OLD | NEW |
| (Empty) |
1 /* libs/graphics/sgl/SkGeometry.cpp | |
2 ** | |
3 ** Copyright 2006, The Android Open Source Project | |
4 ** | |
5 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
6 ** you may not use this file except in compliance with the License. | |
7 ** You may obtain a copy of the License at | |
8 ** | |
9 ** http://www.apache.org/licenses/LICENSE-2.0 | |
10 ** | |
11 ** Unless required by applicable law or agreed to in writing, software | |
12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
14 ** See the License for the specific language governing permissions and | |
15 ** limitations under the License. | |
16 */ | |
17 | |
18 #include "SkGeometry.h" | |
19 #include "Sk64.h" | |
20 #include "SkMatrix.h" | |
21 | |
22 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes | |
23 involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul. | |
24 May also introduce overflow of fixed when we compute our setup. | |
25 */ | |
26 #ifdef SK_SCALAR_IS_FIXED | |
27 #define DIRECT_EVAL_OF_POLYNOMIALS | |
28 #endif | |
29 | |
30 //////////////////////////////////////////////////////////////////////// | |
31 | |
32 #ifdef SK_SCALAR_IS_FIXED | |
33 static int is_not_monotonic(int a, int b, int c, int d) | |
34 { | |
35 return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >
> 31; | |
36 } | |
37 | |
38 static int is_not_monotonic(int a, int b, int c) | |
39 { | |
40 return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31; | |
41 } | |
42 #else | |
43 static int is_not_monotonic(float a, float b, float c) | |
44 { | |
45 float ab = a - b; | |
46 float bc = b - c; | |
47 if (ab < 0) | |
48 bc = -bc; | |
49 return ab == 0 || bc < 0; | |
50 } | |
51 #endif | |
52 | |
53 //////////////////////////////////////////////////////////////////////// | |
54 | |
55 static bool is_unit_interval(SkScalar x) | |
56 { | |
57 return x > 0 && x < SK_Scalar1; | |
58 } | |
59 | |
60 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) | |
61 { | |
62 SkASSERT(ratio); | |
63 | |
64 if (numer < 0) | |
65 { | |
66 numer = -numer; | |
67 denom = -denom; | |
68 } | |
69 | |
70 if (denom == 0 || numer == 0 || numer >= denom) | |
71 return 0; | |
72 | |
73 SkScalar r = SkScalarDiv(numer, denom); | |
74 SkASSERT(r >= 0 && r < SK_Scalar1); | |
75 if (r == 0) // catch underflow if numer <<<< denom | |
76 return 0; | |
77 *ratio = r; | |
78 return 1; | |
79 } | |
80 | |
81 /** From Numerical Recipes in C. | |
82 | |
83 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) | |
84 x1 = Q / A | |
85 x2 = C / Q | |
86 */ | |
87 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) | |
88 { | |
89 SkASSERT(roots); | |
90 | |
91 if (A == 0) | |
92 return valid_unit_divide(-C, B, roots); | |
93 | |
94 SkScalar* r = roots; | |
95 | |
96 #ifdef SK_SCALAR_IS_FLOAT | |
97 float R = B*B - 4*A*C; | |
98 if (R < 0) // complex roots | |
99 return 0; | |
100 R = sk_float_sqrt(R); | |
101 #else | |
102 Sk64 RR, tmp; | |
103 | |
104 RR.setMul(B,B); | |
105 tmp.setMul(A,C); | |
106 tmp.shiftLeft(2); | |
107 RR.sub(tmp); | |
108 if (RR.isNeg()) | |
109 return 0; | |
110 SkFixed R = RR.getSqrt(); | |
111 #endif | |
112 | |
113 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; | |
114 r += valid_unit_divide(Q, A, r); | |
115 r += valid_unit_divide(C, Q, r); | |
116 if (r - roots == 2) | |
117 { | |
118 if (roots[0] > roots[1]) | |
119 SkTSwap<SkScalar>(roots[0], roots[1]); | |
120 else if (roots[0] == roots[1]) // nearly-equal? | |
121 r -= 1; // skip the double root | |
122 } | |
123 return (int)(r - roots); | |
124 } | |
125 | |
126 #ifdef SK_SCALAR_IS_FIXED | |
127 /** Trim A/B/C down so that they are all <= 32bits | |
128 and then call SkFindUnitQuadRoots() | |
129 */ | |
130 static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, S
kFixed roots[2]) | |
131 { | |
132 int na = A.shiftToMake32(); | |
133 int nb = B.shiftToMake32(); | |
134 int nc = C.shiftToMake32(); | |
135 | |
136 int shift = SkMax32(na, SkMax32(nb, nc)); | |
137 SkASSERT(shift >= 0); | |
138 | |
139 return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C
.getShiftRight(shift), roots); | |
140 } | |
141 #endif | |
142 | |
143 ////////////////////////////////////////////////////////////////////////////////
///// | |
