| OLD | NEW |
| (Empty) |
| 1 /* libs/graphics/sgl/SkScan_Path.cpp | |
| 2 ** | |
| 3 ** Copyright 2006, The Android Open Source Project | |
| 4 ** | |
| 5 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 6 ** you may not use this file except in compliance with the License. | |
| 7 ** You may obtain a copy of the License at | |
| 8 ** | |
| 9 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 10 ** | |
| 11 ** Unless required by applicable law or agreed to in writing, software | |
| 12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 ** See the License for the specific language governing permissions and | |
| 15 ** limitations under the License. | |
| 16 */ | |
| 17 | |
| 18 #include "SkScanPriv.h" | |
| 19 #include "SkBlitter.h" | |
| 20 #include "SkEdge.h" | |
| 21 #include "SkGeometry.h" | |
| 22 #include "SkPath.h" | |
| 23 #include "SkRegion.h" | |
| 24 #include "SkTemplates.h" | |
| 25 | |
| 26 #define kEDGE_HEAD_Y SK_MinS32 | |
| 27 #define kEDGE_TAIL_Y SK_MaxS32 | |
| 28 | |
| 29 #ifdef SK_DEBUG | |
| 30 static void validate_sort(const SkEdge* edge) | |
| 31 { | |
| 32 int y = kEDGE_HEAD_Y; | |
| 33 | |
| 34 while (edge->fFirstY != SK_MaxS32) | |
| 35 { | |
| 36 edge->validate(); | |
| 37 SkASSERT(y <= edge->fFirstY); | |
| 38 | |
| 39 y = edge->fFirstY; | |
| 40 edge = edge->fNext; | |
| 41 } | |
| 42 } | |
| 43 #else | |
| 44 #define validate_sort(edge) | |
| 45 #endif | |
| 46 | |
| 47 static inline void remove_edge(SkEdge* edge) | |
| 48 { | |
| 49 edge->fPrev->fNext = edge->fNext; | |
| 50 edge->fNext->fPrev = edge->fPrev; | |
| 51 } | |
| 52 | |
| 53 static inline void swap_edges(SkEdge* prev, SkEdge* next) | |
| 54 { | |
| 55 SkASSERT(prev->fNext == next && next->fPrev == prev); | |
| 56 | |
| 57 // remove prev from the list | |
| 58 prev->fPrev->fNext = next; | |
| 59 next->fPrev = prev->fPrev; | |
| 60 | |
| 61 // insert prev after next | |
| 62 prev->fNext = next->fNext; | |
| 63 next->fNext->fPrev = prev; | |
| 64 next->fNext = prev; | |
| 65 prev->fPrev = next; | |
| 66 } | |
| 67 | |
| 68 static void backward_insert_edge_based_on_x(SkEdge* edge SkDECLAREPARAM(int, cur
r_y)) | |
| 69 { | |
| 70 SkFixed x = edge->fX; | |
| 71 | |
| 72 for (;;) | |
| 73 { | |
| 74 SkEdge* prev = edge->fPrev; | |
| 75 | |
| 76 // add 1 to curr_y since we may have added new edges (built from curves) | |
| 77 // that start on the next scanline | |
| 78 SkASSERT(prev && prev->fFirstY <= curr_y + 1); | |
| 79 | |
| 80 if (prev->fX <= x) | |
| 81 break; | |
| 82 | |
| 83 swap_edges(prev, edge); | |
| 84 } | |
| 85 } | |
| 86 | |
| 87 static void insert_new_edges(SkEdge* newEdge, int curr_y) | |
| 88 { | |
| 89 SkASSERT(newEdge->fFirstY >= curr_y); | |
| 90 | |
| 91 while (newEdge->fFirstY == curr_y) | |
| 92 { | |
| 93 SkEdge* next = newEdge->fNext; | |
| 94 backward_insert_edge_based_on_x(newEdge SkPARAM(curr_y)); | |
| 95 newEdge = next; | |
| 96 } | |
| 97 } | |
| 98 | |
| 99 #ifdef SK_DEBUG | |
| 100 static void validate_edges_for_y(const SkEdge* edge, int curr_y) | |
| 101 { | |
