Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(104)

Unified Diff: src/pathops/SkDQuadIntersection.cpp

Issue 1037573004: cumulative pathops patch (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix pathopsinverse gm Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkDQuadIntersection.cpp
diff --git a/src/pathops/SkDQuadIntersection.cpp b/src/pathops/SkDQuadIntersection.cpp
deleted file mode 100644
index fcb9171f32f798c1b5b93808d3d80fa8dd3aee4e..0000000000000000000000000000000000000000
--- a/src/pathops/SkDQuadIntersection.cpp
+++ /dev/null
@@ -1,617 +0,0 @@
-// Another approach is to start with the implicit form of one curve and solve
-// (seek implicit coefficients in QuadraticParameter.cpp
-// by substituting in the parametric form of the other.
-// The downside of this approach is that early rejects are difficult to come by.
-// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
-
-#include "SkDQuadImplicit.h"
-#include "SkIntersections.h"
-#include "SkPathOpsLine.h"
-#include "SkQuarticRoot.h"
-#include "SkTArray.h"
-#include "SkTSort.h"
-
-/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
- * and given x = at^2 + bt + c (the parameterized form)
- * y = dt^2 + et + f
- * then
- * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
- */
-
-static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots[4],
- bool oneHint, bool flip, int firstCubicRoot) {
- SkDQuad flipped;
- const SkDQuad& q = flip ? (flipped = quad.flip()) : quad;
- double a, b, c;
- SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
- double d, e, f;
- SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
- const double t4 = i.x2() * a * a
- + i.xy() * a * d
- + i.y2() * d * d;
- const double t3 = 2 * i.x2() * a * b
- + i.xy() * (a * e + b * d)
- + 2 * i.y2() * d * e;
- const double t2 = i.x2() * (b * b + 2 * a * c)
- + i.xy() * (c * d + b * e + a * f)
- + i.y2() * (e * e + 2 * d * f)
- + i.x() * a
- + i.y() * d;
- const double t1 = 2 * i.x2() * b * c
- + i.xy() * (c * e + b * f)
- + 2 * i.y2() * e * f
- + i.x() * b
- + i.y() * e;
- const double t0 = i.x2() * c * c
- + i.xy() * c * f
- + i.y2() * f * f
- + i.x() * c
- + i.y() * f
- + i.c();
- int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
- if (rootCount < 0) {
- rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
- }
- if (flip) {
- for (int index = 0; index < rootCount; ++index) {
- roots[index] = 1 - roots[index];
- }
- }
- return rootCount;
-}
-
-static int addValidRoots(const double roots[4], const int count, double valid[4]) {
- int result = 0;
- int index;
- for (index = 0; index < count; ++index) {
- if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
- continue;
- }
- double t = 1 - roots[index];
- if (approximately_less_than_zero(t)) {
- t = 0;
- } else if (approximately_greater_than_one(t)) {
- t = 1;
- }
- SkASSERT(t >= 0 && t <= 1);
- valid[result++] = t;
- }
- return result;
-}
-
-static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) {
-// the idea here is to see at minimum do a quick reject by rotating all points
-// to either side of the line formed by connecting the endpoints
-// if the opposite curves points are on the line or on the other side, the
-// curves at most intersect at the endpoints
- for (int oddMan = 0; oddMan < 3; ++oddMan) {
- const SkDPoint* endPt[2];
- for (int opp = 1; opp < 3; ++opp) {
- int end = oddMan ^ opp; // choose a value not equal to oddMan
- if (3 == end) { // and correct so that largest value is 1 or 2
- end = opp;
- }
- endPt[opp - 1] = &q1[end];
- }
- double origX = endPt[0]->fX;
- double origY = endPt[0]->fY;
- double adj = endPt[1]->fX - origX;
- double opp = endPt[1]->fY - origY;
- double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
- if (approximately_zero(sign)) {
- goto tryNextHalfPlane;
- }
- for (int n = 0; n < 3; ++n) {
- double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
- if (test * sign > 0 && !precisely_zero(test)) {
- goto tryNextHalfPlane;
