Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: src/pathops/SkDQuadIntersection.cpp

Issue 1037573004: cumulative pathops patch (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: fix pathopsinverse gm Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Another approach is to start with the implicit form of one curve and solve
2 // (seek implicit coefficients in QuadraticParameter.cpp
3 // by substituting in the parametric form of the other.
4 // The downside of this approach is that early rejects are difficult to come by.
5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormu la.html#step
6
7 #include "SkDQuadImplicit.h"
8 #include "SkIntersections.h"
9 #include "SkPathOpsLine.h"
10 #include "SkQuarticRoot.h"
11 #include "SkTArray.h"
12 #include "SkTSort.h"
13
14 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
15 * and given x = at^2 + bt + c (the parameterized form)
16 * y = dt^2 + et + f
17 * then
18 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D (at^2+bt+c)+E(dt^2+et+f)+F
19 */
20
21 static int findRoots(const SkDQuadImplicit& i, const SkDQuad& quad, double roots [4],
22 bool oneHint, bool flip, int firstCubicRoot) {
23 SkDQuad flipped;
24 const SkDQuad& q = flip ? (flipped = quad.flip()) : quad;
25 double a, b, c;
26 SkDQuad::SetABC(&q[0].fX, &a, &b, &c);
27 double d, e, f;
28 SkDQuad::SetABC(&q[0].fY, &d, &e, &f);
29 const double t4 = i.x2() * a * a
30 + i.xy() * a * d
31 + i.y2() * d * d;
32 const double t3 = 2 * i.x2() * a * b
33 + i.xy() * (a * e + b * d)
34 + 2 * i.y2() * d * e;
35 const double t2 = i.x2() * (b * b + 2 * a * c)
36 + i.xy() * (c * d + b * e + a * f)
37 + i.y2() * (e * e + 2 * d * f)
38 + i.x() * a
39 + i.y() * d;
40 const double t1 = 2 * i.x2() * b * c
41 + i.xy() * (c * e + b * f)
42 + 2 * i.y2() * e * f
43 + i.x() * b
44 + i.y() * e;
45 const double t0 = i.x2() * c * c
46 + i.xy() * c * f
47 + i.y2() * f * f
48 + i.x() * c
49 + i.y() * f
50 + i.c();
51 int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
52 if (rootCount < 0) {
53 rootCount = SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots );
54 }
55 if (flip) {
56 for (int index = 0; index < rootCount; ++index) {
57 roots[index] = 1 - roots[index];
58 }
59 }
60 return rootCount;
61 }
62
63 static int addValidRoots(const double roots[4], const int count, double valid[4] ) {
64 int result = 0;
65 int index;
66 for (index = 0; index < count; ++index) {
67 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_l ess(roots[index])) {
68 continue;
69 }
70 double t = 1 - roots[index];
71 if (approximately_less_than_zero(t)) {
72 t = 0;
73 } else if (approximately_greater_than_one(t)) {
74 t = 1;
75 }
76 SkASSERT(t >= 0 && t <= 1);
77 valid[result++] = t;
78 }
79 return result;
80 }
81
82 static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2) {
83 // the idea here is to see at minimum do a quick reject by rotating all points
84 // to either side of the line formed by connecting the endpoints
85 // if the opposite curves points are on the line or on the other side, the
86 // curves at most intersect at the endpoints
87 for (int oddMan = 0; oddMan < 3; ++oddMan) {
88 const SkDPoint* endPt[2];
89 for (int opp = 1; opp < 3; ++opp) {
90 int end = oddMan ^ opp; // choose a value not equal to oddMan
