|
| +
|
| + // compute 'skip' score. This is the max score one can do.
|
| + cost = VP8BitCost(0, last_proba);
|
| + best_score = RDScoreTrellis(lambda, cost, 0);
|
| +
|
| + // initialize source node.
|
| + for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
| + const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0;
|
| + ss_cur[m].score = RDScoreTrellis(lambda, rate, 0);
|
| + ss_cur[m].costs = costs[VP8EncBands[first]][ctx0];
|
| + }
|
| + }
|
| +
|
| + // traverse trellis.
|
| + for (n = first; n <= last; ++n) {
|
| + const int j = kZigzag[n];
|
| + const uint32_t Q = mtx->q_[j];
|
| + const uint32_t iQ = mtx->iq_[j];
|
| + const uint32_t B = BIAS(0x00); // neutral bias
|
| + // note: it's important to take sign of the _original_ coeff,
|
| + // so we don't have to consider level < 0 afterward.
|
| + const int sign = (in[j] < 0);
|
| + const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
|
| + int level0 = QUANTDIV(coeff0, iQ, B);
|
| + if (level0 > MAX_LEVEL) level0 = MAX_LEVEL;
|
| +
|
| + { // Swap current and previous score states
|
| + ScoreState* const tmp = ss_cur;
|
| + ss_cur = ss_prev;
|
| + ss_prev = tmp;
|
| + }
|
| +
|
| + // test all alternate level values around level0.
|
| + for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
|
| + Node* const cur = &NODE(n, m);
|
| + int level = level0 + m;
|
| + const int ctx = (level > 2) ? 2 : level;
|
| + const int band = VP8EncBands[n + 1];
|
| + score_t base_score, last_pos_score;
|
| + score_t best_cur_score = MAX_COST;
|
| + int best_prev = 0; // default, in case
|
| +
|
| + ss_cur[m].score = MAX_COST;
|
| + ss_cur[m].costs = costs[band][ctx];
|
| + if (level > MAX_LEVEL || level < 0) { // node is dead?
|
| + continue;
|
| + }
|
| +
|
| + // Compute extra rate cost if last coeff's position is < 15
|
| + {
|
| + const score_t last_pos_cost =
|
| + (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0;
|
| + last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0);
|
| + }
|
| +
|
| + {
|
| + // Compute delta_error = how much coding this level will
|
| + // subtract to max_error as distortion.
|
| + // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2
|
| + const int new_error = coeff0 - level * Q;
|
| + const int delta_error =
|
| + kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0);
|
| + base_score = RDScoreTrellis(lambda, 0, delta_error);
|
| + }
|
| +
|
| + // Inspect all possible non-dead predecessors. Retain only the best one.
|
| + for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
|
| + // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically
|
| + // eliminated since their score can't be better than the current best.
|
| + const score_t cost = VP8LevelCost(ss_prev[p].costs, level);
|
| + // Examine node assuming it's a non-terminal one.
|
| + const score_t score =
|
| + base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0);
|
| + if (score < best_cur_score) {
|
| + best_cur_score = score;
|
| + best_prev = p;
|
| + }
|
| + }
|
| + // Store best finding in current node.
|
| + cur->sign = sign;
|
| + cur->level = level;
|
| + cur->prev = best_prev;
|
| + ss_cur[m].score = best_cur_score;
|
| +
|
| + // Now, record best terminal node (and thus best entry in the graph).
|
| + if (level != 0) {
|
| + const score_t score = best_cur_score + last_pos_score;
|
| + if (score < best_score) {
|
| + best_score = score;
|
| + best_path[0] = n; // best eob position
|
| + best_path[1] = m; // best node index
|
| + best_path[2] = best_prev; // best predecessor
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Fresh start
|
| + memset(in + first, 0, (16 - first) * sizeof(*in));
|
| + memset(out + first, 0, (16 - first) * sizeof(*out));
|
| + if (best_path[0] == -1) {
|
| + return 0; // skip!
|
| + }
|
| +
|
| + {
|
| + // Unwind the best path.
|
| + // Note: best-prev on terminal node is not necessarily equal to the
|
| + // best_prev for non-terminal. So we patch best_path[2] in.
