Index: src/arm/codegen-arm.cc |
diff --git a/src/arm/codegen-arm.cc b/src/arm/codegen-arm.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9337454bb8a4a3959cb64da79fadd2622c79578e |
--- /dev/null |
+++ b/src/arm/codegen-arm.cc |
@@ -0,0 +1,5151 @@ |
+// Copyright 2006-2009 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#include "bootstrapper.h" |
+#include "codegen-inl.h" |
+#include "debug.h" |
+#include "parser.h" |
+#include "register-allocator-inl.h" |
+#include "runtime.h" |
+#include "scopes.h" |
+ |
+ |
+namespace v8 { namespace internal { |
+ |
+#define __ ACCESS_MASM(masm_) |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// CodeGenState implementation. |
+ |
+CodeGenState::CodeGenState(CodeGenerator* owner) |
+ : owner_(owner), |
+ typeof_state_(NOT_INSIDE_TYPEOF), |
+ true_target_(NULL), |
+ false_target_(NULL), |
+ previous_(NULL) { |
+ owner_->set_state(this); |
+} |
+ |
+ |
+CodeGenState::CodeGenState(CodeGenerator* owner, |
+ TypeofState typeof_state, |
+ JumpTarget* true_target, |
+ JumpTarget* false_target) |
+ : owner_(owner), |
+ typeof_state_(typeof_state), |
+ true_target_(true_target), |
+ false_target_(false_target), |
+ previous_(owner->state()) { |
+ owner_->set_state(this); |
+} |
+ |
+ |
+CodeGenState::~CodeGenState() { |
+ ASSERT(owner_->state() == this); |
+ owner_->set_state(previous_); |
+} |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// CodeGenerator implementation |
+ |
+CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script, |
+ bool is_eval) |
+ : is_eval_(is_eval), |
+ script_(script), |
+ deferred_(8), |
+ masm_(new MacroAssembler(NULL, buffer_size)), |
+ scope_(NULL), |
+ frame_(NULL), |
+ allocator_(NULL), |
+ cc_reg_(al), |
+ state_(NULL), |
+ function_return_is_shadowed_(false), |
+ in_spilled_code_(false) { |
+} |
+ |
+ |
+// Calling conventions: |
+// fp: caller's frame pointer |
+// sp: stack pointer |
+// r1: called JS function |
+// cp: callee's context |
+ |
+void CodeGenerator::GenCode(FunctionLiteral* fun) { |
+ ZoneList<Statement*>* body = fun->body(); |
+ |
+ // Initialize state. |
+ ASSERT(scope_ == NULL); |
+ scope_ = fun->scope(); |
+ ASSERT(allocator_ == NULL); |
+ RegisterAllocator register_allocator(this); |
+ allocator_ = ®ister_allocator; |
+ ASSERT(frame_ == NULL); |
+ frame_ = new VirtualFrame(this); |
+ cc_reg_ = al; |
+ set_in_spilled_code(false); |
+ { |
+ CodeGenState state(this); |
+ |
+ // Entry: |
+ // Stack: receiver, arguments |
+ // lr: return address |
+ // fp: caller's frame pointer |
+ // sp: stack pointer |
+ // r1: called JS function |
+ // cp: callee's context |
+ allocator_->Initialize(); |
+ frame_->Enter(); |
+ // tos: code slot |
+#ifdef DEBUG |
+ if (strlen(FLAG_stop_at) > 0 && |
+ fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
+ frame_->SpillAll(); |
+ __ stop("stop-at"); |
+ } |
+#endif |
+ |
+ // Allocate space for locals and initialize them. |
+ frame_->AllocateStackSlots(scope_->num_stack_slots()); |
+ // Initialize the function return target after the locals are set |
+ // up, because it needs the expected frame height from the frame. |
+ function_return_.Initialize(this, JumpTarget::BIDIRECTIONAL); |
+ function_return_is_shadowed_ = false; |
+ |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ if (scope_->num_heap_slots() > 0) { |
+ // Allocate local context. |
+ // Get outer context and create a new context based on it. |
+ __ ldr(r0, frame_->Function()); |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kNewContext, 1); // r0 holds the result |
+ |
+#ifdef DEBUG |
+ JumpTarget verified_true(this); |
+ __ cmp(r0, Operand(cp)); |
+ verified_true.Branch(eq); |
+ __ stop("NewContext: r0 is expected to be the same as cp"); |
+ verified_true.Bind(); |
+#endif |
+ // Update context local. |
+ __ str(cp, frame_->Context()); |
+ } |
+ |
+ // TODO(1241774): Improve this code: |
+ // 1) only needed if we have a context |
+ // 2) no need to recompute context ptr every single time |
+ // 3) don't copy parameter operand code from SlotOperand! |
+ { |
+ Comment cmnt2(masm_, "[ copy context parameters into .context"); |
+ |
+ // Note that iteration order is relevant here! If we have the same |
+ // parameter twice (e.g., function (x, y, x)), and that parameter |
+ // needs to be copied into the context, it must be the last argument |
+ // passed to the parameter that needs to be copied. This is a rare |
+ // case so we don't check for it, instead we rely on the copying |
+ // order: such a parameter is copied repeatedly into the same |
+ // context location and thus the last value is what is seen inside |
+ // the function. |
+ for (int i = 0; i < scope_->num_parameters(); i++) { |
+ Variable* par = scope_->parameter(i); |
+ Slot* slot = par->slot(); |
+ if (slot != NULL && slot->type() == Slot::CONTEXT) { |
+ ASSERT(!scope_->is_global_scope()); // no parameters in global scope |
+ __ ldr(r1, frame_->ParameterAt(i)); |
+ // Loads r2 with context; used below in RecordWrite. |
+ __ str(r1, SlotOperand(slot, r2)); |
+ // Load the offset into r3. |
+ int slot_offset = |
+ FixedArray::kHeaderSize + slot->index() * kPointerSize; |
+ __ mov(r3, Operand(slot_offset)); |
+ __ RecordWrite(r2, r3, r1); |
+ } |
+ } |
+ } |
+ |
+ // Store the arguments object. This must happen after context |
+ // initialization because the arguments object may be stored in the |
+ // context. |
+ if (scope_->arguments() != NULL) { |
+ ASSERT(scope_->arguments_shadow() != NULL); |
+ Comment cmnt(masm_, "[ allocate arguments object"); |
+ { Reference shadow_ref(this, scope_->arguments_shadow()); |
+ { Reference arguments_ref(this, scope_->arguments()); |
+ ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
+ __ ldr(r2, frame_->Function()); |
+ // The receiver is below the arguments, the return address, |
+ // and the frame pointer on the stack. |
+ const int kReceiverDisplacement = 2 + scope_->num_parameters(); |
+ __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); |
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters()))); |
+ frame_->Adjust(3); |
+ __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit()); |
+ frame_->CallStub(&stub, 3); |
+ frame_->EmitPush(r0); |
+ arguments_ref.SetValue(NOT_CONST_INIT); |
+ } |
+ shadow_ref.SetValue(NOT_CONST_INIT); |
+ } |
+ frame_->Drop(); // Value is no longer needed. |
+ } |
+ |
+ // Generate code to 'execute' declarations and initialize functions |
+ // (source elements). In case of an illegal redeclaration we need to |
+ // handle that instead of processing the declarations. |
+ if (scope_->HasIllegalRedeclaration()) { |
+ Comment cmnt(masm_, "[ illegal redeclarations"); |
+ scope_->VisitIllegalRedeclaration(this); |
+ } else { |
+ Comment cmnt(masm_, "[ declarations"); |
+ ProcessDeclarations(scope_->declarations()); |
+ // Bail out if a stack-overflow exception occurred when processing |
+ // declarations. |
+ if (HasStackOverflow()) return; |
+ } |
+ |
+ if (FLAG_trace) { |
+ frame_->CallRuntime(Runtime::kTraceEnter, 0); |
+ // Ignore the return value. |
+ } |
+ CheckStack(); |
+ |
+ // Compile the body of the function in a vanilla state. Don't |
+ // bother compiling all the code if the scope has an illegal |
+ // redeclaration. |
+ if (!scope_->HasIllegalRedeclaration()) { |
+ Comment cmnt(masm_, "[ function body"); |
+#ifdef DEBUG |
+ bool is_builtin = Bootstrapper::IsActive(); |
+ bool should_trace = |
+ is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
+ if (should_trace) { |
+ frame_->CallRuntime(Runtime::kDebugTrace, 0); |
+ // Ignore the return value. |
+ } |
+#endif |
+ VisitStatementsAndSpill(body); |
+ } |
+ } |
+ |
+ // Generate the return sequence if necessary. |
+ if (frame_ != NULL || function_return_.is_linked()) { |
+ // exit |
+ // r0: result |
+ // sp: stack pointer |
+ // fp: frame pointer |
+ // pp: parameter pointer |
+ // cp: callee's context |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ |
+ function_return_.Bind(); |
+ if (FLAG_trace) { |
+ // Push the return value on the stack as the parameter. |
+ // Runtime::TraceExit returns the parameter as it is. |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kTraceExit, 1); |
+ } |
+ |
+ // Tear down the frame which will restore the caller's frame pointer and |
+ // the link register. |
+ frame_->Exit(); |
+ |
+ __ add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize)); |
+ __ mov(pc, lr); |
+ } |
+ |
+ // Code generation state must be reset. |
+ ASSERT(!has_cc()); |
+ ASSERT(state_ == NULL); |
+ ASSERT(!function_return_is_shadowed_); |
+ function_return_.Unuse(); |
+ DeleteFrame(); |
+ |
+ // Process any deferred code using the register allocator. |
+ if (HasStackOverflow()) { |
+ ClearDeferred(); |
+ } else { |
+ ProcessDeferred(); |
+ } |
+ |
+ allocator_ = NULL; |
+ scope_ = NULL; |
+} |
+ |
+ |
+MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
+ // Currently, this assertion will fail if we try to assign to |
+ // a constant variable that is constant because it is read-only |
+ // (such as the variable referring to a named function expression). |
+ // We need to implement assignments to read-only variables. |
+ // Ideally, we should do this during AST generation (by converting |
+ // such assignments into expression statements); however, in general |
+ // we may not be able to make the decision until past AST generation, |
+ // that is when the entire program is known. |
+ ASSERT(slot != NULL); |
+ int index = slot->index(); |
+ switch (slot->type()) { |
+ case Slot::PARAMETER: |
+ return frame_->ParameterAt(index); |
+ |
+ case Slot::LOCAL: |
+ return frame_->LocalAt(index); |
+ |
+ case Slot::CONTEXT: { |
+ // Follow the context chain if necessary. |
+ ASSERT(!tmp.is(cp)); // do not overwrite context register |
+ Register context = cp; |
+ int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
+ for (int i = 0; i < chain_length; i++) { |
+ // Load the closure. |
+ // (All contexts, even 'with' contexts, have a closure, |
+ // and it is the same for all contexts inside a function. |
+ // There is no need to go to the function context first.) |
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
+ // Load the function context (which is the incoming, outer context). |
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
+ context = tmp; |
+ } |
+ // We may have a 'with' context now. Get the function context. |
+ // (In fact this mov may never be the needed, since the scope analysis |
+ // may not permit a direct context access in this case and thus we are |
+ // always at a function context. However it is safe to dereference be- |
+ // cause the function context of a function context is itself. Before |
+ // deleting this mov we should try to create a counter-example first, |
+ // though...) |
+ __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
+ return ContextOperand(tmp, index); |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ return MemOperand(r0, 0); |
+ } |
+} |
+ |
+ |
+MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( |
+ Slot* slot, |
+ Register tmp, |
+ Register tmp2, |
+ JumpTarget* slow) { |
+ ASSERT(slot->type() == Slot::CONTEXT); |
+ Register context = cp; |
+ |
+ for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
+ if (s->num_heap_slots() > 0) { |
+ if (s->calls_eval()) { |
+ // Check that extension is NULL. |
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
+ __ tst(tmp2, tmp2); |
+ slow->Branch(ne); |
+ } |
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
+ context = tmp; |
+ } |
+ } |
+ // Check that last extension is NULL. |
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
+ __ tst(tmp2, tmp2); |
+ slow->Branch(ne); |
+ __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
+ return ContextOperand(tmp, slot->index()); |
+} |
+ |
+ |
+void CodeGenerator::LoadConditionAndSpill(Expression* expression, |
+ TypeofState typeof_state, |
+ JumpTarget* true_target, |
+ JumpTarget* false_target, |
+ bool force_control) { |
+ ASSERT(in_spilled_code()); |
+ set_in_spilled_code(false); |
+ LoadCondition(expression, typeof_state, true_target, false_target, |
+ force_control); |
+ if (frame_ != NULL) { |
+ frame_->SpillAll(); |
+ } |
+ set_in_spilled_code(true); |
+} |
+ |
+ |
+// Loads a value on TOS. If it is a boolean value, the result may have been |
+// (partially) translated into branches, or it may have set the condition |
+// code register. If force_cc is set, the value is forced to set the |
+// condition code register and no value is pushed. If the condition code |
+// register was set, has_cc() is true and cc_reg_ contains the condition to |
+// test for 'true'. |
+void CodeGenerator::LoadCondition(Expression* x, |
+ TypeofState typeof_state, |
+ JumpTarget* true_target, |
+ JumpTarget* false_target, |
+ bool force_cc) { |
+ ASSERT(!in_spilled_code()); |
+ ASSERT(!has_cc()); |
+ int original_height = frame_->height(); |
+ |
+ { CodeGenState new_state(this, typeof_state, true_target, false_target); |
+ Visit(x); |
+ |
+ // If we hit a stack overflow, we may not have actually visited |
+ // the expression. In that case, we ensure that we have a |
+ // valid-looking frame state because we will continue to generate |
+ // code as we unwind the C++ stack. |
+ // |
+ // It's possible to have both a stack overflow and a valid frame |
+ // state (eg, a subexpression overflowed, visiting it returned |
+ // with a dummied frame state, and visiting this expression |
+ // returned with a normal-looking state). |
+ if (HasStackOverflow() && |
+ has_valid_frame() && |
+ !has_cc() && |
+ frame_->height() == original_height) { |
+ true_target->Jump(); |
+ } |
+ } |
+ if (force_cc && frame_ != NULL && !has_cc()) { |
+ // Convert the TOS value to a boolean in the condition code register. |
+ ToBoolean(true_target, false_target); |
+ } |
+ ASSERT(!force_cc || !has_valid_frame() || has_cc()); |
+ ASSERT(!has_valid_frame() || |
+ (has_cc() && frame_->height() == original_height) || |
+ (!has_cc() && frame_->height() == original_height + 1)); |
+} |
+ |
+ |
+void CodeGenerator::LoadAndSpill(Expression* expression, |
+ TypeofState typeof_state) { |
+ ASSERT(in_spilled_code()); |
+ set_in_spilled_code(false); |
+ Load(expression, typeof_state); |
+ frame_->SpillAll(); |
+ set_in_spilled_code(true); |
+} |
+ |
+ |
+void CodeGenerator::Load(Expression* x, TypeofState typeof_state) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ ASSERT(!in_spilled_code()); |
+ JumpTarget true_target(this); |
+ JumpTarget false_target(this); |
+ LoadCondition(x, typeof_state, &true_target, &false_target, false); |
+ |
+ if (has_cc()) { |
+ // Convert cc_reg_ into a boolean value. |
+ JumpTarget loaded(this); |
+ JumpTarget materialize_true(this); |
+ materialize_true.Branch(cc_reg_); |
+ __ mov(r0, Operand(Factory::false_value())); |
+ frame_->EmitPush(r0); |
+ loaded.Jump(); |
+ materialize_true.Bind(); |
+ __ mov(r0, Operand(Factory::true_value())); |
+ frame_->EmitPush(r0); |
+ loaded.Bind(); |
+ cc_reg_ = al; |
+ } |
+ |
+ if (true_target.is_linked() || false_target.is_linked()) { |
+ // We have at least one condition value that has been "translated" |
+ // into a branch, thus it needs to be loaded explicitly. |
+ JumpTarget loaded(this); |
+ if (frame_ != NULL) { |
+ loaded.Jump(); // Don't lose the current TOS. |
+ } |
+ bool both = true_target.is_linked() && false_target.is_linked(); |
+ // Load "true" if necessary. |
+ if (true_target.is_linked()) { |
+ true_target.Bind(); |
+ __ mov(r0, Operand(Factory::true_value())); |
+ frame_->EmitPush(r0); |
+ } |
+ // If both "true" and "false" need to be loaded jump across the code for |
+ // "false". |
+ if (both) { |
+ loaded.Jump(); |
+ } |
+ // Load "false" if necessary. |
+ if (false_target.is_linked()) { |
+ false_target.Bind(); |
+ __ mov(r0, Operand(Factory::false_value())); |
+ frame_->EmitPush(r0); |
+ } |
+ // A value is loaded on all paths reaching this point. |
+ loaded.Bind(); |
+ } |
+ ASSERT(has_valid_frame()); |
+ ASSERT(!has_cc()); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::LoadGlobal() { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ __ ldr(r0, GlobalObject()); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::LoadGlobalReceiver(Register scratch) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ __ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX)); |
+ __ ldr(scratch, |
+ FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset)); |
+ frame_->EmitPush(scratch); |
+} |
+ |
+ |
+// TODO(1241834): Get rid of this function in favor of just using Load, now |
+// that we have the INSIDE_TYPEOF typeof state. => Need to handle global |
+// variables w/o reference errors elsewhere. |
+void CodeGenerator::LoadTypeofExpression(Expression* x) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Variable* variable = x->AsVariableProxy()->AsVariable(); |
+ if (variable != NULL && !variable->is_this() && variable->is_global()) { |
+ // NOTE: This is somewhat nasty. We force the compiler to load |
