| Index: skia/sgl/SkScan_Path.cpp
|
| ===================================================================
|
| --- skia/sgl/SkScan_Path.cpp (revision 16859)
|
| +++ skia/sgl/SkScan_Path.cpp (working copy)
|
| @@ -1,671 +0,0 @@
|
| -/* libs/graphics/sgl/SkScan_Path.cpp
|
| -**
|
| -** Copyright 2006, The Android Open Source Project
|
| -**
|
| -** Licensed under the Apache License, Version 2.0 (the "License");
|
| -** you may not use this file except in compliance with the License.
|
| -** You may obtain a copy of the License at
|
| -**
|
| -** http://www.apache.org/licenses/LICENSE-2.0
|
| -**
|
| -** Unless required by applicable law or agreed to in writing, software
|
| -** distributed under the License is distributed on an "AS IS" BASIS,
|
| -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| -** See the License for the specific language governing permissions and
|
| -** limitations under the License.
|
| -*/
|
| -
|
| -#include "SkScanPriv.h"
|
| -#include "SkBlitter.h"
|
| -#include "SkEdge.h"
|
| -#include "SkGeometry.h"
|
| -#include "SkPath.h"
|
| -#include "SkRegion.h"
|
| -#include "SkTemplates.h"
|
| -
|
| -#define kEDGE_HEAD_Y SK_MinS32
|
| -#define kEDGE_TAIL_Y SK_MaxS32
|
| -
|
| -#ifdef SK_DEBUG
|
| - static void validate_sort(const SkEdge* edge)
|
| - {
|
| - int y = kEDGE_HEAD_Y;
|
| -
|
| - while (edge->fFirstY != SK_MaxS32)
|
| - {
|
| - edge->validate();
|
| - SkASSERT(y <= edge->fFirstY);
|
| -
|
| - y = edge->fFirstY;
|
| - edge = edge->fNext;
|
| - }
|
| - }
|
| -#else
|
| - #define validate_sort(edge)
|
| -#endif
|
| -
|
| -static inline void remove_edge(SkEdge* edge)
|
| -{
|
| - edge->fPrev->fNext = edge->fNext;
|
| - edge->fNext->fPrev = edge->fPrev;
|
| -}
|
| -
|
| -static inline void swap_edges(SkEdge* prev, SkEdge* next)
|
| -{
|
| - SkASSERT(prev->fNext == next && next->fPrev == prev);
|
| -
|
| - // remove prev from the list
|
| - prev->fPrev->fNext = next;
|
| - next->fPrev = prev->fPrev;
|
| -
|
| - // insert prev after next
|
| - prev->fNext = next->fNext;
|
| - next->fNext->fPrev = prev;
|
| - next->fNext = prev;
|
| - prev->fPrev = next;
|
| -}
|
| -
|
| -static void backward_insert_edge_based_on_x(SkEdge* edge SkDECLAREPARAM(int, curr_y))
|
| -{
|
| - SkFixed x = edge->fX;
|
| -
|
| - for (;;)
|
| - {
|
| - SkEdge* prev = edge->fPrev;
|
| -
|
| - // add 1 to curr_y since we may have added new edges (built from curves)
|
| - // that start on the next scanline
|
| - SkASSERT(prev && prev->fFirstY <= curr_y + 1);
|
| -
|
| - if (prev->fX <= x)
|
| - break;
|
| -
|
| - swap_edges(prev, edge);
|
| - }
|
| -}
|
| -
|
| -static void insert_new_edges(SkEdge* newEdge, int curr_y)
|
| -{
|
| - SkASSERT(newEdge->fFirstY >= curr_y);
|
| -
|
| - while (newEdge->fFirstY == curr_y)
|
| - {
|
| - SkEdge* next = newEdge->fNext;
|
| - backward_insert_edge_based_on_x(newEdge SkPARAM(curr_y));
|
| - newEdge = next;
|
| - }
|
| -}
|
| -
|
| -#ifdef SK_DEBUG
|
| -static void validate_edges_for_y(const SkEdge* edge, int curr_y)
|
| -{
|
| - while (edge->fFirstY <= curr_y)
|
| - {
|
| - SkASSERT(edge->fPrev && edge->fNext);