91 if (3 == end) { // and correct so that largest value is 1 or 2
92 end = opp;
93 }
94 endPt[opp - 1] = &q1[end];
95 }
96 double origX = endPt[0]->fX;
97 double origY = endPt[0]->fY;
98 double adj = endPt[1]->fX - origX;
99 double opp = endPt[1]->fY - origY;
100 double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
101 if (approximately_zero(sign)) {
102 goto tryNextHalfPlane;
103 }
104 for (int n = 0; n < 3; ++n) {
105 double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
106 if (test * sign > 0 && !precisely_zero(test)) {
107 goto tryNextHalfPlane;
108 }
109 }
110 return true;
111 tryNextHalfPlane:
112 ;
113 }
114 return false;
115 }
116
117 // returns false if there's more than one intercept or the intercept doesn't mat ch the point
118 // returns true if the intercept was successfully added or if the
119 // original quads need to be subdivided
120 static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, dou ble tMax,
121 SkIntersections* i, bool* subDivide) {
122 double tMid = (tMin + tMax) / 2;
123 SkDPoint mid = q2.ptAtT(tMid);
124 SkDLine line;
125 line[0] = line[1] = mid;
126 SkDVector dxdy = q2.dxdyAtT(tMid);
127 line[0] -= dxdy;
128 line[1] += dxdy;
129 SkIntersections rootTs;
130 rootTs.allowNear(false);
131 int roots = rootTs.intersect(q1, line);
132 if (roots == 0) {
133 if (subDivide) {
134 *subDivide = true;
135 }
136 return true;
137 }
138 if (roots == 2) {
139 return false;
140 }
141 SkDPoint pt2 = q1.ptAtT(rootTs[0][0]);
142 if (!pt2.approximatelyEqual(mid)) {
143 return false;
144 }
145 i->insertSwap(rootTs[0][0], tMid, pt2);
146 return true;
147 }
148
149 static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkD Quad& q2,
150 double t2s, double t2e, SkIntersections* i, bool* su bDivide) {
151 SkDQuad hull = q1.subDivide(t1s, t1e);
152 SkDLine line = {{hull[2], hull[0]}};
153 const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDL ine*) &hull[1] };
154 const size_t kTestCount = SK_ARRAY_COUNT(testLines);
155 SkSTArray<kTestCount * 2, double, true> tsFound;
156 for (size_t index = 0; index < kTestCount; ++index) {
157 SkIntersections rootTs;
158 rootTs.allowNear(false);
159 int roots = rootTs.intersect(q2, *testLines[index]);
160 for (int idx2 = 0; idx2 < roots; ++idx2) {
161 double t = rootTs[0][idx2];
162 #if 0 // def SK_DEBUG // FIXME : accurate for error = 16, error of 17.5 seen
163 // {{{136.08723965397621, 1648.2814535211637}, {593.49031197259478, 1190.8784277 439891}, {593.49031197259478, 544.0128173828125}}}
164 // {{{-968.181396484375, 544.0128173828125}, {592.2825927734375, 870.55249023437 5}, {593.435302734375, 557.8828125}}}
165
166 SkDPoint qPt = q2.ptAtT(t);
167 SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]);
168 SkASSERT(qPt.approximatelyDEqual(lPt));
169 #endif
170 if (approximately_negative(t - t2s) || approximately_positive(t - t2 e)) {
171 continue;
172 }
173 tsFound.push_back(rootTs[0][idx2]);
174 }
175 }
176 int tCount = tsFound.count();
177 if (tCount <= 0) {
178 return true;
179 }
180 double tMin, tMax;
181 if (tCount == 1) {
182 tMin = tMax = tsFound[0];
183 } else {
184 SkASSERT(tCount > 1);
185 SkTQSort<double>(tsFound.begin(), tsFound.end() - 1);
186 tMin = tsFound[0];
187 tMax = tsFound[tsFound.count() - 1];
188 }