144 ////////////////////////////////////////////////////////////////////////////////
///// | |
145 | |
146 static SkScalar eval_quad(const SkScalar src[], SkScalar t) | |
147 { | |
148 SkASSERT(src); | |
149 SkASSERT(t >= 0 && t <= SK_Scalar1); | |
150 | |
151 #ifdef DIRECT_EVAL_OF_POLYNOMIALS | |
152 SkScalar C = src[0]; | |
153 SkScalar A = src[4] - 2 * src[2] + C; | |
154 SkScalar B = 2 * (src[2] - C); | |
155 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | |
156 #else | |
157 SkScalar ab = SkScalarInterp(src[0], src[2], t); | |
158 SkScalar bc = SkScalarInterp(src[2], src[4], t); | |
159 return SkScalarInterp(ab, bc, t); | |
160 #endif | |
161 } | |
162 | |
163 static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) | |
164 { | |
165 SkScalar A = src[4] - 2 * src[2] + src[0]; | |
166 SkScalar B = src[2] - src[0]; | |
167 | |
168 return 2 * SkScalarMulAdd(A, t, B); | |
169 } | |
170 | |
171 static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) | |
172 { | |
173 SkScalar A = src[4] - 2 * src[2] + src[0]; | |
174 SkScalar B = src[2] - src[0]; | |
175 return A + 2 * B; | |
176 } | |
177 | |
178 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tange
nt) | |
179 { | |
180 SkASSERT(src); | |
181 SkASSERT(t >= 0 && t <= SK_Scalar1); | |
182 | |
183 if (pt) | |
184 pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); | |
185 if (tangent) | |
186 tangent->set(eval_quad_derivative(&src[0].fX, t), | |
187 eval_quad_derivative(&src[0].fY, t)); | |
188 } | |
189 | |
190 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) | |
191 { | |
192 SkASSERT(src); | |
193 | |
194 if (pt) | |
195 { | |
196 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | |
197 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | |
198 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | |
199 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | |
200 pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); | |
201 } | |
202 if (tangent) | |
203 tangent->set(eval_quad_derivative_at_half(&src[0].fX), | |
204 eval_quad_derivative_at_half(&src[0].fY)); | |
205 } | |
206 | |
207 static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) | |
208 { | |
209 SkScalar ab = SkScalarInterp(src[0], src[2], t); | |
210 SkScalar bc = SkScalarInterp(src[2], src[4], t); | |
211 | |
212 dst[0] = src[0]; | |
213 dst[2] = ab; | |
214 dst[4] = SkScalarInterp(ab, bc, t); | |
215 dst[6] = bc; | |
216 dst[8] = src[4]; | |
217 } | |
218 | |
219 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) | |
220 { | |
221 SkASSERT(t > 0 && t < SK_Scalar1); | |
222 | |
223 interp_quad_coords(&src[0].fX, &dst[0].fX, t); | |
224 interp_quad_coords(&src[0].fY, &dst[0].fY, t); | |
225 } | |
226 | |
227 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) | |
228 { | |
229 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | |
230 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | |
231 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | |
232 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | |
233 | |
234 dst[0] = src[0]; | |
235 dst[1].set(x01, y01); | |
236 dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); | |
237 dst[3].set(x12, y12); | |
238 dst[4] = src[2]; | |
239 } | |
240 | |
241 /** Quad'(t) = At + B, where | |
242 A = 2(a - 2b + c) | |
243 B = 2(b - a) | |
244 Solve for t, only if it fits between 0 < t < 1 | |
245 */ | |
246 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) | |
247 { | |
248 /* At + B == 0 | |
249 t = -B / A | |
250 */ | |
251 #ifdef SK_SCALAR_IS_FIXED | |
252 return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c,
tValue); | |
253 #else | |
254 return valid_unit_divide(a - b, a - b - b + c, tValue); | |
255 #endif | |
256 } | |
257 | |
258 static void flatten_double_quad_extrema(SkScalar coords[14]) | |
259 { | |
260 coords[2] = coords[6] = coords[4]; | |
261 } | |
262 | |
263 static void force_quad_monotonic_in_y(SkPoint pts[3]) | |
264 { | |
265 // zap pts[1].fY to the nearest value | |
266 SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY); | |
267 SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY); | |
268 pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY; | |
269 } | |
270 | |
271 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is | |
