Index: skia/sgl/SkGeometry.cpp |
=================================================================== |
--- skia/sgl/SkGeometry.cpp (revision 16859) |
+++ skia/sgl/SkGeometry.cpp (working copy) |
@@ -1,1072 +0,0 @@ |
-/* libs/graphics/sgl/SkGeometry.cpp |
-** |
-** Copyright 2006, The Android Open Source Project |
-** |
-** Licensed under the Apache License, Version 2.0 (the "License"); |
-** you may not use this file except in compliance with the License. |
-** You may obtain a copy of the License at |
-** |
-** http://www.apache.org/licenses/LICENSE-2.0 |
-** |
-** Unless required by applicable law or agreed to in writing, software |
-** distributed under the License is distributed on an "AS IS" BASIS, |
-** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
-** See the License for the specific language governing permissions and |
-** limitations under the License. |
-*/ |
- |
-#include "SkGeometry.h" |
-#include "Sk64.h" |
-#include "SkMatrix.h" |
- |
-/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes |
- involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul. |
- May also introduce overflow of fixed when we compute our setup. |
-*/ |
-#ifdef SK_SCALAR_IS_FIXED |
- #define DIRECT_EVAL_OF_POLYNOMIALS |
-#endif |
- |
-//////////////////////////////////////////////////////////////////////// |
- |
-#ifdef SK_SCALAR_IS_FIXED |
- static int is_not_monotonic(int a, int b, int c, int d) |
- { |
- return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31; |
- } |
- |
- static int is_not_monotonic(int a, int b, int c) |
- { |
- return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31; |
- } |
-#else |
- static int is_not_monotonic(float a, float b, float c) |
- { |
- float ab = a - b; |
- float bc = b - c; |
- if (ab < 0) |
- bc = -bc; |
- return ab == 0 || bc < 0; |
- } |
-#endif |
- |
-//////////////////////////////////////////////////////////////////////// |
- |
-static bool is_unit_interval(SkScalar x) |
-{ |
- return x > 0 && x < SK_Scalar1; |
-} |
- |
-static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) |
-{ |
- SkASSERT(ratio); |
- |
- if (numer < 0) |
- { |
- numer = -numer; |
- denom = -denom; |
- } |
- |
- if (denom == 0 || numer == 0 || numer >= denom) |
- return 0; |
- |
- SkScalar r = SkScalarDiv(numer, denom); |
- SkASSERT(r >= 0 && r < SK_Scalar1); |
- if (r == 0) // catch underflow if numer <<<< denom |
- return 0; |
- *ratio = r; |
- return 1; |
-} |
- |
-/** From Numerical Recipes in C. |
- |
- Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) |
- x1 = Q / A |
- x2 = C / Q |
-*/ |
-int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) |
-{ |
- SkASSERT(roots); |
- |
- if (A == 0) |
- return valid_unit_divide(-C, B, roots); |
- |
- SkScalar* r = roots; |
- |
-#ifdef SK_SCALAR_IS_FLOAT |
- float R = B*B - 4*A*C; |
- if (R < 0) // complex roots |
- return 0; |
- R = sk_float_sqrt(R); |
-#else |
- Sk64 RR, tmp; |
- |
- RR.setMul(B,B); |
- tmp.setMul(A,C); |
- tmp.shiftLeft(2); |
- RR.sub(tmp); |
- if (RR.isNeg()) |
- return 0; |
- SkFixed R = RR.getSqrt(); |
-#endif |
- |
- SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; |
- r += valid_unit_divide(Q, A, r); |
- r += valid_unit_divide(C, Q, r); |
- if (r - roots == 2) |
- { |
- if (roots[0] > roots[1]) |
- SkTSwap<SkScalar>(roots[0], roots[1]); |
- else if (roots[0] == roots[1]) // nearly-equal? |
- r -= 1; // skip the double root |
- } |
- return (int)(r - roots); |
-} |
- |
-#ifdef SK_SCALAR_IS_FIXED |
-/** Trim A/B/C down so that they are all <= 32bits |
- and then call SkFindUnitQuadRoots() |
-*/ |
-static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2]) |
-{ |