|
| - SkASSERT(edge->fPrev->fNext == edge);
|
| - SkASSERT(edge->fNext->fPrev == edge);
|
| - SkASSERT(edge->fFirstY <= edge->fLastY);
|
| -
|
| - SkASSERT(edge->fPrev->fX <= edge->fX);
|
| - edge = edge->fNext;
|
| - }
|
| -}
|
| -#else
|
| - #define validate_edges_for_y(edge, curr_y)
|
| -#endif
|
| -
|
| -#if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized
|
| -#pragma warning ( push )
|
| -#pragma warning ( disable : 4701 )
|
| -#endif
|
| -
|
| -typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
|
| -#define PREPOST_START true
|
| -#define PREPOST_END false
|
| -
|
| -static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
|
| - SkBlitter* blitter, int stop_y, PrePostProc proc)
|
| -{
|
| - validate_sort(prevHead->fNext);
|
| -
|
| - int curr_y = prevHead->fNext->fFirstY;
|
| - // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
|
| - int windingMask = (fillType & 1) ? 1 : -1;
|
| -
|
| - for (;;)
|
| - {
|
| - int w = 0;
|
| - int left SK_INIT_TO_AVOID_WARNING;
|
| - bool in_interval = false;
|
| - SkEdge* currE = prevHead->fNext;
|
| - SkFixed prevX = prevHead->fX;
|
| -
|
| - validate_edges_for_y(currE, curr_y);
|
| -
|
| - if (proc) {
|
| - proc(blitter, curr_y, PREPOST_START); // pre-proc
|
| - }
|
| -
|
| - while (currE->fFirstY <= curr_y)
|
| - {
|
| - SkASSERT(currE->fLastY >= curr_y);
|
| -
|
| - int x = (currE->fX + SK_Fixed1/2) >> 16;
|
| - w += currE->fWinding;
|
| - if ((w & windingMask) == 0) // we finished an interval
|
| - {
|
| - SkASSERT(in_interval);
|
| - int width = x - left;
|
| - SkASSERT(width >= 0);
|
| - if (width)
|
| - blitter->blitH(left, curr_y, width);
|
| - in_interval = false;
|
| - }
|
| - else if (!in_interval)
|
| - {
|
| - left = x;
|
| - in_interval = true;
|
| - }
|
| -
|
| - SkEdge* next = currE->fNext;
|
| - SkFixed newX;
|
| -
|
| - if (currE->fLastY == curr_y) // are we done with this edge?
|
| - {
|
| - if (currE->fCurveCount < 0)
|
| - {
|
| - if (((SkCubicEdge*)currE)->updateCubic())
|
| - {
|
| - SkASSERT(currE->fFirstY == curr_y + 1);
|
| -
|
| - newX = currE->fX;
|
| - goto NEXT_X;
|
| - }
|
| - }
|
| - else if (currE->fCurveCount > 0)
|
| - {
|
| - if (((SkQuadraticEdge*)currE)->updateQuadratic())
|
| - {
|
| - newX = currE->fX;
|
| - goto NEXT_X;
|
| - }
|
| - }
|
| - remove_edge(currE);
|
| - }
|
| - else
|
| - {
|
| - SkASSERT(currE->fLastY > curr_y);
|
| - newX = currE->fX + currE->fDX;
|
| - currE->fX = newX;
|
| - NEXT_X:
|
| - if (newX < prevX) // ripple currE backwards until it is x-sorted
|
| - backward_insert_edge_based_on_x(currE SkPARAM(curr_y));
|
| - else
|
| - prevX = newX;
|
| - }
|
| - currE = next;
|
| - SkASSERT(currE);
|
| - }
|
| -
|
| - if (proc) {
|
| - proc(blitter, curr_y, PREPOST_END); // post-proc
|
| - }
|
| -
|
| - curr_y += 1;
|
| - if (curr_y >= stop_y)
|
| - break;
|
| -
|
| - // now currE points to the first edge with a Yint larger than curr_y
|
| - insert_new_edges(currE, curr_y);
|
| - }
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -// this guy overrides blitH, and will call its proxy blitter with the inverse