+ // the variable as if through '<global>.<variable>' to make sure we |
+ // do not get reference errors. |
+ Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
+ Literal key(variable->name()); |
+ // TODO(1241834): Fetch the position from the variable instead of using |
+ // no position. |
+ Property property(&global, &key, RelocInfo::kNoPosition); |
+ LoadAndSpill(&property); |
+ } else { |
+ LoadAndSpill(x, INSIDE_TYPEOF); |
+ } |
+} |
+ |
+ |
+Reference::Reference(CodeGenerator* cgen, Expression* expression) |
+ : cgen_(cgen), expression_(expression), type_(ILLEGAL) { |
+ cgen->LoadReference(this); |
+} |
+ |
+ |
+Reference::~Reference() { |
+ cgen_->UnloadReference(this); |
+} |
+ |
+ |
+void CodeGenerator::LoadReference(Reference* ref) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ LoadReference"); |
+ Expression* e = ref->expression(); |
+ Property* property = e->AsProperty(); |
+ Variable* var = e->AsVariableProxy()->AsVariable(); |
+ |
+ if (property != NULL) { |
+ // The expression is either a property or a variable proxy that rewrites |
+ // to a property. |
+ LoadAndSpill(property->obj()); |
+ // We use a named reference if the key is a literal symbol, unless it is |
+ // a string that can be legally parsed as an integer. This is because |
+ // otherwise we will not get into the slow case code that handles [] on |
+ // String objects. |
+ Literal* literal = property->key()->AsLiteral(); |
+ uint32_t dummy; |
+ if (literal != NULL && |
+ literal->handle()->IsSymbol() && |
+ !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) { |
+ ref->set_type(Reference::NAMED); |
+ } else { |
+ LoadAndSpill(property->key()); |
+ ref->set_type(Reference::KEYED); |
+ } |
+ } else if (var != NULL) { |
+ // The expression is a variable proxy that does not rewrite to a |
+ // property. Global variables are treated as named property references. |
+ if (var->is_global()) { |
+ LoadGlobal(); |
+ ref->set_type(Reference::NAMED); |
+ } else { |
+ ASSERT(var->slot() != NULL); |
+ ref->set_type(Reference::SLOT); |
+ } |
+ } else { |
+ // Anything else is a runtime error. |
+ LoadAndSpill(e); |
+ frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
+ } |
+} |
+ |
+ |
+void CodeGenerator::UnloadReference(Reference* ref) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // Pop a reference from the stack while preserving TOS. |
+ Comment cmnt(masm_, "[ UnloadReference"); |
+ int size = ref->size(); |
+ if (size > 0) { |
+ frame_->EmitPop(r0); |
+ frame_->Drop(size); |
+ frame_->EmitPush(r0); |
+ } |
+} |
+ |
+ |
+// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given |
+// register to a boolean in the condition code register. The code |
+// may jump to 'false_target' in case the register converts to 'false'. |
+void CodeGenerator::ToBoolean(JumpTarget* true_target, |
+ JumpTarget* false_target) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // Note: The generated code snippet does not change stack variables. |
+ // Only the condition code should be set. |
+ frame_->EmitPop(r0); |
+ |
+ // Fast case checks |
+ |
+ // Check if the value is 'false'. |
+ __ cmp(r0, Operand(Factory::false_value())); |
+ false_target->Branch(eq); |
+ |
+ // Check if the value is 'true'. |
+ __ cmp(r0, Operand(Factory::true_value())); |
+ true_target->Branch(eq); |
+ |
+ // Check if the value is 'undefined'. |
+ __ cmp(r0, Operand(Factory::undefined_value())); |
+ false_target->Branch(eq); |
+ |
+ // Check if the value is a smi. |
+ __ cmp(r0, Operand(Smi::FromInt(0))); |
+ false_target->Branch(eq); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ true_target->Branch(eq); |
+ |
+ // Slow case: call the runtime. |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kToBool, 1); |
+ // Convert the result (r0) to a condition code. |
+ __ cmp(r0, Operand(Factory::false_value())); |
+ |
+ cc_reg_ = ne; |
+} |
+ |
+ |
+class GenericBinaryOpStub : public CodeStub { |
+ public: |
+ GenericBinaryOpStub(Token::Value op, |
+ OverwriteMode mode) |
+ : op_(op), mode_(mode) { } |
+ |
+ private: |
+ Token::Value op_; |
+ OverwriteMode mode_; |
+ |
+ // Minor key encoding in 16 bits. |
+ class ModeBits: public BitField<OverwriteMode, 0, 2> {}; |
+ class OpBits: public BitField<Token::Value, 2, 14> {}; |
+ |
+ Major MajorKey() { return GenericBinaryOp; } |
+ int MinorKey() { |
+ // Encode the parameters in a unique 16 bit value. |
+ return OpBits::encode(op_) |
+ | ModeBits::encode(mode_); |
+ } |
+ |
+ void Generate(MacroAssembler* masm); |
+ |
+ const char* GetName() { |
+ switch (op_) { |
+ case Token::ADD: return "GenericBinaryOpStub_ADD"; |
+ case Token::SUB: return "GenericBinaryOpStub_SUB"; |
+ case Token::MUL: return "GenericBinaryOpStub_MUL"; |
+ case Token::DIV: return "GenericBinaryOpStub_DIV"; |
+ case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR"; |
+ case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND"; |
+ case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR"; |
+ case Token::SAR: return "GenericBinaryOpStub_SAR"; |
+ case Token::SHL: return "GenericBinaryOpStub_SHL"; |
+ case Token::SHR: return "GenericBinaryOpStub_SHR"; |
+ default: return "GenericBinaryOpStub"; |
+ } |
+ } |
+ |
+#ifdef DEBUG |
+ void Print() { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); } |
+#endif |
+}; |
+ |
+ |
+void CodeGenerator::GenericBinaryOperation(Token::Value op, |
+ OverwriteMode overwrite_mode) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // sp[0] : y |
+ // sp[1] : x |
+ // result : r0 |
+ |
+ // Stub is entered with a call: 'return address' is in lr. |
+ switch (op) { |
+ case Token::ADD: // fall through. |
+ case Token::SUB: // fall through. |
+ case Token::MUL: |
+ case Token::BIT_OR: |
+ case Token::BIT_AND: |
+ case Token::BIT_XOR: |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: { |
+ frame_->EmitPop(r0); // r0 : y |
+ frame_->EmitPop(r1); // r1 : x |
+ GenericBinaryOpStub stub(op, overwrite_mode); |
+ frame_->CallStub(&stub, 0); |
+ break; |
+ } |
+ |
+ case Token::DIV: { |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); |
+ frame_->InvokeBuiltin(Builtins::DIV, CALL_JS, &arg_count, 2); |
+ break; |
+ } |
+ |
+ case Token::MOD: { |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); |
+ frame_->InvokeBuiltin(Builtins::MOD, CALL_JS, &arg_count, 2); |
+ break; |
+ } |
+ |
+ case Token::COMMA: |
+ frame_->EmitPop(r0); |
+ // simply discard left value |
+ frame_->Drop(); |
+ break; |
+ |
+ default: |
+ // Other cases should have been handled before this point. |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+class DeferredInlineSmiOperation: public DeferredCode { |
+ public: |
+ DeferredInlineSmiOperation(CodeGenerator* generator, |
+ Token::Value op, |
+ int value, |
+ bool reversed, |
+ OverwriteMode overwrite_mode) |
+ : DeferredCode(generator), |
+ op_(op), |
+ value_(value), |
+ reversed_(reversed), |
+ overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlinedSmiOperation"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ Token::Value op_; |
+ int value_; |
+ bool reversed_; |
+ OverwriteMode overwrite_mode_; |
+}; |
+ |
+ |
+void DeferredInlineSmiOperation::Generate() { |
+ enter()->Bind(); |
+ VirtualFrame::SpilledScope spilled_scope(generator()); |
+ |
+ switch (op_) { |
+ case Token::ADD: { |
+ if (reversed_) { |
+ // revert optimistic add |
+ __ sub(r0, r0, Operand(Smi::FromInt(value_))); |
+ __ mov(r1, Operand(Smi::FromInt(value_))); |
+ } else { |
+ // revert optimistic add |
+ __ sub(r1, r0, Operand(Smi::FromInt(value_))); |
+ __ mov(r0, Operand(Smi::FromInt(value_))); |
+ } |
+ break; |
+ } |
+ |
+ case Token::SUB: { |
+ if (reversed_) { |
+ // revert optimistic sub |
+ __ rsb(r0, r0, Operand(Smi::FromInt(value_))); |
+ __ mov(r1, Operand(Smi::FromInt(value_))); |
+ } else { |
+ __ add(r1, r0, Operand(Smi::FromInt(value_))); |
+ __ mov(r0, Operand(Smi::FromInt(value_))); |
+ } |
+ break; |
+ } |
+ |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: { |
+ if (reversed_) { |
+ __ mov(r1, Operand(Smi::FromInt(value_))); |
+ } else { |
+ __ mov(r1, Operand(r0)); |
+ __ mov(r0, Operand(Smi::FromInt(value_))); |
+ } |
+ break; |
+ } |
+ |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: { |
+ if (!reversed_) { |
+ __ mov(r1, Operand(r0)); |
+ __ mov(r0, Operand(Smi::FromInt(value_))); |
+ } else { |
+ UNREACHABLE(); // should have been handled in SmiOperation |
+ } |
+ break; |
+ } |
+ |
+ default: |
+ // other cases should have been handled before this point. |
+ UNREACHABLE(); |
+ break; |
+ } |
+ |
+ GenericBinaryOpStub igostub(op_, overwrite_mode_); |
+ Result arg0 = generator()->allocator()->Allocate(r1); |
+ ASSERT(arg0.is_valid()); |
+ Result arg1 = generator()->allocator()->Allocate(r0); |
+ ASSERT(arg1.is_valid()); |
+ generator()->frame()->CallStub(&igostub, &arg0, &arg1); |
+ exit_.Jump(); |
+} |
+ |
+ |
+void CodeGenerator::SmiOperation(Token::Value op, |
+ Handle<Object> value, |
+ bool reversed, |
+ OverwriteMode mode) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // NOTE: This is an attempt to inline (a bit) more of the code for |
+ // some possible smi operations (like + and -) when (at least) one |
+ // of the operands is a literal smi. With this optimization, the |
+ // performance of the system is increased by ~15%, and the generated |
+ // code size is increased by ~1% (measured on a combination of |
+ // different benchmarks). |
+ |
+ // sp[0] : operand |
+ |
+ int int_value = Smi::cast(*value)->value(); |
+ |
+ JumpTarget exit(this); |
+ frame_->EmitPop(r0); |
+ |
+ switch (op) { |
+ case Token::ADD: { |
+ DeferredCode* deferred = |
+ new DeferredInlineSmiOperation(this, op, int_value, reversed, mode); |
+ |
+ __ add(r0, r0, Operand(value), SetCC); |
+ deferred->enter()->Branch(vs); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ deferred->enter()->Branch(ne); |
+ deferred->BindExit(); |
+ break; |
+ } |
+ |
+ case Token::SUB: { |
+ DeferredCode* deferred = |
+ new DeferredInlineSmiOperation(this, op, int_value, reversed, mode); |
+ |
+ if (!reversed) { |
+ __ sub(r0, r0, Operand(value), SetCC); |
+ } else { |
+ __ rsb(r0, r0, Operand(value), SetCC); |
+ } |
+ deferred->enter()->Branch(vs); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ deferred->enter()->Branch(ne); |
+ deferred->BindExit(); |
+ break; |
+ } |
+ |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: { |
+ DeferredCode* deferred = |
+ new DeferredInlineSmiOperation(this, op, int_value, reversed, mode); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ deferred->enter()->Branch(ne); |
+ switch (op) { |
+ case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break; |
+ case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break; |
+ case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break; |
+ default: UNREACHABLE(); |
+ } |
+ deferred->BindExit(); |
+ break; |
+ } |
+ |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: { |
+ if (reversed) { |
+ __ mov(ip, Operand(value)); |
+ frame_->EmitPush(ip); |
+ frame_->EmitPush(r0); |
+ GenericBinaryOperation(op, mode); |
+ |
+ } else { |
+ int shift_value = int_value & 0x1f; // least significant 5 bits |
+ DeferredCode* deferred = |
+ new DeferredInlineSmiOperation(this, op, shift_value, false, mode); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ deferred->enter()->Branch(ne); |
+ __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags |
+ switch (op) { |
+ case Token::SHL: { |
+ __ mov(r2, Operand(r2, LSL, shift_value)); |
+ // check that the *unsigned* result fits in a smi |
+ __ add(r3, r2, Operand(0x40000000), SetCC); |
+ deferred->enter()->Branch(mi); |
+ break; |
+ } |
+ case Token::SHR: { |
+ // LSR by immediate 0 means shifting 32 bits. |
+ if (shift_value != 0) { |
+ __ mov(r2, Operand(r2, LSR, shift_value)); |
+ } |
+ // check that the *unsigned* result fits in a smi |
+ // neither of the two high-order bits can be set: |
+ // - 0x80000000: high bit would be lost when smi tagging |
+ // - 0x40000000: this number would convert to negative when |
+ // smi tagging these two cases can only happen with shifts |
+ // by 0 or 1 when handed a valid smi |
+ __ and_(r3, r2, Operand(0xc0000000), SetCC); |
+ deferred->enter()->Branch(ne); |
+ break; |
+ } |
+ case Token::SAR: { |
+ if (shift_value != 0) { |
+ // ASR by immediate 0 means shifting 32 bits. |
+ __ mov(r2, Operand(r2, ASR, shift_value)); |
+ } |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+ __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
+ deferred->BindExit(); |
+ } |
+ break; |
+ } |
+ |
+ default: |
+ if (!reversed) { |
+ frame_->EmitPush(r0); |
+ __ mov(r0, Operand(value)); |
+ frame_->EmitPush(r0); |
+ } else { |
+ __ mov(ip, Operand(value)); |
+ frame_->EmitPush(ip); |
+ frame_->EmitPush(r0); |
+ } |
+ GenericBinaryOperation(op, mode); |
+ break; |
+ } |
+ |
+ exit.Bind(); |
+} |
+ |
+ |
+void CodeGenerator::Comparison(Condition cc, bool strict) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // sp[0] : y |
+ // sp[1] : x |
+ // result : cc register |
+ |
+ // Strict only makes sense for equality comparisons. |
+ ASSERT(!strict || cc == eq); |
+ |
+ JumpTarget exit(this); |
+ JumpTarget smi(this); |
+ // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
+ if (cc == gt || cc == le) { |
+ cc = ReverseCondition(cc); |
+ frame_->EmitPop(r1); |
+ frame_->EmitPop(r0); |
+ } else { |
+ frame_->EmitPop(r0); |
+ frame_->EmitPop(r1); |
+ } |
+ __ orr(r2, r0, Operand(r1)); |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ smi.Branch(eq); |
+ |
+ // Perform non-smi comparison by runtime call. |
+ frame_->EmitPush(r1); |
+ |
+ // Figure out which native to call and setup the arguments. |
+ Builtins::JavaScript native; |
+ int arg_count = 1; |
+ if (cc == eq) { |
+ native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ } else { |
+ native = Builtins::COMPARE; |
+ int ncr; // NaN compare result |
+ if (cc == lt || cc == le) { |
+ ncr = GREATER; |
+ } else { |
+ ASSERT(cc == gt || cc == ge); // remaining cases |
+ ncr = LESS; |
+ } |
+ frame_->EmitPush(r0); |
+ arg_count++; |
+ __ mov(r0, Operand(Smi::FromInt(ncr))); |
+ } |
+ |
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ frame_->EmitPush(r0); |
+ Result arg_count_register = allocator_->Allocate(r0); |
+ ASSERT(arg_count_register.is_valid()); |
+ __ mov(arg_count_register.reg(), Operand(arg_count)); |
+ Result result = frame_->InvokeBuiltin(native, |
+ CALL_JS, |
+ &arg_count_register, |
+ arg_count + 1); |
+ __ cmp(result.reg(), Operand(0)); |
+ result.Unuse(); |
+ exit.Jump(); |
+ |
+ // test smi equality by pointer comparison. |
+ smi.Bind(); |
+ __ cmp(r1, Operand(r0)); |
+ |
+ exit.Bind(); |
+ cc_reg_ = cc; |
+} |
+ |
+ |
+class CallFunctionStub: public CodeStub { |
+ public: |
+ explicit CallFunctionStub(int argc) : argc_(argc) {} |
+ |
+ void Generate(MacroAssembler* masm); |
+ |
+ private: |
+ int argc_; |
+ |
+#if defined(DEBUG) |
+ void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); } |
+#endif // defined(DEBUG) |
+ |
+ Major MajorKey() { return CallFunction; } |
+ int MinorKey() { return argc_; } |
+}; |
+ |
+ |
+// Call the function on the stack with the given arguments. |
+void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
+ int position) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // Push the arguments ("left-to-right") on the stack. |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ // Record the position for debugging purposes. |
+ CodeForSourcePosition(position); |
+ |
+ // Use the shared code stub to call the function. |
+ CallFunctionStub call_function(arg_count); |
+ frame_->CallStub(&call_function, arg_count + 1); |
+ |
+ // Restore context and pop function from the stack. |
+ __ ldr(cp, frame_->Context()); |
+ frame_->Drop(); // discard the TOS |
+} |
+ |
+ |
+void CodeGenerator::Branch(bool if_true, JumpTarget* target) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(has_cc()); |
+ Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_); |
+ target->Branch(cc); |
+ cc_reg_ = al; |
+} |
+ |
+ |
+void CodeGenerator::CheckStack() { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ if (FLAG_check_stack) { |
+ Comment cmnt(masm_, "[ check stack"); |
+ StackCheckStub stub; |
+ frame_->CallStub(&stub, 0); |
+ } |
+} |
+ |
+ |
+void CodeGenerator::VisitAndSpill(Statement* statement) { |
+ ASSERT(in_spilled_code()); |
+ set_in_spilled_code(false); |
+ Visit(statement); |
+ if (frame_ != NULL) { |
+ frame_->SpillAll(); |
+ } |
+ set_in_spilled_code(true); |
+} |
+ |
+ |
+void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { |
+ ASSERT(in_spilled_code()); |
+ set_in_spilled_code(false); |
+ VisitStatements(statements); |
+ if (frame_ != NULL) { |
+ frame_->SpillAll(); |
+ } |
+ set_in_spilled_code(true); |
+} |
+ |
+ |
+void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ for (int i = 0; frame_ != NULL && i < statements->length(); i++) { |
+ VisitAndSpill(statements->at(i)); |