- int na = A.shiftToMake32(); |
- int nb = B.shiftToMake32(); |
- int nc = C.shiftToMake32(); |
- |
- int shift = SkMax32(na, SkMax32(nb, nc)); |
- SkASSERT(shift >= 0); |
- |
- return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots); |
-} |
-#endif |
- |
-///////////////////////////////////////////////////////////////////////////////////// |
-///////////////////////////////////////////////////////////////////////////////////// |
- |
-static SkScalar eval_quad(const SkScalar src[], SkScalar t) |
-{ |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
-#ifdef DIRECT_EVAL_OF_POLYNOMIALS |
- SkScalar C = src[0]; |
- SkScalar A = src[4] - 2 * src[2] + C; |
- SkScalar B = 2 * (src[2] - C); |
- return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
-#else |
- SkScalar ab = SkScalarInterp(src[0], src[2], t); |
- SkScalar bc = SkScalarInterp(src[2], src[4], t); |
- return SkScalarInterp(ab, bc, t); |
-#endif |
-} |
- |
-static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) |
-{ |
- SkScalar A = src[4] - 2 * src[2] + src[0]; |
- SkScalar B = src[2] - src[0]; |
- |
- return 2 * SkScalarMulAdd(A, t, B); |
-} |
- |
-static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) |
-{ |
- SkScalar A = src[4] - 2 * src[2] + src[0]; |
- SkScalar B = src[2] - src[0]; |
- return A + 2 * B; |
-} |
- |
-void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) |
-{ |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- if (pt) |
- pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); |
- if (tangent) |
- tangent->set(eval_quad_derivative(&src[0].fX, t), |
- eval_quad_derivative(&src[0].fY, t)); |
-} |
- |
-void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) |
-{ |
- SkASSERT(src); |
- |
- if (pt) |
- { |
- SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
- SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
- SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
- SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); |
- pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); |
- } |
- if (tangent) |
- tangent->set(eval_quad_derivative_at_half(&src[0].fX), |
- eval_quad_derivative_at_half(&src[0].fY)); |
-} |
- |
-static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
-{ |
- SkScalar ab = SkScalarInterp(src[0], src[2], t); |
- SkScalar bc = SkScalarInterp(src[2], src[4], t); |
- |
- dst[0] = src[0]; |
- dst[2] = ab; |
- dst[4] = SkScalarInterp(ab, bc, t); |
- dst[6] = bc; |
- dst[8] = src[4]; |
-} |
- |
-void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) |
-{ |
- SkASSERT(t > 0 && t < SK_Scalar1); |
- |
- interp_quad_coords(&src[0].fX, &dst[0].fX, t); |
- interp_quad_coords(&src[0].fY, &dst[0].fY, t); |
-} |
- |
-void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) |
-{ |
- SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
- SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
- SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
- SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); |
- |
- dst[0] = src[0]; |
- dst[1].set(x01, y01); |
- dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); |
- dst[3].set(x12, y12); |
- dst[4] = src[2]; |
-} |
- |
-/** Quad'(t) = At + B, where |
- A = 2(a - 2b + c) |
- B = 2(b - a) |
- Solve for t, only if it fits between 0 < t < 1 |
-*/ |
-int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) |
-{ |
- /* At + B == 0 |
- t = -B / A |
- */ |
-#ifdef SK_SCALAR_IS_FIXED |
- return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue); |
-#else |
- return valid_unit_divide(a - b, a - b - b + c, tValue); |
-#endif |
-} |
- |
-static void flatten_double_quad_extrema(SkScalar coords[14]) |
-{ |