| 102 while (edge->fFirstY <= curr_y) | |
| 103 { | |
| 104 SkASSERT(edge->fPrev && edge->fNext); | |
| 105 SkASSERT(edge->fPrev->fNext == edge); | |
| 106 SkASSERT(edge->fNext->fPrev == edge); | |
| 107 SkASSERT(edge->fFirstY <= edge->fLastY); | |
| 108 | |
| 109 SkASSERT(edge->fPrev->fX <= edge->fX); | |
| 110 edge = edge->fNext; | |
| 111 } | |
| 112 } | |
| 113 #else | |
| 114 #define validate_edges_for_y(edge, curr_y) | |
| 115 #endif | |
| 116 | |
| 117 #if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used
without having been initialized | |
| 118 #pragma warning ( push ) | |
| 119 #pragma warning ( disable : 4701 ) | |
| 120 #endif | |
| 121 | |
| 122 typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline); | |
| 123 #define PREPOST_START true | |
| 124 #define PREPOST_END false | |
| 125 | |
| 126 static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType, | |
| 127 SkBlitter* blitter, int stop_y, PrePostProc proc) | |
| 128 { | |
| 129 validate_sort(prevHead->fNext); | |
| 130 | |
| 131 int curr_y = prevHead->fNext->fFirstY; | |
| 132 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness | |
| 133 int windingMask = (fillType & 1) ? 1 : -1; | |
| 134 | |
| 135 for (;;) | |
| 136 { | |
| 137 int w = 0; | |
| 138 int left SK_INIT_TO_AVOID_WARNING; | |
| 139 bool in_interval = false; | |
| 140 SkEdge* currE = prevHead->fNext; | |
| 141 SkFixed prevX = prevHead->fX; | |
| 142 | |
| 143 validate_edges_for_y(currE, curr_y); | |
| 144 | |
| 145 if (proc) { | |
| 146 proc(blitter, curr_y, PREPOST_START); // pre-proc | |
| 147 } | |
| 148 | |
| 149 while (currE->fFirstY <= curr_y) | |
| 150 { | |
| 151 SkASSERT(currE->fLastY >= curr_y); | |
| 152 | |
| 153 int x = (currE->fX + SK_Fixed1/2) >> 16; | |
| 154 w += currE->fWinding; | |
| 155 if ((w & windingMask) == 0) // we finished an interval | |
| 156 { | |
| 157 SkASSERT(in_interval); | |
| 158 int width = x - left; | |
| 159 SkASSERT(width >= 0); | |
| 160 if (width) | |
| 161 blitter->blitH(left, curr_y, width); | |
| 162 in_interval = false; | |
| 163 } | |
| 164 else if (!in_interval) | |
| 165 { | |
| 166 left = x; | |
| 167 in_interval = true; | |
| 168 } | |
| 169 | |
| 170 SkEdge* next = currE->fNext; | |
| 171 SkFixed newX; | |
| 172 | |
| 173 if (currE->fLastY == curr_y) // are we done with this edge? | |
| 174 { | |
| 175 if (currE->fCurveCount < 0) | |
| 176 { | |
| 177 if (((SkCubicEdge*)currE)->updateCubic()) | |
| 178 { | |
| 179 SkASSERT(currE->fFirstY == curr_y + 1); | |
| 180 | |
| 181 newX = currE->fX; | |
| 182 goto NEXT_X; | |
| 183 } | |
| 184 } | |
| 185 else if (currE->fCurveCount > 0) | |
| 186 { | |
| 187 if (((SkQuadraticEdge*)currE)->updateQuadratic()) | |
| 188 { | |
| 189 newX = currE->fX; | |
| 190 goto NEXT_X; | |
| 191 } | |
| 192 } | |
| 193 remove_edge(currE); | |
| 194 } | |
| 195 else | |
| 196 { | |
| 197 SkASSERT(currE->fLastY > curr_y); | |
| 198 newX = currE->fX + currE->fDX; | |
| 199 currE->fX = newX; | |
| 200 NEXT_X: | |
| 201 if (newX < prevX) // ripple currE backwards until it is x-sort