+ } |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitBlock(Block* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Block"); |
+ CodeForStatementPosition(node); |
+ node->break_target()->Initialize(this); |
+ VisitStatementsAndSpill(node->statements()); |
+ if (node->break_target()->is_linked()) { |
+ node->break_target()->Bind(); |
+ } |
+ node->break_target()->Unuse(); |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ __ mov(r0, Operand(pairs)); |
+ frame_->EmitPush(r0); |
+ frame_->EmitPush(cp); |
+ __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0))); |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
+ // The result is discarded. |
+} |
+ |
+ |
+void CodeGenerator::VisitDeclaration(Declaration* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Declaration"); |
+ CodeForStatementPosition(node); |
+ Variable* var = node->proxy()->var(); |
+ ASSERT(var != NULL); // must have been resolved |
+ Slot* slot = var->slot(); |
+ |
+ // If it was not possible to allocate the variable at compile time, |
+ // we need to "declare" it at runtime to make sure it actually |
+ // exists in the local context. |
+ if (slot != NULL && slot->type() == Slot::LOOKUP) { |
+ // Variables with a "LOOKUP" slot were introduced as non-locals |
+ // during variable resolution and must have mode DYNAMIC. |
+ ASSERT(var->is_dynamic()); |
+ // For now, just do a runtime call. |
+ frame_->EmitPush(cp); |
+ __ mov(r0, Operand(var->name())); |
+ frame_->EmitPush(r0); |
+ // Declaration nodes are always declared in only two modes. |
+ ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
+ PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
+ __ mov(r0, Operand(Smi::FromInt(attr))); |
+ frame_->EmitPush(r0); |
+ // Push initial value, if any. |
+ // Note: For variables we must not push an initial value (such as |
+ // 'undefined') because we may have a (legal) redeclaration and we |
+ // must not destroy the current value. |
+ if (node->mode() == Variable::CONST) { |
+ __ mov(r0, Operand(Factory::the_hole_value())); |
+ frame_->EmitPush(r0); |
+ } else if (node->fun() != NULL) { |
+ LoadAndSpill(node->fun()); |
+ } else { |
+ __ mov(r0, Operand(0)); // no initial value! |
+ frame_->EmitPush(r0); |
+ } |
+ frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
+ // Ignore the return value (declarations are statements). |
+ ASSERT(frame_->height() == original_height); |
+ return; |
+ } |
+ |
+ ASSERT(!var->is_global()); |
+ |
+ // If we have a function or a constant, we need to initialize the variable. |
+ Expression* val = NULL; |
+ if (node->mode() == Variable::CONST) { |
+ val = new Literal(Factory::the_hole_value()); |
+ } else { |
+ val = node->fun(); // NULL if we don't have a function |
+ } |
+ |
+ if (val != NULL) { |
+ { |
+ // Set initial value. |
+ Reference target(this, node->proxy()); |
+ LoadAndSpill(val); |
+ target.SetValue(NOT_CONST_INIT); |
+ // The reference is removed from the stack (preserving TOS) when |
+ // it goes out of scope. |
+ } |
+ // Get rid of the assigned value (declarations are statements). |
+ frame_->Drop(); |
+ } |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ExpressionStatement"); |
+ CodeForStatementPosition(node); |
+ Expression* expression = node->expression(); |
+ expression->MarkAsStatement(); |
+ LoadAndSpill(expression); |
+ frame_->Drop(); |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "// EmptyStatement"); |
+ CodeForStatementPosition(node); |
+ // nothing to do |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitIfStatement(IfStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ IfStatement"); |
+ // Generate different code depending on which parts of the if statement |
+ // are present or not. |
+ bool has_then_stm = node->HasThenStatement(); |
+ bool has_else_stm = node->HasElseStatement(); |
+ |
+ CodeForStatementPosition(node); |
+ |
+ JumpTarget exit(this); |
+ if (has_then_stm && has_else_stm) { |
+ Comment cmnt(masm_, "[ IfThenElse"); |
+ JumpTarget then(this); |
+ JumpTarget else_(this); |
+ // if (cond) |
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF, |
+ &then, &else_, true); |
+ if (frame_ != NULL) { |
+ Branch(false, &else_); |
+ } |
+ // then |
+ if (frame_ != NULL || then.is_linked()) { |
+ then.Bind(); |
+ VisitAndSpill(node->then_statement()); |
+ } |
+ if (frame_ != NULL) { |
+ exit.Jump(); |
+ } |
+ // else |
+ if (else_.is_linked()) { |
+ else_.Bind(); |
+ VisitAndSpill(node->else_statement()); |
+ } |
+ |
+ } else if (has_then_stm) { |
+ Comment cmnt(masm_, "[ IfThen"); |
+ ASSERT(!has_else_stm); |
+ JumpTarget then(this); |
+ // if (cond) |
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF, |
+ &then, &exit, true); |
+ if (frame_ != NULL) { |
+ Branch(false, &exit); |
+ } |
+ // then |
+ if (frame_ != NULL || then.is_linked()) { |
+ then.Bind(); |
+ VisitAndSpill(node->then_statement()); |
+ } |
+ |
+ } else if (has_else_stm) { |
+ Comment cmnt(masm_, "[ IfElse"); |
+ ASSERT(!has_then_stm); |
+ JumpTarget else_(this); |
+ // if (!cond) |
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF, |
+ &exit, &else_, true); |
+ if (frame_ != NULL) { |
+ Branch(true, &exit); |
+ } |
+ // else |
+ if (frame_ != NULL || else_.is_linked()) { |
+ else_.Bind(); |
+ VisitAndSpill(node->else_statement()); |
+ } |
+ |
+ } else { |
+ Comment cmnt(masm_, "[ If"); |
+ ASSERT(!has_then_stm && !has_else_stm); |
+ // if (cond) |
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF, |
+ &exit, &exit, false); |
+ if (frame_ != NULL) { |
+ if (has_cc()) { |
+ cc_reg_ = al; |
+ } else { |
+ frame_->Drop(); |
+ } |
+ } |
+ } |
+ |
+ // end |
+ if (exit.is_linked()) { |
+ exit.Bind(); |
+ } |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ContinueStatement"); |
+ CodeForStatementPosition(node); |
+ node->target()->continue_target()->Jump(); |
+} |
+ |
+ |
+void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ BreakStatement"); |
+ CodeForStatementPosition(node); |
+ node->target()->break_target()->Jump(); |
+} |
+ |
+ |
+void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ReturnStatement"); |
+ |
+ if (function_return_is_shadowed_) { |
+ CodeForStatementPosition(node); |
+ LoadAndSpill(node->expression()); |
+ frame_->EmitPop(r0); |
+ function_return_.Jump(); |
+ } else { |
+ // Load the returned value. |
+ CodeForStatementPosition(node); |
+ LoadAndSpill(node->expression()); |
+ |
+ // Pop the result from the frame and prepare the frame for |
+ // returning thus making it easier to merge. |
+ frame_->EmitPop(r0); |
+ frame_->PrepareForReturn(); |
+ |
+ function_return_.Jump(); |
+ } |
+} |
+ |
+ |
+void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ WithEnterStatement"); |
+ CodeForStatementPosition(node); |
+ LoadAndSpill(node->expression()); |
+ if (node->is_catch_block()) { |
+ frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
+ } else { |
+ frame_->CallRuntime(Runtime::kPushContext, 1); |
+ } |
+#ifdef DEBUG |
+ JumpTarget verified_true(this); |
+ __ cmp(r0, Operand(cp)); |
+ verified_true.Branch(eq); |
+ __ stop("PushContext: r0 is expected to be the same as cp"); |
+ verified_true.Bind(); |
+#endif |
+ // Update context local. |
+ __ str(cp, frame_->Context()); |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ WithExitStatement"); |
+ CodeForStatementPosition(node); |
+ // Pop context. |
+ __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); |
+ // Update context local. |
+ __ str(cp, frame_->Context()); |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+int CodeGenerator::FastCaseSwitchMaxOverheadFactor() { |
+ return kFastSwitchMaxOverheadFactor; |
+} |
+ |
+int CodeGenerator::FastCaseSwitchMinCaseCount() { |
+ return kFastSwitchMinCaseCount; |
+} |
+ |
+ |
+void CodeGenerator::GenerateFastCaseSwitchJumpTable( |
+ SwitchStatement* node, |
+ int min_index, |
+ int range, |
+ Label* default_label, |
+ Vector<Label*> case_targets, |
+ Vector<Label> case_labels) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ JumpTarget setup_default(this); |
+ JumpTarget is_smi(this); |
+ |
+ // A non-null default label pointer indicates a default case among |
+ // the case labels. Otherwise we use the break target as a |
+ // "default" for failure to hit the jump table. |
+ JumpTarget* default_target = |
+ (default_label == NULL) ? node->break_target() : &setup_default; |
+ |
+ ASSERT(kSmiTag == 0 && kSmiTagSize <= 2); |
+ frame_->EmitPop(r0); |
+ |
+ // Test for a Smi value in a HeapNumber. |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ is_smi.Branch(eq); |
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ __ cmp(r1, Operand(HEAP_NUMBER_TYPE)); |
+ default_target->Branch(ne); |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kNumberToSmi, 1); |
+ is_smi.Bind(); |
+ |
+ if (min_index != 0) { |
+ // Small positive numbers can be immediate operands. |
+ if (min_index < 0) { |
+ // If min_index is Smi::kMinValue, -min_index is not a Smi. |
+ if (Smi::IsValid(-min_index)) { |
+ __ add(r0, r0, Operand(Smi::FromInt(-min_index))); |
+ } else { |
+ __ add(r0, r0, Operand(Smi::FromInt(-min_index - 1))); |
+ __ add(r0, r0, Operand(Smi::FromInt(1))); |
+ } |
+ } else { |
+ __ sub(r0, r0, Operand(Smi::FromInt(min_index))); |
+ } |
+ } |
+ __ tst(r0, Operand(0x80000000 | kSmiTagMask)); |
+ default_target->Branch(ne); |
+ __ cmp(r0, Operand(Smi::FromInt(range))); |
+ default_target->Branch(ge); |
+ VirtualFrame* start_frame = new VirtualFrame(frame_); |
+ __ SmiJumpTable(r0, case_targets); |
+ |
+ GenerateFastCaseSwitchCases(node, case_labels, start_frame); |
+ |
+ // If there was a default case among the case labels, we need to |
+ // emit code to jump to it from the default target used for failure |
+ // to hit the jump table. |
+ if (default_label != NULL) { |
+ if (has_valid_frame()) { |
+ node->break_target()->Jump(); |
+ } |
+ setup_default.Bind(); |
+ frame_->MergeTo(start_frame); |
+ __ b(default_label); |
+ DeleteFrame(); |
+ } |
+ if (node->break_target()->is_linked()) { |
+ node->break_target()->Bind(); |
+ } |
+ |
+ delete start_frame; |
+} |
+ |
+ |
+void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ SwitchStatement"); |
+ CodeForStatementPosition(node); |
+ node->break_target()->Initialize(this); |
+ |
+ LoadAndSpill(node->tag()); |
+ if (TryGenerateFastCaseSwitchStatement(node)) { |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+ return; |
+ } |
+ |
+ JumpTarget next_test(this); |
+ JumpTarget fall_through(this); |
+ JumpTarget default_entry(this); |
+ JumpTarget default_exit(this, JumpTarget::BIDIRECTIONAL); |
+ ZoneList<CaseClause*>* cases = node->cases(); |
+ int length = cases->length(); |
+ CaseClause* default_clause = NULL; |
+ |
+ for (int i = 0; i < length; i++) { |
+ CaseClause* clause = cases->at(i); |
+ if (clause->is_default()) { |
+ // Remember the default clause and compile it at the end. |
+ default_clause = clause; |
+ continue; |
+ } |
+ |
+ Comment cmnt(masm_, "[ Case clause"); |
+ // Compile the test. |
+ next_test.Bind(); |
+ next_test.Unuse(); |
+ // Duplicate TOS. |
+ __ ldr(r0, frame_->Top()); |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(clause->label()); |
+ Comparison(eq, true); |
+ Branch(false, &next_test); |
+ |
+ // Before entering the body from the test, remove the switch value from |
+ // the stack. |
+ frame_->Drop(); |
+ |
+ // Label the body so that fall through is enabled. |
+ if (i > 0 && cases->at(i - 1)->is_default()) { |
+ default_exit.Bind(); |
+ } else { |
+ fall_through.Bind(); |
+ fall_through.Unuse(); |
+ } |
+ VisitStatementsAndSpill(clause->statements()); |
+ |
+ // If control flow can fall through from the body, jump to the next body |
+ // or the end of the statement. |
+ if (frame_ != NULL) { |
+ if (i < length - 1 && cases->at(i + 1)->is_default()) { |
+ default_entry.Jump(); |
+ } else { |
+ fall_through.Jump(); |
+ } |
+ } |
+ } |
+ |
+ // The final "test" removes the switch value. |
+ next_test.Bind(); |
+ frame_->Drop(); |
+ |
+ // If there is a default clause, compile it. |
+ if (default_clause != NULL) { |
+ Comment cmnt(masm_, "[ Default clause"); |
+ default_entry.Bind(); |
+ VisitStatementsAndSpill(default_clause->statements()); |
+ // If control flow can fall out of the default and there is a case after |
+ // it, jup to that case's body. |
+ if (frame_ != NULL && default_exit.is_bound()) { |
+ default_exit.Jump(); |
+ } |
+ } |
+ |
+ if (fall_through.is_linked()) { |
+ fall_through.Bind(); |
+ } |
+ |
+ if (node->break_target()->is_linked()) { |
+ node->break_target()->Bind(); |
+ } |
+ node->break_target()->Unuse(); |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitLoopStatement(LoopStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ LoopStatement"); |
+ CodeForStatementPosition(node); |
+ node->break_target()->Initialize(this); |
+ |
+ // Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a |
+ // known result for the test expression, with no side effects. |
+ enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW; |
+ if (node->cond() == NULL) { |
+ ASSERT(node->type() == LoopStatement::FOR_LOOP); |
+ info = ALWAYS_TRUE; |
+ } else { |
+ Literal* lit = node->cond()->AsLiteral(); |
+ if (lit != NULL) { |
+ if (lit->IsTrue()) { |
+ info = ALWAYS_TRUE; |
+ } else if (lit->IsFalse()) { |
+ info = ALWAYS_FALSE; |
+ } |
+ } |
+ } |
+ |
+ switch (node->type()) { |
+ case LoopStatement::DO_LOOP: { |
+ JumpTarget body(this, JumpTarget::BIDIRECTIONAL); |
+ |
+ // Label the top of the loop for the backward CFG edge. If the test |
+ // is always true we can use the continue target, and if the test is |
+ // always false there is no need. |
+ if (info == ALWAYS_TRUE) { |
+ node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL); |
+ node->continue_target()->Bind(); |
+ } else if (info == ALWAYS_FALSE) { |
+ node->continue_target()->Initialize(this); |
+ } else { |
+ ASSERT(info == DONT_KNOW); |
+ node->continue_target()->Initialize(this); |
+ body.Bind(); |
+ } |
+ |
+ CheckStack(); // TODO(1222600): ignore if body contains calls. |
+ VisitAndSpill(node->body()); |
+ |
+ // Compile the test. |
+ if (info == ALWAYS_TRUE) { |
+ if (has_valid_frame()) { |
+ // If control can fall off the end of the body, jump back to the |
+ // top. |
+ node->continue_target()->Jump(); |
+ } |
+ } else if (info == ALWAYS_FALSE) { |
+ // If we have a continue in the body, we only have to bind its jump |
+ // target. |
+ if (node->continue_target()->is_linked()) { |
+ node->continue_target()->Bind(); |
+ } |
+ } else { |
+ ASSERT(info == DONT_KNOW); |
+ // We have to compile the test expression if it can be reached by |
+ // control flow falling out of the body or via continue. |
+ if (node->continue_target()->is_linked()) { |
+ node->continue_target()->Bind(); |
+ } |
+ if (has_valid_frame()) { |
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF, |
+ &body, node->break_target(), true); |
+ if (has_valid_frame()) { |
+ // A invalid frame here indicates that control did not |
+ // fall out of the test expression. |
+ Branch(true, &body); |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ |
+ case LoopStatement::WHILE_LOOP: { |
+ // If the test is never true and has no side effects there is no need |
+ // to compile the test or body. |
+ if (info == ALWAYS_FALSE) break; |
+ |
+ // Label the top of the loop with the continue target for the backward |
+ // CFG edge. |
+ node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL); |
+ node->continue_target()->Bind(); |
+ |
+ if (info == DONT_KNOW) { |
+ JumpTarget body(this); |
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF, |
+ &body, node->break_target(), true); |
+ if (has_valid_frame()) { |
+ // A NULL frame indicates that control did not fall out of the |
+ // test expression. |
+ Branch(false, node->break_target()); |
+ } |
+ if (has_valid_frame() || body.is_linked()) { |
+ body.Bind(); |
+ } |
+ } |
+ |
+ if (has_valid_frame()) { |
+ CheckStack(); // TODO(1222600): ignore if body contains calls. |
+ VisitAndSpill(node->body()); |
+ |
+ // If control flow can fall out of the body, jump back to the top. |
+ if (has_valid_frame()) { |
+ node->continue_target()->Jump(); |
+ } |
+ } |
+ break; |
+ } |
+ |
+ case LoopStatement::FOR_LOOP: { |
+ JumpTarget loop(this, JumpTarget::BIDIRECTIONAL); |
+ |
+ if (node->init() != NULL) { |
+ VisitAndSpill(node->init()); |
+ } |
+ |
+ // There is no need to compile the test or body. |
+ if (info == ALWAYS_FALSE) break; |
+ |
+ // If there is no update statement, label the top of the loop with the |
+ // continue target, otherwise with the loop target. |
+ if (node->next() == NULL) { |
+ node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL); |
+ node->continue_target()->Bind(); |
+ } else { |
+ node->continue_target()->Initialize(this); |
+ loop.Bind(); |
+ } |
+ |
+ // If the test is always true, there is no need to compile it. |
+ if (info == DONT_KNOW) { |
+ JumpTarget body(this); |
+ LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF, |