- coords[2] = coords[6] = coords[4]; |
-} |
- |
-static void force_quad_monotonic_in_y(SkPoint pts[3]) |
-{ |
- // zap pts[1].fY to the nearest value |
- SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY); |
- SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY); |
- pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY; |
-} |
- |
-/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is |
- stored in dst[]. Guarantees that the 1/2 quads will be monotonic. |
-*/ |
-int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) |
-{ |
- SkASSERT(src); |
- SkASSERT(dst); |
- |
-#if 0 |
- static bool once = true; |
- if (once) |
- { |
- once = false; |
- SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 }; |
- SkPoint d[6]; |
- |
- int n = SkChopQuadAtYExtrema(s, d); |
- SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY); |
- } |
-#endif |
- |
- SkScalar a = src[0].fY; |
- SkScalar b = src[1].fY; |
- SkScalar c = src[2].fY; |
- |
- if (is_not_monotonic(a, b, c)) |
- { |
- SkScalar tValue; |
- if (valid_unit_divide(a - b, a - b - b + c, &tValue)) |
- { |
- SkChopQuadAt(src, dst, tValue); |
- flatten_double_quad_extrema(&dst[0].fY); |
- return 1; |
- } |
- // if we get here, we need to force dst to be monotonic, even though |
- // we couldn't compute a unit_divide value (probably underflow). |
- b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; |
- } |
- dst[0].set(src[0].fX, a); |
- dst[1].set(src[1].fX, b); |
- dst[2].set(src[2].fX, c); |
- return 0; |
-} |
- |
-// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 |
-// F'(t) = 2 (b - a) + 2 (a - 2b + c) t |
-// F''(t) = 2 (a - 2b + c) |
-// |
-// A = 2 (b - a) |
-// B = 2 (a - 2b + c) |
-// |
-// Maximum curvature for a quadratic means solving |
-// Fx' Fx'' + Fy' Fy'' = 0 |
-// |
-// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) |
-// |
-int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) |
-{ |
- SkScalar Ax = src[1].fX - src[0].fX; |
- SkScalar Ay = src[1].fY - src[0].fY; |
- SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; |
- SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; |
- SkScalar t = 0; // 0 means don't chop |
- |
-#ifdef SK_SCALAR_IS_FLOAT |
- (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); |
-#else |
- // !!! should I use SkFloat here? seems like it |
- Sk64 numer, denom, tmp; |
- |
- numer.setMul(Ax, -Bx); |
- tmp.setMul(Ay, -By); |
- numer.add(tmp); |
- |
- if (numer.isPos()) // do nothing if numer <= 0 |
- { |
- denom.setMul(Bx, Bx); |
- tmp.setMul(By, By); |
- denom.add(tmp); |
- SkASSERT(!denom.isNeg()); |
- if (numer < denom) |
- { |
- t = numer.getFixedDiv(denom); |
- SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!) |
- if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability |
- t = 0; // ignore the chop |
- } |
- } |
-#endif |
- |
- if (t == 0) |
- { |
- memcpy(dst, src, 3 * sizeof(SkPoint)); |
- return 1; |
- } |
- else |
- { |
- SkChopQuadAt(src, dst, t); |
- return 2; |
- } |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////////////// |
-///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// |
-//////////////////////////////////////////////////////////////////////////////////////// |
- |
-static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) |
-{ |
- coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; |
- coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); |
- coeff[2] = 3*(pt[2] - pt[0]); |
- coeff[3] = pt[0]; |
-} |
- |
-void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) |
-{ |
- SkASSERT(pts); |
- |
- if (cx) |
- get_cubic_coeff(&pts[0].fX, cx); |
- if (cy) |
- get_cubic_coeff(&pts[0].fY, cy); |