- }
- }
- return true;
-tryNextHalfPlane:
- ;
- }
- return false;
-}
-
-// returns false if there's more than one intercept or the intercept doesn't match the point
-// returns true if the intercept was successfully added or if the
-// original quads need to be subdivided
-static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
- SkIntersections* i, bool* subDivide) {
- double tMid = (tMin + tMax) / 2;
- SkDPoint mid = q2.ptAtT(tMid);
- SkDLine line;
- line[0] = line[1] = mid;
- SkDVector dxdy = q2.dxdyAtT(tMid);
- line[0] -= dxdy;
- line[1] += dxdy;
- SkIntersections rootTs;
- rootTs.allowNear(false);
- int roots = rootTs.intersect(q1, line);
- if (roots == 0) {
- if (subDivide) {
- *subDivide = true;
- }
- return true;
- }
- if (roots == 2) {
- return false;
- }
- SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
- if (!pt2.approximatelyEqual(mid)) {
- return false;
- }
- i->insertSwap(rootTs[0][0], tMid, pt2);
- return true;
-}
-
-static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
- double t2s, double t2e, SkIntersections* i, bool* subDivide) {
- SkDQuad hull = q1.subDivide(t1s, t1e);
- SkDLine line = {{hull[2], hull[0]}};
- const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
- const size_t kTestCount = SK_ARRAY_COUNT(testLines);
- SkSTArray<kTestCount * 2, double, true> tsFound;
- for (size_t index = 0; index < kTestCount; ++index) {
- SkIntersections rootTs;
- rootTs.allowNear(false);
- int roots = rootTs.intersect(q2, *testLines[index]);
- for (int idx2 = 0; idx2 < roots; ++idx2) {
- double t = rootTs[0][idx2];
-#if 0 // def SK_DEBUG // FIXME : accurate for error = 16, error of 17.5 seen
-// {{{136.08723965397621, 1648.2814535211637}, {593.49031197259478, 1190.8784277439891}, {593.49031197259478, 544.0128173828125}}}
-// {{{-968.181396484375, 544.0128173828125}, {592.2825927734375, 870.552490234375}, {593.435302734375, 557.8828125}}}
-
- SkDPoint qPt = q2.ptAtT(t);
- SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
- SkASSERT(qPt.approximatelyDEqual(lPt));
-#endif
- if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
- continue;
- }
- tsFound.push_back(rootTs[0][idx2]);
- }
- }
- int tCount = tsFound.count();
- if (tCount <= 0) {
- return true;
- }
- double tMin, tMax;
- if (tCount == 1) {
- tMin = tMax = tsFound[0];
- } else {
- SkASSERT(tCount > 1);
- SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
- tMin = tsFound[0];
- tMax = tsFound[tsFound.count() - 1];
- }
- SkDPoint end = q2.ptAtT(t2s);
- bool startInTriangle = hull.pointInHull(end);
- if (startInTriangle) {
- tMin = t2s;
- }
- end = q2.ptAtT(t2e);
- bool endInTriangle = hull.pointInHull(end);
- if (endInTriangle) {
- tMax = t2e;
- }
- int split = 0;
- SkDVector dxy1, dxy2;
- if (tMin != tMax || tCount > 2) {
- dxy2 = q2.dxdyAtT(tMin);
- for (int index = 1; index < tCount; ++index) {
- dxy1 = dxy2;
- dxy2 = q2.dxdyAtT(tsFound[index]);
- double dot = dxy1.dot(dxy2);
- if (dot < 0) {
- split = index - 1;
- break;
- }
- }
- }
- if (split == 0) { // there's one point
- if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
- return true;
- }
- i->swap();
- return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
- }
- // At this point, we have two ranges of t values -- treat each separately at the split
- bool result;
- if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
- result = true;
- } else {
- i->swap();
- result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
- }
- if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
- result = true;
- } else {
- i->swap();
- result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
- }
- return result;
-}
-
-static double flat_measure(const SkDQuad& q) {
- SkDVector mid = q[1] - q[0];
- SkDVector dxy = q[2] - q[0];
- double length = dxy.length(); // OPTIMIZE: get rid of sqrt
- return fabs(mid.cross(dxy) / length);
-}
-
-// FIXME ? should this measure both and then use the quad that is the flattest as the line?