189 SkDPoint end = q2.ptAtT(t2s);
190 bool startInTriangle = hull.pointInHull(end);
191 if (startInTriangle) {
192 tMin = t2s;
193 }
194 end = q2.ptAtT(t2e);
195 bool endInTriangle = hull.pointInHull(end);
196 if (endInTriangle) {
197 tMax = t2e;
198 }
199 int split = 0;
200 SkDVector dxy1, dxy2;
201 if (tMin != tMax || tCount > 2) {
202 dxy2 = q2.dxdyAtT(tMin);
203 for (int index = 1; index < tCount; ++index) {
204 dxy1 = dxy2;
205 dxy2 = q2.dxdyAtT(tsFound[index]);
206 double dot = dxy1.dot(dxy2);
207 if (dot < 0) {
208 split = index - 1;
209 break;
210 }
211 }
212 }
213 if (split == 0) { // there's one point
214 if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
215 return true;
216 }
217 i->swap();
218 return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
219 }
220 // At this point, we have two ranges of t values -- treat each separately at the split
221 bool result;
222 if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
223 result = true;
224 } else {
225 i->swap();
226 result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
227 }
228 if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
229 result = true;
230 } else {
231 i->swap();
232 result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, sub Divide);
233 }
234 return result;
235 }
236
237 static double flat_measure(const SkDQuad& q) {
238 SkDVector mid = q[1] - q[0];
239 SkDVector dxy = q[2] - q[0];
240 double length = dxy.length(); // OPTIMIZE: get rid of sqrt
241 return fabs(mid.cross(dxy) / length);
242 }
243
244 // FIXME ? should this measure both and then use the quad that is the flattest a s the line?
245 static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
246 if (i->flatMeasure()) {
247 // for backward compatibility, use the old method when called from cubic s
248 // FIXME: figure out how to fix cubics when it calls the new path
249 double measure = flat_measure(q1);
250 // OPTIMIZE: (get rid of sqrt) use approximately_zero
251 if (!approximately_zero_sqrt(measure)) { // approximately_zero_sqrt
252 return false;
253 }
254 } else {
255 if (!q1.isLinear(0, 2)) {
256 return false;
257 }
258 }
259 return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
260 }
261
262 // FIXME: if flat measure is sufficiently large, then probably the quartic solut ion failed
263 // avoid imprecision incurred with chopAt
264 static void relaxed_is_linear(const SkDQuad* q1, double s1, double e1, const SkD Quad* q2,
265 double s2, double e2, SkIntersections* i) {
266 double m1 = flat_measure(*q1);
267 double m2 = flat_measure(*q2);
268 i->reset();
269 const SkDQuad* rounder, *flatter;
270 double sf, midf, ef, sr, er;
271 if (m2 < m1) {
272 rounder = q1;
273 sr = s1;
274 er = e1;
275 flatter = q2;
276 sf = s2;
277 midf = (s2 + e2) / 2;
278 ef = e2;
279 } else {
280 rounder = q2;
281 sr = s2;
282 er = e2;
283 flatter = q1;
284 sf = s1;
285 midf = (s1 + e1) / 2;
286 ef = e1;
287 }
288 bool subDivide = false;
289 is_linear_inner(*flatter, sf, ef, *rounder, sr, er, i, &subDivide);
290 if (subDivide) {
291 relaxed_is_linear(flatter, sf, midf, rounder, sr, er, i);
292 relaxed_is_linear(flatter, midf, ef, rounder, sr, er, i);
293 }
294 if (m2 < m1) {
295 i->swapPts();
296 }
297 }
298
299 // each time through the loop, this computes values it had from the last loop
