Index: src/pathops/SkDQuadImplicit.cpp |
diff --git a/src/pathops/SkDQuadImplicit.cpp b/src/pathops/SkDQuadImplicit.cpp |
deleted file mode 100644 |
index f0f66d1a10a4f8f27d87c2d47705497248fcef25..0000000000000000000000000000000000000000 |
--- a/src/pathops/SkDQuadImplicit.cpp |
+++ /dev/null |
@@ -1,117 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "SkDQuadImplicit.h" |
- |
-/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
- * |
- * This paper proves that Syvester's method can compute the implicit form of |
- * the quadratic from the parameterized form. |
- * |
- * Given x = a*t*t + b*t + c (the parameterized form) |
- * y = d*t*t + e*t + f |
- * |
- * we want to find an equation of the implicit form: |
- * |
- * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 |
- * |
- * The implicit form can be expressed as a 4x4 determinant, as shown. |
- * |
- * The resultant obtained by Syvester's method is |
- * |
- * | a b (c - x) 0 | |
- * | 0 a b (c - x) | |
- * | d e (f - y) 0 | |
- * | 0 d e (f - y) | |
- * |
- * which expands to |
- * |
- * d*d*x*x + -2*a*d*x*y + a*a*y*y |
- * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x |
- * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y |
- * + |
- * | a b c 0 | |
- * | 0 a b c | == 0. |
- * | d e f 0 | |
- * | 0 d e f | |
- * |
- * Expanding the constant determinant results in |
- * |
- * | a b c | | b c 0 | |
- * a*| e f 0 | + d*| a b c | == |
- * | d e f | | d e f | |
- * |
- * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) |
- * |
- */ |
- |
-// use the tricky arithmetic path, but leave the original to compare just in case |
-static bool straight_forward = false; |
- |
-SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { |
- double a, b, c; |
- SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
- double d, e, f; |
- SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
- // compute the implicit coefficients |
- if (straight_forward) { // 42 muls, 13 adds |
- fP[kXx_Coeff] = d * d; |
- fP[kXy_Coeff] = -2 * a * d; |
- fP[kYy_Coeff] = a * a; |
- fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; |
- fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; |
- fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) |
- + d*(b*b*f + c*c*d - c*a*f - c*e*b); |
- } else { // 26 muls, 11 adds |
- double aa = a * a; |
- double ad = a * d; |
- double dd = d * d; |
- fP[kXx_Coeff] = dd; |
- fP[kXy_Coeff] = -2 * ad; |
- fP[kYy_Coeff] = aa; |
- double be = b * e; |
- double bde = be * d; |
- double cdd = c * dd; |
- double ee = e * e; |
- fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; |
- double aaf = aa * f; |
- double abe = a * be; |
- double ac = a * c; |
- double bb_2ac = b*b - 2*ac; |
- fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; |
- fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; |
- } |
-} |
- |
- /* Given a pair of quadratics, determine their parametric coefficients. |
- * If the scaled coefficients are nearly equal, then the part of the quadratics |
- * may be coincident. |
- * OPTIMIZATION -- since comparison short-circuits on no match, |
- * lazily compute the coefficients, comparing the easiest to compute first. |
- * xx and yy first; then xy; and so on. |
- */ |
-bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { |
- int first = 0; |
- for (int index = 0; index <= kC_Coeff; ++index) { |
- if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { |
- first += first == index; |
- continue; |
- } |
- if (first == index) { |
- continue; |
- } |
- if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) { |
- return false; |
- } |
- } |
- return true; |
-} |
- |
-bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { |
- SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f |
- SkDQuadImplicit i2(quad2); |
- return i1.match(i2); |
-} |