272 stored in dst[]. Guarantees that the 1/2 quads will be monotonic. | |
273 */ | |
274 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) | |
275 { | |
276 SkASSERT(src); | |
277 SkASSERT(dst); | |
278 | |
279 #if 0 | |
280 static bool once = true; | |
281 if (once) | |
282 { | |
283 once = false; | |
284 SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 }; | |
285 SkPoint d[6]; | |
286 | |
287 int n = SkChopQuadAtYExtrema(s, d); | |
288 SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].f
Y, d[3].fY, d[4].fY, d[5].fY); | |
289 } | |
290 #endif | |
291 | |
292 SkScalar a = src[0].fY; | |
293 SkScalar b = src[1].fY; | |
294 SkScalar c = src[2].fY; | |
295 | |
296 if (is_not_monotonic(a, b, c)) | |
297 { | |
298 SkScalar tValue; | |
299 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) | |
300 { | |
301 SkChopQuadAt(src, dst, tValue); | |
302 flatten_double_quad_extrema(&dst[0].fY); | |
303 return 1; | |
304 } | |
305 // if we get here, we need to force dst to be monotonic, even though | |
306 // we couldn't compute a unit_divide value (probably underflow). | |
307 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; | |
308 } | |
309 dst[0].set(src[0].fX, a); | |
310 dst[1].set(src[1].fX, b); | |
311 dst[2].set(src[2].fX, c); | |
312 return 0; | |
313 } | |
314 | |
315 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 | |
316 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t | |
317 // F''(t) = 2 (a - 2b + c) | |
318 // | |
319 // A = 2 (b - a) | |
320 // B = 2 (a - 2b + c) | |
321 // | |
322 // Maximum curvature for a quadratic means solving | |
323 // Fx' Fx'' + Fy' Fy'' = 0 | |
324 // | |
325 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) | |
326 // | |
327 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) | |
328 { | |
329 SkScalar Ax = src[1].fX - src[0].fX; | |
330 SkScalar Ay = src[1].fY - src[0].fY; | |
331 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; | |
332 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; | |
333 SkScalar t = 0; // 0 means don't chop | |
334 | |
335 #ifdef SK_SCALAR_IS_FLOAT | |
336 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); | |
337 #else | |
338 // !!! should I use SkFloat here? seems like it | |
339 Sk64 numer, denom, tmp; | |
340 | |
341 numer.setMul(Ax, -Bx); | |
342 tmp.setMul(Ay, -By); | |
343 numer.add(tmp); | |
344 | |
345 if (numer.isPos()) // do nothing if numer <= 0 | |
346 { | |
347 denom.setMul(Bx, Bx); | |
348 tmp.setMul(By, By); | |
349 denom.add(tmp); | |
350 SkASSERT(!denom.isNeg()); | |
351 if (numer < denom) | |
352 { | |
353 t = numer.getFixedDiv(denom); | |
354 SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numeric
ally stable (ha!) | |
355 if ((unsigned)t >= SK_Fixed1) // runtime check for numeric
al stability | |
356 t = 0; // ignore the chop | |
357 } | |
358 } | |
359 #endif | |
360 | |
361 if (t == 0) | |
362 { | |
363 memcpy(dst, src, 3 * sizeof(SkPoint)); | |
364 return 1; | |
365 } | |
366 else | |
367 { | |
368 SkChopQuadAt(src, dst, t); | |
369 return 2; | |
370 } | |
371 } | |
372 | |
373 ////////////////////////////////////////////////////////////////////////////////
//////// | |
374 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBI
CS ///// | |
375 ////////////////////////////////////////////////////////////////////////////////
//////// | |
376 | |
377 static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) | |
378 { | |
379 coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; | |
380 coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); | |
381 coeff[2] = 3*(pt[2] - pt[0]); | |
382 coeff[3] = pt[0]; | |
383 } | |
384 | |
385 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) | |
386 { | |
387 SkASSERT(pts); | |
388 | |
389 if (cx) | |
390 get_cubic_coeff(&pts[0].fX, cx); | |
391 if (cy) | |
392 get_cubic_coeff(&pts[0].fY, cy); | |
393 } | |
394 | |
395 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) | |
396 { | |
397 SkASSERT(src); | |
398 SkASSERT(t >= 0 && t <= SK_Scalar1); | |
399 | |
400 if (t == 0) | |
401 return src[0]; | |
402 | |
403 #ifdef DIRECT_EVAL_OF_POLYNOMIALS | |
404 SkScalar D = src[0]; | |
405 SkScalar A = src[6] + 3*(src[2] - src[4]) - D; | |
406 SkScalar B = 3*(src[4] - src[2] - src[2] + D); | |