300 // if i == j == 1, the center values are still good
301 // otherwise, for i != 1 or j != 1, four of the values are still good
302 // and if i == 1 ^ j == 1, an additional value is good
303 static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1 Seed,
304 double* t2Seed, SkDPoint* pt) {
305 double tStep = ROUGH_EPSILON;
306 SkDPoint t1[3], t2[3];
307 int calcMask = ~0;
308 do {
309 if (calcMask & (1 << 1)) t1[1] = quad1.ptAtT(*t1Seed);
310 if (calcMask & (1 << 4)) t2[1] = quad2.ptAtT(*t2Seed);
311 if (t1[1].approximatelyEqual(t2[1])) {
312 *pt = t1[1];
313 #if ONE_OFF_DEBUG
314 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __ FUNCTION__,
315 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t2[1].fX, t2[1].fY);
316 #endif
317 if (*t1Seed < 0) {
318 *t1Seed = 0;
319 } else if (*t1Seed > 1) {
320 *t1Seed = 1;
321 }
322 if (*t2Seed < 0) {
323 *t2Seed = 0;
324 } else if (*t2Seed > 1) {
325 *t2Seed = 1;
326 }
327 return true;
328 }
329 if (calcMask & (1 << 0)) t1[0] = quad1.ptAtT(SkTMax(0., *t1Seed - tStep) );
330 if (calcMask & (1 << 2)) t1[2] = quad1.ptAtT(SkTMin(1., *t1Seed + tStep) );
331 if (calcMask & (1 << 3)) t2[0] = quad2.ptAtT(SkTMax(0., *t2Seed - tStep) );
332 if (calcMask & (1 << 5)) t2[2] = quad2.ptAtT(SkTMin(1., *t2Seed + tStep) );
333 double dist[3][3];
334 // OPTIMIZE: using calcMask value permits skipping some distance calcuat ions
335 // if prior loop's results are moved to correct slot for reuse
336 dist[1][1] = t1[1].distanceSquared(t2[1]);
337 int best_i = 1, best_j = 1;
338 for (int i = 0; i < 3; ++i) {
339 for (int j = 0; j < 3; ++j) {
340 if (i == 1 && j == 1) {
341 continue;
342 }
343 dist[i][j] = t1[i].distanceSquared(t2[j]);
344 if (dist[best_i][best_j] > dist[i][j]) {
345 best_i = i;
346 best_j = j;
347 }
348 }
349 }
350 if (best_i == 1 && best_j == 1) {
351 tStep /= 2;
352 if (tStep < FLT_EPSILON_HALF) {
353 break;
354 }
355 calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
356 continue;
357 }
358 if (best_i == 0) {
359 *t1Seed -= tStep;
360 t1[2] = t1[1];
361 t1[1] = t1[0];
362 calcMask = 1 << 0;
363 } else if (best_i == 2) {
364 *t1Seed += tStep;
365 t1[0] = t1[1];
366 t1[1] = t1[2];
367 calcMask = 1 << 2;
368 } else {
369 calcMask = 0;
370 }
371 if (best_j == 0) {
372 *t2Seed -= tStep;
373 t2[2] = t2[1];
374 t2[1] = t2[0];
375 calcMask |= 1 << 3;
376 } else if (best_j == 2) {
377 *t2Seed += tStep;
378 t2[0] = t2[1];
379 t2[1] = t2[2];
380 calcMask |= 1 << 5;
381 }
382 } while (true);
383 #if ONE_OFF_DEBUG
384 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCT ION__,
385 t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
386 #endif
387 return false;
388 }
389
390 static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
391 const SkIntersections& orig, bool swap, SkIntersections* i) {
392 if (orig.used() == 1 && orig[!swap][0] == testT) {
393 return;
394 }
395 if (orig.used() == 2 && orig[!swap][1] == testT) {
396 return;
397 }
398 SkDLine tmpLine;
399 int testTIndex = testT << 1;
400 tmpLine[0] = tmpLine[1] = q2[testTIndex];
401 tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
402 tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
403 SkIntersections impTs;
404 impTs.intersectRay(q1, tmpLine);
405 for (int index = 0; index < impTs.used(); ++index) {
