Index: skia/sgl/SkGeometry.h |
=================================================================== |
--- skia/sgl/SkGeometry.h (revision 16859) |
+++ skia/sgl/SkGeometry.h (working copy) |
@@ -1,163 +0,0 @@ |
-/* libs/graphics/sgl/SkGeometry.h |
-** |
-** Copyright 2006, The Android Open Source Project |
-** |
-** Licensed under the Apache License, Version 2.0 (the "License"); |
-** you may not use this file except in compliance with the License. |
-** You may obtain a copy of the License at |
-** |
-** http://www.apache.org/licenses/LICENSE-2.0 |
-** |
-** Unless required by applicable law or agreed to in writing, software |
-** distributed under the License is distributed on an "AS IS" BASIS, |
-** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
-** See the License for the specific language governing permissions and |
-** limitations under the License. |
-*/ |
- |
-#ifndef SkGeometry_DEFINED |
-#define SkGeometry_DEFINED |
- |
-#include "SkMatrix.h" |
- |
-/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the |
- equation. |
-*/ |
-int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/** Set pt to the point on the src quadratic specified by t. t must be |
- 0 <= t <= 1.0 |
-*/ |
-void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL); |
-void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL); |
- |
-/** Given a src quadratic bezier, chop it at the specified t value, |
- where 0 < t < 1, and return the two new quadratics in dst: |
- dst[0..2] and dst[2..4] |
-*/ |
-void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); |
- |
-/** Given a src quadratic bezier, chop it at the specified t == 1/2, |
- The new quads are returned in dst[0..2] and dst[2..4] |
-*/ |
-void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); |
- |
-/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look |
- for extrema, and return the number of t-values that are found that represent |
- these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the |
- function returns 0. |
- Returned count tValues[] |
- 0 ignored |
- 1 0 < tValues[0] < 1 |
-*/ |
-int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); |
- |
-/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that |
- the resulting beziers are monotonic in Y. This is called by the scan converter. |
- Depending on what is returned, dst[] is treated as follows |
- 1 dst[0..2] is the original quad |
- 2 dst[0..2] and dst[2..4] are the two new quads |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); |
- |
-/** Given 3 points on a quadratic bezier, divide it into 2 quadratics |
- if the point of maximum curvature exists on the quad segment. |
- Depending on what is returned, dst[] is treated as follows |
- 1 dst[0..2] is the original quad |
- 2 dst[0..2] and dst[2..4] are the two new quads |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); |
- |
-//////////////////////////////////////////////////////////////////////////////////////// |
- |
-/** Convert from parametric from (pts) to polynomial coefficients |
- coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] |
-*/ |
-void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); |
- |
-/** Set pt to the point on the src cubic specified by t. t must be |
- 0 <= t <= 1.0 |
-*/ |
-void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull); |
- |
-/** Given a src cubic bezier, chop it at the specified t value, |
- where 0 < t < 1, and return the two new cubics in dst: |
- dst[0..3] and dst[3..6] |
-*/ |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); |
-void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count); |
- |
-/** Given a src cubic bezier, chop it at the specified t == 1/2, |
- The new cubics are returned in dst[0..3] and dst[3..6] |
-*/ |
-void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); |
- |
-/** Given the 4 coefficients for a cubic bezier (either X or Y values), look |
- for extrema, and return the number of t-values that are found that represent |
- these extrema. If the cubic has no extrema betwee (0..1) exclusive, the |
- function returns 0. |
- Returned count tValues[] |
- 0 ignored |
- 1 0 < tValues[0] < 1 |
- 2 0 < tValues[0] < tValues[1] < 1 |
-*/ |
-int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]); |
- |
-/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
- the resulting beziers are monotonic in Y. This is called by the scan converter. |
- Depending on what is returned, dst[] is treated as follows |
- 1 dst[0..3] is the original cubic |
- 2 dst[0..3] and dst[3..6] are the two new cubics |
- 3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
- If dst == null, it is ignored and only the count is returned. |
-*/ |
-int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); |
- |
-/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the |
- inflection points. |
-*/ |
-int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); |
- |
-/** Return 1 for no chop, or 2 for having chopped the cubic at its |
- inflection point. |
-*/ |
-int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); |
- |
-int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); |
-int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL); |
- |
-/////////////////////////////////////////////////////////////////////////////////////////// |
- |
-enum SkRotationDirection { |
- kCW_SkRotationDirection, |
- kCCW_SkRotationDirection |
-}; |
- |
-/** Maximum number of points needed in the quadPoints[] parameter for |
- SkBuildQuadArc() |
-*/ |
-#define kSkBuildQuadArcStorage 17 |
- |
-/** Given 2 unit vectors and a rotation direction, fill out the specified |
- array of points with quadratic segments. Return is the number of points |
- written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } |
- |
- matrix, if not null, is appled to the points before they are returned. |
-*/ |
-int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection, |
- const SkMatrix* matrix, SkPoint quadPoints[]); |
- |
-////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef SK_DEBUG |
- class SkGeometry { |
- public: |
- static void UnitTest(); |
- }; |
-#endif |
- |
-#endif |