| Index: skia/sgl/SkGeometry.cpp
|
| ===================================================================
|
| --- skia/sgl/SkGeometry.cpp (revision 16859)
|
| +++ skia/sgl/SkGeometry.cpp (working copy)
|
| @@ -1,1072 +0,0 @@
|
| -/* libs/graphics/sgl/SkGeometry.cpp
|
| -**
|
| -** Copyright 2006, The Android Open Source Project
|
| -**
|
| -** Licensed under the Apache License, Version 2.0 (the "License");
|
| -** you may not use this file except in compliance with the License.
|
| -** You may obtain a copy of the License at
|
| -**
|
| -** http://www.apache.org/licenses/LICENSE-2.0
|
| -**
|
| -** Unless required by applicable law or agreed to in writing, software
|
| -** distributed under the License is distributed on an "AS IS" BASIS,
|
| -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| -** See the License for the specific language governing permissions and
|
| -** limitations under the License.
|
| -*/
|
| -
|
| -#include "SkGeometry.h"
|
| -#include "Sk64.h"
|
| -#include "SkMatrix.h"
|
| -
|
| -/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
|
| - involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
|
| - May also introduce overflow of fixed when we compute our setup.
|
| -*/
|
| -#ifdef SK_SCALAR_IS_FIXED
|
| - #define DIRECT_EVAL_OF_POLYNOMIALS
|
| -#endif
|
| -
|
| -////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef SK_SCALAR_IS_FIXED
|
| - static int is_not_monotonic(int a, int b, int c, int d)
|
| - {
|
| - return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
|
| - }
|
| -
|
| - static int is_not_monotonic(int a, int b, int c)
|
| - {
|
| - return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
|
| - }
|
| -#else
|
| - static int is_not_monotonic(float a, float b, float c)
|
| - {
|
| - float ab = a - b;
|
| - float bc = b - c;
|
| - if (ab < 0)
|
| - bc = -bc;
|
| - return ab == 0 || bc < 0;
|
| - }
|
| -#endif
|
| -
|
| -////////////////////////////////////////////////////////////////////////
|
| -
|
| -static bool is_unit_interval(SkScalar x)
|
| -{
|
| - return x > 0 && x < SK_Scalar1;
|
| -}
|
| -
|
| -static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
|
| -{
|
| - SkASSERT(ratio);
|
| -
|
| - if (numer < 0)
|
| - {
|
| - numer = -numer;
|
| - denom = -denom;
|
| - }
|
| -
|
| - if (denom == 0 || numer == 0 || numer >= denom)
|
| - return 0;
|
| -
|
| - SkScalar r = SkScalarDiv(numer, denom);
|
| - SkASSERT(r >= 0 && r < SK_Scalar1);
|
| - if (r == 0) // catch underflow if numer <<<< denom
|
| - return 0;
|
| - *ratio = r;
|
| - return 1;
|
| -}
|
| -
|
| -/** From Numerical Recipes in C.
|
| -
|
| - Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
|
| - x1 = Q / A
|
| - x2 = C / Q
|
| -*/
|
| -int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
|
| -{
|
| - SkASSERT(roots);
|
| -
|
| - if (A == 0)
|
| - return valid_unit_divide(-C, B, roots);
|
| -
|
| - SkScalar* r = roots;
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| - float R = B*B - 4*A*C;
|
| - if (R < 0) // complex roots
|
| - return 0;
|
| - R = sk_float_sqrt(R);
|
| -#else
|
| - Sk64 RR, tmp;
|
| -
|
| - RR.setMul(B,B);
|
| - tmp.setMul(A,C);
|
| - tmp.shiftLeft(2);
|
| - RR.sub(tmp);
|
| - if (RR.isNeg())
|
| - return 0;
|
| - SkFixed R = RR.getSqrt();
|
| -#endif
|
| -
|
| - SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
|
| - r += valid_unit_divide(Q, A, r);
|
| - r += valid_unit_divide(C, Q, r);
|
| - if (r - roots == 2)
|
| - {
|
| - if (roots[0] > roots[1])
|
| - SkTSwap<SkScalar>(roots[0], roots[1]);
|
| - else if (roots[0] == roots[1]) // nearly-equal?