+ &body, node->break_target(), true); |
+ if (has_valid_frame()) { |
+ Branch(false, node->break_target()); |
+ } |
+ if (has_valid_frame() || body.is_linked()) { |
+ body.Bind(); |
+ } |
+ } |
+ |
+ if (has_valid_frame()) { |
+ CheckStack(); // TODO(1222600): ignore if body contains calls. |
+ VisitAndSpill(node->body()); |
+ |
+ if (node->next() == NULL) { |
+ // If there is no update statement and control flow can fall out |
+ // of the loop, jump directly to the continue label. |
+ if (has_valid_frame()) { |
+ node->continue_target()->Jump(); |
+ } |
+ } else { |
+ // If there is an update statement and control flow can reach it |
+ // via falling out of the body of the loop or continuing, we |
+ // compile the update statement. |
+ if (node->continue_target()->is_linked()) { |
+ node->continue_target()->Bind(); |
+ } |
+ if (has_valid_frame()) { |
+ // Record source position of the statement as this code which is |
+ // after the code for the body actually belongs to the loop |
+ // statement and not the body. |
+ CodeForStatementPosition(node); |
+ VisitAndSpill(node->next()); |
+ loop.Jump(); |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ } |
+ |
+ if (node->break_target()->is_linked()) { |
+ node->break_target()->Bind(); |
+ } |
+ node->continue_target()->Unuse(); |
+ node->break_target()->Unuse(); |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ ASSERT(!in_spilled_code()); |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ForInStatement"); |
+ CodeForStatementPosition(node); |
+ |
+ JumpTarget primitive(this); |
+ JumpTarget jsobject(this); |
+ JumpTarget fixed_array(this); |
+ JumpTarget entry(this, JumpTarget::BIDIRECTIONAL); |
+ JumpTarget end_del_check(this); |
+ JumpTarget exit(this); |
+ |
+ // Get the object to enumerate over (converted to JSObject). |
+ LoadAndSpill(node->enumerable()); |
+ |
+ // Both SpiderMonkey and kjs ignore null and undefined in contrast |
+ // to the specification. 12.6.4 mandates a call to ToObject. |
+ frame_->EmitPop(r0); |
+ __ cmp(r0, Operand(Factory::undefined_value())); |
+ exit.Branch(eq); |
+ __ cmp(r0, Operand(Factory::null_value())); |
+ exit.Branch(eq); |
+ |
+ // Stack layout in body: |
+ // [iteration counter (Smi)] |
+ // [length of array] |
+ // [FixedArray] |
+ // [Map or 0] |
+ // [Object] |
+ |
+ // Check if enumerable is already a JSObject |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ primitive.Branch(eq); |
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE)); |
+ jsobject.Branch(hs); |
+ |
+ primitive.Bind(); |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(0)); |
+ frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, &arg_count, 1); |
+ |
+ jsobject.Bind(); |
+ // Get the set of properties (as a FixedArray or Map). |
+ frame_->EmitPush(r0); // duplicate the object being enumerated |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
+ |
+ // If we got a Map, we can do a fast modification check. |
+ // Otherwise, we got a FixedArray, and we have to do a slow check. |
+ __ mov(r2, Operand(r0)); |
+ __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); |
+ __ cmp(r1, Operand(Factory::meta_map())); |
+ fixed_array.Branch(ne); |
+ |
+ // Get enum cache |
+ __ mov(r1, Operand(r0)); |
+ __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); |
+ __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); |
+ __ ldr(r2, |
+ FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
+ |
+ frame_->EmitPush(r0); // map |
+ frame_->EmitPush(r2); // enum cache bridge cache |
+ __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
+ __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
+ frame_->EmitPush(r0); |
+ __ mov(r0, Operand(Smi::FromInt(0))); |
+ frame_->EmitPush(r0); |
+ entry.Jump(); |
+ |
+ fixed_array.Bind(); |
+ __ mov(r1, Operand(Smi::FromInt(0))); |
+ frame_->EmitPush(r1); // insert 0 in place of Map |
+ frame_->EmitPush(r0); |
+ |
+ // Push the length of the array and the initial index onto the stack. |
+ __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); |
+ __ mov(r0, Operand(r0, LSL, kSmiTagSize)); |
+ frame_->EmitPush(r0); |
+ __ mov(r0, Operand(Smi::FromInt(0))); // init index |
+ frame_->EmitPush(r0); |
+ |
+ // Condition. |
+ entry.Bind(); |
+ // sp[0] : index |
+ // sp[1] : array/enum cache length |
+ // sp[2] : array or enum cache |
+ // sp[3] : 0 or map |
+ // sp[4] : enumerable |
+ // Grab the current frame's height for the break and continue |
+ // targets only after all the state is pushed on the frame. |
+ node->break_target()->Initialize(this); |
+ node->continue_target()->Initialize(this); |
+ |
+ __ ldr(r0, frame_->ElementAt(0)); // load the current count |
+ __ ldr(r1, frame_->ElementAt(1)); // load the length |
+ __ cmp(r0, Operand(r1)); // compare to the array length |
+ node->break_target()->Branch(hs); |
+ |
+ __ ldr(r0, frame_->ElementAt(0)); |
+ |
+ // Get the i'th entry of the array. |
+ __ ldr(r2, frame_->ElementAt(2)); |
+ __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
+ |
+ // Get Map or 0. |
+ __ ldr(r2, frame_->ElementAt(3)); |
+ // Check if this (still) matches the map of the enumerable. |
+ // If not, we have to filter the key. |
+ __ ldr(r1, frame_->ElementAt(4)); |
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ cmp(r1, Operand(r2)); |
+ end_del_check.Branch(eq); |
+ |
+ // Convert the entry to a string (or null if it isn't a property anymore). |
+ __ ldr(r0, frame_->ElementAt(4)); // push enumerable |
+ frame_->EmitPush(r0); |
+ frame_->EmitPush(r3); // push entry |
+ Result arg_count_register = allocator_->Allocate(r0); |
+ ASSERT(arg_count_register.is_valid()); |
+ __ mov(arg_count_register.reg(), Operand(1)); |
+ Result result = frame_->InvokeBuiltin(Builtins::FILTER_KEY, |
+ CALL_JS, |
+ &arg_count_register, |
+ 2); |
+ __ mov(r3, Operand(result.reg())); |
+ result.Unuse(); |
+ |
+ // If the property has been removed while iterating, we just skip it. |
+ __ cmp(r3, Operand(Factory::null_value())); |
+ node->continue_target()->Branch(eq); |
+ |
+ end_del_check.Bind(); |
+ // Store the entry in the 'each' expression and take another spin in the |
+ // loop. r3: i'th entry of the enum cache (or string there of) |
+ frame_->EmitPush(r3); // push entry |
+ { Reference each(this, node->each()); |
+ if (!each.is_illegal()) { |
+ if (each.size() > 0) { |
+ __ ldr(r0, frame_->ElementAt(each.size())); |
+ frame_->EmitPush(r0); |
+ } |
+ // If the reference was to a slot we rely on the convenient property |
+ // that it doesn't matter whether a value (eg, r3 pushed above) is |
+ // right on top of or right underneath a zero-sized reference. |
+ each.SetValue(NOT_CONST_INIT); |
+ if (each.size() > 0) { |
+ // It's safe to pop the value lying on top of the reference before |
+ // unloading the reference itself (which preserves the top of stack, |
+ // ie, now the topmost value of the non-zero sized reference), since |
+ // we will discard the top of stack after unloading the reference |
+ // anyway. |
+ frame_->EmitPop(r0); |
+ } |
+ } |
+ } |
+ // Discard the i'th entry pushed above or else the remainder of the |
+ // reference, whichever is currently on top of the stack. |
+ frame_->Drop(); |
+ |
+ // Body. |
+ CheckStack(); // TODO(1222600): ignore if body contains calls. |
+ VisitAndSpill(node->body()); |
+ |
+ // Next. Reestablish a spilled frame in case we are coming here via |
+ // a continue in the body. |
+ node->continue_target()->Bind(); |
+ frame_->SpillAll(); |
+ frame_->EmitPop(r0); |
+ __ add(r0, r0, Operand(Smi::FromInt(1))); |
+ frame_->EmitPush(r0); |
+ entry.Jump(); |
+ |
+ // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
+ // any frame. |
+ node->break_target()->Bind(); |
+ frame_->Drop(5); |
+ |
+ // Exit. |
+ exit.Bind(); |
+ node->continue_target()->Unuse(); |
+ node->break_target()->Unuse(); |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitTryCatch(TryCatch* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ TryCatch"); |
+ CodeForStatementPosition(node); |
+ |
+ JumpTarget try_block(this); |
+ JumpTarget exit(this); |
+ |
+ try_block.Call(); |
+ // --- Catch block --- |
+ frame_->EmitPush(r0); |
+ |
+ // Store the caught exception in the catch variable. |
+ { Reference ref(this, node->catch_var()); |
+ ASSERT(ref.is_slot()); |
+ // Here we make use of the convenient property that it doesn't matter |
+ // whether a value is immediately on top of or underneath a zero-sized |
+ // reference. |
+ ref.SetValue(NOT_CONST_INIT); |
+ } |
+ |
+ // Remove the exception from the stack. |
+ frame_->Drop(); |
+ |
+ VisitStatementsAndSpill(node->catch_block()->statements()); |
+ if (frame_ != NULL) { |
+ exit.Jump(); |
+ } |
+ |
+ |
+ // --- Try block --- |
+ try_block.Bind(); |
+ |
+ frame_->PushTryHandler(TRY_CATCH_HANDLER); |
+ int handler_height = frame_->height(); |
+ |
+ // Shadow the labels for all escapes from the try block, including |
+ // returns. During shadowing, the original label is hidden as the |
+ // LabelShadow and operations on the original actually affect the |
+ // shadowing label. |
+ // |
+ // We should probably try to unify the escaping labels and the return |
+ // label. |
+ int nof_escapes = node->escaping_targets()->length(); |
+ List<ShadowTarget*> shadows(1 + nof_escapes); |
+ |
+ // Add the shadow target for the function return. |
+ static const int kReturnShadowIndex = 0; |
+ shadows.Add(new ShadowTarget(&function_return_)); |
+ bool function_return_was_shadowed = function_return_is_shadowed_; |
+ function_return_is_shadowed_ = true; |
+ ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
+ |
+ // Add the remaining shadow targets. |
+ for (int i = 0; i < nof_escapes; i++) { |
+ shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
+ } |
+ |
+ // Generate code for the statements in the try block. |
+ VisitStatementsAndSpill(node->try_block()->statements()); |
+ |
+ // Stop the introduced shadowing and count the number of required unlinks. |
+ // After shadowing stops, the original labels are unshadowed and the |
+ // LabelShadows represent the formerly shadowing labels. |
+ bool has_unlinks = false; |
+ for (int i = 0; i < shadows.length(); i++) { |
+ shadows[i]->StopShadowing(); |
+ has_unlinks = has_unlinks || shadows[i]->is_linked(); |
+ } |
+ function_return_is_shadowed_ = function_return_was_shadowed; |
+ |
+ // Get an external reference to the handler address. |
+ ExternalReference handler_address(Top::k_handler_address); |
+ |
+ // The next handler address is at kNextIndex in the stack. |
+ const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize; |
+ // If we can fall off the end of the try block, unlink from try chain. |
+ if (has_valid_frame()) { |
+ __ ldr(r1, frame_->ElementAt(kNextIndex)); |
+ __ mov(r3, Operand(handler_address)); |
+ __ str(r1, MemOperand(r3)); |
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize); |
+ if (has_unlinks) { |
+ exit.Jump(); |
+ } |
+ } |
+ |
+ // Generate unlink code for the (formerly) shadowing labels that have been |
+ // jumped to. Deallocate each shadow target. |
+ for (int i = 0; i < shadows.length(); i++) { |
+ if (shadows[i]->is_linked()) { |
+ // Unlink from try chain; |
+ shadows[i]->Bind(); |
+ // Because we can be jumping here (to spilled code) from unspilled |
+ // code, we need to reestablish a spilled frame at this block. |
+ frame_->SpillAll(); |
+ |
+ // Reload sp from the top handler, because some statements that we |
+ // break from (eg, for...in) may have left stuff on the stack. |
+ __ mov(r3, Operand(handler_address)); |
+ __ ldr(sp, MemOperand(r3)); |
+ // The stack pointer was restored to just below the code slot |
+ // (the topmost slot) in the handler. |
+ frame_->Forget(frame_->height() - handler_height + 1); |
+ |
+ // kNextIndex is off by one because the code slot has already |
+ // been dropped. |
+ __ ldr(r1, frame_->ElementAt(kNextIndex - 1)); |
+ __ str(r1, MemOperand(r3)); |
+ // The code slot has already been dropped from the handler. |
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
+ |
+ if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
+ frame_->PrepareForReturn(); |
+ } |
+ shadows[i]->other_target()->Jump(); |
+ } |
+ delete shadows[i]; |
+ } |
+ |
+ exit.Bind(); |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitTryFinally(TryFinally* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ TryFinally"); |
+ CodeForStatementPosition(node); |
+ |
+ // State: Used to keep track of reason for entering the finally |
+ // block. Should probably be extended to hold information for |
+ // break/continue from within the try block. |
+ enum { FALLING, THROWING, JUMPING }; |
+ |
+ JumpTarget try_block(this); |
+ JumpTarget finally_block(this); |
+ |
+ try_block.Call(); |
+ |
+ frame_->EmitPush(r0); // save exception object on the stack |
+ // In case of thrown exceptions, this is where we continue. |
+ __ mov(r2, Operand(Smi::FromInt(THROWING))); |
+ finally_block.Jump(); |
+ |
+ // --- Try block --- |
+ try_block.Bind(); |
+ |
+ frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
+ int handler_height = frame_->height(); |
+ |
+ // Shadow the labels for all escapes from the try block, including |
+ // returns. Shadowing hides the original label as the LabelShadow and |
+ // operations on the original actually affect the shadowing label. |
+ // |
+ // We should probably try to unify the escaping labels and the return |
+ // label. |
+ int nof_escapes = node->escaping_targets()->length(); |
+ List<ShadowTarget*> shadows(1 + nof_escapes); |
+ |
+ // Add the shadow target for the function return. |
+ static const int kReturnShadowIndex = 0; |
+ shadows.Add(new ShadowTarget(&function_return_)); |
+ bool function_return_was_shadowed = function_return_is_shadowed_; |
+ function_return_is_shadowed_ = true; |
+ ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
+ |
+ // Add the remaining shadow targets. |
+ for (int i = 0; i < nof_escapes; i++) { |
+ shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
+ } |
+ |
+ // Generate code for the statements in the try block. |
+ VisitStatementsAndSpill(node->try_block()->statements()); |
+ |
+ // Stop the introduced shadowing and count the number of required unlinks. |
+ // After shadowing stops, the original labels are unshadowed and the |
+ // LabelShadows represent the formerly shadowing labels. |
+ int nof_unlinks = 0; |
+ for (int i = 0; i < shadows.length(); i++) { |
+ shadows[i]->StopShadowing(); |
+ if (shadows[i]->is_linked()) nof_unlinks++; |
+ } |
+ function_return_is_shadowed_ = function_return_was_shadowed; |
+ |
+ // Get an external reference to the handler address. |
+ ExternalReference handler_address(Top::k_handler_address); |
+ |
+ // The next handler address is at kNextIndex in the stack. |
+ const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize; |
+ // If we can fall off the end of the try block, unlink from the try |
+ // chain and set the state on the frame to FALLING. |
+ if (has_valid_frame()) { |
+ __ ldr(r1, frame_->ElementAt(kNextIndex)); |
+ __ mov(r3, Operand(handler_address)); |
+ __ str(r1, MemOperand(r3)); |
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize); |
+ |
+ // Fake a top of stack value (unneeded when FALLING) and set the |
+ // state in r2, then jump around the unlink blocks if any. |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ frame_->EmitPush(r0); |
+ __ mov(r2, Operand(Smi::FromInt(FALLING))); |
+ if (nof_unlinks > 0) { |
+ finally_block.Jump(); |
+ } |
+ } |
+ |
+ // Generate code to unlink and set the state for the (formerly) |
+ // shadowing targets that have been jumped to. |
+ for (int i = 0; i < shadows.length(); i++) { |
+ if (shadows[i]->is_linked()) { |
+ // If we have come from the shadowed return, the return value is |
+ // in (a non-refcounted reference to) r0. We must preserve it |
+ // until it is pushed. |
+ // |
+ // Because we can be jumping here (to spilled code) from |
+ // unspilled code, we need to reestablish a spilled frame at |
+ // this block. |
+ shadows[i]->Bind(); |
+ frame_->SpillAll(); |
+ |
+ // Reload sp from the top handler, because some statements that |
+ // we break from (eg, for...in) may have left stuff on the |
+ // stack. |
+ __ mov(r3, Operand(handler_address)); |
+ __ ldr(sp, MemOperand(r3)); |
+ // The stack pointer was restored to the address slot in the handler. |
+ ASSERT(StackHandlerConstants::kNextOffset == 1 * kPointerSize); |
+ frame_->Forget(frame_->height() - handler_height + 1); |
+ |
+ // Unlink this handler and drop it from the frame. The next |
+ // handler address is now on top of the frame. |
+ frame_->EmitPop(r1); |
+ __ str(r1, MemOperand(r3)); |
+ // The top (code) and the second (handler) slot have both been |
+ // dropped already. |
+ frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 2); |
+ |
+ if (i == kReturnShadowIndex) { |
+ // If this label shadowed the function return, materialize the |
+ // return value on the stack. |
