| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 // It is important _not_ to put header guards here. | |
| 9 // This file will be intentionally included three times. | |
| 10 | |
| 11 #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 | |
| 12 | |
| 13 #if defined(SK2X_PREAMBLE) | |
| 14 #include <arm_neon.h> | |
| 15 #include <math.h> | |
| 16 template <typename T> struct SkScalarToSIMD; | |
| 17 template <> struct SkScalarToSIMD< float> { typedef float32x2_t Type; }; | |
| 18 #if defined(SK_CPU_ARM64) | |
| 19 template <> struct SkScalarToSIMD<double> { typedef float64x2_t Type; }; | |
| 20 #else | |
| 21 template <> struct SkScalarToSIMD<double> { typedef double Type[2]; }; | |
| 22 #endif | |
| 23 | |
| 24 | |
| 25 #elif defined(SK2X_PRIVATE) | |
| 26 typename SkScalarToSIMD<T>::Type fVec; | |
| 27 /*implicit*/ Sk2x(const typename SkScalarToSIMD<T>::Type vec) { fVec = vec;
} | |
| 28 | |
| 29 #else | |
| 30 | |
| 31 #define M(...) template <> inline __VA_ARGS__ Sk2x<float>:: | |
| 32 | |
| 33 M() Sk2x() {} | |
| 34 M() Sk2x(float val) { fVec = vdup_n_f32(val); } | |
| 35 M() Sk2x(float a, float b) { fVec = (float32x2_t) { a, b }; } | |
| 36 M(Sk2f&) operator=(const Sk2f& o) { fVec = o.fVec; return *this; } | |
| 37 | |
| 38 M(Sk2f) Load(const float vals[2]) { return vld1_f32(vals); } | |
| 39 M(void) store(float vals[2]) const { vst1_f32(vals, fVec); } | |
| 40 | |
| 41 M(Sk2f) approxInvert() const { | |
| 42 float32x2_t est0 = vrecpe_f32(fVec), | |
| 43 est1 = vmul_f32(vrecps_f32(est0, fVec), est0); | |
| 44 return est1; | |
| 45 } | |
| 46 | |
| 47 M(Sk2f) invert() const { | |
| 48 float32x2_t est1 = this->approxInvert().fVec, | |
| 49 est2 = vmul_f32(vrecps_f32(est1, fVec), est1); | |
| 50 return est2; | |
| 51 } | |
| 52 | |
| 53 M(Sk2f) add(const Sk2f& o) const { return vadd_f32(fVec, o.fVec); } | |
| 54 M(Sk2f) subtract(const Sk2f& o) const { return vsub_f32(fVec, o.fVec); } | |
| 55 M(Sk2f) multiply(const Sk2f& o) const { return vmul_f32(fVec, o.fVec); } | |
| 56 M(Sk2f) divide(const Sk2f& o) const { | |
| 57 #if defined(SK_CPU_ARM64) | |
| 58 return vdiv_f32(fVec, o.fVec); | |
| 59 #else | |
| 60 return vmul_f32(fVec, o.invert().fVec); | |
| 61 #endif | |
| 62 } | |
| 63 | |
| 64 M(Sk2f) Min(const Sk2f& a, const Sk2f& b) { return vmin_f32(a.fVec, b.fVec); } | |
| 65 M(Sk2f) Max(const Sk2f& a, const Sk2f& b) { return vmax_f32(a.fVec, b.fVec); } | |
| 66 | |
| 67 M(Sk2f) rsqrt() const { | |
| 68 float32x2_t est0 = vrsqrte_f32(fVec), | |
| 69 est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); | |
| 70 return est1; | |
| 71 } | |
| 72 M(Sk2f) sqrt() const { | |
| 73 #if defined(SK_CPU_ARM64) | |
| 74 return vsqrt_f32(fVec); | |
| 75 #else | |
| 76 float32x2_t est1 = this->rsqrt().fVec, | |
| 77 // An extra step of Newton's method to refine the estimate of 1/sqrt(this). | |
| 78 est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); | |
| 79 return vmul_f32(fVec, est2); | |
| 80 #endif | |
| 81 } | |
| 82 | |
| 83 #undef M | |
| 84 | |
| 85 #define M(...) template <> inline __VA_ARGS__ Sk2x<double>:: | |
| 86 | |
| 87 #if defined(SK_CPU_ARM64) | |
| 88 M() Sk2x() {} | |
| 89 M() Sk2x(double val) { fVec = vdupq_n_f64(val); } | |
| 90 M() Sk2x(double a, double b) { fVec = (float64x2_t) { a, b }; } | |