407 SkScalar C = 3*(src[2] - D); | |
408 | |
409 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); | |
410 #else | |
411 SkScalar ab = SkScalarInterp(src[0], src[2], t); | |
412 SkScalar bc = SkScalarInterp(src[2], src[4], t); | |
413 SkScalar cd = SkScalarInterp(src[4], src[6], t); | |
414 SkScalar abc = SkScalarInterp(ab, bc, t); | |
415 SkScalar bcd = SkScalarInterp(bc, cd, t); | |
416 return SkScalarInterp(abc, bcd, t); | |
417 #endif | |
418 } | |
419 | |
420 /** return At^2 + Bt + C | |
421 */ | |
422 static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) | |
423 { | |
424 SkASSERT(t >= 0 && t <= SK_Scalar1); | |
425 | |
426 return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); | |
427 } | |
428 | |
429 static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) | |
430 { | |
431 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; | |
432 SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); | |
433 SkScalar C = src[2] - src[0]; | |
434 | |
435 return eval_quadratic(A, B, C, t); | |
436 } | |
437 | |
438 static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) | |
439 { | |
440 SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; | |
441 SkScalar B = src[4] - 2 * src[2] + src[0]; | |
442 | |
443 return SkScalarMulAdd(A, t, B); | |
444 } | |
445 | |
446 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tan
gent, SkVector* curvature) | |
447 { | |
448 SkASSERT(src); | |
449 SkASSERT(t >= 0 && t <= SK_Scalar1); | |
450 | |
451 if (loc) | |
452 loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); | |
453 if (tangent) | |
454 tangent->set(eval_cubic_derivative(&src[0].fX, t), | |
455 eval_cubic_derivative(&src[0].fY, t)); | |
456 if (curvature) | |
457 curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), | |
458 eval_cubic_2ndDerivative(&src[0].fY, t)); | |
459 } | |
460 | |
461 /** Cubic'(t) = At^2 + Bt + C, where | |
462 A = 3(-a + 3(b - c) + d) | |
463 B = 6(a - 2b + c) | |
464 C = 3(b - a) | |
465 Solve for t, keeping only those that fit betwee 0 < t < 1 | |
466 */ | |
467 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar
tValues[2]) | |
468 { | |
469 #ifdef SK_SCALAR_IS_FIXED | |
470 if (!is_not_monotonic(a, b, c, d)) | |
471 return 0; | |
472 #endif | |
473 | |
474 // we divide A,B,C by 3 to simplify | |
475 SkScalar A = d - a + 3*(b - c); | |
476 SkScalar B = 2*(a - b - b + c); | |
477 SkScalar C = b - a; | |
478 | |
479 return SkFindUnitQuadRoots(A, B, C, tValues); | |
480 } | |
481 | |
482 static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t) | |
483 { | |
484 SkScalar ab = SkScalarInterp(src[0], src[2], t); | |
485 SkScalar bc = SkScalarInterp(src[2], src[4], t); | |
486 SkScalar cd = SkScalarInterp(src[4], src[6], t); | |
487 SkScalar abc = SkScalarInterp(ab, bc, t); | |
488 SkScalar bcd = SkScalarInterp(bc, cd, t); | |
489 SkScalar abcd = SkScalarInterp(abc, bcd, t); | |
490 | |
491 dst[0] = src[0]; | |
492 dst[2] = ab; | |
493 dst[4] = abc; | |
494 dst[6] = abcd; | |
495 dst[8] = bcd; | |
496 dst[10] = cd; | |
497 dst[12] = src[6]; | |
498 } | |
499 | |
500 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) | |
501 { | |
502 SkASSERT(t > 0 && t < SK_Scalar1); | |
503 | |
504 interp_cubic_coords(&src[0].fX, &dst[0].fX, t); | |
505 interp_cubic_coords(&src[0].fY, &dst[0].fY, t); | |
506 } | |
507 | |
508 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[]
, int roots) | |
509 { | |
510 #ifdef SK_DEBUG | |
511 { | |
512 for (int i = 0; i < roots - 1; i++) | |
513 { | |
514 SkASSERT(is_unit_interval(tValues[i])); | |
515 SkASSERT(is_unit_interval(tValues[i+1])); | |
516 SkASSERT(tValues[i] < tValues[i+1]); | |
517 } | |
518 } | |
519 #endif | |
520 | |
521 if (dst) | |
522 { | |
523 if (roots == 0) // nothing to chop | |
524 memcpy(dst, src, 4*sizeof(SkPoint)); | |
525 else | |
526 { | |
527 SkScalar t = tValues[0]; | |
528 SkPoint tmp[4]; | |
529 | |
530 for (int i = 0; i < roots; i++) | |
531 { | |
532 SkChopCubicAt(src, dst, t); | |
533 if (i == roots - 1) | |
534 break; | |
535 | |
536 SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValue
s[i], SK_Scalar1 - tValues[i], &t); | |
537 SkASSERT(valid); | |
538 | |
539 dst += 3; | |
540 memcpy(tmp, dst, 4 * sizeof(SkPoint)); | |
