| Index: third_party/scrypt/lib/crypto/crypto_scrypt-ref.c
|
| ===================================================================
|
| --- third_party/scrypt/lib/crypto/crypto_scrypt-ref.c (revision 175254)
|
| +++ third_party/scrypt/lib/crypto/crypto_scrypt-ref.c (working copy)
|
| @@ -1,284 +0,0 @@
|
| -/*-
|
| - * Copyright 2009 Colin Percival
|
| - * All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
| - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
| - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
| - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
| - * SUCH DAMAGE.
|
| - *
|
| - * This file was originally written by Colin Percival as part of the Tarsnap
|
| - * online backup system.
|
| - */
|
| -#include "scrypt_platform.h"
|
| -
|
| -#include <errno.h>
|
| -#include <stdint.h>
|
| -#include <stdlib.h>
|
| -#include <string.h>
|
| -
|
| -#include "sha256.h"
|
| -#include "sysendian.h"
|
| -
|
| -#include "crypto_scrypt.h"
|
| -
|
| -static void blkcpy(uint8_t *, uint8_t *, size_t);
|
| -static void blkxor(uint8_t *, uint8_t *, size_t);
|
| -static void salsa20_8(uint8_t[64]);
|
| -static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
|
| -static uint64_t integerify(uint8_t *, size_t);
|
| -static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
|
| -
|
| -static void
|
| -blkcpy(uint8_t * dest, uint8_t * src, size_t len)
|
| -{
|
| - size_t i;
|
| -
|
| - for (i = 0; i < len; i++)
|
| - dest[i] = src[i];
|
| -}
|
| -
|
| -static void
|
| -blkxor(uint8_t * dest, uint8_t * src, size_t len)
|
| -{
|
| - size_t i;
|
| -
|
| - for (i = 0; i < len; i++)
|
| - dest[i] ^= src[i];
|
| -}
|
| -
|
| -/**
|
| - * salsa20_8(B):
|
| - * Apply the salsa20/8 core to the provided block.
|
| - */
|
| -static void
|
| -salsa20_8(uint8_t B[64])
|
| -{
|
| - uint32_t B32[16];
|
| - uint32_t x[16];
|
| - size_t i;
|
| -
|
| - /* Convert little-endian values in. */
|
| - for (i = 0; i < 16; i++)
|
| - B32[i] = le32dec(&B[i * 4]);
|
| -
|
| - /* Compute x = doubleround^4(B32). */
|
| - for (i = 0; i < 16; i++)
|
| - x[i] = B32[i];
|
| - for (i = 0; i < 8; i += 2) {
|
| -#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
| - /* Operate on columns. */
|
| - x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
|
| - x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
|
| -
|
| - x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
|
| - x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
|
| -
|
| - x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
|
| - x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
|
| -
|
| - x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
|
| - x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
|
| -
|
| - /* Operate on rows. */
|
| - x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
|
| - x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
|
| -
|
| - x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
|
| - x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
|
| -
|
| - x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
|
| - x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
|
| -
|
| - x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
|
| - x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
|
| -#undef R
|
| - }
|
| -
|
| - /* Compute B32 = B32 + x. */
|
| - for (i = 0; i < 16; i++)
|
| - B32[i] += x[i];
|
| -
|
| - /* Convert little-endian values out. */
|
| - for (i = 0; i < 16; i++)
|
| - le32enc(&B[4 * i], B32[i]);
|
| -}
|
| -
|
| -/**
|
| - * blockmix_salsa8(B, Y, r):
|
| - * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
|
| - * length; the temporary space Y must also be the same size.
|
| - */
|
| -static void
|
| -blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
|
| -{
|
| - uint8_t X[64];
|
| - size_t i;
|
| -
|
| - /* 1: X <-- B_{2r - 1} */
|
| - blkcpy(X, &B[(2 * r - 1) * 64], 64);
|
| -
|
| - /* 2: for i = 0 to 2r - 1 do */
|
| - for (i = 0; i < 2 * r; i++) {
|
| - /* 3: X <-- H(X \xor B_i) */
|
| - blkxor(X, &B[i * 64], 64);
|
| - salsa20_8(X);
|
| -
|
| - /* 4: Y_i <-- X */
|
| - blkcpy(&Y[i * 64], X, 64);
|
| - }
|
| -
|
| - /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
| - for (i = 0; i < r; i++)
|
| - blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
|
| - for (i = 0; i < r; i++)
|
| - blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
|
| -}
|
| -
|
| -/**
|
| - * integerify(B, r):
|
| - * Return the result of parsing B_{2r-1} as a little-endian integer.