|
| -// of the spans it is given (clipped to the left/right of the cliprect)
|
| -//
|
| -// used to implement inverse filltypes on paths
|
| -//
|
| -class InverseBlitter : public SkBlitter {
|
| -public:
|
| - void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
|
| - fBlitter = blitter;
|
| - fFirstX = clip.fLeft << shift;
|
| - fLastX = clip.fRight << shift;
|
| - }
|
| - void prepost(int y, bool isStart) {
|
| - if (isStart) {
|
| - fPrevX = fFirstX;
|
| - } else {
|
| - int invWidth = fLastX - fPrevX;
|
| - if (invWidth > 0) {
|
| - fBlitter->blitH(fPrevX, y, invWidth);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // overrides
|
| - virtual void blitH(int x, int y, int width) {
|
| - int invWidth = x - fPrevX;
|
| - if (invWidth > 0) {
|
| - fBlitter->blitH(fPrevX, y, invWidth);
|
| - }
|
| - fPrevX = x + width;
|
| - }
|
| -
|
| - // we do not expect to get called with these entrypoints
|
| - virtual void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) {
|
| - SkASSERT(!"blitAntiH unexpected");
|
| - }
|
| - virtual void blitV(int x, int y, int height, SkAlpha alpha) {
|
| - SkASSERT(!"blitV unexpected");
|
| - }
|
| - virtual void blitRect(int x, int y, int width, int height) {
|
| - SkASSERT(!"blitRect unexpected");
|
| - }
|
| - virtual void blitMask(const SkMask&, const SkIRect& clip) {
|
| - SkASSERT(!"blitMask unexpected");
|
| - }
|
| - virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) {
|
| - SkASSERT(!"justAnOpaqueColor unexpected");
|
| - return NULL;
|
| - }
|
| -
|
| -private:
|
| - SkBlitter* fBlitter;
|
| - int fFirstX, fLastX, fPrevX;
|
| -};
|
| -
|
| -static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
|
| - ((InverseBlitter*)blitter)->prepost(y, isStart);
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#if defined _WIN32 && _MSC_VER >= 1300
|
| -#pragma warning ( pop )
|
| -#endif
|
| -
|
| -/* Our line edge relies on the maximum span being <= 512, so that it can
|
| - use FDot6 and keep the dx,dy in 16bits (for much faster slope divide).
|
| - This function returns true if the specified line is too big.
|
| -*/
|
| -static inline bool line_too_big(const SkPoint pts[2])
|
| -{
|
| - SkScalar dx = pts[1].fX - pts[0].fX;
|
| - SkScalar dy = pts[1].fY - pts[0].fY;
|
| -
|
| - return SkScalarAbs(dx) > SkIntToScalar(511) ||
|
| - SkScalarAbs(dy) > SkIntToScalar(511);
|
| -}
|
| -
|
| -static int build_edges(SkEdge edge[], const SkPath& path,
|
| - const SkIRect* clipRect, SkEdge* list[], int shiftUp) {
|
| - SkEdge** start = list;
|
| - SkPath::Iter iter(path, true);
|
| - SkPoint pts[4];
|
| - SkPath::Verb verb;
|
| -
|
| - while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
| - switch (verb) {
|
| - case SkPath::kLine_Verb:
|
| - if (edge->setLine(pts[0], pts[1], clipRect, shiftUp)) {
|
| - *list++ = edge;
|
| - edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
|
| - }
|
| - break;
|
| - case SkPath::kQuad_Verb: {
|
| - SkPoint tmp[5];
|
| - SkPoint* p = tmp;
|
| - int count = SkChopQuadAtYExtrema(pts, tmp);
|
| -
|
| - do {
|