-} |
- |
-static SkScalar eval_cubic(const SkScalar src[], SkScalar t) |
-{ |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- if (t == 0) |
- return src[0]; |
- |
-#ifdef DIRECT_EVAL_OF_POLYNOMIALS |
- SkScalar D = src[0]; |
- SkScalar A = src[6] + 3*(src[2] - src[4]) - D; |
- SkScalar B = 3*(src[4] - src[2] - src[2] + D); |
- SkScalar C = 3*(src[2] - D); |
- |
- return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); |
-#else |
- SkScalar ab = SkScalarInterp(src[0], src[2], t); |
- SkScalar bc = SkScalarInterp(src[2], src[4], t); |
- SkScalar cd = SkScalarInterp(src[4], src[6], t); |
- SkScalar abc = SkScalarInterp(ab, bc, t); |
- SkScalar bcd = SkScalarInterp(bc, cd, t); |
- return SkScalarInterp(abc, bcd, t); |
-#endif |
-} |
- |
-/** return At^2 + Bt + C |
-*/ |
-static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) |
-{ |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); |
-} |
- |
-static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) |
-{ |
- SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
- SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); |
- SkScalar C = src[2] - src[0]; |
- |
- return eval_quadratic(A, B, C, t); |
-} |
- |
-static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) |
-{ |
- SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; |
- SkScalar B = src[4] - 2 * src[2] + src[0]; |
- |
- return SkScalarMulAdd(A, t, B); |
-} |
- |
-void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature) |
-{ |
- SkASSERT(src); |
- SkASSERT(t >= 0 && t <= SK_Scalar1); |
- |
- if (loc) |
- loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); |
- if (tangent) |
- tangent->set(eval_cubic_derivative(&src[0].fX, t), |
- eval_cubic_derivative(&src[0].fY, t)); |
- if (curvature) |
- curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), |
- eval_cubic_2ndDerivative(&src[0].fY, t)); |
-} |
- |
-/** Cubic'(t) = At^2 + Bt + C, where |
- A = 3(-a + 3(b - c) + d) |
- B = 6(a - 2b + c) |
- C = 3(b - a) |
- Solve for t, keeping only those that fit betwee 0 < t < 1 |
-*/ |
-int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]) |
-{ |
-#ifdef SK_SCALAR_IS_FIXED |
- if (!is_not_monotonic(a, b, c, d)) |
- return 0; |
-#endif |
- |
- // we divide A,B,C by 3 to simplify |
- SkScalar A = d - a + 3*(b - c); |
- SkScalar B = 2*(a - b - b + c); |
- SkScalar C = b - a; |
- |
- return SkFindUnitQuadRoots(A, B, C, tValues); |
-} |
- |
-static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t) |
-{ |
- SkScalar ab = SkScalarInterp(src[0], src[2], t); |
- SkScalar bc = SkScalarInterp(src[2], src[4], t); |
- SkScalar cd = SkScalarInterp(src[4], src[6], t); |
- SkScalar abc = SkScalarInterp(ab, bc, t); |
- SkScalar bcd = SkScalarInterp(bc, cd, t); |
- SkScalar abcd = SkScalarInterp(abc, bcd, t); |
- |
- dst[0] = src[0]; |
- dst[2] = ab; |
- dst[4] = abc; |
- dst[6] = abcd; |
- dst[8] = bcd; |
- dst[10] = cd; |
- dst[12] = src[6]; |
-} |
- |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) |
-{ |
- SkASSERT(t > 0 && t < SK_Scalar1); |
- |
- interp_cubic_coords(&src[0].fX, &dst[0].fX, t); |
- interp_cubic_coords(&src[0].fY, &dst[0].fY, t); |
-} |
- |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots) |
-{ |
-#ifdef SK_DEBUG |
- { |
- for (int i = 0; i < roots - 1; i++) |
- { |
- SkASSERT(is_unit_interval(tValues[i])); |
- SkASSERT(is_unit_interval(tValues[i+1])); |
- SkASSERT(tValues[i] < tValues[i+1]); |
- } |
- } |
-#endif |
- |
- if (dst) |
- { |
- if (roots == 0) // nothing to chop |
- memcpy(dst, src, 4*sizeof(SkPoint)); |
- else |
- { |
- SkScalar t = tValues[0]; |
- SkPoint tmp[4]; |
- |
- for (int i = 0; i < roots; i++) |