-static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
- if (i->flatMeasure()) {
- // for backward compatibility, use the old method when called from cubics
- // FIXME: figure out how to fix cubics when it calls the new path
- double measure = flat_measure(q1);
- // OPTIMIZE: (get rid of sqrt) use approximately_zero
- if (!approximately_zero_sqrt(measure)) { // approximately_zero_sqrt
- return false;
- }
- } else {
- if (!q1.isLinear(0, 2)) {
- return false;
- }
- }
- return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
-}
-
-// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
-// avoid imprecision incurred with chopAt
-static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkDQuad* q2,
- double s2, double e2, SkIntersections* i) {
- double m1 = flat_measure(*q1);
- double m2 = flat_measure(*q2);
- i->reset();
- const SkDQuad* rounder, *flatter;
- double sf, midf, ef, sr, er;
- if (m2 < m1) {
- rounder = q1;
- sr = s1;
- er = e1;
- flatter = q2;
- sf = s2;
- midf = (s2 + e2) / 2;
- ef = e2;
- } else {
- rounder = q2;
- sr = s2;
- er = e2;
- flatter = q1;
- sf = s1;
- midf = (s1 + e1) / 2;
- ef = e1;
- }
- bool subDivide = false;
- is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide);
- if (subDivide) {
- relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i);
- relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i);
- }
- if (m2 < m1) {
- i->swapPts();
- }
-}
-
-// each time through the loop, this computes values it had from the last loop
-// if i == j == 1, the center values are still good
-// otherwise, for i != 1 or j != 1, four of the values are still good
-// and if i == 1 ^ j == 1, an additional value is good
-static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
- double* t2Seed, SkDPoint* pt) {
- double tStep = ROUGH_EPSILON;
- SkDPoint t1[3], t2[3];
- int calcMask = ~0;
- do {
- if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed);
- if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed);
- if (t1[1].approximatelyEqual(t2[1])) {
- *pt = t1[1];
- #if ONE_OFF_DEBUG
- SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
- t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY);
- #endif
- if (*t1Seed < 0) {
- *t1Seed = 0;
- } else if (*t1Seed > 1) {
- *t1Seed = 1;
- }
- if (*t2Seed < 0) {
- *t2Seed = 0;
- } else if (*t2Seed > 1) {
- *t2Seed = 1;
- }
- return true;
- }
- if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(SkTMax(0., *t1Seed - tStep));
- if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(SkTMin(1., *t1Seed + tStep));
- if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(SkTMax(0., *t2Seed - tStep));
- if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(SkTMin(1., *t2Seed + tStep));
- double dist[3][3];
- // OPTIMIZE: using calcMask value permits skipping some distance calcuations
- // if prior loop's results are moved to correct slot for reuse
- dist[1][1] = t1[1].distanceSquared(t2[1]);
- int best_i = 1, best_j = 1;
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- if (i == 1 && j == 1) {
- continue;
- }
- dist[i][j] = t1[i].distanceSquared(t2[j]);
- if (dist[best_i][best_j] > dist[i][j]) {
- best_i = i;
- best_j = j;
- }
- }
- }
- if (best_i == 1 && best_j == 1) {
- tStep /= 2;
- if (tStep < FLT_EPSILON_HALF) {
- break;
- }
- calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
- continue;
- }
- if (best_i == 0) {
- *t1Seed -= tStep;
- t1[2] = t1[1];
- t1[1] = t1[0];
- calcMask = 1 << 0;
- } else if (best_i == 2) {
- *t1Seed += tStep;
- t1[0] = t1[1];
- t1[1] = t1[2];