+ frame_->EmitPush(r0); |
+ } else { |
+ // Fake TOS for targets that shadowed breaks and continues. |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ frame_->EmitPush(r0); |
+ } |
+ __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); |
+ if (--nof_unlinks > 0) { |
+ // If this is not the last unlink block, jump around the next. |
+ finally_block.Jump(); |
+ } |
+ } |
+ } |
+ |
+ // --- Finally block --- |
+ finally_block.Bind(); |
+ |
+ // Push the state on the stack. |
+ frame_->EmitPush(r2); |
+ |
+ // We keep two elements on the stack - the (possibly faked) result |
+ // and the state - while evaluating the finally block. |
+ // |
+ // Generate code for the statements in the finally block. |
+ VisitStatementsAndSpill(node->finally_block()->statements()); |
+ |
+ if (has_valid_frame()) { |
+ // Restore state and return value or faked TOS. |
+ frame_->EmitPop(r2); |
+ frame_->EmitPop(r0); |
+ } |
+ |
+ // Generate code to jump to the right destination for all used |
+ // formerly shadowing targets. Deallocate each shadow target. |
+ for (int i = 0; i < shadows.length(); i++) { |
+ if (has_valid_frame() && shadows[i]->is_bound()) { |
+ JumpTarget* original = shadows[i]->other_target(); |
+ __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); |
+ if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { |
+ JumpTarget skip(this); |
+ skip.Branch(ne); |
+ frame_->PrepareForReturn(); |
+ original->Jump(); |
+ skip.Bind(); |
+ } else { |
+ original->Branch(eq); |
+ } |
+ } |
+ delete shadows[i]; |
+ } |
+ |
+ if (has_valid_frame()) { |
+ // Check if we need to rethrow the exception. |
+ JumpTarget exit(this); |
+ __ cmp(r2, Operand(Smi::FromInt(THROWING))); |
+ exit.Branch(ne); |
+ |
+ // Rethrow exception. |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kReThrow, 1); |
+ |
+ // Done. |
+ exit.Bind(); |
+ } |
+ ASSERT(!has_valid_frame() || frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ DebuggerStatament"); |
+ CodeForStatementPosition(node); |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+ frame_->CallRuntime(Runtime::kDebugBreak, 0); |
+#endif |
+ // Ignore the return value. |
+ ASSERT(frame_->height() == original_height); |
+} |
+ |
+ |
+void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(boilerplate->IsBoilerplate()); |
+ |
+ // Push the boilerplate on the stack. |
+ __ mov(r0, Operand(boilerplate)); |
+ frame_->EmitPush(r0); |
+ |
+ // Create a new closure. |
+ frame_->EmitPush(cp); |
+ frame_->CallRuntime(Runtime::kNewClosure, 2); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ FunctionLiteral"); |
+ |
+ // Build the function boilerplate and instantiate it. |
+ Handle<JSFunction> boilerplate = BuildBoilerplate(node); |
+ // Check for stack-overflow exception. |
+ if (HasStackOverflow()) { |
+ ASSERT(frame_->height() == original_height); |
+ return; |
+ } |
+ InstantiateBoilerplate(boilerplate); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitFunctionBoilerplateLiteral( |
+ FunctionBoilerplateLiteral* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ FunctionBoilerplateLiteral"); |
+ InstantiateBoilerplate(node->boilerplate()); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitConditional(Conditional* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Conditional"); |
+ JumpTarget then(this); |
+ JumpTarget else_(this); |
+ JumpTarget exit(this); |
+ LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF, |
+ &then, &else_, true); |
+ Branch(false, &else_); |
+ then.Bind(); |
+ LoadAndSpill(node->then_expression(), typeof_state()); |
+ exit.Jump(); |
+ else_.Bind(); |
+ LoadAndSpill(node->else_expression(), typeof_state()); |
+ exit.Bind(); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ if (slot->type() == Slot::LOOKUP) { |
+ ASSERT(slot->var()->is_dynamic()); |
+ |
+ JumpTarget slow(this); |
+ JumpTarget done(this); |
+ |
+ // Generate fast-case code for variables that might be shadowed by |
+ // eval-introduced variables. Eval is used a lot without |
+ // introducing variables. In those cases, we do not want to |
+ // perform a runtime call for all variables in the scope |
+ // containing the eval. |
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
+ LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow); |
+ // If there was no control flow to slow, we can exit early. |
+ if (!slow.is_linked()) { |
+ frame_->EmitPush(r0); |
+ return; |
+ } |
+ |
+ done.Jump(); |
+ |
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
+ // Only generate the fast case for locals that rewrite to slots. |
+ // This rules out argument loads. |
+ if (potential_slot != NULL) { |
+ __ ldr(r0, |
+ ContextSlotOperandCheckExtensions(potential_slot, |
+ r1, |
+ r2, |
+ &slow)); |
+ if (potential_slot->var()->mode() == Variable::CONST) { |
+ __ cmp(r0, Operand(Factory::the_hole_value())); |
+ __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq); |
+ } |
+ // There is always control flow to slow from |
+ // ContextSlotOperandCheckExtensions so we have to jump around |
+ // it. |
+ done.Jump(); |
+ } |
+ } |
+ |
+ slow.Bind(); |
+ frame_->EmitPush(cp); |
+ __ mov(r0, Operand(slot->var()->name())); |
+ frame_->EmitPush(r0); |
+ |
+ if (typeof_state == INSIDE_TYPEOF) { |
+ frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
+ } else { |
+ frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
+ } |
+ |
+ done.Bind(); |
+ frame_->EmitPush(r0); |
+ |
+ } else { |
+ // Note: We would like to keep the assert below, but it fires because of |
+ // some nasty code in LoadTypeofExpression() which should be removed... |
+ // ASSERT(!slot->var()->is_dynamic()); |
+ |
+ // Special handling for locals allocated in registers. |
+ __ ldr(r0, SlotOperand(slot, r2)); |
+ frame_->EmitPush(r0); |
+ if (slot->var()->mode() == Variable::CONST) { |
+ // Const slots may contain 'the hole' value (the constant hasn't been |
+ // initialized yet) which needs to be converted into the 'undefined' |
+ // value. |
+ Comment cmnt(masm_, "[ Unhole const"); |
+ frame_->EmitPop(r0); |
+ __ cmp(r0, Operand(Factory::the_hole_value())); |
+ __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq); |
+ frame_->EmitPush(r0); |
+ } |
+ } |
+} |
+ |
+ |
+void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, |
+ TypeofState typeof_state, |
+ Register tmp, |
+ Register tmp2, |
+ JumpTarget* slow) { |
+ // Check that no extension objects have been created by calls to |
+ // eval from the current scope to the global scope. |
+ Register context = cp; |
+ Scope* s = scope(); |
+ while (s != NULL) { |
+ if (s->num_heap_slots() > 0) { |
+ if (s->calls_eval()) { |
+ // Check that extension is NULL. |
+ __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); |
+ __ tst(tmp2, tmp2); |
+ slow->Branch(ne); |
+ } |
+ // Load next context in chain. |
+ __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
+ context = tmp; |
+ } |
+ // If no outer scope calls eval, we do not need to check more |
+ // context extensions. |
+ if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
+ s = s->outer_scope(); |
+ } |
+ |
+ if (s->is_eval_scope()) { |
+ Label next, fast; |
+ if (!context.is(tmp)) { |
+ __ mov(tmp, Operand(context)); |
+ } |
+ __ bind(&next); |
+ // Terminate at global context. |
+ __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); |
+ __ cmp(tmp2, Operand(Factory::global_context_map())); |
+ __ b(eq, &fast); |
+ // Check that extension is NULL. |
+ __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); |
+ __ tst(tmp2, tmp2); |
+ slow->Branch(ne); |
+ // Load next context in chain. |
+ __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); |
+ __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); |
+ __ b(&next); |
+ __ bind(&fast); |
+ } |
+ |
+ // All extension objects were empty and it is safe to use a global |
+ // load IC call. |
+ Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
+ // Load the global object. |
+ LoadGlobal(); |
+ // Setup the name register. |
+ Result name = allocator_->Allocate(r2); |
+ ASSERT(name.is_valid()); // We are in spilled code. |
+ __ mov(name.reg(), Operand(slot->var()->name())); |
+ // Call IC stub. |
+ if (typeof_state == INSIDE_TYPEOF) { |
+ frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, &name, 0); |
+ } else { |
+ frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, &name, 0); |
+ } |
+ |
+ // Drop the global object. The result is in r0. |
+ frame_->Drop(); |
+} |
+ |
+ |
+void CodeGenerator::VisitSlot(Slot* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Slot"); |
+ LoadFromSlot(node, typeof_state()); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ VariableProxy"); |
+ |
+ Variable* var = node->var(); |
+ Expression* expr = var->rewrite(); |
+ if (expr != NULL) { |
+ Visit(expr); |
+ } else { |
+ ASSERT(var->is_global()); |
+ Reference ref(this, node); |
+ ref.GetValueAndSpill(typeof_state()); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitLiteral(Literal* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Literal"); |
+ __ mov(r0, Operand(node->handle())); |
+ frame_->EmitPush(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ RexExp Literal"); |
+ |
+ // Retrieve the literal array and check the allocated entry. |
+ |
+ // Load the function of this activation. |
+ __ ldr(r1, frame_->Function()); |
+ |
+ // Load the literals array of the function. |
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset)); |
+ |
+ // Load the literal at the ast saved index. |
+ int literal_offset = |
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
+ __ ldr(r2, FieldMemOperand(r1, literal_offset)); |
+ |
+ JumpTarget done(this); |
+ __ cmp(r2, Operand(Factory::undefined_value())); |
+ done.Branch(ne); |
+ |
+ // If the entry is undefined we call the runtime system to computed |
+ // the literal. |
+ frame_->EmitPush(r1); // literal array (0) |
+ __ mov(r0, Operand(Smi::FromInt(node->literal_index()))); |
+ frame_->EmitPush(r0); // literal index (1) |
+ __ mov(r0, Operand(node->pattern())); // RegExp pattern (2) |
+ frame_->EmitPush(r0); |
+ __ mov(r0, Operand(node->flags())); // RegExp flags (3) |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
+ __ mov(r2, Operand(r0)); |
+ |
+ done.Bind(); |
+ // Push the literal. |
+ frame_->EmitPush(r2); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+// This deferred code stub will be used for creating the boilerplate |
+// by calling Runtime_CreateObjectLiteralBoilerplate. |
+// Each created boilerplate is stored in the JSFunction and they are |
+// therefore context dependent. |
+class DeferredObjectLiteral: public DeferredCode { |
+ public: |
+ DeferredObjectLiteral(CodeGenerator* generator, ObjectLiteral* node) |
+ : DeferredCode(generator), node_(node) { |
+ set_comment("[ DeferredObjectLiteral"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ ObjectLiteral* node_; |
+}; |
+ |
+ |
+void DeferredObjectLiteral::Generate() { |
+ // Argument is passed in r1. |
+ enter()->Bind(); |
+ VirtualFrame::SpilledScope spilled_scope(generator()); |
+ |
+ // If the entry is undefined we call the runtime system to compute |
+ // the literal. |
+ |
+ VirtualFrame* frame = generator()->frame(); |
+ // Literal array (0). |
+ frame->EmitPush(r1); |
+ // Literal index (1). |
+ __ mov(r0, Operand(Smi::FromInt(node_->literal_index()))); |
+ frame->EmitPush(r0); |
+ // Constant properties (2). |
+ __ mov(r0, Operand(node_->constant_properties())); |
+ frame->EmitPush(r0); |
+ Result boilerplate = |
+ frame->CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3); |
+ __ mov(r2, Operand(boilerplate.reg())); |
+ // Result is returned in r2. |
+ exit_.Jump(); |
+} |
+ |
+ |
+void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ObjectLiteral"); |
+ |
+ DeferredObjectLiteral* deferred = new DeferredObjectLiteral(this, node); |
+ |
+ // Retrieve the literal array and check the allocated entry. |
+ |
+ // Load the function of this activation. |
+ __ ldr(r1, frame_->Function()); |
+ |
+ // Load the literals array of the function. |
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset)); |
+ |
+ // Load the literal at the ast saved index. |
+ int literal_offset = |
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
+ __ ldr(r2, FieldMemOperand(r1, literal_offset)); |
+ |
+ // Check whether we need to materialize the object literal boilerplate. |
+ // If so, jump to the deferred code. |
+ __ cmp(r2, Operand(Factory::undefined_value())); |
+ deferred->enter()->Branch(eq); |
+ deferred->BindExit(); |
+ |
+ // Push the object literal boilerplate. |
+ frame_->EmitPush(r2); |
+ |
+ // Clone the boilerplate object. |
+ Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate; |
+ if (node->depth() == 1) { |
+ clone_function_id = Runtime::kCloneShallowLiteralBoilerplate; |
+ } |
+ frame_->CallRuntime(clone_function_id, 1); |
+ frame_->EmitPush(r0); // save the result |
+ // r0: cloned object literal |
+ |
+ for (int i = 0; i < node->properties()->length(); i++) { |
+ ObjectLiteral::Property* property = node->properties()->at(i); |
+ Literal* key = property->key(); |
+ Expression* value = property->value(); |
+ switch (property->kind()) { |
+ case ObjectLiteral::Property::CONSTANT: |
+ break; |
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
+ if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
+ // else fall through |
+ case ObjectLiteral::Property::COMPUTED: // fall through |
+ case ObjectLiteral::Property::PROTOTYPE: { |
+ frame_->EmitPush(r0); // dup the result |
+ LoadAndSpill(key); |
+ LoadAndSpill(value); |
+ frame_->CallRuntime(Runtime::kSetProperty, 3); |
+ // restore r0 |
+ __ ldr(r0, frame_->Top()); |
+ break; |
+ } |
+ case ObjectLiteral::Property::SETTER: { |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(key); |
+ __ mov(r0, Operand(Smi::FromInt(1))); |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(value); |
+ frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
+ __ ldr(r0, frame_->Top()); |
+ break; |
+ } |
+ case ObjectLiteral::Property::GETTER: { |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(key); |
+ __ mov(r0, Operand(Smi::FromInt(0))); |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(value); |
+ frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
+ __ ldr(r0, frame_->Top()); |
+ break; |
+ } |
+ } |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+// This deferred code stub will be used for creating the boilerplate |
+// by calling Runtime_CreateArrayLiteralBoilerplate. |
+// Each created boilerplate is stored in the JSFunction and they are |
+// therefore context dependent. |
+class DeferredArrayLiteral: public DeferredCode { |
+ public: |
+ DeferredArrayLiteral(CodeGenerator* generator, ArrayLiteral* node) |
+ : DeferredCode(generator), node_(node) { |
+ set_comment("[ DeferredArrayLiteral"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ ArrayLiteral* node_; |
+}; |
+ |
+ |
+void DeferredArrayLiteral::Generate() { |
+ // Argument is passed in r1. |
+ enter()->Bind(); |
+ VirtualFrame::SpilledScope spilled_scope(generator()); |
+ |
+ // If the entry is undefined we call the runtime system to computed |
+ // the literal. |
+ |
+ VirtualFrame* frame = generator()->frame(); |
+ // Literal array (0). |
+ frame->EmitPush(r1); |
+ // Literal index (1). |
+ __ mov(r0, Operand(Smi::FromInt(node_->literal_index()))); |
+ frame->EmitPush(r0); |
+ // Constant properties (2). |
+ __ mov(r0, Operand(node_->literals())); |
+ frame->EmitPush(r0); |
+ Result boilerplate = |
+ frame->CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3); |
+ __ mov(r2, Operand(boilerplate.reg())); |
+ // Result is returned in r2. |
+ exit_.Jump(); |
+} |
+ |
+ |
+void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ ArrayLiteral"); |
+ |
+ DeferredArrayLiteral* deferred = new DeferredArrayLiteral(this, node); |
+ |
+ // Retrieve the literal array and check the allocated entry. |
+ |
+ // Load the function of this activation. |
+ __ ldr(r1, frame_->Function()); |
+ |
+ // Load the literals array of the function. |
+ __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset)); |
+ |
+ // Load the literal at the ast saved index. |
+ int literal_offset = |
+ FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
+ __ ldr(r2, FieldMemOperand(r1, literal_offset)); |
+ |
+ // Check whether we need to materialize the object literal boilerplate. |
+ // If so, jump to the deferred code. |
+ __ cmp(r2, Operand(Factory::undefined_value())); |
+ deferred->enter()->Branch(eq); |
+ deferred->BindExit(); |
+ |
+ // Push the object literal boilerplate. |
+ frame_->EmitPush(r2); |
+ |
+ // Clone the boilerplate object. |
+ Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate; |
+ if (node->depth() == 1) { |
+ clone_function_id = Runtime::kCloneShallowLiteralBoilerplate; |
+ } |
+ frame_->CallRuntime(clone_function_id, 1); |
+ frame_->EmitPush(r0); // save the result |
+ // r0: cloned object literal |
+ |
+ // Generate code to set the elements in the array that are not |