- { |
- SkChopCubicAt(src, dst, t); |
- if (i == roots - 1) |
- break; |
- |
- SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t); |
- SkASSERT(valid); |
- |
- dst += 3; |
- memcpy(tmp, dst, 4 * sizeof(SkPoint)); |
- src = tmp; |
- } |
- } |
- } |
-} |
- |
-void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) |
-{ |
- SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); |
- SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); |
- SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); |
- SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); |
- SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX); |
- SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY); |
- |
- SkScalar x012 = SkScalarAve(x01, x12); |
- SkScalar y012 = SkScalarAve(y01, y12); |
- SkScalar x123 = SkScalarAve(x12, x23); |
- SkScalar y123 = SkScalarAve(y12, y23); |
- |
- dst[0] = src[0]; |
- dst[1].set(x01, y01); |
- dst[2].set(x012, y012); |
- dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123)); |
- dst[4].set(x123, y123); |
- dst[5].set(x23, y23); |
- dst[6] = src[3]; |
-} |
- |
-static void flatten_double_cubic_extrema(SkScalar coords[14]) |
-{ |
- coords[4] = coords[8] = coords[6]; |
-} |
- |
-/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
- the resulting beziers are monotonic in Y. This is called by the scan converter. |
- Depending on what is returned, dst[] is treated as follows |
- 0 dst[0..3] is the original cubic |
- 1 dst[0..3] and dst[3..6] are the two new cubics |
- 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) |
-{ |
- SkScalar tValues[2]; |
- int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues); |
- |
- SkChopCubicAt(src, dst, tValues, roots); |
- if (dst && roots > 0) |
- { |
- // we do some cleanup to ensure our Y extrema are flat |
- flatten_double_cubic_extrema(&dst[0].fY); |
- if (roots == 2) |
- flatten_double_cubic_extrema(&dst[3].fY); |
- } |
- return roots; |
-} |
- |
-/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html |
- |
- Inflection means that curvature is zero. |
- Curvature is [F' x F''] / [F'^3] |
- So we solve F'x X F''y - F'y X F''y == 0 |
- After some canceling of the cubic term, we get |
- A = b - a |
- B = c - 2b + a |
- C = d - 3c + 3b - a |
- (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 |
-*/ |
-int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) |
-{ |
- SkScalar Ax = src[1].fX - src[0].fX; |
- SkScalar Ay = src[1].fY - src[0].fY; |
- SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; |
- SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; |
- SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; |
- SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; |
- int count; |
- |
-#ifdef SK_SCALAR_IS_FLOAT |
- count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues); |
-#else |
- Sk64 A, B, C, tmp; |
- |
- A.setMul(Bx, Cy); |
- tmp.setMul(By, Cx); |
- A.sub(tmp); |
- |
- B.setMul(Ax, Cy); |
- tmp.setMul(Ay, Cx); |
- B.sub(tmp); |
- |
- C.setMul(Ax, By); |
- tmp.setMul(Ay, Bx); |
- C.sub(tmp); |
- |
- count = Sk64FindFixedQuadRoots(A, B, C, tValues); |
-#endif |
- |
- return count; |
-} |
- |
-int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) |
-{ |
- SkScalar tValues[2]; |
- int count = SkFindCubicInflections(src, tValues); |
- |
- if (dst) |
- { |
- if (count == 0) |
- memcpy(dst, src, 4 * sizeof(SkPoint)); |
- else |
- SkChopCubicAt(src, dst, tValues, count); |
- } |
- return count + 1; |
-} |
- |
-template <typename T> void bubble_sort(T array[], int count) |
-{ |
- for (int i = count - 1; i > 0; --i) |
- for (int j = i; j > 0; --j) |
- if (array[j] < array[j-1]) |
