OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2012 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 #include "SkDQuadImplicit.h" | |
8 | |
9 /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 | |
10 * | |
11 * This paper proves that Syvester's method can compute the implicit form of | |
12 * the quadratic from the parameterized form. | |
13 * | |
14 * Given x = a*t*t + b*t + c (the parameterized form) | |
15 * y = d*t*t + e*t + f | |
16 * | |
17 * we want to find an equation of the implicit form: | |
18 * | |
19 * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 | |
20 * | |
21 * The implicit form can be expressed as a 4x4 determinant, as shown. | |
22 * | |
23 * The resultant obtained by Syvester's method is | |
24 * | |
25 * | a b (c - x) 0 | | |
26 * | 0 a b (c - x) | | |
27 * | d e (f - y) 0 | | |
28 * | 0 d e (f - y) | | |
29 * | |
30 * which expands to | |
31 * | |
32 * d*d*x*x + -2*a*d*x*y + a*a*y*y | |
33 * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x | |
34 * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y | |
35 * + | |
36 * | a b c 0 | | |
37 * | 0 a b c | == 0. | |
38 * | d e f 0 | | |
39 * | 0 d e f | | |
40 * | |
41 * Expanding the constant determinant results in | |
42 * | |
43 * | a b c | | b c 0 | | |
44 * a*| e f 0 | + d*| a b c | == | |
45 * | d e f | | d e f | | |
46 * | |
47 * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) | |
48 * | |
49 */ | |
50 | |
51 // use the tricky arithmetic path, but leave the original to compare just in cas
e | |
52 static bool straight_forward = false; | |
53 | |
54 SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { | |
55 double a, b, c; | |
56 SkDQuad::SetABC(&q[0].fX, &a, &b, &c); | |
57 double d, e, f; | |
58 SkDQuad::SetABC(&q[0].fY, &d, &e, &f); | |
59 // compute the implicit coefficients | |
60 if (straight_forward) { // 42 muls, 13 adds | |
61 fP[kXx_Coeff] = d * d; | |
62 fP[kXy_Coeff] = -2 * a * d; | |
63 fP[kYy_Coeff] = a * a; | |
64 fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; | |
65 fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; | |
66 fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) | |
67 + d*(b*b*f + c*c*d - c*a*f - c*e*b); | |
68 } else { // 26 muls, 11 adds | |
69 double aa = a * a; | |
70 double ad = a * d; | |
71 double dd = d * d; | |
72 fP[kXx_Coeff] = dd; | |
73 fP[kXy_Coeff] = -2 * ad; | |
74 fP[kYy_Coeff] = aa; | |
75 double be = b * e; | |
76 double bde = be * d; | |
77 double cdd = c * dd; | |
78 double ee = e * e; | |
79 fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; | |
80 double aaf = aa * f; | |
81 double abe = a * be; | |
82 double ac = a * c; | |
83 double bb_2ac = b*b - 2*ac; | |
84 fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; | |
85 fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; | |
86 } | |
87 } | |
88 | |
89 /* Given a pair of quadratics, determine their parametric coefficients. | |
90 * If the scaled coefficients are nearly equal, then the part of the quadratics | |
91 * may be coincident. | |
92 * OPTIMIZATION -- since comparison short-circuits on no match, | |
93 * lazily compute the coefficients, comparing the easiest to compute first. | |
94 * xx and yy first; then xy; and so on. | |
95 */ | |
96 bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { | |
97 int first = 0; | |
98 for (int index = 0; index <= kC_Coeff; ++index) { | |
99 if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { | |
100 first += first == index; | |
101 continue; | |
102 } | |
103 if (first == index) { | |
104 continue; | |
105 } | |
106 if (!AlmostDequalUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index]
)) { | |
107 return false; | |
108 } | |
109 } | |
110 return true; | |
111 } | |
112 | |
113 bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { | |
114 SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f | |
115 SkDQuadImplicit i2(quad2); | |
116 return i1.match(i2); | |
117 } | |
OLD | NEW |