|
| + int nz = 0;
|
| + int best_node = best_path[1];
|
| + n = best_path[0];
|
| + NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
|
| +
|
| + for (; n >= first; --n) {
|
| + const Node* const node = &NODE(n, best_node);
|
| + const int j = kZigzag[n];
|
| + out[n] = node->sign ? -node->level : node->level;
|
| + nz |= node->level;
|
| + in[j] = out[n] * mtx->q_[j];
|
| + best_node = node->prev;
|
| + }
|
| + return (nz != 0);
|
| + }
|
| +}
|
| +
|
| +#undef NODE
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Performs: difference, transform, quantize, back-transform, add
|
| +// all at once. Output is the reconstructed block in *yuv_out, and the
|
| +// quantized levels in *levels.
|
| +
|
| +static int ReconstructIntra16(VP8EncIterator* const it,
|
| + VP8ModeScore* const rd,
|
| + uint8_t* const yuv_out,
|
| + int mode) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF;
|
| + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| + int nz = 0;
|
| + int n;
|
| + int16_t tmp[16][16], dc_tmp[16];
|
| +
|
| + for (n = 0; n < 16; ++n) {
|
| + VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
|
| + }
|
| + VP8FTransformWHT(tmp[0], dc_tmp);
|
| + nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24;
|
| +
|
| + if (DO_TRELLIS_I16 && it->do_trellis_) {
|
| + int x, y;
|
| + VP8IteratorNzToBytes(it);
|
| + for (y = 0, n = 0; y < 4; ++y) {
|
| + for (x = 0; x < 4; ++x, ++n) {
|
| + const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
| + const int non_zero =
|
| + TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0,
|
| + &dqm->y1_, dqm->lambda_trellis_i16_);
|
| + it->top_nz_[x] = it->left_nz_[y] = non_zero;
|
| + rd->y_ac_levels[n][0] = 0;
|
| + nz |= non_zero << n;
|
| + }
|
| + }
|
| + } else {
|
| + for (n = 0; n < 16; ++n) {
|
| + // Zero-out the first coeff, so that: a) nz is correct below, and
|
| + // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified.
|
| + tmp[n][0] = 0;
|
| + nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n;
|
| + assert(rd->y_ac_levels[n][0] == 0);
|
| + }
|
| + }
|
| +
|
| + // Transform back
|
| + VP8TransformWHT(dc_tmp, tmp[0]);
|
| + for (n = 0; n < 16; n += 2) {
|
| + VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
|
| + }
|
| +
|
| + return nz;
|
| +}
|
| +
|
| +static int ReconstructIntra4(VP8EncIterator* const it,
|
| + int16_t levels[16],
|
| + const uint8_t* const src,
|
| + uint8_t* const yuv_out,
|
| + int mode) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
|
| + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| + int nz = 0;
|
| + int16_t tmp[16];
|
| +
|
| + VP8FTransform(src, ref, tmp);
|
| + if (DO_TRELLIS_I4 && it->do_trellis_) {
|
| + const int x = it->i4_ & 3, y = it->i4_ >> 2;
|
| + const int ctx = it->top_nz_[x] + it->left_nz_[y];
|
| + nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_,
|
| + dqm->lambda_trellis_i4_);
|
| + } else {
|
| + nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_);
|
| + }
|
| + VP8ITransform(ref, tmp, yuv_out, 0);
|
| + return nz;
|
| +}
|
| +
|
| +static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
|
| + uint8_t* const yuv_out, int mode) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
|
| + const uint8_t* const src = it->yuv_in_ + U_OFF;
|
| + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| + int nz = 0;
|
| + int n;
|
| + int16_t tmp[8][16];
|
| +
|
| + for (n = 0; n < 8; ++n) {
|
| + VP8FTransform(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]);
|
| + }
|
| + if (DO_TRELLIS_UV && it->do_trellis_) {
|
| + int ch, x, y;
|
| + for (ch = 0, n = 0; ch <= 2; ch += 2) {
|
| + for (y = 0; y < 2; ++y) {
|
| + for (x = 0; x < 2; ++x, ++n) {
|
| + const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
|
| + const int non_zero =
|
| + TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2,
|
| + &dqm->uv_, dqm->lambda_trellis_uv_);
|
| + it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
|
| + nz |= non_zero << n;
|
| + }
|
| + }
|
| + }
|
| + } else {
|
| + for (n = 0; n < 8; ++n) {
|
| + nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], &dqm->uv_) << n;
|
| + }
|
| + }
|
| +
|
| + for (n = 0; n < 8; n += 2) {
|
| + VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1);
|
| + }
|
| + return (nz << 16);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
|
| +// Pick the mode is lower RD-cost = Rate + lambda * Distortion.