541 src = tmp; | |
542 } | |
543 } | |
544 } | |
545 } | |
546 | |
547 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) | |
548 { | |
549 SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); | |
550 SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); | |
551 SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); | |
552 SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); | |
553 SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX); | |
554 SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY); | |
555 | |
556 SkScalar x012 = SkScalarAve(x01, x12); | |
557 SkScalar y012 = SkScalarAve(y01, y12); | |
558 SkScalar x123 = SkScalarAve(x12, x23); | |
559 SkScalar y123 = SkScalarAve(y12, y23); | |
560 | |
561 dst[0] = src[0]; | |
562 dst[1].set(x01, y01); | |
563 dst[2].set(x012, y012); | |
564 dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123)); | |
565 dst[4].set(x123, y123); | |
566 dst[5].set(x23, y23); | |
567 dst[6] = src[3]; | |
568 } | |
569 | |
570 static void flatten_double_cubic_extrema(SkScalar coords[14]) | |
571 { | |
572 coords[4] = coords[8] = coords[6]; | |
573 } | |
574 | |
575 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that | |
576 the resulting beziers are monotonic in Y. This is called by the scan convert
er. | |
577 Depending on what is returned, dst[] is treated as follows | |
578 0 dst[0..3] is the original cubic | |
579 1 dst[0..3] and dst[3..6] are the two new cubics | |
580 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics | |
581 If dst == null, it is ignored and only the count is returned. | |
582 */ | |
583 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) | |
584 { | |
585 SkScalar tValues[2]; | |
586 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[
3].fY, tValues); | |
587 | |
588 SkChopCubicAt(src, dst, tValues, roots); | |
589 if (dst && roots > 0) | |
590 { | |
591 // we do some cleanup to ensure our Y extrema are flat | |
592 flatten_double_cubic_extrema(&dst[0].fY); | |
593 if (roots == 2) | |
594 flatten_double_cubic_extrema(&dst[3].fY); | |
595 } | |
596 return roots; | |
597 } | |
598 | |
599 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html | |
600 | |
601 Inflection means that curvature is zero. | |
602 Curvature is [F' x F''] / [F'^3] | |
603 So we solve F'x X F''y - F'y X F''y == 0 | |
604 After some canceling of the cubic term, we get | |
605 A = b - a | |
606 B = c - 2b + a | |
607 C = d - 3c + 3b - a | |
608 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 | |
609 */ | |
610 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) | |
611 { | |
612 SkScalar Ax = src[1].fX - src[0].fX; | |
613 SkScalar Ay = src[1].fY - src[0].fY; | |
614 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; | |
615 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; | |
616 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; | |
617 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; | |
618 int count; | |
619 | |
620 #ifdef SK_SCALAR_IS_FLOAT | |
621 count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tVa
lues); | |
622 #else | |
623 Sk64 A, B, C, tmp; | |
624 | |
625 A.setMul(Bx, Cy); | |
626 tmp.setMul(By, Cx); | |
627 A.sub(tmp); | |
628 | |
629 B.setMul(Ax, Cy); | |
630 tmp.setMul(Ay, Cx); | |
631 B.sub(tmp); | |
632 | |
633 C.setMul(Ax, By); | |
634 tmp.setMul(Ay, Bx); | |
635 C.sub(tmp); | |
636 | |
637 count = Sk64FindFixedQuadRoots(A, B, C, tValues); | |
638 #endif | |
639 | |
640 return count; | |
641 } | |
642 | |
643 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) | |
644 { | |
645 SkScalar tValues[2]; | |
646 int count = SkFindCubicInflections(src, tValues); | |
647 | |
648 if (dst) | |
649 { | |
650 if (count == 0) | |
651 memcpy(dst, src, 4 * sizeof(SkPoint)); | |
652 else | |
653 SkChopCubicAt(src, dst, tValues, count); | |
654 } | |
655 return count + 1; | |
656 } | |
657 | |
658 template <typename T> void bubble_sort(T array[], int count) | |
659 { | |
660 for (int i = count - 1; i > 0; --i) | |
661 for (int j = i; j > 0; --j) | |
662 if (array[j] < array[j-1]) | |
663 { | |
664 T tmp(array[j]); | |
665 array[j] = array[j-1]; | |
666 array[j-1] = tmp; | |
667 } | |
668 } | |
669 | |
670 #include "SkFP.h" | |
671 | |
672 // newton refinement | |
