OLD | NEW |
| (Empty) |
1 /*- | |
2 * Copyright 2009 Colin Percival | |
3 * All rights reserved. | |
4 * | |
5 * Redistribution and use in source and binary forms, with or without | |
6 * modification, are permitted provided that the following conditions | |
7 * are met: | |
8 * 1. Redistributions of source code must retain the above copyright | |
9 * notice, this list of conditions and the following disclaimer. | |
10 * 2. Redistributions in binary form must reproduce the above copyright | |
11 * notice, this list of conditions and the following disclaimer in the | |
12 * documentation and/or other materials provided with the distribution. | |
13 * | |
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
24 * SUCH DAMAGE. | |
25 * | |
26 * This file was originally written by Colin Percival as part of the Tarsnap | |
27 * online backup system. | |
28 */ | |
29 #include "scrypt_platform.h" | |
30 | |
31 #include <errno.h> | |
32 #include <stdint.h> | |
33 #include <stdlib.h> | |
34 #include <string.h> | |
35 | |
36 #include "sha256.h" | |
37 #include "sysendian.h" | |
38 | |
39 #include "crypto_scrypt.h" | |
40 | |
41 static void blkcpy(uint8_t *, uint8_t *, size_t); | |
42 static void blkxor(uint8_t *, uint8_t *, size_t); | |
43 static void salsa20_8(uint8_t[64]); | |
44 static void blockmix_salsa8(uint8_t *, uint8_t *, size_t); | |
45 static uint64_t integerify(uint8_t *, size_t); | |
46 static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *); | |
47 | |
48 static void | |
49 blkcpy(uint8_t * dest, uint8_t * src, size_t len) | |
50 { | |
51 size_t i; | |
52 | |
53 for (i = 0; i < len; i++) | |
54 dest[i] = src[i]; | |
55 } | |
56 | |
57 static void | |
58 blkxor(uint8_t * dest, uint8_t * src, size_t len) | |
59 { | |
60 size_t i; | |
61 | |
62 for (i = 0; i < len; i++) | |
63 dest[i] ^= src[i]; | |
64 } | |
65 | |
66 /** | |
67 * salsa20_8(B): | |
68 * Apply the salsa20/8 core to the provided block. | |
69 */ | |
70 static void | |
71 salsa20_8(uint8_t B[64]) | |
72 { | |
73 uint32_t B32[16]; | |
74 uint32_t x[16]; | |
75 size_t i; | |
76 | |
77 /* Convert little-endian values in. */ | |
78 for (i = 0; i < 16; i++) | |
79 B32[i] = le32dec(&B[i * 4]); | |
80 | |
81 /* Compute x = doubleround^4(B32). */ | |
82 for (i = 0; i < 16; i++) | |
83 x[i] = B32[i]; | |
84 for (i = 0; i < 8; i += 2) { | |
85 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) | |
86 /* Operate on columns. */ | |
87 x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); | |
88 x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); | |
89 | |
90 x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); | |
91 x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); | |
92 | |
93 x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); | |
94 x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); | |
95 | |
96 x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); | |
97 x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); | |
98 | |
99 /* Operate on rows. */ | |
100 x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); | |
101 x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); | |
102 | |
103 x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); | |
104 x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); | |
105 | |
106 x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); | |
107 x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); | |
108 | |
109 x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); | |
110 x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); | |
111 #undef R | |
112 } | |
113 | |
114 /* Compute B32 = B32 + x. */ | |
115 for (i = 0; i < 16; i++) | |
116 B32[i] += x[i]; | |
117 | |
118 /* Convert little-endian values out. */ | |
119 for (i = 0; i < 16; i++) | |
120 le32enc(&B[4 * i], B32[i]); | |
121 } | |
122 | |
123 /** | |
124 * blockmix_salsa8(B, Y, r): | |
125 * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in | |
126 * length; the temporary space Y must also be the same size. | |
127 */ | |
128 static void | |
129 blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r) | |
130 { | |
131 uint8_t X[64]; | |
132 size_t i; | |
133 | |
134 /* 1: X <-- B_{2r - 1} */ | |
135 blkcpy(X, &B[(2 * r - 1) * 64], 64); | |
136 | |