- calcMask = 1 << 2;
- } else {
- calcMask = 0;
- }
- if (best_j == 0) {
- *t2Seed -= tStep;
- t2[2] = t2[1];
- t2[1] = t2[0];
- calcMask |= 1 << 3;
- } else if (best_j == 2) {
- *t2Seed += tStep;
- t2[0] = t2[1];
- t2[1] = t2[2];
- calcMask |= 1 << 5;
- }
- } while (true);
-#if ONE_OFF_DEBUG
- SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
- t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
-#endif
- return false;
-}
-
-static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
- const SkIntersections& orig, bool swap, SkIntersections* i) {
- if (orig.used() == 1 && orig[!swap][0] == testT) {
- return;
- }
- if (orig.used() == 2 && orig[!swap][1] == testT) {
- return;
- }
- SkDLine tmpLine;
- int testTIndex = testT << 1;
- tmpLine[0] = tmpLine[1] = q2[testTIndex];
- tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
- tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
- SkIntersections impTs;
- impTs.intersectRay(q1, tmpLine);
- for (int index = 0; index < impTs.used(); ++index) {
- SkDPoint realPt = impTs.pt(index);
- if (!tmpLine[0].approximatelyPEqual(realPt)) {
- continue;
- }
- if (swap) {
- i->insert(testT, impTs[0][index], tmpLine[0]);
- } else {
- i->insert(impTs[0][index], testT, tmpLine[0]);
- }
- }
-}
-
-int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
- fMax = 4;
- bool exactMatch = false;
- // if the quads share an end point, check to see if they overlap
- for (int i1 = 0; i1 < 3; i1 += 2) {
- for (int i2 = 0; i2 < 3; i2 += 2) {
- if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) {
- insert(i1 >> 1, i2 >> 1, q1[i1]);
- exactMatch = true;
- }
- }
- }
- SkASSERT(fUsed < 3);
- if (only_end_pts_in_common(q1, q2)) {
- return fUsed;
- }
- if (only_end_pts_in_common(q2, q1)) {
- return fUsed;
- }
- // see if either quad is really a line
- // FIXME: figure out why reduce step didn't find this earlier
- if (is_linear(q1, q2, this)) {
- return fUsed;
- }
- SkIntersections swapped;
- swapped.setMax(fMax);
- if (is_linear(q2, q1, &swapped)) {
- swapped.swapPts();
- *this = swapped;
- return fUsed;
- }
- SkIntersections copyI(*this);
- lookNearEnd(q1, q2, 0, *this, false, &copyI);
- lookNearEnd(q1, q2, 1, *this, false, &copyI);
- lookNearEnd(q2, q1, 0, *this, true, &copyI);
- lookNearEnd(q2, q1, 1, *this, true, &copyI);
- int innerEqual = 0;
- if (copyI.fUsed >= 2) {
- SkASSERT(copyI.fUsed <= 4);
- double width = copyI[0][1] - copyI[0][0];
- int midEnd = 1;
- for (int index = 2; index < copyI.fUsed; ++index) {
- double testWidth = copyI[0][index] - copyI[0][index - 1];
- if (testWidth <= width) {
- continue;
- }
- midEnd = index;
- }
- for (int index = 0; index < 2; ++index) {
- double testT = (copyI[0][midEnd] * (index + 1)
- + copyI[0][midEnd - 1] * (2 - index)) / 3;
- SkDPoint testPt1 = q1.ptAtT(testT);
- testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3;
- SkDPoint testPt2 = q2.ptAtT(testT);
- innerEqual += testPt1.approximatelyEqual(testPt2);
- }
- }
- bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2;
- if (expectCoincident) {
- reset();
- insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]);
- int last = copyI.fUsed - 1;
- insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]);
- return fUsed;
- }
- SkDQuadImplicit i1(q1);
- SkDQuadImplicit i2(q2);
- int index;
- bool flip1 = q1[2] == q2[0];
- bool flip2 = q1[0] == q2[2];
- bool useCubic = q1[0] == q2[0];
- double roots1[4];
- int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0);
- // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