ed | |
| 202 backward_insert_edge_based_on_x(currE SkPARAM(curr_y)); | |
| 203 else | |
| 204 prevX = newX; | |
| 205 } | |
| 206 currE = next; | |
| 207 SkASSERT(currE); | |
| 208 } | |
| 209 | |
| 210 if (proc) { | |
| 211 proc(blitter, curr_y, PREPOST_END); // post-proc | |
| 212 } | |
| 213 | |
| 214 curr_y += 1; | |
| 215 if (curr_y >= stop_y) | |
| 216 break; | |
| 217 | |
| 218 // now currE points to the first edge with a Yint larger than curr_y | |
| 219 insert_new_edges(currE, curr_y); | |
| 220 } | |
| 221 } | |
| 222 | |
| 223 /////////////////////////////////////////////////////////////////////////////// | |
| 224 | |
| 225 // this guy overrides blitH, and will call its proxy blitter with the inverse | |
| 226 // of the spans it is given (clipped to the left/right of the cliprect) | |
| 227 // | |
| 228 // used to implement inverse filltypes on paths | |
| 229 // | |
| 230 class InverseBlitter : public SkBlitter { | |
| 231 public: | |
| 232 void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) { | |
| 233 fBlitter = blitter; | |
| 234 fFirstX = clip.fLeft << shift; | |
| 235 fLastX = clip.fRight << shift; | |
| 236 } | |
| 237 void prepost(int y, bool isStart) { | |
| 238 if (isStart) { | |
| 239 fPrevX = fFirstX; | |
| 240 } else { | |
| 241 int invWidth = fLastX - fPrevX; | |
| 242 if (invWidth > 0) { | |
| 243 fBlitter->blitH(fPrevX, y, invWidth); | |
| 244 } | |
| 245 } | |
| 246 } | |
| 247 | |
| 248 // overrides | |
| 249 virtual void blitH(int x, int y, int width) { | |
| 250 int invWidth = x - fPrevX; | |
| 251 if (invWidth > 0) { | |
| 252 fBlitter->blitH(fPrevX, y, invWidth); | |
| 253 } | |
| 254 fPrevX = x + width; | |
| 255 } | |
| 256 | |
| 257 // we do not expect to get called with these entrypoints | |
| 258 virtual void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) { | |
| 259 SkASSERT(!"blitAntiH unexpected"); | |
| 260 } | |
| 261 virtual void blitV(int x, int y, int height, SkAlpha alpha) { | |
| 262 SkASSERT(!"blitV unexpected"); | |
| 263 } | |
| 264 virtual void blitRect(int x, int y, int width, int height) { | |
| 265 SkASSERT(!"blitRect unexpected"); | |
| 266 } | |
| 267 virtual void blitMask(const SkMask&, const SkIRect& clip) { | |
| 268 SkASSERT(!"blitMask unexpected"); | |
| 269 } | |
| 270 virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) { | |
| 271 SkASSERT(!"justAnOpaqueColor unexpected"); | |
| 272 return NULL; | |
| 273 } | |
| 274 | |
| 275 private: | |
| 276 SkBlitter* fBlitter; | |
| 277 int fFirstX, fLastX, fPrevX; | |
| 278 }; | |
| 279 | |
| 280 static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) { | |
| 281 ((InverseBlitter*)blitter)->prepost(y, isStart); | |
| 282 } | |
| 283 | |
| 284 /////////////////////////////////////////////////////////////////////////////// | |
| 285 | |
| 286 #if defined _WIN32 && _MSC_VER >= 1300 | |
| 287 #pragma warning ( pop ) | |
| 288 #endif | |
| 289 | |
| 290 /* Our line edge relies on the maximum span being <= 512, so that it can | |