| - if (((SkQuadraticEdge*)edge)->setQuadratic(p, clipRect,
|
| - shiftUp))
|
| - {
|
| - *list++ = edge;
|
| - edge = (SkEdge*)((char*)edge + sizeof(SkQuadraticEdge));
|
| - }
|
| - p += 2;
|
| - } while (--count >= 0);
|
| - break;
|
| - }
|
| - case SkPath::kCubic_Verb: {
|
| - SkPoint tmp[10];
|
| - SkPoint* p = tmp;
|
| - int count = SkChopCubicAtYExtrema(pts, tmp);
|
| - SkASSERT(count >= 0 && count <= 2);
|
| -
|
| - do {
|
| - if (((SkCubicEdge*)edge)->setCubic(p, clipRect, shiftUp))
|
| - {
|
| - *list++ = edge;
|
| - edge = (SkEdge*)((char*)edge + sizeof(SkCubicEdge));
|
| - }
|
| - p += 3;
|
| - } while (--count >= 0);
|
| - break;
|
| - }
|
| - default:
|
| - break;
|
| - }
|
| - }
|
| - return (int)(list - start);
|
| -}
|
| -
|
| -extern "C" {
|
| - static int edge_compare(const void* a, const void* b)
|
| - {
|
| - const SkEdge* edgea = *(const SkEdge**)a;
|
| - const SkEdge* edgeb = *(const SkEdge**)b;
|
| -
|
| - int valuea = edgea->fFirstY;
|
| - int valueb = edgeb->fFirstY;
|
| -
|
| - if (valuea == valueb)
|
| - {
|
| - valuea = edgea->fX;
|
| - valueb = edgeb->fX;
|
| - }
|
| - return valuea - valueb;
|
| - }
|
| -}
|
| -
|
| -static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last)
|
| -{
|
| - qsort(list, count, sizeof(SkEdge*), edge_compare);
|
| -
|
| - // now make the edges linked in sorted order
|
| - for (int i = 1; i < count; i++)
|
| - {
|
| - list[i - 1]->fNext = list[i];
|
| - list[i]->fPrev = list[i - 1];
|
| - }
|
| -
|
| - *last = list[count - 1];
|
| - return list[0];
|
| -}
|
| -
|
| -/* 'quick' computation of the max sized needed to allocated for
|
| - our edgelist.
|
| -*/
|
| -static int worst_case_edge_count(const SkPath& path, size_t* storage)
|
| -{
|
| - size_t size = 0;
|
| - int edgeCount = 0;
|
| -
|
| - SkPath::Iter iter(path, true);
|
| - SkPath::Verb verb;
|
| -
|
| - while ((verb = iter.next(NULL)) != SkPath::kDone_Verb)
|
| - {
|
| - switch (verb) {
|
| - case SkPath::kLine_Verb:
|
| - edgeCount += 1;
|
| - size += sizeof(SkQuadraticEdge); // treat line like Quad (in case its > 512)
|
| - break;
|
| - case SkPath::kQuad_Verb:
|
| - edgeCount += 2; // might need 2 edges when we chop on Y extrema
|
| - size += 2 * sizeof(SkQuadraticEdge);
|
| - break;
|
| - case SkPath::kCubic_Verb:
|
| - edgeCount += 3; // might need 3 edges when we chop on Y extrema
|
| - size += 3 * sizeof(SkCubicEdge);
|
| - break;
|
| - default:
|
| - break;
|
| - }
|
| - }
|
| -
|
| - SkASSERT(storage);
|
| - *storage = size;
|
| - return edgeCount;
|
| -}
|
| -
|
| -/* Much faster than worst_case_edge_count, but over estimates even more
|
| -*/
|
| -static int cheap_worst_case_edge_count(const SkPath& path, size_t* storage)
|
| -{
|
| - int ptCount = path.getPoints(NULL, 0);
|
| - int edgeCount = ptCount;
|
| - *storage = edgeCount * sizeof(SkCubicEdge);
|
| - return edgeCount;
|
| -}
|
| -
|
| -// clipRect may be null, even though we always have a clip. This indicates that
|
| -// the path is contained in the clip, and so we can ignore it during the blit
|
| -//
|
| -// clipRect (if no null) has already been shifted up
|
| -//