|
| - r -= 1; // skip the double root
|
| - }
|
| - return (int)(r - roots);
|
| -}
|
| -
|
| -#ifdef SK_SCALAR_IS_FIXED
|
| -/** Trim A/B/C down so that they are all <= 32bits
|
| - and then call SkFindUnitQuadRoots()
|
| -*/
|
| -static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
|
| -{
|
| - int na = A.shiftToMake32();
|
| - int nb = B.shiftToMake32();
|
| - int nc = C.shiftToMake32();
|
| -
|
| - int shift = SkMax32(na, SkMax32(nb, nc));
|
| - SkASSERT(shift >= 0);
|
| -
|
| - return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
|
| -}
|
| -#endif
|
| -
|
| -/////////////////////////////////////////////////////////////////////////////////////
|
| -/////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static SkScalar eval_quad(const SkScalar src[], SkScalar t)
|
| -{
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| -#ifdef DIRECT_EVAL_OF_POLYNOMIALS
|
| - SkScalar C = src[0];
|
| - SkScalar A = src[4] - 2 * src[2] + C;
|
| - SkScalar B = 2 * (src[2] - C);
|
| - return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
|
| -#else
|
| - SkScalar ab = SkScalarInterp(src[0], src[2], t);
|
| - SkScalar bc = SkScalarInterp(src[2], src[4], t);
|
| - return SkScalarInterp(ab, bc, t);
|
| -#endif
|
| -}
|
| -
|
| -static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
|
| -{
|
| - SkScalar A = src[4] - 2 * src[2] + src[0];
|
| - SkScalar B = src[2] - src[0];
|
| -
|
| - return 2 * SkScalarMulAdd(A, t, B);
|
| -}
|
| -
|
| -static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
|
| -{
|
| - SkScalar A = src[4] - 2 * src[2] + src[0];
|
| - SkScalar B = src[2] - src[0];
|
| - return A + 2 * B;
|
| -}
|
| -
|
| -void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
|
| -{
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - if (pt)
|
| - pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
|
| - if (tangent)
|
| - tangent->set(eval_quad_derivative(&src[0].fX, t),
|
| - eval_quad_derivative(&src[0].fY, t));
|
| -}
|
| -
|
| -void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
|
| -{
|
| - SkASSERT(src);
|
| -
|
| - if (pt)
|
| - {
|
| - SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
|
| - SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
|
| - SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
|
| - SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
|
| - pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
|
| - }
|
| - if (tangent)
|
| - tangent->set(eval_quad_derivative_at_half(&src[0].fX),
|
| - eval_quad_derivative_at_half(&src[0].fY));
|
| -}
|
| -
|
| -static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
|
| -{
|
| - SkScalar ab = SkScalarInterp(src[0], src[2], t);
|
| - SkScalar bc = SkScalarInterp(src[2], src[4], t);
|
| -
|
| - dst[0] = src[0];
|
| - dst[2] = ab;
|
| - dst[4] = SkScalarInterp(ab, bc, t);
|
| - dst[6] = bc;
|
| - dst[8] = src[4];
|
| -}
|
| -
|
| -void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
|
| -{
|
| - SkASSERT(t > 0 && t < SK_Scalar1);
|
| -
|
| - interp_quad_coords(&src[0].fX, &dst[0].fX, t);
|
| - interp_quad_coords(&src[0].fY, &dst[0].fY, t);
|
| -}
|
| -
|
| -void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
|
| -{
|
| - SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
|
| - SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
|
| - SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
|
| - SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
|
| -
|
| - dst[0] = src[0];
|
| - dst[1].set(x01, y01);
|
| - dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
|
| - dst[3].set(x12, y12);
|
| - dst[4] = src[2];
|
| -}
|
| -
|
| -/** Quad'(t) = At + B, where
|
| - A = 2(a - 2b + c)
|
| - B = 2(b - a)
|
| - Solve for t, only if it fits between 0 < t < 1
|
| -*/
|
| -int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
|
| -{
|
| - /* At + B == 0
|
| - t = -B / A
|
| - */
|
| -#ifdef SK_SCALAR_IS_FIXED
|
| - return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
|
| -#else
|
| - return valid_unit_divide(a - b, a - b - b + c, tValue);
|
| -#endif
|
| -}
|
| -
|
| -static void flatten_double_quad_extrema(SkScalar coords[14])
|
| -{
|
| - coords[2] = coords[6] = coords[4];
|
| -}
|
| -
|
| -static void force_quad_monotonic_in_y(SkPoint pts[3])