| 91 M(Sk2d&) operator=(const Sk2d& o) { fVec = o.fVec; return *this; } | |
| 92 | |
| 93 M(Sk2d) Load(const double vals[2]) { return vld1q_f64(vals); } | |
| 94 M(void) store(double vals[2]) const { vst1q_f64(vals, fVec); } | |
| 95 | |
| 96 M(Sk2d) add(const Sk2d& o) const { return vaddq_f64(fVec, o.fVec); } | |
| 97 M(Sk2d) subtract(const Sk2d& o) const { return vsubq_f64(fVec, o.fVec); } | |
| 98 M(Sk2d) multiply(const Sk2d& o) const { return vmulq_f64(fVec, o.fVec); } | |
| 99 M(Sk2d) divide(const Sk2d& o) const { return vdivq_f64(fVec, o.fVec); } | |
| 100 | |
| 101 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { return vminq_f64(a.fVec, b.fVec)
; } | |
| 102 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { return vmaxq_f64(a.fVec, b.fVec)
; } | |
| 103 | |
| 104 M(Sk2d) rsqrt() const { | |
| 105 float64x2_t est0 = vrsqrteq_f64(fVec), | |
| 106 est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)),
est0); | |
| 107 return est1; | |
| 108 } | |
| 109 M(Sk2d) sqrt() const { return vsqrtq_f64(fVec); } | |
| 110 | |
| 111 M(Sk2d) approxInvert() const { | |
| 112 float64x2_t est0 = vrecpeq_f64(fVec), | |
| 113 est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0); | |
| 114 return est1; | |
| 115 } | |
| 116 | |
| 117 M(Sk2d) invert() const { | |
| 118 float64x2_t est1 = this->approxInvert().fVec, | |
| 119 est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1), | |
| 120 est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2); | |
| 121 return est3; | |
| 122 } | |
| 123 | |
| 124 #else // Scalar implementation for 32-bit chips, which don't have float64x2_t. | |
| 125 M() Sk2x() {} | |
| 126 M() Sk2x(double val) { fVec[0] = fVec[1] = val; } | |
| 127 M() Sk2x(double a, double b) { fVec[0] = a; fVec[1] = b; } | |
| 128 M(Sk2d&) operator=(const Sk2d& o) { | |
| 129 fVec[0] = o.fVec[0]; | |
| 130 fVec[1] = o.fVec[1]; | |
| 131 return *this; | |
| 132 } | |
| 133 | |
| 134 M(Sk2d) Load(const double vals[2]) { return Sk2d(vals[0], vals[1]); } | |
| 135 M(void) store(double vals[2]) const { vals[0] = fVec[0]; vals[1] = fVec[1];
} | |
| 136 | |
| 137 M(Sk2d) add(const Sk2d& o) const { return Sk2d(fVec[0] + o.fVec[0], fVe
c[1] + o.fVec[1]); } | |
| 138 M(Sk2d) subtract(const Sk2d& o) const { return Sk2d(fVec[0] - o.fVec[0], fVe
c[1] - o.fVec[1]); } | |
| 139 M(Sk2d) multiply(const Sk2d& o) const { return Sk2d(fVec[0] * o.fVec[0], fVe
c[1] * o.fVec[1]); } | |
| 140 M(Sk2d) divide(const Sk2d& o) const { return Sk2d(fVec[0] / o.fVec[0], fVe
c[1] / o.fVec[1]); } | |
| 141 | |
| 142 M(Sk2d) Min(const Sk2d& a, const Sk2d& b) { | |
| 143 return Sk2d(SkTMin(a.fVec[0], b.fVec[0]), SkTMin(a.fVec[1], b.fVec[1])); | |
| 144 } | |
| 145 M(Sk2d) Max(const Sk2d& a, const Sk2d& b) { | |
| 146 return Sk2d(SkTMax(a.fVec[0], b.fVec[0]), SkTMax(a.fVec[1], b.fVec[1])); | |
| 147 } | |
| 148 | |
| 149 M(Sk2d) rsqrt() const { return Sk2d(1.0/::sqrt(fVec[0]), 1.0/::sqrt(fVec[1])
); } | |
| 150 M(Sk2d) sqrt() const { return Sk2d( ::sqrt(fVec[0]), ::sqrt(fVec[1])
); } | |
| 151 | |
| 152 M(Sk2d) invert() const { return Sk2d(1.0 / fVec[0], 1.0 / fVec[1]); } | |
| 153 M(Sk2d) approxInvert() const { return this->invert(); } | |
| 154 #endif | |
| 155 | |
| 156 #undef M | |
| 157 | |
| 158 #endif | |
| OLD | NEW |