|
| -void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter,
|
| - int stop_y, int shiftEdgesUp, const SkRegion& clipRgn)
|
| -{
|
| - SkASSERT(&path && blitter);
|
| -
|
| - size_t size;
|
| - int maxCount = cheap_worst_case_edge_count(path, &size);
|
| -
|
| -#ifdef SK_DEBUG
|
| - {
|
| - size_t size2;
|
| - int maxCount2 = worst_case_edge_count(path, &size2);
|
| -
|
| - SkASSERT(maxCount >= maxCount2 && size >= size2);
|
| - }
|
| -#endif
|
| -
|
| - SkAutoMalloc memory(maxCount * sizeof(SkEdge*) + size);
|
| - SkEdge** list = (SkEdge**)memory.get();
|
| - SkEdge* edge = (SkEdge*)(list + maxCount);
|
| - int count = build_edges(edge, path, clipRect, list, shiftEdgesUp);
|
| - SkEdge headEdge, tailEdge, *last;
|
| -
|
| - SkASSERT(count <= maxCount);
|
| - if (count == 0) {
|
| - return;
|
| - }
|
| - SkASSERT(count > 1);
|
| -
|
| - // this returns the first and last edge after they're sorted into a dlink list
|
| - edge = sort_edges(list, count, &last);
|
| -
|
| - headEdge.fPrev = NULL;
|
| - headEdge.fNext = edge;
|
| - headEdge.fFirstY = kEDGE_HEAD_Y;
|
| - headEdge.fX = SK_MinS32;
|
| - edge->fPrev = &headEdge;
|
| -
|
| - tailEdge.fPrev = last;
|
| - tailEdge.fNext = NULL;
|
| - tailEdge.fFirstY = kEDGE_TAIL_Y;
|
| - last->fNext = &tailEdge;
|
| -
|
| - // now edge is the head of the sorted linklist
|
| -
|
| - stop_y <<= shiftEdgesUp;
|
| - if (clipRect && stop_y > clipRect->fBottom) {
|
| - stop_y = clipRect->fBottom;
|
| - }
|
| -
|
| - InverseBlitter ib;
|
| - PrePostProc proc = NULL;
|
| -
|
| - if (path.isInverseFillType()) {
|
| - ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp);
|
| - blitter = &ib;
|
| - proc = PrePostInverseBlitterProc;
|
| - }
|
| -
|
| - walk_edges(&headEdge, path.getFillType(), blitter, stop_y, proc);
|
| -}
|
| -
|
| -void sk_blit_above_and_below(SkBlitter* blitter, const SkIRect& ir,
|
| - const SkRegion& clip) {
|
| - const SkIRect& cr = clip.getBounds();
|
| - SkIRect tmp;
|
| -
|
| - tmp.fLeft = cr.fLeft;
|
| - tmp.fRight = cr.fRight;
|
| -
|
| - tmp.fTop = cr.fTop;
|
| - tmp.fBottom = ir.fTop;
|
| - if (!tmp.isEmpty()) {
|
| - blitter->blitRectRegion(tmp, clip);
|
| - }
|
| -
|
| - tmp.fTop = ir.fBottom;
|
| - tmp.fBottom = cr.fBottom;
|
| - if (!tmp.isEmpty()) {
|
| - blitter->blitRectRegion(tmp, clip);
|
| - }
|
| -}
|
| -
|
| -/////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip, const SkIRect& ir)
|
| -{
|
| - fBlitter = NULL; // null means blit nothing
|
| - fClipRect = NULL;
|
| -
|
| - if (clip)
|
| - {
|
| - fClipRect = &clip->getBounds();
|
| - if (!SkIRect::Intersects(*fClipRect, ir)) // completely clipped out
|
| - return;
|
| -
|
| - if (clip->isRect())
|
| - {
|
| - if (fClipRect->contains(ir))
|
| - fClipRect = NULL;
|
| - else
|
| - {
|
| - // only need a wrapper blitter if we're horizontally clipped
|
| - if (fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight)
|
| - {
|
| - fRectBlitter.init(blitter, *fClipRect);
|
| - blitter = &fRectBlitter;
|
| - }
|
| - }
|
| - }
|
| - else
|
| - {
|
| - fRgnBlitter.init(blitter, clip);
|
| - blitter = &fRgnBlitter;