|
| +
|
| +static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) {
|
| + // We look at the first three AC coefficients to determine what is the average
|
| + // delta between each sub-4x4 block.
|
| + const int v0 = abs(DCs[1]);
|
| + const int v1 = abs(DCs[4]);
|
| + const int v2 = abs(DCs[5]);
|
| + int max_v = (v0 > v1) ? v1 : v0;
|
| + max_v = (v2 > max_v) ? v2 : max_v;
|
| + if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v;
|
| +}
|
| +
|
| +static void SwapPtr(uint8_t** a, uint8_t** b) {
|
| + uint8_t* const tmp = *a;
|
| + *a = *b;
|
| + *b = tmp;
|
| +}
|
| +
|
| +static void SwapOut(VP8EncIterator* const it) {
|
| + SwapPtr(&it->yuv_out_, &it->yuv_out2_);
|
| +}
|
| +
|
| +static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) {
|
| + score_t score = 0;
|
| + while (num_blocks-- > 0) { // TODO(skal): refine positional scoring?
|
| + int i;
|
| + for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC
|
| + score += (levels[i] != 0);
|
| + if (score > thresh) return 0;
|
| + }
|
| + levels += 16;
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| + const int kNumBlocks = 16;
|
| + VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_];
|
| + const int lambda = dqm->lambda_i16_;
|
| + const int tlambda = dqm->tlambda_;
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF;
|
| + VP8ModeScore rd16;
|
| + int mode;
|
| +
|
| + rd->mode_i16 = -1;
|
| + for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| + uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer
|
| + int nz;
|
| +
|
| + // Reconstruct
|
| + nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
|
| +
|
| + // Measure RD-score
|
| + rd16.D = VP8SSE16x16(src, tmp_dst);
|
| + rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
|
| + : 0;
|
| + rd16.H = VP8FixedCostsI16[mode];
|
| + rd16.R = VP8GetCostLuma16(it, &rd16);
|
| + if (mode > 0 &&
|
| + IsFlat(rd16.y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) {
|
| + // penalty to avoid flat area to be mispredicted by complex mode
|
| + rd16.R += FLATNESS_PENALTY * kNumBlocks;
|
| + }
|
| +
|
| + // Since we always examine Intra16 first, we can overwrite *rd directly.
|
| + SetRDScore(lambda, &rd16);
|
| + if (mode == 0 || rd16.score < rd->score) {
|
| + CopyScore(rd, &rd16);
|
| + rd->mode_i16 = mode;
|
| + rd->nz = nz;
|
| + memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
|
| + memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
|
| + SwapOut(it);
|
| + }
|
| + }
|
| + SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
|
| + VP8SetIntra16Mode(it, rd->mode_i16);
|
| +
|
| + // we have a blocky macroblock (only DCs are non-zero) with fairly high
|
| + // distortion, record max delta so we can later adjust the minimal filtering
|
| + // strength needed to smooth these blocks out.
|
| + if ((rd->nz & 0xffff) == 0 && rd->D > dqm->min_disto_) {
|
| + StoreMaxDelta(dqm, rd->y_dc_levels);
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +// return the cost array corresponding to the surrounding prediction modes.