|
| -{
|
| - // zap pts[1].fY to the nearest value
|
| - SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY);
|
| - SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY);
|
| - pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY;
|
| -}
|
| -
|
| -/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
|
| - stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
|
| -*/
|
| -int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
|
| -{
|
| - SkASSERT(src);
|
| - SkASSERT(dst);
|
| -
|
| -#if 0
|
| - static bool once = true;
|
| - if (once)
|
| - {
|
| - once = false;
|
| - SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
|
| - SkPoint d[6];
|
| -
|
| - int n = SkChopQuadAtYExtrema(s, d);
|
| - SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
|
| - }
|
| -#endif
|
| -
|
| - SkScalar a = src[0].fY;
|
| - SkScalar b = src[1].fY;
|
| - SkScalar c = src[2].fY;
|
| -
|
| - if (is_not_monotonic(a, b, c))
|
| - {
|
| - SkScalar tValue;
|
| - if (valid_unit_divide(a - b, a - b - b + c, &tValue))
|
| - {
|
| - SkChopQuadAt(src, dst, tValue);
|
| - flatten_double_quad_extrema(&dst[0].fY);
|
| - return 1;
|
| - }
|
| - // if we get here, we need to force dst to be monotonic, even though
|
| - // we couldn't compute a unit_divide value (probably underflow).
|
| - b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
|
| - }
|
| - dst[0].set(src[0].fX, a);
|
| - dst[1].set(src[1].fX, b);
|
| - dst[2].set(src[2].fX, c);
|
| - return 0;
|
| -}
|
| -
|
| -// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
|
| -// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
|
| -// F''(t) = 2 (a - 2b + c)
|
| -//
|
| -// A = 2 (b - a)
|
| -// B = 2 (a - 2b + c)
|
| -//
|
| -// Maximum curvature for a quadratic means solving
|
| -// Fx' Fx'' + Fy' Fy'' = 0
|
| -//
|
| -// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
|
| -//
|
| -int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
|
| -{
|
| - SkScalar Ax = src[1].fX - src[0].fX;
|
| - SkScalar Ay = src[1].fY - src[0].fY;
|
| - SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
|
| - SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
|
| - SkScalar t = 0; // 0 means don't chop
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| - (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
|
| -#else
|
| - // !!! should I use SkFloat here? seems like it
|
| - Sk64 numer, denom, tmp;
|
| -
|
| - numer.setMul(Ax, -Bx);
|
| - tmp.setMul(Ay, -By);
|
| - numer.add(tmp);
|
| -
|
| - if (numer.isPos()) // do nothing if numer <= 0
|
| - {
|
| - denom.setMul(Bx, Bx);
|
| - tmp.setMul(By, By);
|
| - denom.add(tmp);
|
| - SkASSERT(!denom.isNeg());
|
| - if (numer < denom)
|
| - {
|
| - t = numer.getFixedDiv(denom);
|
| - SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!)
|
| - if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability
|
| - t = 0; // ignore the chop
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - if (t == 0)
|
| - {
|
| - memcpy(dst, src, 3 * sizeof(SkPoint));
|
| - return 1;
|
| - }
|
| - else
|
| - {
|
| - SkChopQuadAt(src, dst, t);
|
| - return 2;
|
| - }
|
| -}
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////////////
|
| -///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
|
| -////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
|
| -{
|
| - coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
|
| - coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
|
| - coeff[2] = 3*(pt[2] - pt[0]);
|
| - coeff[3] = pt[0];
|
| -}
|
| -
|
| -void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
|
| -{
|
| - SkASSERT(pts);
|
| -
|
| - if (cx)
|
| - get_cubic_coeff(&pts[0].fX, cx);
|
| - if (cy)
|
| - get_cubic_coeff(&pts[0].fY, cy);
|
| -}
|
| -
|
| -static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
|
| -{
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - if (t == 0)
|
| - return src[0];
|
| -
|
| -#ifdef DIRECT_EVAL_OF_POLYNOMIALS
|
| - SkScalar D = src[0];
|
| - SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
|
| - SkScalar B = 3*(src[4] - src[2] - src[2] + D);
|
| - SkScalar C = 3*(src[2] - D);
|
| -
|
| - return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
|
| -#else
|
| - SkScalar ab = SkScalarInterp(src[0], src[2], t);