+ // literals. |
+ for (int i = 0; i < node->values()->length(); i++) { |
+ Expression* value = node->values()->at(i); |
+ |
+ // If value is a literal the property value is already set in the |
+ // boilerplate object. |
+ if (value->AsLiteral() != NULL) continue; |
+ // If value is a materialized literal the property value is already set |
+ // in the boilerplate object if it is simple. |
+ if (CompileTimeValue::IsCompileTimeValue(value)) continue; |
+ |
+ // The property must be set by generated code. |
+ LoadAndSpill(value); |
+ frame_->EmitPop(r0); |
+ |
+ // Fetch the object literal. |
+ __ ldr(r1, frame_->Top()); |
+ // Get the elements array. |
+ __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); |
+ |
+ // Write to the indexed properties array. |
+ int offset = i * kPointerSize + Array::kHeaderSize; |
+ __ str(r0, FieldMemOperand(r1, offset)); |
+ |
+ // Update the write barrier for the array address. |
+ __ mov(r3, Operand(offset)); |
+ __ RecordWrite(r1, r3, r2); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ ASSERT(!in_spilled_code()); |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // Call runtime routine to allocate the catch extension object and |
+ // assign the exception value to the catch variable. |
+ Comment cmnt(masm_, "[ CatchExtensionObject"); |
+ LoadAndSpill(node->key()); |
+ LoadAndSpill(node->value()); |
+ Result result = |
+ frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
+ frame_->EmitPush(result.reg()); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitAssignment(Assignment* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Assignment"); |
+ CodeForStatementPosition(node); |
+ |
+ { Reference target(this, node->target()); |
+ if (target.is_illegal()) { |
+ // Fool the virtual frame into thinking that we left the assignment's |
+ // value on the frame. |
+ __ mov(r0, Operand(Smi::FromInt(0))); |
+ frame_->EmitPush(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+ return; |
+ } |
+ |
+ if (node->op() == Token::ASSIGN || |
+ node->op() == Token::INIT_VAR || |
+ node->op() == Token::INIT_CONST) { |
+ LoadAndSpill(node->value()); |
+ |
+ } else { |
+ // +=, *= and similar binary assignments. |
+ // Get the old value of the lhs. |
+ target.GetValueAndSpill(NOT_INSIDE_TYPEOF); |
+ Literal* literal = node->value()->AsLiteral(); |
+ bool overwrite = |
+ (node->value()->AsBinaryOperation() != NULL && |
+ node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); |
+ if (literal != NULL && literal->handle()->IsSmi()) { |
+ SmiOperation(node->binary_op(), |
+ literal->handle(), |
+ false, |
+ overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE); |
+ frame_->EmitPush(r0); |
+ |
+ } else { |
+ LoadAndSpill(node->value()); |
+ GenericBinaryOperation(node->binary_op(), |
+ overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE); |
+ frame_->EmitPush(r0); |
+ } |
+ } |
+ |
+ Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
+ if (var != NULL && |
+ (var->mode() == Variable::CONST) && |
+ node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) { |
+ // Assignment ignored - leave the value on the stack. |
+ |
+ } else { |
+ CodeForSourcePosition(node->position()); |
+ if (node->op() == Token::INIT_CONST) { |
+ // Dynamic constant initializations must use the function context |
+ // and initialize the actual constant declared. Dynamic variable |
+ // initializations are simply assignments and use SetValue. |
+ target.SetValue(CONST_INIT); |
+ } else { |
+ target.SetValue(NOT_CONST_INIT); |
+ } |
+ } |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitThrow(Throw* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Throw"); |
+ |
+ LoadAndSpill(node->exception()); |
+ CodeForSourcePosition(node->position()); |
+ frame_->CallRuntime(Runtime::kThrow, 1); |
+ frame_->EmitPush(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitProperty(Property* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Property"); |
+ |
+ { Reference property(this, node); |
+ property.GetValueAndSpill(typeof_state()); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitCall(Call* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ Call"); |
+ |
+ ZoneList<Expression*>* args = node->arguments(); |
+ |
+ CodeForStatementPosition(node); |
+ // Standard function call. |
+ |
+ // Check if the function is a variable or a property. |
+ Expression* function = node->expression(); |
+ Variable* var = function->AsVariableProxy()->AsVariable(); |
+ Property* property = function->AsProperty(); |
+ |
+ // ------------------------------------------------------------------------ |
+ // Fast-case: Use inline caching. |
+ // --- |
+ // According to ECMA-262, section 11.2.3, page 44, the function to call |
+ // must be resolved after the arguments have been evaluated. The IC code |
+ // automatically handles this by loading the arguments before the function |
+ // is resolved in cache misses (this also holds for megamorphic calls). |
+ // ------------------------------------------------------------------------ |
+ |
+ if (var != NULL && !var->is_this() && var->is_global()) { |
+ // ---------------------------------- |
+ // JavaScript example: 'foo(1, 2, 3)' // foo is global |
+ // ---------------------------------- |
+ |
+ // Push the name of the function and the receiver onto the stack. |
+ __ mov(r0, Operand(var->name())); |
+ frame_->EmitPush(r0); |
+ |
+ // Pass the global object as the receiver and let the IC stub |
+ // patch the stack to use the global proxy as 'this' in the |
+ // invoked function. |
+ LoadGlobal(); |
+ |
+ // Load the arguments. |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ // Setup the receiver register and call the IC initialization code. |
+ Handle<Code> stub = ComputeCallInitialize(arg_count); |
+ CodeForSourcePosition(node->position()); |
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, |
+ arg_count + 1); |
+ __ ldr(cp, frame_->Context()); |
+ // Remove the function from the stack. |
+ frame_->Drop(); |
+ frame_->EmitPush(r0); |
+ |
+ } else if (var != NULL && var->slot() != NULL && |
+ var->slot()->type() == Slot::LOOKUP) { |
+ // ---------------------------------- |
+ // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj |
+ // ---------------------------------- |
+ |
+ // Load the function |
+ frame_->EmitPush(cp); |
+ __ mov(r0, Operand(var->name())); |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
+ // r0: slot value; r1: receiver |
+ |
+ // Load the receiver. |
+ frame_->EmitPush(r0); // function |
+ frame_->EmitPush(r1); // receiver |
+ |
+ // Call the function. |
+ CallWithArguments(args, node->position()); |
+ frame_->EmitPush(r0); |
+ |
+ } else if (property != NULL) { |
+ // Check if the key is a literal string. |
+ Literal* literal = property->key()->AsLiteral(); |
+ |
+ if (literal != NULL && literal->handle()->IsSymbol()) { |
+ // ------------------------------------------------------------------ |
+ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
+ // ------------------------------------------------------------------ |
+ |
+ // Push the name of the function and the receiver onto the stack. |
+ __ mov(r0, Operand(literal->handle())); |
+ frame_->EmitPush(r0); |
+ LoadAndSpill(property->obj()); |
+ |
+ // Load the arguments. |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ // Set the receiver register and call the IC initialization code. |
+ Handle<Code> stub = ComputeCallInitialize(arg_count); |
+ CodeForSourcePosition(node->position()); |
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
+ __ ldr(cp, frame_->Context()); |
+ |
+ // Remove the function from the stack. |
+ frame_->Drop(); |
+ |
+ frame_->EmitPush(r0); // push after get rid of function from the stack |
+ |
+ } else { |
+ // ------------------------------------------- |
+ // JavaScript example: 'array[index](1, 2, 3)' |
+ // ------------------------------------------- |
+ |
+ // Load the function to call from the property through a reference. |
+ Reference ref(this, property); |
+ ref.GetValueAndSpill(NOT_INSIDE_TYPEOF); // receiver |
+ |
+ // Pass receiver to called function. |
+ if (property->is_synthetic()) { |
+ LoadGlobalReceiver(r0); |
+ } else { |
+ __ ldr(r0, frame_->ElementAt(ref.size())); |
+ frame_->EmitPush(r0); |
+ } |
+ |
+ // Call the function. |
+ CallWithArguments(args, node->position()); |
+ frame_->EmitPush(r0); |
+ } |
+ |
+ } else { |
+ // ---------------------------------- |
+ // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
+ // ---------------------------------- |
+ |
+ // Load the function. |
+ LoadAndSpill(function); |
+ |
+ // Pass the global proxy as the receiver. |
+ LoadGlobalReceiver(r0); |
+ |
+ // Call the function. |
+ CallWithArguments(args, node->position()); |
+ frame_->EmitPush(r0); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitCallEval(CallEval* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ CallEval"); |
+ |
+ // In a call to eval, we first call %ResolvePossiblyDirectEval to resolve |
+ // the function we need to call and the receiver of the call. |
+ // Then we call the resolved function using the given arguments. |
+ |
+ ZoneList<Expression*>* args = node->arguments(); |
+ Expression* function = node->expression(); |
+ |
+ CodeForStatementPosition(node); |
+ |
+ // Prepare stack for call to resolved function. |
+ LoadAndSpill(function); |
+ __ mov(r2, Operand(Factory::undefined_value())); |
+ frame_->EmitPush(r2); // Slot for receiver |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ // Prepare stack for call to ResolvePossiblyDirectEval. |
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); |
+ frame_->EmitPush(r1); |
+ if (arg_count > 0) { |
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); |
+ frame_->EmitPush(r1); |
+ } else { |
+ frame_->EmitPush(r2); |
+ } |
+ |
+ // Resolve the call. |
+ frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2); |
+ |
+ // Touch up stack with the right values for the function and the receiver. |
+ __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize)); |
+ __ str(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); |
+ __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize + kPointerSize)); |
+ __ str(r1, MemOperand(sp, arg_count * kPointerSize)); |
+ |
+ // Call the function. |
+ CodeForSourcePosition(node->position()); |
+ |
+ CallFunctionStub call_function(arg_count); |
+ frame_->CallStub(&call_function, arg_count + 1); |
+ |
+ __ ldr(cp, frame_->Context()); |
+ // Remove the function from the stack. |
+ frame_->Drop(); |
+ frame_->EmitPush(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitCallNew(CallNew* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ CallNew"); |
+ CodeForStatementPosition(node); |
+ |
+ // According to ECMA-262, section 11.2.2, page 44, the function |
+ // expression in new calls must be evaluated before the |
+ // arguments. This is different from ordinary calls, where the |
+ // actual function to call is resolved after the arguments have been |
+ // evaluated. |
+ |
+ // Compute function to call and use the global object as the |
+ // receiver. There is no need to use the global proxy here because |
+ // it will always be replaced with a newly allocated object. |
+ LoadAndSpill(node->expression()); |
+ LoadGlobal(); |
+ |
+ // Push the arguments ("left-to-right") on the stack. |
+ ZoneList<Expression*>* args = node->arguments(); |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ // r0: the number of arguments. |
+ Result num_args = allocator_->Allocate(r0); |
+ ASSERT(num_args.is_valid()); |
+ __ mov(num_args.reg(), Operand(arg_count)); |
+ |
+ // Load the function into r1 as per calling convention. |
+ Result function = allocator_->Allocate(r1); |
+ ASSERT(function.is_valid()); |
+ __ ldr(function.reg(), frame_->ElementAt(arg_count + 1)); |
+ |
+ // Call the construct call builtin that handles allocation and |
+ // constructor invocation. |
+ CodeForSourcePosition(node->position()); |
+ Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall)); |
+ Result result = frame_->CallCodeObject(ic, |
+ RelocInfo::CONSTRUCT_CALL, |
+ &num_args, |
+ &function, |
+ arg_count + 1); |
+ |
+ // Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)). |
+ __ str(r0, frame_->Top()); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 1); |
+ JumpTarget leave(this); |
+ LoadAndSpill(args->at(0)); |
+ frame_->EmitPop(r0); // r0 contains object. |
+ // if (object->IsSmi()) return the object. |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ leave.Branch(eq); |
+ // It is a heap object - get map. |
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ // if (!object->IsJSValue()) return the object. |
+ __ cmp(r1, Operand(JS_VALUE_TYPE)); |
+ leave.Branch(ne); |
+ // Load the value. |
+ __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset)); |
+ leave.Bind(); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 2); |
+ JumpTarget leave(this); |
+ LoadAndSpill(args->at(0)); // Load the object. |
+ LoadAndSpill(args->at(1)); // Load the value. |
+ frame_->EmitPop(r0); // r0 contains value |
+ frame_->EmitPop(r1); // r1 contains object |
+ // if (object->IsSmi()) return object. |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ leave.Branch(eq); |
+ // It is a heap object - get map. |
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); |
+ // if (!object->IsJSValue()) return object. |
+ __ cmp(r2, Operand(JS_VALUE_TYPE)); |
+ leave.Branch(ne); |
+ // Store the value. |
+ __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); |
+ // Update the write barrier. |
+ __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag)); |
+ __ RecordWrite(r1, r2, r3); |
+ // Leave. |
+ leave.Bind(); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 1); |
+ LoadAndSpill(args->at(0)); |
+ frame_->EmitPop(r0); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ cc_reg_ = eq; |
+} |
+ |
+ |
+void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. |
+ ASSERT_EQ(args->length(), 3); |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ if (ShouldGenerateLog(args->at(0))) { |
+ LoadAndSpill(args->at(1)); |
+ LoadAndSpill(args->at(2)); |
+ __ CallRuntime(Runtime::kLog, 2); |
+ } |
+#endif |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 1); |
+ LoadAndSpill(args->at(0)); |
+ frame_->EmitPop(r0); |
+ __ tst(r0, Operand(kSmiTagMask | 0x80000000)); |
+ cc_reg_ = eq; |
+} |
+ |
+ |
+// This should generate code that performs a charCodeAt() call or returns |
+// undefined in order to trigger the slow case, Runtime_StringCharCodeAt. |
+// It is not yet implemented on ARM, so it always goes to the slow case. |
+void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 2); |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 1); |
+ LoadAndSpill(args->at(0)); |
+ JumpTarget answer(this); |
+ // We need the CC bits to come out as not_equal in the case where the |
+ // object is a smi. This can't be done with the usual test opcode so |
+ // we use XOR to get the right CC bits. |
+ frame_->EmitPop(r0); |
+ __ and_(r1, r0, Operand(kSmiTagMask)); |
+ __ eor(r1, r1, Operand(kSmiTagMask), SetCC); |
+ answer.Branch(ne); |
+ // It is a heap object - get the map. |
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ // Check if the object is a JS array or not. |
+ __ cmp(r1, Operand(JS_ARRAY_TYPE)); |
+ answer.Bind(); |
+ cc_reg_ = eq; |
+} |
+ |
+ |
+void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 0); |
+ |
+ // Seed the result with the formal parameters count, which will be used |
+ // in case no arguments adaptor frame is found below the current frame. |
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters()))); |
+ |
+ // Call the shared stub to get to the arguments.length. |
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); |
+ frame_->CallStub(&stub, 0); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 1); |
+ |
+ // Satisfy contract with ArgumentsAccessStub: |
+ // Load the key into r1 and the formal parameters count into r0. |
+ LoadAndSpill(args->at(0)); |
+ frame_->EmitPop(r1); |
+ __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters()))); |
+ |
+ // Call the shared stub to get to arguments[key]. |
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
+ frame_->CallStub(&stub, 0); |
+ frame_->EmitPush(r0); |
+} |
+ |
+ |
+void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ ASSERT(args->length() == 2); |
+ |
+ // Load the two objects into registers and perform the comparison. |
+ LoadAndSpill(args->at(0)); |
+ LoadAndSpill(args->at(1)); |
+ frame_->EmitPop(r0); |
+ frame_->EmitPop(r1); |
+ __ cmp(r0, Operand(r1)); |
+ cc_reg_ = eq; |
+} |
+ |
+ |
+void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ if (CheckForInlineRuntimeCall(node)) { |
+ ASSERT((has_cc() && frame_->height() == original_height) || |
+ (!has_cc() && frame_->height() == original_height + 1)); |
+ return; |
+ } |
+ |
+ ZoneList<Expression*>* args = node->arguments(); |
+ Comment cmnt(masm_, "[ CallRuntime"); |