|
| +static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
|
| + const uint8_t modes[16]) {
|
| + const int preds_w = it->enc_->preds_w_;
|
| + const int x = (it->i4_ & 3), y = it->i4_ >> 2;
|
| + const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
|
| + const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
|
| + return VP8FixedCostsI4[top][left];
|
| +}
|
| +
|
| +static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
|
| + const int lambda = dqm->lambda_i4_;
|
| + const int tlambda = dqm->tlambda_;
|
| + const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
|
| + uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
|
| + int total_header_bits = 0;
|
| + VP8ModeScore rd_best;
|
| +
|
| + if (enc->max_i4_header_bits_ == 0) {
|
| + return 0;
|
| + }
|
| +
|
| + InitScore(&rd_best);
|
| + rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145)
|
| + SetRDScore(dqm->lambda_mode_, &rd_best);
|
| + VP8IteratorStartI4(it);
|
| + do {
|
| + const int kNumBlocks = 1;
|
| + VP8ModeScore rd_i4;
|
| + int mode;
|
| + int best_mode = -1;
|
| + const uint8_t* const src = src0 + VP8Scan[it->i4_];
|
| + const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
|
| + uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
|
| + uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
|
| +
|
| + InitScore(&rd_i4);
|
| + VP8MakeIntra4Preds(it);
|
| + for (mode = 0; mode < NUM_BMODES; ++mode) {
|
| + VP8ModeScore rd_tmp;
|
| + int16_t tmp_levels[16];
|
| +
|
| + // Reconstruct
|
| + rd_tmp.nz =
|
| + ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
|
| +
|
| + // Compute RD-score
|
| + rd_tmp.D = VP8SSE4x4(src, tmp_dst);
|
| + rd_tmp.SD =
|
| + tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
|
| + : 0;
|
| + rd_tmp.H = mode_costs[mode];
|
| + rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
|
| + if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) {
|
| + rd_tmp.R += FLATNESS_PENALTY * kNumBlocks;
|
| + }
|
| +
|
| + SetRDScore(lambda, &rd_tmp);
|
| + if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
|
| + CopyScore(&rd_i4, &rd_tmp);
|
| + best_mode = mode;
|
| + SwapPtr(&tmp_dst, &best_block);
|
| + memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
|
| + }
|
| + }
|
| + SetRDScore(dqm->lambda_mode_, &rd_i4);
|
| + AddScore(&rd_best, &rd_i4);
|
| + if (rd_best.score >= rd->score) {
|
| + return 0;
|
| + }
|
| + total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode];
|
| + if (total_header_bits > enc->max_i4_header_bits_) {
|
| + return 0;
|
| + }
|
| + // Copy selected samples if not in the right place already.
|
| + if (best_block != best_blocks + VP8Scan[it->i4_]) {
|
| + VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
|
| + }
|
| + rd->modes_i4[it->i4_] = best_mode;
|
| + it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
|
| + } while (VP8IteratorRotateI4(it, best_blocks));
|
| +
|
| + // finalize state
|
| + CopyScore(rd, &rd_best);
|
| + VP8SetIntra4Mode(it, rd->modes_i4);
|
| + SwapOut(it);
|
| + memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
|
| + return 1; // select intra4x4 over intra16x16
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +
|
| +static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| + const int kNumBlocks = 8;
|
| + const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_];
|
| + const int lambda = dqm->lambda_uv_;
|
| + const uint8_t* const src = it->yuv_in_ + U_OFF;
|
| + uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer
|
| + uint8_t* const dst0 = it->yuv_out_ + U_OFF;
|
| + VP8ModeScore rd_best;
|
| + int mode;
|
| +
|
| + rd->mode_uv = -1;
|
| + InitScore(&rd_best);
|
| + for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| + VP8ModeScore rd_uv;
|
| +
|
| + // Reconstruct
|
| + rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
|
| +
|
| + // Compute RD-score
|
| + rd_uv.D = VP8SSE16x8(src, tmp_dst);
|
| + rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas.
|
| + rd_uv.H = VP8FixedCostsUV[mode];
|
| + rd_uv.R = VP8GetCostUV(it, &rd_uv);
|
| + if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) {
|
| + rd_uv.R += FLATNESS_PENALTY * kNumBlocks;
|
| + }
|
| +
|
| + SetRDScore(lambda, &rd_uv);
|
| + if (mode == 0 || rd_uv.score < rd_best.score) {
|
| + CopyScore(&rd_best, &rd_uv);
|
| + rd->mode_uv = mode;
|
| + memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
|
| + memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ?