| 291 use FDot6 and keep the dx,dy in 16bits (for much faster slope divide). | |
| 292 This function returns true if the specified line is too big. | |
| 293 */ | |
| 294 static inline bool line_too_big(const SkPoint pts[2]) | |
| 295 { | |
| 296 SkScalar dx = pts[1].fX - pts[0].fX; | |
| 297 SkScalar dy = pts[1].fY - pts[0].fY; | |
| 298 | |
| 299 return SkScalarAbs(dx) > SkIntToScalar(511) || | |
| 300 SkScalarAbs(dy) > SkIntToScalar(511); | |
| 301 } | |
| 302 | |
| 303 static int build_edges(SkEdge edge[], const SkPath& path, | |
| 304 const SkIRect* clipRect, SkEdge* list[], int shiftUp) { | |
| 305 SkEdge** start = list; | |
| 306 SkPath::Iter iter(path, true); | |
| 307 SkPoint pts[4]; | |
| 308 SkPath::Verb verb; | |
| 309 | |
| 310 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | |
| 311 switch (verb) { | |
| 312 case SkPath::kLine_Verb: | |
| 313 if (edge->setLine(pts[0], pts[1], clipRect, shiftUp)) { | |
| 314 *list++ = edge; | |
| 315 edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); | |
| 316 } | |
| 317 break; | |
| 318 case SkPath::kQuad_Verb: { | |
| 319 SkPoint tmp[5]; | |
| 320 SkPoint* p = tmp; | |
| 321 int count = SkChopQuadAtYExtrema(pts, tmp); | |
| 322 | |
| 323 do { | |
| 324 if (((SkQuadraticEdge*)edge)->setQuadratic(p, clipRect, | |
| 325 shiftUp)) | |
| 326 { | |
| 327 *list++ = edge; | |
| 328 edge = (SkEdge*)((char*)edge + sizeof(SkQuadraticEdge)); | |
| 329 } | |
| 330 p += 2; | |
| 331 } while (--count >= 0); | |
| 332 break; | |
| 333 } | |
| 334 case SkPath::kCubic_Verb: { | |
| 335 SkPoint tmp[10]; | |
| 336 SkPoint* p = tmp; | |
| 337 int count = SkChopCubicAtYExtrema(pts, tmp); | |
| 338 SkASSERT(count >= 0 && count <= 2); | |
| 339 | |
| 340 do { | |
| 341 if (((SkCubicEdge*)edge)->setCubic(p, clipRect, shiftUp)) | |
| 342 { | |
| 343 *list++ = edge; | |
| 344 edge = (SkEdge*)((char*)edge + sizeof(SkCubicEdge)); | |
| 345 } | |
| 346 p += 3; | |
| 347 } while (--count >= 0); | |
| 348 break; | |
| 349 } | |
| 350 default: | |
| 351 break; | |
| 352 } | |
| 353 } | |
| 354 return (int)(list - start); | |
| 355 } | |
| 356 | |
| 357 extern "C" { | |
| 358 static int edge_compare(const void* a, const void* b) | |
| 359 { | |
| 360 const SkEdge* edgea = *(const SkEdge**)a; | |
| 361 const SkEdge* edgeb = *(const SkEdge**)b; | |
| 362 | |
| 363 int valuea = edgea->fFirstY; | |
| 364 int valueb = edgeb->fFirstY; | |
| 365 | |
| 366 if (valuea == valueb) | |
| 367 { | |
| 368 valuea = edgea->fX; | |
| 369 valueb = edgeb->fX; | |
| 370 } | |
| 371 return valuea - valueb; | |
| 372 } | |
| 373 } | |
| 374 | |
| 375 static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) | |
| 376 { | |
| 377 qsort(list, count, sizeof(SkEdge*), edge_compare); | |
| 378 | |
| 379 // now make the edges linked in sorted order | |
| 380 for (int i = 1; i < count; i++) | |
| 381 { | |
| 382 list[i - 1]->fNext = list[i]; | |
| 383 list[i]->fPrev = list[i - 1]; | |
| 384 } | |
| 385 | |
| 386 *last = list[count - 1]; | |
| 387 return list[0]; | |
| 388 } | |
| 389 | |