|
| - SkScalar bc = SkScalarInterp(src[2], src[4], t);
|
| - SkScalar cd = SkScalarInterp(src[4], src[6], t);
|
| - SkScalar abc = SkScalarInterp(ab, bc, t);
|
| - SkScalar bcd = SkScalarInterp(bc, cd, t);
|
| - return SkScalarInterp(abc, bcd, t);
|
| -#endif
|
| -}
|
| -
|
| -/** return At^2 + Bt + C
|
| -*/
|
| -static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
|
| -{
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
|
| -}
|
| -
|
| -static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
|
| -{
|
| - SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
|
| - SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
|
| - SkScalar C = src[2] - src[0];
|
| -
|
| - return eval_quadratic(A, B, C, t);
|
| -}
|
| -
|
| -static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
|
| -{
|
| - SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
|
| - SkScalar B = src[4] - 2 * src[2] + src[0];
|
| -
|
| - return SkScalarMulAdd(A, t, B);
|
| -}
|
| -
|
| -void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
|
| -{
|
| - SkASSERT(src);
|
| - SkASSERT(t >= 0 && t <= SK_Scalar1);
|
| -
|
| - if (loc)
|
| - loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
|
| - if (tangent)
|
| - tangent->set(eval_cubic_derivative(&src[0].fX, t),
|
| - eval_cubic_derivative(&src[0].fY, t));
|
| - if (curvature)
|
| - curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
|
| - eval_cubic_2ndDerivative(&src[0].fY, t));
|
| -}
|
| -
|
| -/** Cubic'(t) = At^2 + Bt + C, where
|
| - A = 3(-a + 3(b - c) + d)
|
| - B = 6(a - 2b + c)
|
| - C = 3(b - a)
|
| - Solve for t, keeping only those that fit betwee 0 < t < 1
|
| -*/
|
| -int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
|
| -{
|
| -#ifdef SK_SCALAR_IS_FIXED
|
| - if (!is_not_monotonic(a, b, c, d))
|
| - return 0;
|
| -#endif
|
| -
|
| - // we divide A,B,C by 3 to simplify
|
| - SkScalar A = d - a + 3*(b - c);
|
| - SkScalar B = 2*(a - b - b + c);
|
| - SkScalar C = b - a;
|
| -
|
| - return SkFindUnitQuadRoots(A, B, C, tValues);
|
| -}
|
| -
|
| -static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
|
| -{
|
| - SkScalar ab = SkScalarInterp(src[0], src[2], t);
|
| - SkScalar bc = SkScalarInterp(src[2], src[4], t);
|
| - SkScalar cd = SkScalarInterp(src[4], src[6], t);
|
| - SkScalar abc = SkScalarInterp(ab, bc, t);
|
| - SkScalar bcd = SkScalarInterp(bc, cd, t);
|
| - SkScalar abcd = SkScalarInterp(abc, bcd, t);
|
| -
|
| - dst[0] = src[0];
|
| - dst[2] = ab;
|
| - dst[4] = abc;
|
| - dst[6] = abcd;
|
| - dst[8] = bcd;
|
| - dst[10] = cd;
|
| - dst[12] = src[6];
|
| -}
|
| -
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
|
| -{
|
| - SkASSERT(t > 0 && t < SK_Scalar1);
|
| -
|
| - interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
|
| - interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
|
| -}
|
| -
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
|
| -{
|
| -#ifdef SK_DEBUG
|
| - {
|
| - for (int i = 0; i < roots - 1; i++)
|
| - {
|
| - SkASSERT(is_unit_interval(tValues[i]));
|
| - SkASSERT(is_unit_interval(tValues[i+1]));
|
| - SkASSERT(tValues[i] < tValues[i+1]);
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - if (dst)
|
| - {
|
| - if (roots == 0) // nothing to chop
|
| - memcpy(dst, src, 4*sizeof(SkPoint));
|
| - else
|
| - {
|
| - SkScalar t = tValues[0];
|
| - SkPoint tmp[4];
|
| -
|
| - for (int i = 0; i < roots; i++)
|
| - {
|
| - SkChopCubicAt(src, dst, t);
|
| - if (i == roots - 1)
|
| - break;
|
| -
|
| - SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t);
|
| - SkASSERT(valid);
|
| -
|
| - dst += 3;
|
| - memcpy(tmp, dst, 4 * sizeof(SkPoint));
|
| - src = tmp;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
|
| -{
|
| - SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
|
| - SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
|
| - SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
|
| - SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
|
| - SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
|
| - SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
|
| -
|
| - SkScalar x012 = SkScalarAve(x01, x12);
|
| - SkScalar y012 = SkScalarAve(y01, y12);
|
| - SkScalar x123 = SkScalarAve(x12, x23);
|
