Index: third_party/scrypt/lib/crypto/crypto_scrypt-sse.c |
=================================================================== |
--- third_party/scrypt/lib/crypto/crypto_scrypt-sse.c (revision 175254) |
+++ third_party/scrypt/lib/crypto/crypto_scrypt-sse.c (working copy) |
@@ -1,366 +0,0 @@ |
-/*- |
- * Copyright 2009 Colin Percival |
- * All rights reserved. |
- * |
- * Redistribution and use in source and binary forms, with or without |
- * modification, are permitted provided that the following conditions |
- * are met: |
- * 1. Redistributions of source code must retain the above copyright |
- * notice, this list of conditions and the following disclaimer. |
- * 2. Redistributions in binary form must reproduce the above copyright |
- * notice, this list of conditions and the following disclaimer in the |
- * documentation and/or other materials provided with the distribution. |
- * |
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
- * SUCH DAMAGE. |
- * |
- * This file was originally written by Colin Percival as part of the Tarsnap |
- * online backup system. |
- */ |
-#include "scrypt_platform.h" |
- |
-#include <sys/types.h> |
-#include <sys/mman.h> |
- |
-#include <emmintrin.h> |
-#include <errno.h> |
-#include <stdint.h> |
-#include <stdlib.h> |
-#include <string.h> |
- |
-#include "sha256.h" |
-#include "sysendian.h" |
- |
-#include "crypto_scrypt.h" |
- |
-static void blkcpy(void *, void *, size_t); |
-static void blkxor(void *, void *, size_t); |
-static void salsa20_8(__m128i *); |
-static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t); |
-static uint64_t integerify(void *, size_t); |
-static void smix(uint8_t *, size_t, uint64_t, void *, void *); |
- |
-static void |
-blkcpy(void * dest, void * src, size_t len) |
-{ |
- __m128i * D = dest; |
- __m128i * S = src; |
- size_t L = len / 16; |
- size_t i; |
- |
- for (i = 0; i < L; i++) |
- D[i] = S[i]; |
-} |
- |
-static void |
-blkxor(void * dest, void * src, size_t len) |
-{ |
- __m128i * D = dest; |
- __m128i * S = src; |
- size_t L = len / 16; |
- size_t i; |
- |
- for (i = 0; i < L; i++) |
- D[i] = _mm_xor_si128(D[i], S[i]); |
-} |
- |
-/** |
- * salsa20_8(B): |
- * Apply the salsa20/8 core to the provided block. |
- */ |
-static void |
-salsa20_8(__m128i B[4]) |
-{ |
- __m128i X0, X1, X2, X3; |
- __m128i T; |
- size_t i; |
- |
- X0 = B[0]; |
- X1 = B[1]; |
- X2 = B[2]; |
- X3 = B[3]; |
- |
- for (i = 0; i < 8; i += 2) { |
- /* Operate on "columns". */ |
- T = _mm_add_epi32(X0, X3); |
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); |
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); |
- T = _mm_add_epi32(X1, X0); |
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
- T = _mm_add_epi32(X2, X1); |
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); |
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); |
- T = _mm_add_epi32(X3, X2); |
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
- |
- /* Rearrange data. */ |
- X1 = _mm_shuffle_epi32(X1, 0x93); |
- X2 = _mm_shuffle_epi32(X2, 0x4E); |
- X3 = _mm_shuffle_epi32(X3, 0x39); |
- |
- /* Operate on "rows". */ |
- T = _mm_add_epi32(X0, X1); |
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); |
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); |
- T = _mm_add_epi32(X3, X0); |
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
- T = _mm_add_epi32(X2, X3); |
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); |
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); |
- T = _mm_add_epi32(X1, X2); |
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
- |
- /* Rearrange data. */ |
- X1 = _mm_shuffle_epi32(X1, 0x39); |
- X2 = _mm_shuffle_epi32(X2, 0x4E); |
- X3 = _mm_shuffle_epi32(X3, 0x93); |
- } |
- |
- B[0] = _mm_add_epi32(B[0], X0); |
- B[1] = _mm_add_epi32(B[1], X1); |
- B[2] = _mm_add_epi32(B[2], X2); |
- B[3] = _mm_add_epi32(B[3], X3); |
-} |
- |
-/** |
- * blockmix_salsa8(Bin, Bout, X, r): |
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r |
- * bytes in length; the output Bout must also be the same size. The |
- * temporary space X must be 64 bytes. |
- */ |
-static void |
-blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r) |
-{ |
- size_t i; |
- |
- /* 1: X <-- B_{2r - 1} */ |
- blkcpy(X, &Bin[8 * r - 4], 64); |
- |
- /* 2: for i = 0 to 2r - 1 do */ |
- for (i = 0; i < r; i++) { |
- /* 3: X <-- H(X \xor B_i) */ |
- blkxor(X, &Bin[i * 8], 64); |
- salsa20_8(X); |
- |
- /* 4: Y_i <-- X */ |
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
- blkcpy(&Bout[i * 4], X, 64); |
- |
- /* 3: X <-- H(X \xor B_i) */ |
- blkxor(X, &Bin[i * 8 + 4], 64); |
- salsa20_8(X); |
- |
- /* 4: Y_i <-- X */ |
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ |
- blkcpy(&Bout[(r + i) * 4], X, 64); |
- } |
-} |
- |
-/** |
- * integerify(B, r): |
- * Return the result of parsing B_{2r-1} as a little-endian integer. |
- */ |
-static uint64_t |
-integerify(void * B, size_t r) |
-{ |
- uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64); |
- |
- return (((uint64_t)(X[13]) << 32) + X[0]); |
-} |
- |
-/** |
- * smix(B, r, N, V, XY): |
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; |
- * the temporary storage V must be 128rN bytes in length; the temporary |
- * storage XY must be 256r + 64 bytes in length. The value N must be a |
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a |
- * multiple of 64 bytes. |
- */ |
-static void |
-smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY) |
-{ |
- __m128i * X = XY; |
- __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r); |
- __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r); |
- uint32_t * X32 = (void *)X; |
- uint64_t i, j; |
- size_t k; |
- |
- /* 1: X <-- B */ |
- for (k = 0; k < 2 * r; k++) { |
- for (i = 0; i < 16; i++) { |
- X32[k * 16 + i] = |
- le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); |
- } |
- } |
- |
- /* 2: for i = 0 to N - 1 do */ |
- for (i = 0; i < N; i += 2) { |
- /* 3: V_i <-- X */ |
- blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r); |
- |
- /* 4: X <-- H(X) */ |
- blockmix_salsa8(X, Y, Z, r); |
- |
- /* 3: V_i <-- X */ |
- blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r), |
- Y, 128 * r); |
- |
- /* 4: X <-- H(X) */ |
- blockmix_salsa8(Y, X, Z, r); |
- } |
- |
- /* 6: for i = 0 to N - 1 do */ |
- for (i = 0; i < N; i += 2) { |
- /* 7: j <-- Integerify(X) mod N */ |
- j = integerify(X, r) & (N - 1); |
- |
- /* 8: X <-- H(X \xor V_j) */ |
- blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
- blockmix_salsa8(X, Y, Z, r); |
- |
- /* 7: j <-- Integerify(X) mod N */ |
- j = integerify(Y, r) & (N - 1); |
- |
- /* 8: X <-- H(X \xor V_j) */ |
- blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r); |
- blockmix_salsa8(Y, X, Z, r); |
- } |
- |
- /* 10: B' <-- X */ |
- for (k = 0; k < 2 * r; k++) { |
- for (i = 0; i < 16; i++) { |
- le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], |
- X32[k * 16 + i]); |
- } |
- } |
-} |
- |
-/** |
- * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): |
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
- * p, buflen) and write the result into buf. The parameters r, p, and buflen |
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
- * must be a power of 2 greater than 1. |
- * |
- * Return 0 on success; or -1 on error. |
- */ |
-int |
-crypto_scrypt(const uint8_t * passwd, size_t passwdlen, |
- const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, |
- uint8_t * buf, size_t buflen) |
-{ |
- void * B0, * V0, * XY0; |
- uint8_t * B; |
- uint32_t * V; |
- uint32_t * XY; |
- uint32_t i; |
- |
- /* Sanity-check parameters. */ |
-#if SIZE_MAX > UINT32_MAX |
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { |
- errno = EFBIG; |
- goto err0; |
- } |
-#endif |
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { |
- errno = EFBIG; |
- goto err0; |
- } |
- if (((N & (N - 1)) != 0) || (N == 0)) { |
- errno = EINVAL; |
- goto err0; |
- } |
- if ((r > SIZE_MAX / 128 / p) || |
-#if SIZE_MAX / 256 <= UINT32_MAX |
- (r > (SIZE_MAX - 64) / 256) || |
-#endif |
- (N > SIZE_MAX / 128 / r)) { |
- errno = ENOMEM; |
- goto err0; |
- } |
- |
- /* Allocate memory. */ |
-#ifdef HAVE_POSIX_MEMALIGN |
- if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) |
- goto err0; |
- B = (uint8_t *)(B0); |
- if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) |
- goto err1; |
- XY = (uint32_t *)(XY0); |
-#ifndef MAP_ANON |
- if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) |
- goto err2; |
- V = (uint32_t *)(V0); |
-#endif |
-#else |
- if ((B0 = malloc(128 * r * p + 63)) == NULL) |
- goto err0; |
- B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); |
- if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) |
- goto err1; |
- XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); |
-#ifndef MAP_ANON |
- if ((V0 = malloc(128 * r * N + 63)) == NULL) |
- goto err2; |
- V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); |
-#endif |
-#endif |
-#ifdef MAP_ANON |
- if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, |
-#ifdef MAP_NOCORE |
- MAP_ANON | MAP_PRIVATE | MAP_NOCORE, |
-#else |
- MAP_ANON | MAP_PRIVATE, |
-#endif |
- -1, 0)) == MAP_FAILED) |
- goto err2; |
- V = (uint32_t *)(V0); |
-#endif |
- |
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ |
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); |
- |
- /* 2: for i = 0 to p - 1 do */ |
- for (i = 0; i < p; i++) { |
- /* 3: B_i <-- MF(B_i, N) */ |
- smix(&B[i * 128 * r], r, N, V, XY); |
- } |
- |
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ |
- PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); |
- |
- /* Free memory. */ |
-#ifdef MAP_ANON |
- if (munmap(V0, 128 * r * N)) |
- goto err2; |
-#else |
- free(V0); |
-#endif |
- free(XY0); |
- free(B0); |
- |
- /* Success! */ |
- return (0); |
- |
-err2: |
- free(XY0); |
-err1: |
- free(B0); |
-err0: |
- /* Failure! */ |
- return (-1); |
-} |