673 #if 0 | |
674 static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root) | |
675 { | |
676 // x1 = x0 - f(t) / f'(t) | |
677 | |
678 SkFP T = SkScalarToFloat(root); | |
679 SkFP N, D; | |
680 | |
681 // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2] | |
682 D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3); | |
683 D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2)); | |
684 D = SkFPAdd(D, coeff[2]); | |
685 | |
686 if (D == 0) | |
687 return root; | |
688 | |
689 // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] | |
690 N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]); | |
691 N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1])); | |
692 N = SkFPAdd(N, SkFPMul(T, coeff[2])); | |
693 N = SkFPAdd(N, coeff[3]); | |
694 | |
695 if (N) | |
696 { | |
697 SkScalar delta = SkFPToScalar(SkFPDiv(N, D)); | |
698 | |
699 if (delta) | |
700 root -= delta; | |
701 } | |
702 return root; | |
703 } | |
704 #endif | |
705 | |
706 #if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable
warning : unreachable code if building fixed point for windows desktop | |
707 #pragma warning ( disable : 4702 ) | |
708 #endif | |
709 | |
710 /* Solve coeff(t) == 0, returning the number of roots that | |
711 lie withing 0 < t < 1. | |
712 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] | |
713 */ | |
714 static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3]) | |
715 { | |
716 #ifndef SK_SCALAR_IS_FLOAT | |
717 return 0; // this is not yet implemented for software float | |
718 #endif | |
719 | |
720 if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic | |
721 { | |
722 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); | |
723 } | |
724 | |
725 SkFP a, b, c, Q, R; | |
726 | |
727 { | |
728 SkASSERT(coeff[0] != 0); | |
729 | |
730 SkFP inva = SkFPInvert(coeff[0]); | |
731 a = SkFPMul(coeff[1], inva); | |
732 b = SkFPMul(coeff[2], inva); | |
733 c = SkFPMul(coeff[3], inva); | |
734 } | |
735 Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9); | |
736 // R = (2*a*a*a - 9*a*b + 27*c) / 54; | |
737 R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2); | |
738 R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9)); | |
739 R = SkFPAdd(R, SkFPMulInt(c, 27)); | |
740 R = SkFPDivInt(R, 54); | |
741 | |
742 SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q); | |
743 SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3); | |
744 SkFP adiv3 = SkFPDivInt(a, 3); | |
745 | |
746 SkScalar* roots = tValues; | |
747 SkScalar r; | |
748 | |
749 if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots | |
750 { | |
751 #ifdef SK_SCALAR_IS_FLOAT | |
752 float theta = sk_float_acos(R / sk_float_sqrt(Q3)); | |
753 float neg2RootQ = -2 * sk_float_sqrt(Q); | |
754 | |
755 r = neg2RootQ * sk_float_cos(theta/3) - adiv3; | |
756 if (is_unit_interval(r)) | |
757 *roots++ = r; | |
758 | |
759 r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3; | |
760 if (is_unit_interval(r)) | |
761 *roots++ = r; | |
762 | |
763 r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3; | |
764 if (is_unit_interval(r)) | |
765 *roots++ = r; | |
766 | |
767 // now sort the roots | |
768 bubble_sort(tValues, (int)(roots - tValues)); | |
769 #endif | |
770 } | |
771 else // we have 1 real root | |
772 { | |
773 SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3)); | |
774 A = SkFPCubeRoot(A); | |
775 if (SkFPGT(R, 0)) | |
776 A = SkFPNeg(A); | |
777 | |
778 if (A != 0) | |
779 A = SkFPAdd(A, SkFPDiv(Q, A)); | |
780 r = SkFPToScalar(SkFPSub(A, adiv3)); | |
781 if (is_unit_interval(r)) | |
782 *roots++ = r; | |
783 } | |
784 | |
785 return (int)(roots - tValues); | |
786 } | |
787 | |
788 /* Looking for F' dot F'' == 0 | |
789 | |
790 A = b - a | |
791 B = c - 2b + a | |
792 C = d - 3c + 3b - a | |
793 | |
794 F' = 3Ct^2 + 6Bt + 3A | |
795 F'' = 6Ct + 6B | |
796 | |
797 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB | |
798 */ | |
799 static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4]) | |
800 { | |
801 SkScalar a = src[2] - src[0]; | |
802 SkScalar b = src[4] - 2 * src[2] + src[0]; | |
803 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; | |
804 | |
805 SkFP A = SkScalarToFP(a); | |
806 SkFP B = SkScalarToFP(b); | |