| 390 /* 'quick' computation of the max sized needed to allocated for | |
| 391 our edgelist. | |
| 392 */ | |
| 393 static int worst_case_edge_count(const SkPath& path, size_t* storage) | |
| 394 { | |
| 395 size_t size = 0; | |
| 396 int edgeCount = 0; | |
| 397 | |
| 398 SkPath::Iter iter(path, true); | |
| 399 SkPath::Verb verb; | |
| 400 | |
| 401 while ((verb = iter.next(NULL)) != SkPath::kDone_Verb) | |
| 402 { | |
| 403 switch (verb) { | |
| 404 case SkPath::kLine_Verb: | |
| 405 edgeCount += 1; | |
| 406 size += sizeof(SkQuadraticEdge); // treat line like Quad (in case
its > 512) | |
| 407 break; | |
| 408 case SkPath::kQuad_Verb: | |
| 409 edgeCount += 2; // might need 2 edges when we ch
op on Y extrema | |
| 410 size += 2 * sizeof(SkQuadraticEdge); | |
| 411 break; | |
| 412 case SkPath::kCubic_Verb: | |
| 413 edgeCount += 3; // might need 3 edges when we ch
op on Y extrema | |
| 414 size += 3 * sizeof(SkCubicEdge); | |
| 415 break; | |
| 416 default: | |
| 417 break; | |
| 418 } | |
| 419 } | |
| 420 | |
| 421 SkASSERT(storage); | |
| 422 *storage = size; | |
| 423 return edgeCount; | |
| 424 } | |
| 425 | |
| 426 /* Much faster than worst_case_edge_count, but over estimates even more | |
| 427 */ | |
| 428 static int cheap_worst_case_edge_count(const SkPath& path, size_t* storage) | |
| 429 { | |
| 430 int ptCount = path.getPoints(NULL, 0); | |
| 431 int edgeCount = ptCount; | |
| 432 *storage = edgeCount * sizeof(SkCubicEdge); | |
| 433 return edgeCount; | |
| 434 } | |
| 435 | |
| 436 // clipRect may be null, even though we always have a clip. This indicates that | |
| 437 // the path is contained in the clip, and so we can ignore it during the blit | |
| 438 // | |
| 439 // clipRect (if no null) has already been shifted up | |
| 440 // | |
| 441 void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitte
r, | |
| 442 int stop_y, int shiftEdgesUp, const SkRegion& clipRgn) | |
| 443 { | |
| 444 SkASSERT(&path && blitter); | |
| 445 | |
| 446 size_t size; | |
| 447 int maxCount = cheap_worst_case_edge_count(path, &size); | |
| 448 | |
| 449 #ifdef SK_DEBUG | |
| 450 { | |
| 451 size_t size2; | |
| 452 int maxCount2 = worst_case_edge_count(path, &size2); | |
| 453 | |
| 454 SkASSERT(maxCount >= maxCount2 && size >= size2); | |
| 455 } | |
| 456 #endif | |
| 457 | |
| 458 SkAutoMalloc memory(maxCount * sizeof(SkEdge*) + size); | |
| 459 SkEdge** list = (SkEdge**)memory.get(); | |
| 460 SkEdge* edge = (SkEdge*)(list + maxCount); | |
| 461 int count = build_edges(edge, path, clipRect, list, shiftEdgesUp
); | |
| 462 SkEdge headEdge, tailEdge, *last; | |
| 463 | |
| 464 SkASSERT(count <= maxCount); | |
| 465 if (count == 0) { | |
| 466 return; | |
| 467 } | |
| 468 SkASSERT(count > 1); | |
| 469 | |
| 470 // this returns the first and last edge after they're sorted into a dlink li
st | |
| 471 edge = sort_edges(list, count, &last); | |
| 472 | |
| 473 headEdge.fPrev = NULL; | |
| 474 headEdge.fNext = edge; | |
| 475 headEdge.fFirstY = kEDGE_HEAD_Y; | |
| 476 headEdge.fX = SK_MinS32; | |
