Index: src/opts/Sk2x_neon.h |
diff --git a/src/opts/Sk2x_neon.h b/src/opts/Sk2x_neon.h |
deleted file mode 100644 |
index 8e6e46164b9fde728303ed43854cd5798335055a..0000000000000000000000000000000000000000 |
--- a/src/opts/Sk2x_neon.h |
+++ /dev/null |
@@ -1,158 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-// It is important _not_ to put header guards here. |
-// This file will be intentionally included three times. |
- |
-#include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
- |
-#if defined(SK2X_PREAMBLE) |
- #include <arm_neon.h> |
- #include <math.h> |
- template <typename T> struct SkScalarToSIMD; |
- template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; |
- #if defined(SK_CPU_ARM64) |
- template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; |
- #else |
- template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; |
- #endif |
- |
- |
-#elif defined(SK2X_PRIVATE) |
- typename SkScalarToSIMD<T>::Type fVec; |
- /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec; } |
- |
-#else |
- |
-#define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: |
- |
-M() Sk2x() {} |
-M() Sk2x(float val) { fVec = vdup_n_f32(val); } |
-M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } |
-M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } |
- |
-M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } |
-M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } |
- |
-M(Sk2f) approxInvert() const { |
- float32x2_t est0 = vrecpe_f32(fVec), |
- est1 = vmul_f32(vrecps_f32(est0, fVec), est0); |
- return est1; |
-} |
- |
-M(Sk2f) invert() const { |
- float32x2_t est1 = this->approxInvert().fVec, |
- est2 = vmul_f32(vrecps_f32(est1, fVec), est1); |
- return est2; |
-} |
- |
-M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } |
-M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } |
-M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } |
-M(Sk2f) divide(const Sk2f& o) const { |
-#if defined(SK_CPU_ARM64) |
- return vdiv_f32(fVec, o.fVec); |
-#else |
- return vmul_f32(fVec, o.invert().fVec); |
-#endif |
-} |
- |
-M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } |
-M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } |
- |
-M(Sk2f) rsqrt() const { |
- float32x2_t est0 = vrsqrte_f32(fVec), |
- est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
- return est1; |
-} |
-M(Sk2f) sqrt() const { |
-#if defined(SK_CPU_ARM64) |
- return vsqrt_f32(fVec); |
-#else |
- float32x2_t est1 = this->rsqrt().fVec, |
- // An extra step of Newton's method to refine the estimate of 1/sqrt(this). |
- est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
- return vmul_f32(fVec, est2); |
-#endif |
-} |
- |
-#undef M |
- |
-#define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: |
- |
-#if defined(SK_CPU_ARM64) |
- M() Sk2x() {} |
- M() Sk2x(double val) { fVec = vdupq_n_f64(val); } |
- M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } |
- M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } |
- |
- M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } |
- M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } |
- |
- M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } |
- M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } |
- M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } |
- M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); } |
- |
- M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec); } |
- M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec); } |
- |
- M(Sk2d) rsqrt() const { |
- float64x2_t est0 = vrsqrteq_f64(fVec), |
- est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); |
- return est1; |
- } |
- M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); } |
- |
- M(Sk2d) approxInvert() const { |
- float64x2_t est0 = vrecpeq_f64(fVec), |
- est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0); |
- return est1; |
- } |
- |
- M(Sk2d) invert() const { |
- float64x2_t est1 = this->approxInvert().fVec, |
- est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1), |
- est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2); |
- return est3; |
- } |
- |
-#else // Scalar implementation for 32-bit chips, which don't have float64x2_t. |
- M() Sk2x() {} |
- M() Sk2x(double val) { fVec[0] = fVec[1] = val; } |
- M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } |
- M(Sk2d&) operator=(const Sk2d& o) { |
- fVec[0] = o.fVec[0]; |
- fVec[1] = o.fVec[1]; |
- return *this; |
- } |
- |
- M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } |
- M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1]; } |
- |
- M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVec[1] + o.fVec[1]); } |
- M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVec[1] - o.fVec[1]); } |
- M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVec[1] * o.fVec[1]); } |
- M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVec[1] / o.fVec[1]); } |
- |
- M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { |
- return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); |
- } |
- M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { |
- return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); |
- } |
- |
- M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])); } |
- M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])); } |
- |
- M(Sk2d) invert() const { return Sk2d(1.0 / fVec[0], 1.0 / fVec[1]); } |
- M(Sk2d) approxInvert() const { return this->invert(); } |
-#endif |
- |
-#undef M |
- |
-#endif |