807 SkFP C = SkScalarToFP(c); | |
808 | |
809 coeff[0] = SkFPMul(C, C); | |
810 coeff[1] = SkFPMulInt(SkFPMul(B, C), 3); | |
811 coeff[2] = SkFPMulInt(SkFPMul(B, B), 2); | |
812 coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A)); | |
813 coeff[3] = SkFPMul(A, B); | |
814 } | |
815 | |
816 // EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1 | |
817 //#define kMinTValueForChopping (SK_Scalar1 / 256) | |
818 #define kMinTValueForChopping 0 | |
819 | |
820 /* Looking for F' dot F'' == 0 | |
821 | |
822 A = b - a | |
823 B = c - 2b + a | |
824 C = d - 3c + 3b - a | |
825 | |
826 F' = 3Ct^2 + 6Bt + 3A | |
827 F'' = 6Ct + 6B | |
828 | |
829 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB | |
830 */ | |
831 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) | |
832 { | |
833 SkFP coeffX[4], coeffY[4]; | |
834 int i; | |
835 | |
836 formulate_F1DotF2(&src[0].fX, coeffX); | |
837 formulate_F1DotF2(&src[0].fY, coeffY); | |
838 | |
839 for (i = 0; i < 4; i++) | |
840 coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]); | |
841 | |
842 SkScalar t[3]; | |
843 int count = solve_cubic_polynomial(coeffX, t); | |
844 int maxCount = 0; | |
845 | |
846 // now remove extrema where the curvature is zero (mins) | |
847 // !!!! need a test for this !!!! | |
848 for (i = 0; i < count; i++) | |
849 { | |
850 // if (not_min_curvature()) | |
851 if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForCho
pping) | |
852 tValues[maxCount++] = t[i]; | |
853 } | |
854 return maxCount; | |
855 } | |
856 | |
857 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tV
alues[3]) | |
858 { | |
859 SkScalar t_storage[3]; | |
860 | |
861 if (tValues == NULL) | |
862 tValues = t_storage; | |
863 | |
864 int count = SkFindCubicMaxCurvature(src, tValues); | |
865 | |
866 if (dst) | |
867 { | |
868 if (count == 0) | |
869 memcpy(dst, src, 4 * sizeof(SkPoint)); | |
870 else | |
871 SkChopCubicAt(src, dst, tValues, count); | |
872 } | |
873 return count + 1; | |
874 } | |
875 | |
876 //////////////////////////////////////////////////////////////////////////////// | |
877 | |
878 /* Find t value for quadratic [a, b, c] = d. | |
879 Return 0 if there is no solution within [0, 1) | |
880 */ | |
881 static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) | |
882 { | |
883 // At^2 + Bt + C = d | |
884 SkScalar A = a - 2 * b + c; | |
885 SkScalar B = 2 * (b - a); | |
886 SkScalar C = a - d; | |
887 | |
888 SkScalar roots[2]; | |
889 int count = SkFindUnitQuadRoots(A, B, C, roots); | |
890 | |
891 SkASSERT(count <= 1); | |
892 return count == 1 ? roots[0] : 0; | |
893 } | |
894 | |
895 /* given a quad-curve and a point (x,y), chop the quad at that point and return | |
896 the new quad's offCurve point. Should only return false if the computed pos | |
897 is the start of the curve (i.e. root == 0) | |
898 */ | |
899 static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPo
int* offCurve) | |
900 { | |
901 const SkScalar* base; | |
902 SkScalar value; | |
903 | |
904 if (SkScalarAbs(x) < SkScalarAbs(y)) { | |
905 base = &quad[0].fX; | |
906 value = x; | |
907 } else { | |
908 base = &quad[0].fY; | |
909 value = y; | |
910 } | |
911 | |
912 // note: this returns 0 if it thinks value is out of range, meaning the | |
913 // root might return something outside of [0, 1) | |
914 SkScalar t = quad_solve(base[0], base[2], base[4], value); | |
915 | |
916 if (t > 0) | |
917 { | |
918 SkPoint tmp[5]; | |
919 SkChopQuadAt(quad, tmp, t); | |
920 *offCurve = tmp[1]; | |
921 return true; | |
922 } else { | |
923 /* t == 0 means either the value triggered a root outside of [0, 1) | |
924 For our purposes, we can ignore the <= 0 roots, but we want to | |
925 catch the >= 1 roots (which given our caller, will basically mean | |
926 a root of 1, give-or-take numerical instability). If we are in the | |
927 >= 1 case, return the existing offCurve point. | |
928 | |
929 The test below checks to see if we are close to the "end" of the | |
930 curve (near base[4]). Rather than specifying a tolerance, I just | |
931 check to see if value is on to the right/left of the middle point | |
932 (depending on the direction/sign of the end points). | |
933 */ | |
934 if ((base[0] < base[4] && value > base[2]) || | |
