| Index: skia/sgl/SkGeometry.h
|
| ===================================================================
|
| --- skia/sgl/SkGeometry.h (revision 16859)
|
| +++ skia/sgl/SkGeometry.h (working copy)
|
| @@ -1,163 +0,0 @@
|
| -/* libs/graphics/sgl/SkGeometry.h
|
| -**
|
| -** Copyright 2006, The Android Open Source Project
|
| -**
|
| -** Licensed under the Apache License, Version 2.0 (the "License");
|
| -** you may not use this file except in compliance with the License.
|
| -** You may obtain a copy of the License at
|
| -**
|
| -** http://www.apache.org/licenses/LICENSE-2.0
|
| -**
|
| -** Unless required by applicable law or agreed to in writing, software
|
| -** distributed under the License is distributed on an "AS IS" BASIS,
|
| -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| -** See the License for the specific language governing permissions and
|
| -** limitations under the License.
|
| -*/
|
| -
|
| -#ifndef SkGeometry_DEFINED
|
| -#define SkGeometry_DEFINED
|
| -
|
| -#include "SkMatrix.h"
|
| -
|
| -/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
|
| - equation.
|
| -*/
|
| -int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/** Set pt to the point on the src quadratic specified by t. t must be
|
| - 0 <= t <= 1.0
|
| -*/
|
| -void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
|
| -void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL);
|
| -
|
| -/** Given a src quadratic bezier, chop it at the specified t value,
|
| - where 0 < t < 1, and return the two new quadratics in dst:
|
| - dst[0..2] and dst[2..4]
|
| -*/
|
| -void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
|
| -
|
| -/** Given a src quadratic bezier, chop it at the specified t == 1/2,
|
| - The new quads are returned in dst[0..2] and dst[2..4]
|
| -*/
|
| -void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
|
| - for extrema, and return the number of t-values that are found that represent
|
| - these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
|
| - function returns 0.
|
| - Returned count tValues[]
|
| - 0 ignored
|
| - 1 0 < tValues[0] < 1
|
| -*/
|
| -int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
|
| - the resulting beziers are monotonic in Y. This is called by the scan converter.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 1 dst[0..2] is the original quad
|
| - 2 dst[0..2] and dst[2..4] are the two new quads
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
|
| - if the point of maximum curvature exists on the quad segment.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 1 dst[0..2] is the original quad
|
| - 2 dst[0..2] and dst[2..4] are the two new quads
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/** Convert from parametric from (pts) to polynomial coefficients
|
| - coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
|
| -*/
|
| -void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
|
| -
|
| -/** Set pt to the point on the src cubic specified by t. t must be
|
| - 0 <= t <= 1.0
|
| -*/
|
| -void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull);
|
| -
|
| -/** Given a src cubic bezier, chop it at the specified t value,
|
| - where 0 < t < 1, and return the two new cubics in dst:
|
| - dst[0..3] and dst[3..6]
|
| -*/
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
|
| -void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
|
| -
|
| -/** Given a src cubic bezier, chop it at the specified t == 1/2,
|
| - The new cubics are returned in dst[0..3] and dst[3..6]
|
| -*/
|
| -void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
|
| -
|
| -/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
|
| - for extrema, and return the number of t-values that are found that represent
|
| - these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
|
| - function returns 0.
|
| - Returned count tValues[]
|
| - 0 ignored
|
| - 1 0 < tValues[0] < 1
|
| - 2 0 < tValues[0] < tValues[1] < 1
|
| -*/
|
| -int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
|
| -
|
| -/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
|
| - the resulting beziers are monotonic in Y. This is called by the scan converter.
|
| - Depending on what is returned, dst[] is treated as follows
|
| - 1 dst[0..3] is the original cubic
|
| - 2 dst[0..3] and dst[3..6] are the two new cubics
|
| - 3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
|
| - If dst == null, it is ignored and only the count is returned.
|
| -*/
|
| -int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
|
| -
|
| -/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
|
| - inflection points.
|
| -*/
|
| -int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
|
| -
|
| -/** Return 1 for no chop, or 2 for having chopped the cubic at its
|
| - inflection point.
|
| -*/
|
| -int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
|
| -
|
| -int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
|
| -int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -enum SkRotationDirection {
|
| - kCW_SkRotationDirection,
|
| - kCCW_SkRotationDirection
|
| -};
|
| -
|
| -/** Maximum number of points needed in the quadPoints[] parameter for
|
| - SkBuildQuadArc()
|
| -*/
|
| -#define kSkBuildQuadArcStorage 17
|
| -
|
| -/** Given 2 unit vectors and a rotation direction, fill out the specified
|
| - array of points with quadratic segments. Return is the number of points
|
| - written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
|
| -
|
| - matrix, if not null, is appled to the points before they are returned.
|
| -*/
|
| -int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection,
|
| - const SkMatrix* matrix, SkPoint quadPoints[]);
|
| -
|
| -//////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef SK_DEBUG
|
| - class SkGeometry {
|
| - public:
|
| - static void UnitTest();
|
| - };
|
| -#endif
|
| -
|
| -#endif
|
|
|