+ Runtime::Function* function = node->function(); |
+ |
+ if (function == NULL) { |
+ // Prepare stack for calling JS runtime function. |
+ __ mov(r0, Operand(node->name())); |
+ frame_->EmitPush(r0); |
+ // Push the builtins object found in the current global object. |
+ __ ldr(r1, GlobalObject()); |
+ __ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset)); |
+ frame_->EmitPush(r0); |
+ } |
+ |
+ // Push the arguments ("left-to-right"). |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ LoadAndSpill(args->at(i)); |
+ } |
+ |
+ if (function == NULL) { |
+ // Call the JS runtime function. |
+ Handle<Code> stub = ComputeCallInitialize(arg_count); |
+ frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); |
+ __ ldr(cp, frame_->Context()); |
+ frame_->Drop(); |
+ frame_->EmitPush(r0); |
+ } else { |
+ // Call the C runtime function. |
+ frame_->CallRuntime(function, arg_count); |
+ frame_->EmitPush(r0); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ UnaryOperation"); |
+ |
+ Token::Value op = node->op(); |
+ |
+ if (op == Token::NOT) { |
+ LoadConditionAndSpill(node->expression(), |
+ NOT_INSIDE_TYPEOF, |
+ false_target(), |
+ true_target(), |
+ true); |
+ cc_reg_ = NegateCondition(cc_reg_); |
+ |
+ } else if (op == Token::DELETE) { |
+ Property* property = node->expression()->AsProperty(); |
+ Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
+ if (property != NULL) { |
+ LoadAndSpill(property->obj()); |
+ LoadAndSpill(property->key()); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver |
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2); |
+ |
+ } else if (variable != NULL) { |
+ Slot* slot = variable->slot(); |
+ if (variable->is_global()) { |
+ LoadGlobal(); |
+ __ mov(r0, Operand(variable->name())); |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver |
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2); |
+ |
+ } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
+ // lookup the context holding the named variable |
+ frame_->EmitPush(cp); |
+ __ mov(r0, Operand(variable->name())); |
+ frame_->EmitPush(r0); |
+ frame_->CallRuntime(Runtime::kLookupContext, 2); |
+ // r0: context |
+ frame_->EmitPush(r0); |
+ __ mov(r0, Operand(variable->name())); |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver |
+ frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2); |
+ |
+ } else { |
+ // Default: Result of deleting non-global, not dynamically |
+ // introduced variables is false. |
+ __ mov(r0, Operand(Factory::false_value())); |
+ } |
+ |
+ } else { |
+ // Default: Result of deleting expressions is true. |
+ LoadAndSpill(node->expression()); // may have side-effects |
+ frame_->Drop(); |
+ __ mov(r0, Operand(Factory::true_value())); |
+ } |
+ frame_->EmitPush(r0); |
+ |
+ } else if (op == Token::TYPEOF) { |
+ // Special case for loading the typeof expression; see comment on |
+ // LoadTypeofExpression(). |
+ LoadTypeofExpression(node->expression()); |
+ frame_->CallRuntime(Runtime::kTypeof, 1); |
+ frame_->EmitPush(r0); // r0 has result |
+ |
+ } else { |
+ LoadAndSpill(node->expression()); |
+ frame_->EmitPop(r0); |
+ switch (op) { |
+ case Token::NOT: |
+ case Token::DELETE: |
+ case Token::TYPEOF: |
+ UNREACHABLE(); // handled above |
+ break; |
+ |
+ case Token::SUB: { |
+ UnarySubStub stub; |
+ frame_->CallStub(&stub, 0); |
+ break; |
+ } |
+ |
+ case Token::BIT_NOT: { |
+ // smi check |
+ JumpTarget smi_label(this); |
+ JumpTarget continue_label(this); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ smi_label.Branch(eq); |
+ |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(0)); // not counting receiver |
+ frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_JS, &arg_count, 1); |
+ |
+ continue_label.Jump(); |
+ smi_label.Bind(); |
+ __ mvn(r0, Operand(r0)); |
+ __ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag |
+ continue_label.Bind(); |
+ break; |
+ } |
+ |
+ case Token::VOID: |
+ // since the stack top is cached in r0, popping and then |
+ // pushing a value can be done by just writing to r0. |
+ __ mov(r0, Operand(Factory::undefined_value())); |
+ break; |
+ |
+ case Token::ADD: { |
+ // Smi check. |
+ JumpTarget continue_label(this); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ continue_label.Branch(eq); |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(0)); // not counting receiver |
+ frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1); |
+ continue_label.Bind(); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
+ frame_->EmitPush(r0); // r0 has result |
+ } |
+ ASSERT((has_cc() && frame_->height() == original_height) || |
+ (!has_cc() && frame_->height() == original_height + 1)); |
+} |
+ |
+ |
+void CodeGenerator::VisitCountOperation(CountOperation* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ CountOperation"); |
+ |
+ bool is_postfix = node->is_postfix(); |
+ bool is_increment = node->op() == Token::INC; |
+ |
+ Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
+ bool is_const = (var != NULL && var->mode() == Variable::CONST); |
+ |
+ // Postfix: Make room for the result. |
+ if (is_postfix) { |
+ __ mov(r0, Operand(0)); |
+ frame_->EmitPush(r0); |
+ } |
+ |
+ { Reference target(this, node->expression()); |
+ if (target.is_illegal()) { |
+ // Spoof the virtual frame to have the expected height (one higher |
+ // than on entry). |
+ if (!is_postfix) { |
+ __ mov(r0, Operand(Smi::FromInt(0))); |
+ frame_->EmitPush(r0); |
+ } |
+ ASSERT(frame_->height() == original_height + 1); |
+ return; |
+ } |
+ target.GetValueAndSpill(NOT_INSIDE_TYPEOF); |
+ frame_->EmitPop(r0); |
+ |
+ JumpTarget slow(this); |
+ JumpTarget exit(this); |
+ |
+ // Load the value (1) into register r1. |
+ __ mov(r1, Operand(Smi::FromInt(1))); |
+ |
+ // Check for smi operand. |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ slow.Branch(ne); |
+ |
+ // Postfix: Store the old value as the result. |
+ if (is_postfix) { |
+ __ str(r0, frame_->ElementAt(target.size())); |
+ } |
+ |
+ // Perform optimistic increment/decrement. |
+ if (is_increment) { |
+ __ add(r0, r0, Operand(r1), SetCC); |
+ } else { |
+ __ sub(r0, r0, Operand(r1), SetCC); |
+ } |
+ |
+ // If the increment/decrement didn't overflow, we're done. |
+ exit.Branch(vc); |
+ |
+ // Revert optimistic increment/decrement. |
+ if (is_increment) { |
+ __ sub(r0, r0, Operand(r1)); |
+ } else { |
+ __ add(r0, r0, Operand(r1)); |
+ } |
+ |
+ // Slow case: Convert to number. |
+ slow.Bind(); |
+ { |
+ // Convert the operand to a number. |
+ frame_->EmitPush(r0); |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(0)); |
+ frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1); |
+ } |
+ if (is_postfix) { |
+ // Postfix: store to result (on the stack). |
+ __ str(r0, frame_->ElementAt(target.size())); |
+ } |
+ |
+ // Compute the new value. |
+ __ mov(r1, Operand(Smi::FromInt(1))); |
+ frame_->EmitPush(r0); |
+ frame_->EmitPush(r1); |
+ if (is_increment) { |
+ frame_->CallRuntime(Runtime::kNumberAdd, 2); |
+ } else { |
+ frame_->CallRuntime(Runtime::kNumberSub, 2); |
+ } |
+ |
+ // Store the new value in the target if not const. |
+ exit.Bind(); |
+ frame_->EmitPush(r0); |
+ if (!is_const) target.SetValue(NOT_CONST_INIT); |
+ } |
+ |
+ // Postfix: Discard the new value and use the old. |
+ if (is_postfix) frame_->EmitPop(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ BinaryOperation"); |
+ Token::Value op = node->op(); |
+ |
+ // According to ECMA-262 section 11.11, page 58, the binary logical |
+ // operators must yield the result of one of the two expressions |
+ // before any ToBoolean() conversions. This means that the value |
+ // produced by a && or || operator is not necessarily a boolean. |
+ |
+ // NOTE: If the left hand side produces a materialized value (not in |
+ // the CC register), we force the right hand side to do the |
+ // same. This is necessary because we may have to branch to the exit |
+ // after evaluating the left hand side (due to the shortcut |
+ // semantics), but the compiler must (statically) know if the result |
+ // of compiling the binary operation is materialized or not. |
+ |
+ if (op == Token::AND) { |
+ JumpTarget is_true(this); |
+ LoadConditionAndSpill(node->left(), |
+ NOT_INSIDE_TYPEOF, |
+ &is_true, |
+ false_target(), |
+ false); |
+ if (has_cc()) { |
+ Branch(false, false_target()); |
+ |
+ // Evaluate right side expression. |
+ is_true.Bind(); |
+ LoadConditionAndSpill(node->right(), |
+ NOT_INSIDE_TYPEOF, |
+ true_target(), |
+ false_target(), |
+ false); |
+ |
+ } else { |
+ JumpTarget pop_and_continue(this); |
+ JumpTarget exit(this); |
+ |
+ __ ldr(r0, frame_->Top()); // dup the stack top |
+ frame_->EmitPush(r0); |
+ // Avoid popping the result if it converts to 'false' using the |
+ // standard ToBoolean() conversion as described in ECMA-262, |
+ // section 9.2, page 30. |
+ ToBoolean(&pop_and_continue, &exit); |
+ Branch(false, &exit); |
+ |
+ // Pop the result of evaluating the first part. |
+ pop_and_continue.Bind(); |
+ frame_->EmitPop(r0); |
+ |
+ // Evaluate right side expression. |
+ is_true.Bind(); |
+ LoadAndSpill(node->right()); |
+ |
+ // Exit (always with a materialized value). |
+ exit.Bind(); |
+ } |
+ |
+ } else if (op == Token::OR) { |
+ JumpTarget is_false(this); |
+ LoadConditionAndSpill(node->left(), |
+ NOT_INSIDE_TYPEOF, |
+ true_target(), |
+ &is_false, |
+ false); |
+ if (has_cc()) { |
+ Branch(true, true_target()); |
+ |
+ // Evaluate right side expression. |
+ is_false.Bind(); |
+ LoadConditionAndSpill(node->right(), |
+ NOT_INSIDE_TYPEOF, |
+ true_target(), |
+ false_target(), |
+ false); |
+ |
+ } else { |
+ JumpTarget pop_and_continue(this); |
+ JumpTarget exit(this); |
+ |
+ __ ldr(r0, frame_->Top()); |
+ frame_->EmitPush(r0); |
+ // Avoid popping the result if it converts to 'true' using the |
+ // standard ToBoolean() conversion as described in ECMA-262, |
+ // section 9.2, page 30. |
+ ToBoolean(&exit, &pop_and_continue); |
+ Branch(true, &exit); |
+ |
+ // Pop the result of evaluating the first part. |
+ pop_and_continue.Bind(); |
+ frame_->EmitPop(r0); |
+ |
+ // Evaluate right side expression. |
+ is_false.Bind(); |
+ LoadAndSpill(node->right()); |
+ |
+ // Exit (always with a materialized value). |
+ exit.Bind(); |
+ } |
+ |
+ } else { |
+ // Optimize for the case where (at least) one of the expressions |
+ // is a literal small integer. |
+ Literal* lliteral = node->left()->AsLiteral(); |
+ Literal* rliteral = node->right()->AsLiteral(); |
+ // NOTE: The code below assumes that the slow cases (calls to runtime) |
+ // never return a constant/immutable object. |
+ bool overwrite_left = |
+ (node->left()->AsBinaryOperation() != NULL && |
+ node->left()->AsBinaryOperation()->ResultOverwriteAllowed()); |
+ bool overwrite_right = |
+ (node->right()->AsBinaryOperation() != NULL && |
+ node->right()->AsBinaryOperation()->ResultOverwriteAllowed()); |
+ |
+ if (rliteral != NULL && rliteral->handle()->IsSmi()) { |
+ LoadAndSpill(node->left()); |
+ SmiOperation(node->op(), |
+ rliteral->handle(), |
+ false, |
+ overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); |
+ |
+ } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { |
+ LoadAndSpill(node->right()); |
+ SmiOperation(node->op(), |
+ lliteral->handle(), |
+ true, |
+ overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); |
+ |
+ } else { |
+ OverwriteMode overwrite_mode = NO_OVERWRITE; |
+ if (overwrite_left) { |
+ overwrite_mode = OVERWRITE_LEFT; |
+ } else if (overwrite_right) { |
+ overwrite_mode = OVERWRITE_RIGHT; |
+ } |
+ LoadAndSpill(node->left()); |
+ LoadAndSpill(node->right()); |
+ GenericBinaryOperation(node->op(), overwrite_mode); |
+ } |
+ frame_->EmitPush(r0); |
+ } |
+ ASSERT((has_cc() && frame_->height() == original_height) || |
+ (!has_cc() && frame_->height() == original_height + 1)); |
+} |
+ |
+ |
+void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ __ ldr(r0, frame_->Function()); |
+ frame_->EmitPush(r0); |
+ ASSERT(frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
+#ifdef DEBUG |
+ int original_height = frame_->height(); |
+#endif |
+ VirtualFrame::SpilledScope spilled_scope(this); |
+ Comment cmnt(masm_, "[ CompareOperation"); |
+ |
+ // Get the expressions from the node. |
+ Expression* left = node->left(); |
+ Expression* right = node->right(); |
+ Token::Value op = node->op(); |
+ |
+ // To make null checks efficient, we check if either left or right is the |
+ // literal 'null'. If so, we optimize the code by inlining a null check |
+ // instead of calling the (very) general runtime routine for checking |
+ // equality. |
+ if (op == Token::EQ || op == Token::EQ_STRICT) { |
+ bool left_is_null = |
+ left->AsLiteral() != NULL && left->AsLiteral()->IsNull(); |
+ bool right_is_null = |
+ right->AsLiteral() != NULL && right->AsLiteral()->IsNull(); |
+ // The 'null' value can only be equal to 'null' or 'undefined'. |
+ if (left_is_null || right_is_null) { |
+ LoadAndSpill(left_is_null ? right : left); |
+ frame_->EmitPop(r0); |
+ __ cmp(r0, Operand(Factory::null_value())); |
+ |
+ // The 'null' value is only equal to 'undefined' if using non-strict |
+ // comparisons. |
+ if (op != Token::EQ_STRICT) { |
+ true_target()->Branch(eq); |
+ |
+ __ cmp(r0, Operand(Factory::undefined_value())); |
+ true_target()->Branch(eq); |
+ |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ false_target()->Branch(eq); |
+ |
+ // It can be an undetectable object. |
+ __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ __ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset)); |
+ __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); |
+ __ cmp(r0, Operand(1 << Map::kIsUndetectable)); |
+ } |
+ |
+ cc_reg_ = eq; |
+ ASSERT(has_cc() && frame_->height() == original_height); |
+ return; |
+ } |
+ } |
+ |
+ // To make typeof testing for natives implemented in JavaScript really |
+ // efficient, we generate special code for expressions of the form: |
+ // 'typeof <expression> == <string>'. |
+ UnaryOperation* operation = left->AsUnaryOperation(); |
+ if ((op == Token::EQ || op == Token::EQ_STRICT) && |
+ (operation != NULL && operation->op() == Token::TYPEOF) && |
+ (right->AsLiteral() != NULL && |
+ right->AsLiteral()->handle()->IsString())) { |
+ Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
+ |
+ // Load the operand, move it to register r1. |
+ LoadTypeofExpression(operation->expression()); |
+ frame_->EmitPop(r1); |
+ |
+ if (check->Equals(Heap::number_symbol())) { |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ true_target()->Branch(eq); |
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ cmp(r1, Operand(Factory::heap_number_map())); |
+ cc_reg_ = eq; |
+ |
+ } else if (check->Equals(Heap::string_symbol())) { |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ false_target()->Branch(eq); |
+ |
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ |
+ // It can be an undetectable string object. |
+ __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset)); |
+ __ and_(r2, r2, Operand(1 << Map::kIsUndetectable)); |
+ __ cmp(r2, Operand(1 << Map::kIsUndetectable)); |
+ false_target()->Branch(eq); |
+ |
+ __ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ __ cmp(r2, Operand(FIRST_NONSTRING_TYPE)); |
+ cc_reg_ = lt; |
+ |
+ } else if (check->Equals(Heap::boolean_symbol())) { |
+ __ cmp(r1, Operand(Factory::true_value())); |
+ true_target()->Branch(eq); |
+ __ cmp(r1, Operand(Factory::false_value())); |
+ cc_reg_ = eq; |
+ |
+ } else if (check->Equals(Heap::undefined_symbol())) { |
+ __ cmp(r1, Operand(Factory::undefined_value())); |
+ true_target()->Branch(eq); |
+ |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ false_target()->Branch(eq); |
+ |
+ // It can be an undetectable object. |
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset)); |
+ __ and_(r2, r2, Operand(1 << Map::kIsUndetectable)); |
+ __ cmp(r2, Operand(1 << Map::kIsUndetectable)); |
+ |
+ cc_reg_ = eq; |
+ |
+ } else if (check->Equals(Heap::function_symbol())) { |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ false_target()->Branch(eq); |
+ __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); |
+ __ cmp(r1, Operand(JS_FUNCTION_TYPE)); |
+ cc_reg_ = eq; |
+ |
+ } else if (check->Equals(Heap::object_symbol())) { |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ false_target()->Branch(eq); |
+ |
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ cmp(r1, Operand(Factory::null_value())); |
+ true_target()->Branch(eq); |
+ |
+ // It can be an undetectable object. |
+ __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset)); |
+ __ and_(r1, r1, Operand(1 << Map::kIsUndetectable)); |
+ __ cmp(r1, Operand(1 << Map::kIsUndetectable)); |
+ false_target()->Branch(eq); |
+ |
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); |
+ __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE)); |
+ false_target()->Branch(lt); |
+ __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE)); |