| 477 edge->fPrev = &headEdge; | |
| 478 | |
| 479 tailEdge.fPrev = last; | |
| 480 tailEdge.fNext = NULL; | |
| 481 tailEdge.fFirstY = kEDGE_TAIL_Y; | |
| 482 last->fNext = &tailEdge; | |
| 483 | |
| 484 // now edge is the head of the sorted linklist | |
| 485 | |
| 486 stop_y <<= shiftEdgesUp; | |
| 487 if (clipRect && stop_y > clipRect->fBottom) { | |
| 488 stop_y = clipRect->fBottom; | |
| 489 } | |
| 490 | |
| 491 InverseBlitter ib; | |
| 492 PrePostProc proc = NULL; | |
| 493 | |
| 494 if (path.isInverseFillType()) { | |
| 495 ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp); | |
| 496 blitter = &ib; | |
| 497 proc = PrePostInverseBlitterProc; | |
| 498 } | |
| 499 | |
| 500 walk_edges(&headEdge, path.getFillType(), blitter, stop_y, proc); | |
| 501 } | |
| 502 | |
| 503 void sk_blit_above_and_below(SkBlitter* blitter, const SkIRect& ir, | |
| 504 const SkRegion& clip) { | |
| 505 const SkIRect& cr = clip.getBounds(); | |
| 506 SkIRect tmp; | |
| 507 | |
| 508 tmp.fLeft = cr.fLeft; | |
| 509 tmp.fRight = cr.fRight; | |
| 510 | |
| 511 tmp.fTop = cr.fTop; | |
| 512 tmp.fBottom = ir.fTop; | |
| 513 if (!tmp.isEmpty()) { | |
| 514 blitter->blitRectRegion(tmp, clip); | |
| 515 } | |
| 516 | |
| 517 tmp.fTop = ir.fBottom; | |
| 518 tmp.fBottom = cr.fBottom; | |
| 519 if (!tmp.isEmpty()) { | |
| 520 blitter->blitRectRegion(tmp, clip); | |
| 521 } | |
| 522 } | |
| 523 | |
| 524 ////////////////////////////////////////////////////////////////////////////////
///// | |
| 525 | |
| 526 SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip, const SkI
Rect& ir) | |
| 527 { | |
| 528 fBlitter = NULL; // null means blit nothing | |
| 529 fClipRect = NULL; | |
| 530 | |
| 531 if (clip) | |
| 532 { | |
| 533 fClipRect = &clip->getBounds(); | |
| 534 if (!SkIRect::Intersects(*fClipRect, ir)) // completely clipped out | |
| 535 return; | |
| 536 | |
| 537 if (clip->isRect()) | |
| 538 { | |
| 539 if (fClipRect->contains(ir)) | |
| 540 fClipRect = NULL; | |
| 541 else | |
| 542 { | |
| 543 // only need a wrapper blitter if we're horizontally clipped | |
| 544 if (fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight
) | |
| 545 { | |
| 546 fRectBlitter.init(blitter, *fClipRect); | |
| 547 blitter = &fRectBlitter; | |
| 548 } | |
| 549 } | |
| 550 } | |
| 551 else | |
| 552 { | |
| 553 fRgnBlitter.init(blitter, clip); | |
| 554 blitter = &fRgnBlitter; | |
| 555 } | |
| 556 } | |
| 557 fBlitter = blitter; | |
| 558 } | |
| 559 | |
| 560 /////////////////////////////////////////////////////////////////////////////// | |
| 561 | |
| 562 void SkScan::FillPath(const SkPath& path, const SkRegion& clip, | |
| 563 SkBlitter* blitter) { | |
| 564 if (clip.isEmpty()) { | |
| 565 return; | |
| 566 } | |
| 567 | |
| 568 SkRect r; | |
| 569 SkIRect ir; | |
| 570 | |
| 571 path.computeBounds(&r, SkPath::kFast_BoundsType); | |
| 572 r.round(&ir); | |
| 573 if (ir.isEmpty()) { | |
| 574 if (path.isInverseFillType()) { | |
| 575 blitter->blitRegion(clip); | |
| 576 } | |
| 577 return; | |
| 578 } | |
| 579 | |