|
| + }
|
| + }
|
| + VP8SetIntraUVMode(it, rd->mode_uv);
|
| + AddScore(rd, &rd_best);
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Final reconstruction and quantization.
|
| +
|
| +static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
|
| + const VP8Encoder* const enc = it->enc_;
|
| + const int is_i16 = (it->mb_->type_ == 1);
|
| + int nz = 0;
|
| +
|
| + if (is_i16) {
|
| + nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
|
| + } else {
|
| + VP8IteratorStartI4(it);
|
| + do {
|
| + const int mode =
|
| + it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
| + uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
|
| + VP8MakeIntra4Preds(it);
|
| + nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
|
| + src, dst, mode) << it->i4_;
|
| + } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
|
| + }
|
| +
|
| + nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
|
| + rd->nz = nz;
|
| +}
|
| +
|
| +// Refine intra16/intra4 sub-modes based on distortion only (not rate).
|
| +static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) {
|
| + const int is_i16 = (it->mb_->type_ == 1);
|
| + score_t best_score = MAX_COST;
|
| +
|
| + if (try_both_i4_i16 || is_i16) {
|
| + int mode;
|
| + int best_mode = -1;
|
| + for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
|
| + const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF;
|
| + const score_t score = VP8SSE16x16(src, ref);
|
| + if (score < best_score) {
|
| + best_mode = mode;
|
| + best_score = score;
|
| + }
|
| + }
|
| + VP8SetIntra16Mode(it, best_mode);
|
| + }
|
| + if (try_both_i4_i16 || !is_i16) {
|
| + uint8_t modes_i4[16];
|
| + // We don't evaluate the rate here, but just account for it through a
|
| + // constant penalty (i4 mode usually needs more bits compared to i16).
|
| + score_t score_i4 = (score_t)I4_PENALTY;
|
| +
|
| + VP8IteratorStartI4(it);
|
| + do {
|
| + int mode;
|
| + int best_sub_mode = -1;
|
| + score_t best_sub_score = MAX_COST;
|
| + const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
|
| +
|
| + // TODO(skal): we don't really need the prediction pixels here,
|
| + // but just the distortion against 'src'.
|
| + VP8MakeIntra4Preds(it);
|
| + for (mode = 0; mode < NUM_BMODES; ++mode) {
|
| + const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
|
| + const score_t score = VP8SSE4x4(src, ref);
|
| + if (score < best_sub_score) {
|
| + best_sub_mode = mode;
|
| + best_sub_score = score;
|
| + }
|
| + }
|
| + modes_i4[it->i4_] = best_sub_mode;
|
| + score_i4 += best_sub_score;
|
| + if (score_i4 >= best_score) break;
|
| + } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
|
| + if (score_i4 < best_score) {
|
| + VP8SetIntra4Mode(it, modes_i4);
|
| + }
|
| + }
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +// Entry point
|
| +
|
| +int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
|
| + VP8RDLevel rd_opt) {
|
| + int is_skipped;
|
| + const int method = it->enc_->method_;
|
| +
|
| + InitScore(rd);
|
| +
|
| + // We can perform predictions for Luma16x16 and Chroma8x8 already.
|
| + // Luma4x4 predictions needs to be done as-we-go.
|
| + VP8MakeLuma16Preds(it);
|
| + VP8MakeChroma8Preds(it);
|
| +
|
| + if (rd_opt > RD_OPT_NONE) {
|
| + it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
|
| + PickBestIntra16(it, rd);
|
| + if (method >= 2) {
|
| + PickBestIntra4(it, rd);
|
| + }
|
| + PickBestUV(it, rd);
|
| + if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now
|
| + it->do_trellis_ = 1;
|
| + SimpleQuantize(it, rd);
|
| + }
|
| + } else {
|
| + // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower).
|
| + // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode).
|
| + DistoRefine(it, (method >= 2));
|
| + SimpleQuantize(it, rd);
|
| + }
|
| + is_skipped = (rd->nz == 0);
|
| + VP8SetSkip(it, is_skipped);
|
| + return is_skipped;
|
| +}
|
| +
|
|
|