137 /* 2: for i = 0 to 2r - 1 do */ | |
138 for (i = 0; i < 2 * r; i++) { | |
139 /* 3: X <-- H(X \xor B_i) */ | |
140 blkxor(X, &B[i * 64], 64); | |
141 salsa20_8(X); | |
142 | |
143 /* 4: Y_i <-- X */ | |
144 blkcpy(&Y[i * 64], X, 64); | |
145 } | |
146 | |
147 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ | |
148 for (i = 0; i < r; i++) | |
149 blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64); | |
150 for (i = 0; i < r; i++) | |
151 blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64); | |
152 } | |
153 | |
154 /** | |
155 * integerify(B, r): | |
156 * Return the result of parsing B_{2r-1} as a little-endian integer. | |
157 */ | |
158 static uint64_t | |
159 integerify(uint8_t * B, size_t r) | |
160 { | |
161 uint8_t * X = &B[(2 * r - 1) * 64]; | |
162 | |
163 return (le64dec(X)); | |
164 } | |
165 | |
166 /** | |
167 * smix(B, r, N, V, XY): | |
168 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the | |
169 * temporary storage V must be 128rN bytes in length; the temporary storage | |
170 * XY must be 256r bytes in length. The value N must be a power of 2. | |
171 */ | |
172 static void | |
173 smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY) | |
174 { | |
175 uint8_t * X = XY; | |
176 uint8_t * Y = &XY[128 * r]; | |
177 uint64_t i; | |
178 uint64_t j; | |
179 | |
180 /* 1: X <-- B */ | |
181 blkcpy(X, B, 128 * r); | |
182 | |
183 /* 2: for i = 0 to N - 1 do */ | |
184 for (i = 0; i < N; i++) { | |
185 /* 3: V_i <-- X */ | |
186 blkcpy(&V[i * (128 * r)], X, 128 * r); | |
187 | |
188 /* 4: X <-- H(X) */ | |
189 blockmix_salsa8(X, Y, r); | |
190 } | |
191 | |
192 /* 6: for i = 0 to N - 1 do */ | |
193 for (i = 0; i < N; i++) { | |
194 /* 7: j <-- Integerify(X) mod N */ | |
195 j = integerify(X, r) & (N - 1); | |
196 | |
197 /* 8: X <-- H(X \xor V_j) */ | |
198 blkxor(X, &V[j * (128 * r)], 128 * r); | |
199 blockmix_salsa8(X, Y, r); | |
200 } | |
201 | |
202 /* 10: B' <-- X */ | |
203 blkcpy(B, X, 128 * r); | |
204 } | |
205 | |
206 /** | |
207 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): | |
208 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, | |
209 * p, buflen) and write the result into buf. The parameters r, p, and buflen | |
210 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N | |
211 * must be a power of 2. | |
212 * | |
213 * Return 0 on success; or -1 on error. | |
214 */ | |
215 int | |
216 crypto_scrypt(const uint8_t * passwd, size_t passwdlen, | |
217 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, | |
218 uint8_t * buf, size_t buflen) | |
219 { | |
220 uint8_t * B; | |
221 uint8_t * V; | |
222 uint8_t * XY; | |
223 uint32_t i; | |
224 | |
225 /* Sanity-check parameters. */ | |
226 #if SIZE_MAX > UINT32_MAX | |
227 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { | |
228 errno = EFBIG; | |
229 goto err0; | |
230 } | |
231 #endif | |
232 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { | |
233 errno = EFBIG; | |
234 goto err0; | |
235 } | |
236 if (((N & (N - 1)) != 0) || (N == 0)) { | |
237 errno = EINVAL; | |
238 goto err0; | |
239 } | |
240 if ((r > SIZE_MAX / 128 / p) || | |
241 #if SIZE_MAX / 256 <= UINT32_MAX | |
242 (r > SIZE_MAX / 256) || | |
243 #endif | |
244 (N > SIZE_MAX / 128 / r)) { | |
245 errno = ENOMEM; | |
246 goto err0; | |
247 } | |
248 | |
249 /* Allocate memory. */ | |
250 if ((B = malloc(128 * r * p)) == NULL) | |
251 goto err0; | |
252 if ((XY = malloc(256 * r)) == NULL) | |
253 goto err1; | |
254 if ((V = malloc(128 * r * N)) == NULL) | |
255 goto err2; | |
256 | |
257 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ | |
258 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); | |
259 | |
260 /* 2: for i = 0 to p - 1 do */ | |
261 for (i = 0; i < p; i++) { | |
262 /* 3: B_i <-- MF(B_i, N) */ | |
263 smix(&B[i * 128 * r], r, N, V, XY); | |
264 } | |
265 | |
266 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ | |
267 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); | |
268 | |
269 /* Free memory. */ | |
270 free(V); | |
271 free(XY); | |
272 free(B); | |
273 | |
274 /* Success! */ | |
275 return (0); | |
276 | |
277 err2: | |
278 free(XY); | |
279 err1: | |
280 free(B); | |
281 err0: | |
282 /* Failure! */ | |
283 return (-1); | |
284 } | |
OLD | NEW |