- { |
- T tmp(array[j]); |
- array[j] = array[j-1]; |
- array[j-1] = tmp; |
- } |
-} |
- |
-#include "SkFP.h" |
- |
-// newton refinement |
-#if 0 |
-static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root) |
-{ |
- // x1 = x0 - f(t) / f'(t) |
- |
- SkFP T = SkScalarToFloat(root); |
- SkFP N, D; |
- |
- // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2] |
- D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3); |
- D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2)); |
- D = SkFPAdd(D, coeff[2]); |
- |
- if (D == 0) |
- return root; |
- |
- // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
- N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]); |
- N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1])); |
- N = SkFPAdd(N, SkFPMul(T, coeff[2])); |
- N = SkFPAdd(N, coeff[3]); |
- |
- if (N) |
- { |
- SkScalar delta = SkFPToScalar(SkFPDiv(N, D)); |
- |
- if (delta) |
- root -= delta; |
- } |
- return root; |
-} |
-#endif |
- |
-#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop |
-#pragma warning ( disable : 4702 ) |
-#endif |
- |
-/* Solve coeff(t) == 0, returning the number of roots that |
- lie withing 0 < t < 1. |
- coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] |
-*/ |
-static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3]) |
-{ |
-#ifndef SK_SCALAR_IS_FLOAT |
- return 0; // this is not yet implemented for software float |
-#endif |
- |
- if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic |
- { |
- return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); |
- } |
- |
- SkFP a, b, c, Q, R; |
- |
- { |
- SkASSERT(coeff[0] != 0); |
- |
- SkFP inva = SkFPInvert(coeff[0]); |
- a = SkFPMul(coeff[1], inva); |
- b = SkFPMul(coeff[2], inva); |
- c = SkFPMul(coeff[3], inva); |
- } |
- Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9); |
-// R = (2*a*a*a - 9*a*b + 27*c) / 54; |
- R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2); |
- R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9)); |
- R = SkFPAdd(R, SkFPMulInt(c, 27)); |
- R = SkFPDivInt(R, 54); |
- |
- SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q); |
- SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3); |
- SkFP adiv3 = SkFPDivInt(a, 3); |
- |
- SkScalar* roots = tValues; |
- SkScalar r; |
- |
- if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots |
- { |
-#ifdef SK_SCALAR_IS_FLOAT |
- float theta = sk_float_acos(R / sk_float_sqrt(Q3)); |
- float neg2RootQ = -2 * sk_float_sqrt(Q); |
- |
- r = neg2RootQ * sk_float_cos(theta/3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- |
- r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- |
- r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3; |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- |
- // now sort the roots |
- bubble_sort(tValues, (int)(roots - tValues)); |
-#endif |
- } |
- else // we have 1 real root |
- { |
- SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3)); |
- A = SkFPCubeRoot(A); |
- if (SkFPGT(R, 0)) |
- A = SkFPNeg(A); |
- |
- if (A != 0) |
- A = SkFPAdd(A, SkFPDiv(Q, A)); |
- r = SkFPToScalar(SkFPSub(A, adiv3)); |
- if (is_unit_interval(r)) |
- *roots++ = r; |
- } |
- |
- return (int)(roots - tValues); |
-} |
- |
-/* Looking for F' dot F'' == 0 |
- |
- A = b - a |
- B = c - 2b + a |
- C = d - 3c + 3b - a |
- |
- F' = 3Ct^2 + 6Bt + 3A |
- F'' = 6Ct + 6B |
- |
- F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
-*/ |
-static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4]) |
-{ |
- SkScalar a = src[2] - src[0]; |
- SkScalar b = src[4] - 2 * src[2] + src[0]; |
- SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