| - SkScalar y123 = SkScalarAve(y12, y23);
|
| -
|
| - dst[0] = src[0];
|
| - dst[1].set(x01, y01);
|
| - dst[2].set(x012, y012);
|
| - dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
|
| - dst[4].set(x123, y123);
|
| - dst[5].set(x23, y23);
|
| - dst[6] = src[3];
|
| -}
|
| -
|
| -static void flatten_double_cubic_extrema(SkScalar coords[14])
|
| -{
|
| - coords[4] = coords[8] = coords[6];
|
| -}
|
| -
|
| -/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
|
| - the resulting beziers are monotonic in Y. This is called by the scan converter.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 0 dst[0..3] is the original cubic
|
| - 1 dst[0..3] and dst[3..6] are the two new cubics
|
| - 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10])
|
| -{
|
| - SkScalar tValues[2];
|
| - int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues);
|
| -
|
| - SkChopCubicAt(src, dst, tValues, roots);
|
| - if (dst && roots > 0)
|
| - {
|
| - // we do some cleanup to ensure our Y extrema are flat
|
| - flatten_double_cubic_extrema(&dst[0].fY);
|
| - if (roots == 2)
|
| - flatten_double_cubic_extrema(&dst[3].fY);
|
| - }
|
| - return roots;
|
| -}
|
| -
|
| -/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
|
| -
|
| - Inflection means that curvature is zero.
|
| - Curvature is [F' x F''] / [F'^3]
|
| - So we solve F'x X F''y - F'y X F''y == 0
|
| - After some canceling of the cubic term, we get
|
| - A = b - a
|
| - B = c - 2b + a
|
| - C = d - 3c + 3b - a
|
| - (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
|
| -*/
|
| -int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
|
| -{
|
| - SkScalar Ax = src[1].fX - src[0].fX;
|
| - SkScalar Ay = src[1].fY - src[0].fY;
|
| - SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
|
| - SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
|
| - SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
|
| - SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
|
| - int count;
|
| -
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| - count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
|
| -#else
|
| - Sk64 A, B, C, tmp;
|
| -
|
| - A.setMul(Bx, Cy);
|
| - tmp.setMul(By, Cx);
|
| - A.sub(tmp);
|
| -
|
| - B.setMul(Ax, Cy);
|
| - tmp.setMul(Ay, Cx);
|
| - B.sub(tmp);
|
| -
|
| - C.setMul(Ax, By);
|
| - tmp.setMul(Ay, Bx);
|
| - C.sub(tmp);
|
| -
|
| - count = Sk64FindFixedQuadRoots(A, B, C, tValues);
|
| -#endif
|
| -
|
| - return count;
|
| -}
|
| -
|
| -int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
|
| -{
|
| - SkScalar tValues[2];
|
| - int count = SkFindCubicInflections(src, tValues);
|
| -
|
| - if (dst)
|
| - {
|
| - if (count == 0)
|
| - memcpy(dst, src, 4 * sizeof(SkPoint));
|
| - else
|
| - SkChopCubicAt(src, dst, tValues, count);
|
| - }
|
| - return count + 1;
|
| -}
|
| -
|
| -template <typename T> void bubble_sort(T array[], int count)
|
| -{
|
| - for (int i = count - 1; i > 0; --i)
|
| - for (int j = i; j > 0; --j)
|
| - if (array[j] < array[j-1])
|
| - {
|
| - T tmp(array[j]);
|
| - array[j] = array[j-1];
|
| - array[j-1] = tmp;
|
| - }
|
| -}
|
| -
|
| -#include "SkFP.h"
|
| -
|
| -// newton refinement
|
| -#if 0
|
| -static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
|
| -{
|
| - // x1 = x0 - f(t) / f'(t)
|
| -
|
| - SkFP T = SkScalarToFloat(root);
|
| - SkFP N, D;
|
| -
|
| - // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
|
| - D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
|
| - D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
|
| - D = SkFPAdd(D, coeff[2]);
|
| -
|
| - if (D == 0)
|
| - return root;
|
| -
|
| - // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
|
| - N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
|
| - N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
|
| - N = SkFPAdd(N, SkFPMul(T, coeff[2]));
|
| - N = SkFPAdd(N, coeff[3]);
|
| -
|
| - if (N)
|
| - {
|
| - SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
|
| -
|
| - if (delta)
|
| - root -= delta;
|
| - }
|
| - return root;
|
| -}
|
| -#endif
|
| -
|
| -#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
|
| -#pragma warning ( disable : 4702 )
|
| -#endif
|
| -
|
| -/* Solve coeff(t) == 0, returning the number of roots that
|
| - lie withing 0 < t < 1.