|
| - }
|
| - }
|
| - fBlitter = blitter;
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -void SkScan::FillPath(const SkPath& path, const SkRegion& clip,
|
| - SkBlitter* blitter) {
|
| - if (clip.isEmpty()) {
|
| - return;
|
| - }
|
| -
|
| - SkRect r;
|
| - SkIRect ir;
|
| -
|
| - path.computeBounds(&r, SkPath::kFast_BoundsType);
|
| - r.round(&ir);
|
| - if (ir.isEmpty()) {
|
| - if (path.isInverseFillType()) {
|
| - blitter->blitRegion(clip);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - SkScanClipper clipper(blitter, &clip, ir);
|
| -
|
| - blitter = clipper.getBlitter();
|
| - if (blitter) {
|
| - if (path.isInverseFillType()) {
|
| - sk_blit_above_and_below(blitter, ir, clip);
|
| - }
|
| - sk_fill_path(path, clipper.getClipRect(), blitter, ir.fBottom, 0, clip);
|
| - } else {
|
| - // what does it mean to not have a blitter if path.isInverseFillType???
|
| - }
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
|
| - const SkIRect* clipRect, SkEdge* list[]) {
|
| - SkEdge** start = list;
|
| -
|
| - if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
|
| - *list++ = edge;
|
| - edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
|
| - }
|
| - if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
|
| - *list++ = edge;
|
| - edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
|
| - }
|
| - if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
|
| - *list++ = edge;
|
| - }
|
| - return (int)(list - start);
|
| -}
|
| -
|
| -
|
| -void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
|
| - SkBlitter* blitter, const SkIRect& ir) {
|
| - SkASSERT(pts && blitter);
|
| -
|
| - SkEdge edgeStorage[3];
|
| - SkEdge* list[3];
|
| -
|
| - int count = build_tri_edges(edgeStorage, pts, clipRect, list);
|
| - if (count < 2) {
|
| - return;
|
| - }
|
| -
|
| - SkEdge headEdge, tailEdge, *last;
|
| -
|
| - // this returns the first and last edge after they're sorted into a dlink list
|
| - SkEdge* edge = sort_edges(list, count, &last);
|
| -
|
| - headEdge.fPrev = NULL;
|
| - headEdge.fNext = edge;
|
| - headEdge.fFirstY = kEDGE_HEAD_Y;
|
| - headEdge.fX = SK_MinS32;
|
| - edge->fPrev = &headEdge;
|
| -
|
| - tailEdge.fPrev = last;
|
| - tailEdge.fNext = NULL;
|
| - tailEdge.fFirstY = kEDGE_TAIL_Y;
|
| - last->fNext = &tailEdge;
|
| -
|
| - // now edge is the head of the sorted linklist
|
| - int stop_y = ir.fBottom;
|
| - if (clipRect && stop_y > clipRect->fBottom) {
|
| - stop_y = clipRect->fBottom;
|
| - }
|
| - walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, stop_y, NULL);
|
| -}
|
| -
|
| -void SkScan::FillTriangle(const SkPoint pts[], const SkRegion* clip,
|
| - SkBlitter* blitter) {
|
| - if (clip && clip->isEmpty()) {
|
| - return;
|
| - }
|
| -
|
| - SkRect r;
|
| - SkIRect ir;
|
| - r.set(pts, 3);
|
| - r.round(&ir);
|
| - if (ir.isEmpty()) {
|
| - return;
|
| - }
|
| -
|
| - SkScanClipper clipper(blitter, clip, ir);
|
| -
|
| - blitter = clipper.getBlitter();
|
| - if (NULL != blitter) {
|
| - sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
|
| - }
|
| -}
|
| -
|
|
|