| 580 SkScanClipper clipper(blitter, &clip, ir); | |
| 581 | |
| 582 blitter = clipper.getBlitter(); | |
| 583 if (blitter) { | |
| 584 if (path.isInverseFillType()) { | |
| 585 sk_blit_above_and_below(blitter, ir, clip); | |
| 586 } | |
| 587 sk_fill_path(path, clipper.getClipRect(), blitter, ir.fBottom, 0, clip); | |
| 588 } else { | |
| 589 // what does it mean to not have a blitter if path.isInverseFillType??? | |
| 590 } | |
| 591 } | |
| 592 | |
| 593 /////////////////////////////////////////////////////////////////////////////// | |
| 594 | |
| 595 static int build_tri_edges(SkEdge edge[], const SkPoint pts[], | |
| 596 const SkIRect* clipRect, SkEdge* list[]) { | |
| 597 SkEdge** start = list; | |
| 598 | |
| 599 if (edge->setLine(pts[0], pts[1], clipRect, 0)) { | |
| 600 *list++ = edge; | |
| 601 edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); | |
| 602 } | |
| 603 if (edge->setLine(pts[1], pts[2], clipRect, 0)) { | |
| 604 *list++ = edge; | |
| 605 edge = (SkEdge*)((char*)edge + sizeof(SkEdge)); | |
| 606 } | |
| 607 if (edge->setLine(pts[2], pts[0], clipRect, 0)) { | |
| 608 *list++ = edge; | |
| 609 } | |
| 610 return (int)(list - start); | |
| 611 } | |
| 612 | |
| 613 | |
| 614 void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect, | |
| 615 SkBlitter* blitter, const SkIRect& ir) { | |
| 616 SkASSERT(pts && blitter); | |
| 617 | |
| 618 SkEdge edgeStorage[3]; | |
| 619 SkEdge* list[3]; | |
| 620 | |
| 621 int count = build_tri_edges(edgeStorage, pts, clipRect, list); | |
| 622 if (count < 2) { | |
| 623 return; | |
| 624 } | |
| 625 | |
| 626 SkEdge headEdge, tailEdge, *last; | |
| 627 | |
| 628 // this returns the first and last edge after they're sorted into a dlink li
st | |
| 629 SkEdge* edge = sort_edges(list, count, &last); | |
| 630 | |
| 631 headEdge.fPrev = NULL; | |
| 632 headEdge.fNext = edge; | |
| 633 headEdge.fFirstY = kEDGE_HEAD_Y; | |
| 634 headEdge.fX = SK_MinS32; | |
| 635 edge->fPrev = &headEdge; | |
| 636 | |
| 637 tailEdge.fPrev = last; | |
| 638 tailEdge.fNext = NULL; | |
| 639 tailEdge.fFirstY = kEDGE_TAIL_Y; | |
| 640 last->fNext = &tailEdge; | |
| 641 | |
| 642 // now edge is the head of the sorted linklist | |
| 643 int stop_y = ir.fBottom; | |
| 644 if (clipRect && stop_y > clipRect->fBottom) { | |
| 645 stop_y = clipRect->fBottom; | |
| 646 } | |
| 647 walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, stop_y, NULL); | |
| 648 } | |
| 649 | |
| 650 void SkScan::FillTriangle(const SkPoint pts[], const SkRegion* clip, | |
| 651 SkBlitter* blitter) { | |
| 652 if (clip && clip->isEmpty()) { | |
| 653 return; | |
| 654 } | |
| 655 | |
| 656 SkRect r; | |
| 657 SkIRect ir; | |
| 658 r.set(pts, 3); | |
| 659 r.round(&ir); | |
| 660 if (ir.isEmpty()) { | |
| 661 return; | |
| 662 } | |
| 663 | |
| 664 SkScanClipper clipper(blitter, clip, ir); | |
| 665 | |
| 666 blitter = clipper.getBlitter(); | |
| 667 if (NULL != blitter) { | |
| 668 sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir); | |
| 669 } | |
| 670 } | |
| 671 | |
| OLD | NEW |