|
| - coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
|
| -*/
|
| -static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
|
| -{
|
| -#ifndef SK_SCALAR_IS_FLOAT
|
| - return 0; // this is not yet implemented for software float
|
| -#endif
|
| -
|
| - if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic
|
| - {
|
| - return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
|
| - }
|
| -
|
| - SkFP a, b, c, Q, R;
|
| -
|
| - {
|
| - SkASSERT(coeff[0] != 0);
|
| -
|
| - SkFP inva = SkFPInvert(coeff[0]);
|
| - a = SkFPMul(coeff[1], inva);
|
| - b = SkFPMul(coeff[2], inva);
|
| - c = SkFPMul(coeff[3], inva);
|
| - }
|
| - Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
|
| -// R = (2*a*a*a - 9*a*b + 27*c) / 54;
|
| - R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
|
| - R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
|
| - R = SkFPAdd(R, SkFPMulInt(c, 27));
|
| - R = SkFPDivInt(R, 54);
|
| -
|
| - SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
|
| - SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
|
| - SkFP adiv3 = SkFPDivInt(a, 3);
|
| -
|
| - SkScalar* roots = tValues;
|
| - SkScalar r;
|
| -
|
| - if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots
|
| - {
|
| -#ifdef SK_SCALAR_IS_FLOAT
|
| - float theta = sk_float_acos(R / sk_float_sqrt(Q3));
|
| - float neg2RootQ = -2 * sk_float_sqrt(Q);
|
| -
|
| - r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| -
|
| - r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| -
|
| - r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| -
|
| - // now sort the roots
|
| - bubble_sort(tValues, (int)(roots - tValues));
|
| -#endif
|
| - }
|
| - else // we have 1 real root
|
| - {
|
| - SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
|
| - A = SkFPCubeRoot(A);
|
| - if (SkFPGT(R, 0))
|
| - A = SkFPNeg(A);
|
| -
|
| - if (A != 0)
|
| - A = SkFPAdd(A, SkFPDiv(Q, A));
|
| - r = SkFPToScalar(SkFPSub(A, adiv3));
|
| - if (is_unit_interval(r))
|
| - *roots++ = r;
|
| - }
|
| -
|
| - return (int)(roots - tValues);
|
| -}
|
| -
|
| -/* Looking for F' dot F'' == 0
|
| -
|
| - A = b - a
|
| - B = c - 2b + a
|
| - C = d - 3c + 3b - a
|
| -
|
| - F' = 3Ct^2 + 6Bt + 3A
|
| - F'' = 6Ct + 6B
|
| -
|
| - F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
|
| -*/
|
| -static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
|
| -{
|
| - SkScalar a = src[2] - src[0];
|
| - SkScalar b = src[4] - 2 * src[2] + src[0];
|
| - SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
|
| -
|
| - SkFP A = SkScalarToFP(a);
|
| - SkFP B = SkScalarToFP(b);
|
| - SkFP C = SkScalarToFP(c);
|
| -
|
| - coeff[0] = SkFPMul(C, C);
|
| - coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
|
| - coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
|
| - coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
|
| - coeff[3] = SkFPMul(A, B);
|
| -}
|
| -
|
| -// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
|
| -//#define kMinTValueForChopping (SK_Scalar1 / 256)
|
| -#define kMinTValueForChopping 0
|
| -
|
| -/* Looking for F' dot F'' == 0
|
| -
|
| - A = b - a
|
| - B = c - 2b + a
|
| - C = d - 3c + 3b - a
|
| -
|
| - F' = 3Ct^2 + 6Bt + 3A
|
| - F'' = 6Ct + 6B
|
| -
|
| - F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
|
| -*/
|
| -int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
|
| -{
|
| - SkFP coeffX[4], coeffY[4];
|
| - int i;
|
| -
|
| - formulate_F1DotF2(&src[0].fX, coeffX);
|
| - formulate_F1DotF2(&src[0].fY, coeffY);
|
| -
|
| - for (i = 0; i < 4; i++)
|
| - coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
|
| -
|
| - SkScalar t[3];
|
| - int count = solve_cubic_polynomial(coeffX, t);
|
| - int maxCount = 0;
|
| -
|
| - // now remove extrema where the curvature is zero (mins)
|
| - // !!!! need a test for this !!!!