|
| - */
|
| -static uint64_t
|
| -integerify(uint8_t * B, size_t r)
|
| -{
|
| - uint8_t * X = &B[(2 * r - 1) * 64];
|
| -
|
| - return (le64dec(X));
|
| -}
|
| -
|
| -/**
|
| - * smix(B, r, N, V, XY):
|
| - * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
|
| - * temporary storage V must be 128rN bytes in length; the temporary storage
|
| - * XY must be 256r bytes in length. The value N must be a power of 2.
|
| - */
|
| -static void
|
| -smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
|
| -{
|
| - uint8_t * X = XY;
|
| - uint8_t * Y = &XY[128 * r];
|
| - uint64_t i;
|
| - uint64_t j;
|
| -
|
| - /* 1: X <-- B */
|
| - blkcpy(X, B, 128 * r);
|
| -
|
| - /* 2: for i = 0 to N - 1 do */
|
| - for (i = 0; i < N; i++) {
|
| - /* 3: V_i <-- X */
|
| - blkcpy(&V[i * (128 * r)], X, 128 * r);
|
| -
|
| - /* 4: X <-- H(X) */
|
| - blockmix_salsa8(X, Y, r);
|
| - }
|
| -
|
| - /* 6: for i = 0 to N - 1 do */
|
| - for (i = 0; i < N; i++) {
|
| - /* 7: j <-- Integerify(X) mod N */
|
| - j = integerify(X, r) & (N - 1);
|
| -
|
| - /* 8: X <-- H(X \xor V_j) */
|
| - blkxor(X, &V[j * (128 * r)], 128 * r);
|
| - blockmix_salsa8(X, Y, r);
|
| - }
|
| -
|
| - /* 10: B' <-- X */
|
| - blkcpy(B, X, 128 * r);
|
| -}
|
| -
|
| -/**
|
| - * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
| - * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
| - * p, buflen) and write the result into buf. The parameters r, p, and buflen
|
| - * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
| - * must be a power of 2.
|
| - *
|
| - * Return 0 on success; or -1 on error.
|
| - */
|
| -int
|
| -crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
|
| - const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
| - uint8_t * buf, size_t buflen)
|
| -{
|
| - uint8_t * B;
|
| - uint8_t * V;
|
| - uint8_t * XY;
|
| - uint32_t i;
|
| -
|
| - /* Sanity-check parameters. */
|
| -#if SIZE_MAX > UINT32_MAX
|
| - if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
| - errno = EFBIG;
|
| - goto err0;
|
| - }
|
| -#endif
|
| - if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
| - errno = EFBIG;
|
| - goto err0;
|
| - }
|
| - if (((N & (N - 1)) != 0) || (N == 0)) {
|
| - errno = EINVAL;
|
| - goto err0;
|
| - }
|
| - if ((r > SIZE_MAX / 128 / p) ||
|
| -#if SIZE_MAX / 256 <= UINT32_MAX
|
| - (r > SIZE_MAX / 256) ||
|
| -#endif
|
| - (N > SIZE_MAX / 128 / r)) {
|
| - errno = ENOMEM;
|
| - goto err0;
|
| - }
|
| -
|
| - /* Allocate memory. */
|
| - if ((B = malloc(128 * r * p)) == NULL)
|
| - goto err0;
|
| - if ((XY = malloc(256 * r)) == NULL)
|
| - goto err1;
|
| - if ((V = malloc(128 * r * N)) == NULL)
|
| - goto err2;
|
| -
|
| - /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
| - PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
|
| -
|
| - /* 2: for i = 0 to p - 1 do */
|
| - for (i = 0; i < p; i++) {
|
| - /* 3: B_i <-- MF(B_i, N) */
|
| - smix(&B[i * 128 * r], r, N, V, XY);
|
| - }
|
| -
|
| - /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
| - PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
|
| -
|
| - /* Free memory. */
|
| - free(V);
|
| - free(XY);
|
| - free(B);
|
| -
|
| - /* Success! */
|
| - return (0);
|
| -
|
| -err2:
|
| - free(XY);
|
| -err1:
|
| - free(B);
|
| -err0:
|
| - /* Failure! */
|
| - return (-1);
|
| -}
|
|
|