935 (base[0] > base[4] && value < base[2])) // should root have been 1 | |
936 { | |
937 *offCurve = quad[1]; | |
938 return true; | |
939 } | |
940 } | |
941 return false; | |
942 } | |
943 | |
944 static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { | |
945 { SK_Scalar1, 0 }, | |
946 { SK_Scalar1, SK_ScalarTanPIOver8 }, | |
947 { SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, | |
948 { SK_ScalarTanPIOver8, SK_Scalar1 }, | |
949 | |
950 { 0, SK_Scalar1 }, | |
951 { -SK_ScalarTanPIOver8, SK_Scalar1 }, | |
952 { -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, | |
953 { -SK_Scalar1, SK_ScalarTanPIOver8 }, | |
954 | |
955 { -SK_Scalar1, 0 }, | |
956 { -SK_Scalar1, -SK_ScalarTanPIOver8 }, | |
957 { -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, | |
958 { -SK_ScalarTanPIOver8, -SK_Scalar1 }, | |
959 | |
960 { 0, -SK_Scalar1 }, | |
961 { SK_ScalarTanPIOver8, -SK_Scalar1 }, | |
962 { SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, | |
963 { SK_Scalar1, -SK_ScalarTanPIOver8 }, | |
964 | |
965 { SK_Scalar1, 0 } | |
966 }; | |
967 | |
968 int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, | |
969 SkRotationDirection dir, const SkMatrix* userMatrix, | |
970 SkPoint quadPoints[]) | |
971 { | |
972 // rotate by x,y so that uStart is (1.0) | |
973 SkScalar x = SkPoint::DotProduct(uStart, uStop); | |
974 SkScalar y = SkPoint::CrossProduct(uStart, uStop); | |
975 | |
976 SkScalar absX = SkScalarAbs(x); | |
977 SkScalar absY = SkScalarAbs(y); | |
978 | |
979 int pointCount; | |
980 | |
981 // check for (effectively) coincident vectors | |
982 // this can happen if our angle is nearly 0 or nearly 180 (y == 0) | |
983 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) | |
984 if (absY <= SK_ScalarNearlyZero && x > 0 && | |
985 ((y >= 0 && kCW_SkRotationDirection == dir) || | |
986 (y <= 0 && kCCW_SkRotationDirection == dir))) { | |
987 | |
988 // just return the start-point | |
989 quadPoints[0].set(SK_Scalar1, 0); | |
990 pointCount = 1; | |
991 } else { | |
992 if (dir == kCCW_SkRotationDirection) | |
993 y = -y; | |
994 | |
995 // what octant (quadratic curve) is [xy] in? | |
996 int oct = 0; | |
997 bool sameSign = true; | |
998 | |
999 if (0 == y) | |
1000 { | |
1001 oct = 4; // 180 | |
1002 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); | |
1003 } | |
1004 else if (0 == x) | |
1005 { | |
1006 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); | |
1007 if (y > 0) | |
1008 oct = 2; // 90 | |
1009 else | |
1010 oct = 6; // 270 | |
1011 } | |
1012 else | |
1013 { | |
1014 if (y < 0) | |
1015 oct += 4; | |
1016 if ((x < 0) != (y < 0)) | |
1017 { | |
1018 oct += 2; | |
1019 sameSign = false; | |
1020 } | |
1021 if ((absX < absY) == sameSign) | |
1022 oct += 1; | |
1023 } | |
1024 | |
1025 int wholeCount = oct << 1; | |
1026 memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); | |
1027 | |
1028 const SkPoint* arc = &gQuadCirclePts[wholeCount]; | |
1029 if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1])) | |
1030 { | |
1031 quadPoints[wholeCount + 2].set(x, y); | |
1032 wholeCount += 2; | |
1033 } | |
1034 pointCount = wholeCount + 1; | |
1035 } | |
1036 | |
1037 // now handle counter-clockwise and the initial unitStart rotation | |
1038 SkMatrix matrix; | |
1039 matrix.setSinCos(uStart.fY, uStart.fX); | |
1040 if (dir == kCCW_SkRotationDirection) { | |
1041 matrix.preScale(SK_Scalar1, -SK_Scalar1); | |
1042 } | |
1043 if (userMatrix) { | |
1044 matrix.postConcat(*userMatrix); | |
1045 } | |
1046 matrix.mapPoints(quadPoints, pointCount); | |
1047 return pointCount; | |
1048 } | |
1049 | |
1050 | |
1051 ////////////////////////////////////////////////////////////////////////////////
///////// | |
1052 ////////////////////////////////////////////////////////////////////////////////
///////// | |
1053 | |
1054 #ifdef SK_DEBUG | |
1055 | |
1056 void SkGeometry::UnitTest() | |
1057 { | |
1058 #ifdef SK_SUPPORT_UNITTEST | |
1059 SkPoint pts[3], dst[5]; | |
1060 | |
1061 pts[0].set(0, 0); | |
1062 pts[1].set(100, 50); | |
1063 pts[2].set(0, 100); | |
1064 | |
1065 int count = SkChopQuadAtMaxCurvature(pts, dst); | |
1066 SkASSERT(count == 1 || count == 2); | |
1067 #endif | |
1068 } | |
1069 | |
1070 #endif | |
1071 | |
1072 | |
OLD | NEW |