- |
- SkFP A = SkScalarToFP(a); |
- SkFP B = SkScalarToFP(b); |
- SkFP C = SkScalarToFP(c); |
- |
- coeff[0] = SkFPMul(C, C); |
- coeff[1] = SkFPMulInt(SkFPMul(B, C), 3); |
- coeff[2] = SkFPMulInt(SkFPMul(B, B), 2); |
- coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A)); |
- coeff[3] = SkFPMul(A, B); |
-} |
- |
-// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1 |
-//#define kMinTValueForChopping (SK_Scalar1 / 256) |
-#define kMinTValueForChopping 0 |
- |
-/* Looking for F' dot F'' == 0 |
- |
- A = b - a |
- B = c - 2b + a |
- C = d - 3c + 3b - a |
- |
- F' = 3Ct^2 + 6Bt + 3A |
- F'' = 6Ct + 6B |
- |
- F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
-*/ |
-int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) |
-{ |
- SkFP coeffX[4], coeffY[4]; |
- int i; |
- |
- formulate_F1DotF2(&src[0].fX, coeffX); |
- formulate_F1DotF2(&src[0].fY, coeffY); |
- |
- for (i = 0; i < 4; i++) |
- coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]); |
- |
- SkScalar t[3]; |
- int count = solve_cubic_polynomial(coeffX, t); |
- int maxCount = 0; |
- |
- // now remove extrema where the curvature is zero (mins) |
- // !!!! need a test for this !!!! |
- for (i = 0; i < count; i++) |
- { |
- // if (not_min_curvature()) |
- if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping) |
- tValues[maxCount++] = t[i]; |
- } |
- return maxCount; |
-} |
- |
-int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3]) |
-{ |
- SkScalar t_storage[3]; |
- |
- if (tValues == NULL) |
- tValues = t_storage; |
- |
- int count = SkFindCubicMaxCurvature(src, tValues); |
- |
- if (dst) |
- { |
- if (count == 0) |
- memcpy(dst, src, 4 * sizeof(SkPoint)); |
- else |
- SkChopCubicAt(src, dst, tValues, count); |
- } |
- return count + 1; |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-/* Find t value for quadratic [a, b, c] = d. |
- Return 0 if there is no solution within [0, 1) |
-*/ |
-static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) |
-{ |
- // At^2 + Bt + C = d |
- SkScalar A = a - 2 * b + c; |
- SkScalar B = 2 * (b - a); |
- SkScalar C = a - d; |
- |
- SkScalar roots[2]; |
- int count = SkFindUnitQuadRoots(A, B, C, roots); |
- |
- SkASSERT(count <= 1); |
- return count == 1 ? roots[0] : 0; |
-} |
- |
-/* given a quad-curve and a point (x,y), chop the quad at that point and return |
- the new quad's offCurve point. Should only return false if the computed pos |
- is the start of the curve (i.e. root == 0) |
-*/ |
-static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve) |
-{ |
- const SkScalar* base; |
- SkScalar value; |
- |
- if (SkScalarAbs(x) < SkScalarAbs(y)) { |
- base = &quad[0].fX; |
- value = x; |
- } else { |
- base = &quad[0].fY; |
- value = y; |
- } |
- |
- // note: this returns 0 if it thinks value is out of range, meaning the |
- // root might return something outside of [0, 1) |
- SkScalar t = quad_solve(base[0], base[2], base[4], value); |
- |
- if (t > 0) |
- { |
- SkPoint tmp[5]; |
- SkChopQuadAt(quad, tmp, t); |
- *offCurve = tmp[1]; |
- return true; |
- } else { |
- /* t == 0 means either the value triggered a root outside of [0, 1) |
- For our purposes, we can ignore the <= 0 roots, but we want to |
- catch the >= 1 roots (which given our caller, will basically mean |
- a root of 1, give-or-take numerical instability). If we are in the |
- >= 1 case, return the existing offCurve point. |
- |
- The test below checks to see if we are close to the "end" of the |
- curve (near base[4]). Rather than specifying a tolerance, I just |
- check to see if value is on to the right/left of the middle point |
- (depending on the direction/sign of the end points). |