406 SkDPoint realPt = impTs.pt(index);
407 if (!tmpLine[0].approximatelyPEqual(realPt)) {
408 continue;
409 }
410 if (swap) {
411 i->insert(testT, impTs[0][index], tmpLine[0]);
412 } else {
413 i->insert(impTs[0][index], testT, tmpLine[0]);
414 }
415 }
416 }
417
418 int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
419 fMax = 4;
420 bool exactMatch = false;
421 // if the quads share an end point, check to see if they overlap
422 for (int i1 = 0; i1 < 3; i1 += 2) {
423 for (int i2 = 0; i2 < 3; i2 += 2) {
424 if (q1[i1].asSkPoint() == q2[i2].asSkPoint()) {
425 insert(i1 >> 1, i2 >> 1, q1[i1]);
426 exactMatch = true;
427 }
428 }
429 }
430 SkASSERT(fUsed < 3);
431 if (only_end_pts_in_common(q1, q2)) {
432 return fUsed;
433 }
434 if (only_end_pts_in_common(q2, q1)) {
435 return fUsed;
436 }
437 // see if either quad is really a line
438 // FIXME: figure out why reduce step didn't find this earlier
439 if (is_linear(q1, q2, this)) {
440 return fUsed;
441 }
442 SkIntersections swapped;
443 swapped.setMax(fMax);
444 if (is_linear(q2, q1, &swapped)) {
445 swapped.swapPts();
446 *this = swapped;
447 return fUsed;
448 }
449 SkIntersections copyI(*this);
450 lookNearEnd(q1, q2, 0, *this, false, &copyI);
451 lookNearEnd(q1, q2, 1, *this, false, &copyI);
452 lookNearEnd(q2, q1, 0, *this, true, &copyI);
453 lookNearEnd(q2, q1, 1, *this, true, &copyI);
454 int innerEqual = 0;
455 if (copyI.fUsed >= 2) {
456 SkASSERT(copyI.fUsed <= 4);
457 double width = copyI[0][1] - copyI[0][0];
458 int midEnd = 1;
459 for (int index = 2; index < copyI.fUsed; ++index) {
460 double testWidth = copyI[0][index] - copyI[0][index - 1];
461 if (testWidth <= width) {
462 continue;
463 }
464 midEnd = index;
465 }
466 for (int index = 0; index < 2; ++index) {
467 double testT = (copyI[0][midEnd] * (index + 1)
468 + copyI[0][midEnd - 1] * (2 - index)) / 3;
469 SkDPoint testPt1 = q1.ptAtT(testT);
470 testT = (copyI[1][midEnd] * (index + 1) + copyI[1][midEnd - 1] * (2 - index)) / 3;
471 SkDPoint testPt2 = q2.ptAtT(testT);
472 innerEqual += testPt1.approximatelyEqual(testPt2);
473 }
474 }
475 bool expectCoincident = copyI.fUsed >= 2 && innerEqual == 2;
476 if (expectCoincident) {
477 reset();
478 insertCoincident(copyI[0][0], copyI[1][0], copyI.fPt[0]);
479 int last = copyI.fUsed - 1;
480 insertCoincident(copyI[0][last], copyI[1][last], copyI.fPt[last]);
481 return fUsed;
482 }
483 SkDQuadImplicit i1(q1);
484 SkDQuadImplicit i2(q2);
485 int index;
486 bool flip1 = q1[2] == q2[0];
487 bool flip2 = q1[0] == q2[2];
488 bool useCubic = q1[0] == q2[0];
489 double roots1[4];
490 int rootCount = findRoots(i2, q1, roots1, useCubic, flip1, 0);
491 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
492 double roots1Copy[4];
493 SkDEBUGCODE(sk_bzero(roots1Copy, sizeof(roots1Copy)));
494 int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
495 SkDPoint pts1[4];
496 for (index = 0; index < r1Count; ++index) {
497 pts1[index] = q1.ptAtT(roots1Copy[index]);
498 }
499 double roots2[4];
500 int rootCount2 = findRoots(i1, q2, roots2, useCubic, flip2, 0);
501 double roots2Copy[4];
502 int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
503 SkDPoint pts2[4];
504 for (index = 0; index < r2Count; ++index) {
505 pts2[index] = q2.ptAtT(roots2Copy[index]);