- double roots1Copy[4];
- SkDEBUGCODE(sk_bzero(roots1Copy, sizeof(roots1Copy)));
- int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
- SkDPoint pts1[4];
- for (index = 0; index < r1Count; ++index) {
- pts1[index] = q1.ptAtT(roots1Copy[index]);
- }
- double roots2[4];
- int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0);
- double roots2Copy[4];
- int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
- SkDPoint pts2[4];
- for (index = 0; index < r2Count; ++index) {
- pts2[index] = q2.ptAtT(roots2Copy[index]);
- }
- bool triedBinary = false;
- if (r1Count == r2Count && r1Count <= 1) {
- if (r1Count == 1 && used() == 0) {
- if (pts1[0].approximatelyEqual(pts2[0])) {
- insert(roots1Copy[0], roots2Copy[0], pts1[0]);
- } else {
- // find intersection by chasing t
- triedBinary = true;
- if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
- insert(roots1Copy[0], roots2Copy[0], pts1[0]);
- }
- }
- }
- return fUsed;
- }
- int closest[4];
- double dist[4];
- bool foundSomething = false;
- for (index = 0; index < r1Count; ++index) {
- dist[index] = DBL_MAX;
- closest[index] = -1;
- for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
- if (!pts2[ndex2].approximatelyEqual(pts1[index])) {
- continue;
- }
- double dx = pts2[ndex2].fX - pts1[index].fX;
- double dy = pts2[ndex2].fY - pts1[index].fY;
- double distance = dx * dx + dy * dy;
- if (dist[index] <= distance) {
- continue;
- }
- for (int outer = 0; outer < index; ++outer) {
- if (closest[outer] != ndex2) {
- continue;
- }
- if (dist[outer] < distance) {
- goto next;
- }
- closest[outer] = -1;
- }
- dist[index] = distance;
- closest[index] = ndex2;
- foundSomething = true;
- next:
- ;
- }
- }
- if (r1Count && r2Count && !foundSomething) {
- if (exactMatch) {
- SkASSERT(fUsed > 0);
- return fUsed;
- }
- relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this);
- if (fUsed) {
- return fUsed;
- }
- // maybe the curves are nearly coincident
- if (!triedBinary && binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
- insert(roots1Copy[0], roots2Copy[0], pts1[0]);
- }
- return fUsed;
- }
- int used = 0;
- do {
- double lowest = DBL_MAX;
- int lowestIndex = -1;
- for (index = 0; index < r1Count; ++index) {
- if (closest[index] < 0) {
- continue;
- }
- if (roots1Copy[index] < lowest) {
- lowestIndex = index;
- lowest = roots1Copy[index];
- }
- }
- if (lowestIndex < 0) {
- break;
- }
- insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
- pts1[lowestIndex]);
- closest[lowestIndex] = -1;
- } while (++used < r1Count);
- return fUsed;
-}
-
-void SkIntersections::alignQuadPts(const SkPoint q1[3], const SkPoint q2[3]) {
- for (int index = 0; index < used(); ++index) {
- const SkPoint result = pt(index).asSkPoint();
- if (q1[0] == result || q1[2] == result || q2[0] == result || q2[2] == result) {
- continue;
- }
- if (SkDPoint::ApproximatelyEqual(q1[0], result)) {
- fPt[index].set(q1[0]);
-// SkASSERT(way_roughly_zero(fT[0][index])); // this value can be bigger than way rough
- fT[0][index] = 0;
- } else if (SkDPoint::ApproximatelyEqual(q1[2], result)) {
- fPt[index].set(q1[2]);
-// SkASSERT(way_roughly_equal(fT[0][index], 1));
- fT[0][index] = 1;
- }
- if (SkDPoint::ApproximatelyEqual(q2[0], result)) {
- fPt[index].set(q2[0]);
-// SkASSERT(way_roughly_zero(fT[1][index]));
- fT[1][index] = 0;
- } else if (SkDPoint::ApproximatelyEqual(q2[2], result)) {
- fPt[index].set(q2[2]);
-// SkASSERT(way_roughly_equal(fT[1][index], 1));
- fT[1][index] = 1;
- }
- }
-}
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698