|
| - for (i = 0; i < count; i++)
|
| - {
|
| - // if (not_min_curvature())
|
| - if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
|
| - tValues[maxCount++] = t[i];
|
| - }
|
| - return maxCount;
|
| -}
|
| -
|
| -int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
|
| -{
|
| - SkScalar t_storage[3];
|
| -
|
| - if (tValues == NULL)
|
| - tValues = t_storage;
|
| -
|
| - int count = SkFindCubicMaxCurvature(src, tValues);
|
| -
|
| - if (dst)
|
| - {
|
| - if (count == 0)
|
| - memcpy(dst, src, 4 * sizeof(SkPoint));
|
| - else
|
| - SkChopCubicAt(src, dst, tValues, count);
|
| - }
|
| - return count + 1;
|
| -}
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/* Find t value for quadratic [a, b, c] = d.
|
| - Return 0 if there is no solution within [0, 1)
|
| -*/
|
| -static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
|
| -{
|
| - // At^2 + Bt + C = d
|
| - SkScalar A = a - 2 * b + c;
|
| - SkScalar B = 2 * (b - a);
|
| - SkScalar C = a - d;
|
| -
|
| - SkScalar roots[2];
|
| - int count = SkFindUnitQuadRoots(A, B, C, roots);
|
| -
|
| - SkASSERT(count <= 1);
|
| - return count == 1 ? roots[0] : 0;
|
| -}
|
| -
|
| -/* given a quad-curve and a point (x,y), chop the quad at that point and return
|
| - the new quad's offCurve point. Should only return false if the computed pos
|
| - is the start of the curve (i.e. root == 0)
|
| -*/
|
| -static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve)
|
| -{
|
| - const SkScalar* base;
|
| - SkScalar value;
|
| -
|
| - if (SkScalarAbs(x) < SkScalarAbs(y)) {
|
| - base = &quad[0].fX;
|
| - value = x;
|
| - } else {
|
| - base = &quad[0].fY;
|
| - value = y;
|
| - }
|
| -
|
| - // note: this returns 0 if it thinks value is out of range, meaning the
|
| - // root might return something outside of [0, 1)
|
| - SkScalar t = quad_solve(base[0], base[2], base[4], value);
|
| -
|
| - if (t > 0)
|
| - {
|
| - SkPoint tmp[5];
|
| - SkChopQuadAt(quad, tmp, t);
|
| - *offCurve = tmp[1];
|
| - return true;
|
| - } else {
|
| - /* t == 0 means either the value triggered a root outside of [0, 1)
|
| - For our purposes, we can ignore the <= 0 roots, but we want to
|
| - catch the >= 1 roots (which given our caller, will basically mean
|
| - a root of 1, give-or-take numerical instability). If we are in the
|
| - >= 1 case, return the existing offCurve point.
|
| -
|
| - The test below checks to see if we are close to the "end" of the
|
| - curve (near base[4]). Rather than specifying a tolerance, I just
|
| - check to see if value is on to the right/left of the middle point
|
| - (depending on the direction/sign of the end points).