506 }
507 bool triedBinary = false;
508 if (r1Count == r2Count && r1Count <= 1) {
509 if (r1Count == 1 && used() == 0) {
510 if (pts1[0].approximatelyEqual(pts2[0])) {
511 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
512 } else {
513 // find intersection by chasing t
514 triedBinary = true;
515 if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
516 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
517 }
518 }
519 }
520 return fUsed;
521 }
522 int closest[4];
523 double dist[4];
524 bool foundSomething = false;
525 for (index = 0; index < r1Count; ++index) {
526 dist[index] = DBL_MAX;
527 closest[index] = -1;
528 for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
529 if (!pts2[ndex2].approximatelyEqual(pts1[index])) {
530 continue;
531 }
532 double dx = pts2[ndex2].fX - pts1[index].fX;
533 double dy = pts2[ndex2].fY - pts1[index].fY;
534 double distance = dx * dx + dy * dy;
535 if (dist[index] <= distance) {
536 continue;
537 }
538 for (int outer = 0; outer < index; ++outer) {
539 if (closest[outer] != ndex2) {
540 continue;
541 }
542 if (dist[outer] < distance) {
543 goto next;
544 }
545 closest[outer] = -1;
546 }
547 dist[index] = distance;
548 closest[index] = ndex2;
549 foundSomething = true;
550 next:
551 ;
552 }
553 }
554 if (r1Count && r2Count && !foundSomething) {
555 if (exactMatch) {
556 SkASSERT(fUsed > 0);
557 return fUsed;
558 }
559 relaxed_is_linear(&q1, 0, 1, &q2, 0, 1, this);
560 if (fUsed) {
561 return fUsed;
562 }
563 // maybe the curves are nearly coincident
564 if (!triedBinary && binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
565 insert(roots1Copy[0], roots2Copy[0], pts1[0]);
566 }
567 return fUsed;
568 }
569 int used = 0;
570 do {
571 double lowest = DBL_MAX;
572 int lowestIndex = -1;
573 for (index = 0; index < r1Count; ++index) {
574 if (closest[index] < 0) {
575 continue;
576 }
577 if (roots1Copy[index] < lowest) {
578 lowestIndex = index;
579 lowest = roots1Copy[index];
580 }
581 }
582 if (lowestIndex < 0) {
583 break;
584 }
585 insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
586 pts1[lowestIndex]);
587 closest[lowestIndex] = -1;
588 } while (++used < r1Count);
589 return fUsed;
590 }
591
592 void SkIntersections::alignQuadPts(const SkPoint q1[3], const SkPoint q2[3]) {
593 for (int index = 0; index < used(); ++index) {
594 const SkPoint result = pt(index).asSkPoint();
595 if (q1[0] == result || q1[2] == result || q2[0] == result || q2[2] == re sult) {
596 continue;
597 }
598 if (SkDPoint::ApproximatelyEqual(q1[0], result)) {
599 fPt[index].set(q1[0]);
600 // SkASSERT(way_roughly_zero(fT[0][index])); // this value can be bi gger than way rough
601 fT[0][index] = 0;
602 } else if (SkDPoint::ApproximatelyEqual(q1[2], result)) {
603 fPt[index].set(q1[2]);
604 // SkASSERT(way_roughly_equal(fT[0][index], 1));
605 fT[0][index] = 1;
606 }
607 if (SkDPoint::ApproximatelyEqual(q2[0], result)) {
608 fPt[index].set(q2[0]);
609 // SkASSERT(way_roughly_zero(fT[1][index]));
610 fT[1][index] = 0;
611 } else if (SkDPoint::ApproximatelyEqual(q2[2], result)) {
612 fPt[index].set(q2[2]);
613 // SkASSERT(way_roughly_equal(fT[1][index], 1));
614 fT[1][index] = 1;
615 }
616 }
617 }
OLDNEW
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698