- */ |
- if ((base[0] < base[4] && value > base[2]) || |
- (base[0] > base[4] && value < base[2])) // should root have been 1 |
- { |
- *offCurve = quad[1]; |
- return true; |
- } |
- } |
- return false; |
-} |
- |
-static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { |
- { SK_Scalar1, 0 }, |
- { SK_Scalar1, SK_ScalarTanPIOver8 }, |
- { SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, |
- { SK_ScalarTanPIOver8, SK_Scalar1 }, |
- |
- { 0, SK_Scalar1 }, |
- { -SK_ScalarTanPIOver8, SK_Scalar1 }, |
- { -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, |
- { -SK_Scalar1, SK_ScalarTanPIOver8 }, |
- |
- { -SK_Scalar1, 0 }, |
- { -SK_Scalar1, -SK_ScalarTanPIOver8 }, |
- { -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, |
- { -SK_ScalarTanPIOver8, -SK_Scalar1 }, |
- |
- { 0, -SK_Scalar1 }, |
- { SK_ScalarTanPIOver8, -SK_Scalar1 }, |
- { SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, |
- { SK_Scalar1, -SK_ScalarTanPIOver8 }, |
- |
- { SK_Scalar1, 0 } |
-}; |
- |
-int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, |
- SkRotationDirection dir, const SkMatrix* userMatrix, |
- SkPoint quadPoints[]) |
-{ |
- // rotate by x,y so that uStart is (1.0) |
- SkScalar x = SkPoint::DotProduct(uStart, uStop); |
- SkScalar y = SkPoint::CrossProduct(uStart, uStop); |
- |
- SkScalar absX = SkScalarAbs(x); |
- SkScalar absY = SkScalarAbs(y); |
- |
- int pointCount; |
- |
- // check for (effectively) coincident vectors |
- // this can happen if our angle is nearly 0 or nearly 180 (y == 0) |
- // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) |
- if (absY <= SK_ScalarNearlyZero && x > 0 && |
- ((y >= 0 && kCW_SkRotationDirection == dir) || |
- (y <= 0 && kCCW_SkRotationDirection == dir))) { |
- |
- // just return the start-point |
- quadPoints[0].set(SK_Scalar1, 0); |
- pointCount = 1; |
- } else { |
- if (dir == kCCW_SkRotationDirection) |
- y = -y; |
- |
- // what octant (quadratic curve) is [xy] in? |
- int oct = 0; |
- bool sameSign = true; |
- |
- if (0 == y) |
- { |
- oct = 4; // 180 |
- SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); |
- } |
- else if (0 == x) |
- { |
- SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); |
- if (y > 0) |
- oct = 2; // 90 |
- else |
- oct = 6; // 270 |
- } |
- else |
- { |
- if (y < 0) |
- oct += 4; |
- if ((x < 0) != (y < 0)) |
- { |
- oct += 2; |
- sameSign = false; |
- } |
- if ((absX < absY) == sameSign) |
- oct += 1; |
- } |
- |
- int wholeCount = oct << 1; |
- memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); |
- |
- const SkPoint* arc = &gQuadCirclePts[wholeCount]; |
- if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1])) |
- { |
- quadPoints[wholeCount + 2].set(x, y); |
- wholeCount += 2; |
- } |
- pointCount = wholeCount + 1; |
- } |
- |
- // now handle counter-clockwise and the initial unitStart rotation |
- SkMatrix matrix; |
- matrix.setSinCos(uStart.fY, uStart.fX); |
- if (dir == kCCW_SkRotationDirection) { |
- matrix.preScale(SK_Scalar1, -SK_Scalar1); |
- } |
- if (userMatrix) { |
- matrix.postConcat(*userMatrix); |
- } |
- matrix.mapPoints(quadPoints, pointCount); |
- return pointCount; |
-} |
- |
- |
-///////////////////////////////////////////////////////////////////////////////////////// |
-///////////////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef SK_DEBUG |
- |
-void SkGeometry::UnitTest() |
-{ |
-#ifdef SK_SUPPORT_UNITTEST |
- SkPoint pts[3], dst[5]; |
- |
- pts[0].set(0, 0); |
- pts[1].set(100, 50); |
- pts[2].set(0, 100); |
- |
- int count = SkChopQuadAtMaxCurvature(pts, dst); |
- SkASSERT(count == 1 || count == 2); |
-#endif |
-} |
- |
-#endif |
- |
- |