|
| - */
|
| - if ((base[0] < base[4] && value > base[2]) ||
|
| - (base[0] > base[4] && value < base[2])) // should root have been 1
|
| - {
|
| - *offCurve = quad[1];
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
|
| - { SK_Scalar1, 0 },
|
| - { SK_Scalar1, SK_ScalarTanPIOver8 },
|
| - { SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
|
| - { SK_ScalarTanPIOver8, SK_Scalar1 },
|
| -
|
| - { 0, SK_Scalar1 },
|
| - { -SK_ScalarTanPIOver8, SK_Scalar1 },
|
| - { -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
|
| - { -SK_Scalar1, SK_ScalarTanPIOver8 },
|
| -
|
| - { -SK_Scalar1, 0 },
|
| - { -SK_Scalar1, -SK_ScalarTanPIOver8 },
|
| - { -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
|
| - { -SK_ScalarTanPIOver8, -SK_Scalar1 },
|
| -
|
| - { 0, -SK_Scalar1 },
|
| - { SK_ScalarTanPIOver8, -SK_Scalar1 },
|
| - { SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
|
| - { SK_Scalar1, -SK_ScalarTanPIOver8 },
|
| -
|
| - { SK_Scalar1, 0 }
|
| -};
|
| -
|
| -int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
|
| - SkRotationDirection dir, const SkMatrix* userMatrix,
|
| - SkPoint quadPoints[])
|
| -{
|
| - // rotate by x,y so that uStart is (1.0)
|
| - SkScalar x = SkPoint::DotProduct(uStart, uStop);
|
| - SkScalar y = SkPoint::CrossProduct(uStart, uStop);
|
| -
|
| - SkScalar absX = SkScalarAbs(x);
|
| - SkScalar absY = SkScalarAbs(y);
|
| -
|
| - int pointCount;
|
| -
|
| - // check for (effectively) coincident vectors
|
| - // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
|
| - // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
|
| - if (absY <= SK_ScalarNearlyZero && x > 0 &&
|
| - ((y >= 0 && kCW_SkRotationDirection == dir) ||
|
| - (y <= 0 && kCCW_SkRotationDirection == dir))) {
|
| -
|
| - // just return the start-point
|
| - quadPoints[0].set(SK_Scalar1, 0);
|
| - pointCount = 1;
|
| - } else {
|
| - if (dir == kCCW_SkRotationDirection)
|
| - y = -y;
|
| -
|
| - // what octant (quadratic curve) is [xy] in?
|
| - int oct = 0;
|
| - bool sameSign = true;
|
| -
|
| - if (0 == y)
|
| - {
|
| - oct = 4; // 180
|
| - SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
|
| - }
|
| - else if (0 == x)
|
| - {
|
| - SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
|
| - if (y > 0)
|
| - oct = 2; // 90
|
| - else
|
| - oct = 6; // 270
|
| - }
|
| - else
|
| - {
|
| - if (y < 0)
|
| - oct += 4;
|
| - if ((x < 0) != (y < 0))
|
| - {
|
| - oct += 2;
|
| - sameSign = false;
|
| - }
|
| - if ((absX < absY) == sameSign)
|
| - oct += 1;
|
| - }
|
| -
|
| - int wholeCount = oct << 1;
|
| - memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
|
| -
|
| - const SkPoint* arc = &gQuadCirclePts[wholeCount];
|
| - if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1]))
|
| - {
|
| - quadPoints[wholeCount + 2].set(x, y);
|
| - wholeCount += 2;
|
| - }
|
| - pointCount = wholeCount + 1;
|
| - }
|
| -
|
| - // now handle counter-clockwise and the initial unitStart rotation
|
| - SkMatrix matrix;
|
| - matrix.setSinCos(uStart.fY, uStart.fX);
|
| - if (dir == kCCW_SkRotationDirection) {
|
| - matrix.preScale(SK_Scalar1, -SK_Scalar1);
|
| - }
|
| - if (userMatrix) {
|
| - matrix.postConcat(*userMatrix);
|
| - }
|
| - matrix.mapPoints(quadPoints, pointCount);
|
| - return pointCount;
|
| -}
|
| -
|
| -
|
| -/////////////////////////////////////////////////////////////////////////////////////////
|
| -/////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef SK_DEBUG
|
| -
|
| -void SkGeometry::UnitTest()
|
| -{
|
| -#ifdef SK_SUPPORT_UNITTEST
|
| - SkPoint pts[3], dst[5];
|
| -
|
| - pts[0].set(0, 0);
|
| - pts[1].set(100, 50);
|
| - pts[2].set(0, 100);
|
| -
|
| - int count = SkChopQuadAtMaxCurvature(pts, dst);
|
| - SkASSERT(count == 1 || count == 2);
|
| -#endif
|
| -}
|
| -
|
| -#endif
|
| -
|
| -
|
|
|