+ cc_reg_ = le; |
+ |
+ } else { |
+ // Uncommon case: typeof testing against a string literal that is |
+ // never returned from the typeof operator. |
+ false_target()->Jump(); |
+ } |
+ ASSERT(!has_valid_frame() || |
+ (has_cc() && frame_->height() == original_height)); |
+ return; |
+ } |
+ |
+ LoadAndSpill(left); |
+ LoadAndSpill(right); |
+ switch (op) { |
+ case Token::EQ: |
+ Comparison(eq, false); |
+ break; |
+ |
+ case Token::LT: |
+ Comparison(lt); |
+ break; |
+ |
+ case Token::GT: |
+ Comparison(gt); |
+ break; |
+ |
+ case Token::LTE: |
+ Comparison(le); |
+ break; |
+ |
+ case Token::GTE: |
+ Comparison(ge); |
+ break; |
+ |
+ case Token::EQ_STRICT: |
+ Comparison(eq, true); |
+ break; |
+ |
+ case Token::IN: { |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver |
+ Result result = frame_->InvokeBuiltin(Builtins::IN, |
+ CALL_JS, |
+ &arg_count, |
+ 2); |
+ frame_->EmitPush(result.reg()); |
+ break; |
+ } |
+ |
+ case Token::INSTANCEOF: { |
+ Result arg_count = allocator_->Allocate(r0); |
+ ASSERT(arg_count.is_valid()); |
+ __ mov(arg_count.reg(), Operand(1)); // not counting receiver |
+ Result result = frame_->InvokeBuiltin(Builtins::INSTANCE_OF, |
+ CALL_JS, |
+ &arg_count, |
+ 2); |
+ __ tst(result.reg(), Operand(result.reg())); |
+ cc_reg_ = eq; |
+ break; |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+ ASSERT((has_cc() && frame_->height() == original_height) || |
+ (!has_cc() && frame_->height() == original_height + 1)); |
+} |
+ |
+ |
+#ifdef DEBUG |
+bool CodeGenerator::HasValidEntryRegisters() { return true; } |
+#endif |
+ |
+ |
+#undef __ |
+#define __ ACCESS_MASM(masm) |
+ |
+ |
+Handle<String> Reference::GetName() { |
+ ASSERT(type_ == NAMED); |
+ Property* property = expression_->AsProperty(); |
+ if (property == NULL) { |
+ // Global variable reference treated as a named property reference. |
+ VariableProxy* proxy = expression_->AsVariableProxy(); |
+ ASSERT(proxy->AsVariable() != NULL); |
+ ASSERT(proxy->AsVariable()->is_global()); |
+ return proxy->name(); |
+ } else { |
+ Literal* raw_name = property->key()->AsLiteral(); |
+ ASSERT(raw_name != NULL); |
+ return Handle<String>(String::cast(*raw_name->handle())); |
+ } |
+} |
+ |
+ |
+void Reference::GetValueAndSpill(TypeofState typeof_state) { |
+ ASSERT(cgen_->in_spilled_code()); |
+ cgen_->set_in_spilled_code(false); |
+ GetValue(typeof_state); |
+ cgen_->frame()->SpillAll(); |
+ cgen_->set_in_spilled_code(true); |
+} |
+ |
+ |
+void Reference::GetValue(TypeofState typeof_state) { |
+ ASSERT(!cgen_->in_spilled_code()); |
+ ASSERT(cgen_->HasValidEntryRegisters()); |
+ ASSERT(!is_illegal()); |
+ ASSERT(!cgen_->has_cc()); |
+ MacroAssembler* masm = cgen_->masm(); |
+ Property* property = expression_->AsProperty(); |
+ if (property != NULL) { |
+ cgen_->CodeForSourcePosition(property->position()); |
+ } |
+ |
+ switch (type_) { |
+ case SLOT: { |
+ Comment cmnt(masm, "[ Load from Slot"); |
+ Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
+ ASSERT(slot != NULL); |
+ cgen_->LoadFromSlot(slot, typeof_state); |
+ break; |
+ } |
+ |
+ case NAMED: { |
+ // TODO(1241834): Make sure that this it is safe to ignore the |
+ // distinction between expressions in a typeof and not in a typeof. If |
+ // there is a chance that reference errors can be thrown below, we |
+ // must distinguish between the two kinds of loads (typeof expression |
+ // loads must not throw a reference error). |
+ VirtualFrame* frame = cgen_->frame(); |
+ Comment cmnt(masm, "[ Load from named Property"); |
+ Handle<String> name(GetName()); |
+ Variable* var = expression_->AsVariableProxy()->AsVariable(); |
+ Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); |
+ // Setup the name register. |
+ Result name_reg = cgen_->allocator()->Allocate(r2); |
+ ASSERT(name_reg.is_valid()); |
+ __ mov(name_reg.reg(), Operand(name)); |
+ ASSERT(var == NULL || var->is_global()); |
+ RelocInfo::Mode rmode = (var == NULL) |
+ ? RelocInfo::CODE_TARGET |
+ : RelocInfo::CODE_TARGET_CONTEXT; |
+ Result answer = frame->CallCodeObject(ic, rmode, &name_reg, 0); |
+ frame->EmitPush(answer.reg()); |
+ break; |
+ } |
+ |
+ case KEYED: { |
+ // TODO(1241834): Make sure that this it is safe to ignore the |
+ // distinction between expressions in a typeof and not in a typeof. |
+ |
+ // TODO(181): Implement inlined version of array indexing once |
+ // loop nesting is properly tracked on ARM. |
+ VirtualFrame* frame = cgen_->frame(); |
+ Comment cmnt(masm, "[ Load from keyed Property"); |
+ ASSERT(property != NULL); |
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
+ Variable* var = expression_->AsVariableProxy()->AsVariable(); |
+ ASSERT(var == NULL || var->is_global()); |
+ RelocInfo::Mode rmode = (var == NULL) |
+ ? RelocInfo::CODE_TARGET |
+ : RelocInfo::CODE_TARGET_CONTEXT; |
+ Result answer = frame->CallCodeObject(ic, rmode, 0); |
+ frame->EmitPush(answer.reg()); |
+ break; |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void Reference::SetValue(InitState init_state) { |
+ ASSERT(!is_illegal()); |
+ ASSERT(!cgen_->has_cc()); |
+ MacroAssembler* masm = cgen_->masm(); |
+ VirtualFrame* frame = cgen_->frame(); |
+ Property* property = expression_->AsProperty(); |
+ if (property != NULL) { |
+ cgen_->CodeForSourcePosition(property->position()); |
+ } |
+ |
+ switch (type_) { |
+ case SLOT: { |
+ Comment cmnt(masm, "[ Store to Slot"); |
+ Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); |
+ ASSERT(slot != NULL); |
+ if (slot->type() == Slot::LOOKUP) { |
+ ASSERT(slot->var()->is_dynamic()); |
+ |
+ // For now, just do a runtime call. |
+ frame->EmitPush(cp); |
+ __ mov(r0, Operand(slot->var()->name())); |
+ frame->EmitPush(r0); |
+ |
+ if (init_state == CONST_INIT) { |
+ // Same as the case for a normal store, but ignores attribute |
+ // (e.g. READ_ONLY) of context slot so that we can initialize |
+ // const properties (introduced via eval("const foo = (some |
+ // expr);")). Also, uses the current function context instead of |
+ // the top context. |
+ // |
+ // Note that we must declare the foo upon entry of eval(), via a |
+ // context slot declaration, but we cannot initialize it at the |
+ // same time, because the const declaration may be at the end of |
+ // the eval code (sigh...) and the const variable may have been |
+ // used before (where its value is 'undefined'). Thus, we can only |
+ // do the initialization when we actually encounter the expression |
+ // and when the expression operands are defined and valid, and |
+ // thus we need the split into 2 operations: declaration of the |
+ // context slot followed by initialization. |
+ frame->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
+ } else { |
+ frame->CallRuntime(Runtime::kStoreContextSlot, 3); |
+ } |
+ // Storing a variable must keep the (new) value on the expression |
+ // stack. This is necessary for compiling assignment expressions. |
+ frame->EmitPush(r0); |
+ |
+ } else { |
+ ASSERT(!slot->var()->is_dynamic()); |
+ |
+ JumpTarget exit(cgen_); |
+ if (init_state == CONST_INIT) { |
+ ASSERT(slot->var()->mode() == Variable::CONST); |
+ // Only the first const initialization must be executed (the slot |
+ // still contains 'the hole' value). When the assignment is |
+ // executed, the code is identical to a normal store (see below). |
+ Comment cmnt(masm, "[ Init const"); |
+ __ ldr(r2, cgen_->SlotOperand(slot, r2)); |
+ __ cmp(r2, Operand(Factory::the_hole_value())); |
+ exit.Branch(ne); |
+ } |
+ |
+ // We must execute the store. Storing a variable must keep the |
+ // (new) value on the stack. This is necessary for compiling |
+ // assignment expressions. |
+ // |
+ // Note: We will reach here even with slot->var()->mode() == |
+ // Variable::CONST because of const declarations which will |
+ // initialize consts to 'the hole' value and by doing so, end up |
+ // calling this code. r2 may be loaded with context; used below in |
+ // RecordWrite. |
+ frame->EmitPop(r0); |
+ __ str(r0, cgen_->SlotOperand(slot, r2)); |
+ frame->EmitPush(r0); |
+ if (slot->type() == Slot::CONTEXT) { |
+ // Skip write barrier if the written value is a smi. |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ exit.Branch(eq); |
+ // r2 is loaded with context when calling SlotOperand above. |
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
+ __ mov(r3, Operand(offset)); |
+ __ RecordWrite(r2, r3, r1); |
+ } |
+ // If we definitely did not jump over the assignment, we do not need |
+ // to bind the exit label. Doing so can defeat peephole |
+ // optimization. |
+ if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { |
+ exit.Bind(); |
+ } |
+ } |
+ break; |
+ } |
+ |
+ case NAMED: { |
+ Comment cmnt(masm, "[ Store to named Property"); |
+ // Call the appropriate IC code. |
+ Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); |
+ Handle<String> name(GetName()); |
+ |
+ Result value = cgen_->allocator()->Allocate(r0); |
+ ASSERT(value.is_valid()); |
+ frame->EmitPop(value.reg()); |
+ |
+ // Setup the name register. |
+ Result property_name = cgen_->allocator()->Allocate(r2); |
+ ASSERT(property_name.is_valid()); |
+ __ mov(property_name.reg(), Operand(name)); |
+ Result answer = frame->CallCodeObject(ic, |
+ RelocInfo::CODE_TARGET, |
+ &value, |
+ &property_name, |
+ 0); |
+ frame->EmitPush(answer.reg()); |
+ break; |
+ } |
+ |
+ case KEYED: { |
+ Comment cmnt(masm, "[ Store to keyed Property"); |
+ Property* property = expression_->AsProperty(); |
+ ASSERT(property != NULL); |
+ cgen_->CodeForSourcePosition(property->position()); |
+ |
+ // Call IC code. |
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
+ // TODO(1222589): Make the IC grab the values from the stack. |
+ Result value = cgen_->allocator()->Allocate(r0); |
+ ASSERT(value.is_valid()); |
+ frame->EmitPop(value.reg()); // value |
+ Result result = |
+ frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, &value, 0); |
+ frame->EmitPush(result.reg()); |
+ break; |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+static void HandleBinaryOpSlowCases(MacroAssembler* masm, |
+ Label* not_smi, |
+ const Builtins::JavaScript& builtin, |
+ Token::Value operation, |
+ int swi_number, |
+ OverwriteMode mode) { |
+ Label slow; |
+ if (mode == NO_OVERWRITE) { |
+ __ bind(not_smi); |
+ } |
+ __ bind(&slow); |
+ __ push(r1); |
+ __ push(r0); |
+ __ mov(r0, Operand(1)); // Set number of arguments. |
+ __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. |
+ |
+ // Could it be a double-double op? If we already have a place to put |
+ // the answer then we can do the op and skip the builtin and runtime call. |
+ if (mode != NO_OVERWRITE) { |
+ __ bind(not_smi); |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ __ b(eq, &slow); // We can't handle a Smi-double combination yet. |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ __ b(eq, &slow); // We can't handle a Smi-double combination yet. |
+ // Get map of r0 into r2. |
+ __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); |
+ // Get type of r0 into r3. |
+ __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset)); |
+ __ cmp(r3, Operand(HEAP_NUMBER_TYPE)); |
+ __ b(ne, &slow); |
+ // Get type of r1 into r3. |
+ __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ // Check they are both the same map (heap number map). |
+ __ cmp(r2, r3); |
+ __ b(ne, &slow); |
+ // Both are doubles. |
+ // Calling convention says that second double is in r2 and r3. |
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); |
+ __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize)); |
+ __ push(lr); |
+ if (mode == OVERWRITE_LEFT) { |
+ __ push(r1); |
+ } else { |
+ __ push(r0); |
+ } |
+ // Calling convention says that first double is in r0 and r1. |
+ __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); |
+ __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize)); |
+ // Call C routine that may not cause GC or other trouble. |
+ __ mov(r5, Operand(ExternalReference::double_fp_operation(operation))); |
+#if !defined(__arm__) |
+ // Notify the simulator that we are calling an add routine in C. |
+ __ swi(swi_number); |
+#else |
+ // Actually call the add routine written in C. |
+ __ Call(r5); |
+#endif |
+ // Store answer in the overwritable heap number. |
+ __ pop(r4); |
+#if !defined(__ARM_EABI__) && defined(__arm__) |
+ // Double returned in fp coprocessor register 0 and 1, encoded as register |
+ // cr8. Offsets must be divisible by 4 for coprocessor so we need to |
+ // substract the tag from r4. |
+ __ sub(r5, r4, Operand(kHeapObjectTag)); |
+ __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); |
+#else |
+ // Double returned in fp coprocessor register 0 and 1. |
+ __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); |
+ __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + kPointerSize)); |
+#endif |
+ __ mov(r0, Operand(r4)); |
+ // And we are done. |
+ __ pop(pc); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
+ // r1 : x |
+ // r0 : y |
+ // result : r0 |
+ |
+ // All ops need to know whether we are dealing with two Smis. Set up r2 to |
+ // tell us that. |
+ __ orr(r2, r1, Operand(r0)); // r2 = x | y; |
+ |
+ switch (op_) { |
+ case Token::ADD: { |
+ Label not_smi; |
+ // Fast path. |
+ ASSERT(kSmiTag == 0); // Adjust code below. |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ __ b(ne, ¬_smi); |
+ __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
+ // Return if no overflow. |
+ __ Ret(vc); |
+ __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
+ |
+ HandleBinaryOpSlowCases(masm, |
+ ¬_smi, |
+ Builtins::ADD, |
+ Token::ADD, |
+ assembler::arm::simulator_fp_add, |
+ mode_); |
+ break; |
+ } |
+ |
+ case Token::SUB: { |
+ Label not_smi; |
+ // Fast path. |
+ ASSERT(kSmiTag == 0); // Adjust code below. |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ __ b(ne, ¬_smi); |
+ __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
+ // Return if no overflow. |
+ __ Ret(vc); |
+ __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
+ |
+ HandleBinaryOpSlowCases(masm, |
+ ¬_smi, |
+ Builtins::SUB, |
+ Token::SUB, |
+ assembler::arm::simulator_fp_sub, |
+ mode_); |
+ break; |
+ } |
+ |
+ case Token::MUL: { |
+ Label not_smi, slow; |
+ ASSERT(kSmiTag == 0); // adjust code below |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ __ b(ne, ¬_smi); |
+ // Remove tag from one operand (but keep sign), so that result is Smi. |
+ __ mov(ip, Operand(r0, ASR, kSmiTagSize)); |
+ // Do multiplication |
+ __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. |
+ // Go slow on overflows (overflow bit is not set). |
+ __ mov(ip, Operand(r3, ASR, 31)); |
+ __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical |
+ __ b(ne, &slow); |
+ // Go slow on zero result to handle -0. |
+ __ tst(r3, Operand(r3)); |
+ __ mov(r0, Operand(r3), LeaveCC, ne); |
+ __ Ret(ne); |
+ // Slow case. |
+ __ bind(&slow); |
+ |
+ HandleBinaryOpSlowCases(masm, |
+ ¬_smi, |
+ Builtins::MUL, |
+ Token::MUL, |
+ assembler::arm::simulator_fp_mul, |
+ mode_); |
+ break; |
+ } |
+ |
+ case Token::BIT_OR: |
+ case Token::BIT_AND: |
+ case Token::BIT_XOR: { |
+ Label slow; |
+ ASSERT(kSmiTag == 0); // adjust code below |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ __ b(ne, &slow); |
+ switch (op_) { |
+ case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break; |
+ case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break; |
+ case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ Ret(); |
+ __ bind(&slow); |
+ __ push(r1); // restore stack |
+ __ push(r0); |
+ __ mov(r0, Operand(1)); // 1 argument (not counting receiver). |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS); |
+ break; |
+ case Token::BIT_AND: |
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS); |
+ break; |
+ case Token::BIT_XOR: |
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ break; |
+ } |
+ |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: { |
+ Label slow; |
+ ASSERT(kSmiTag == 0); // adjust code below |
+ __ tst(r2, Operand(kSmiTagMask)); |
+ __ b(ne, &slow); |
+ // remove tags from operands (but keep sign) |
+ __ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x |
+ __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y |
+ // use only the 5 least significant bits of the shift count |
+ __ and_(r2, r2, Operand(0x1f)); |
+ // perform operation |
+ switch (op_) { |
+ case Token::SAR: |
+ __ mov(r3, Operand(r3, ASR, r2)); |
+ // no checks of result necessary |
+ break; |
+ |
+ case Token::SHR: |
+ __ mov(r3, Operand(r3, LSR, r2)); |
+ // check that the *unsigned* result fits in a smi |
+ // neither of the two high-order bits can be set: |
+ // - 0x80000000: high bit would be lost when smi tagging |
+ // - 0x40000000: this number would convert to negative when |
+ // smi tagging these two cases can only happen with shifts |
+ // by 0 or 1 when handed a valid smi |
+ __ and_(r2, r3, Operand(0xc0000000), SetCC); |
+ __ b(ne, &slow); |
+ break; |
+ |
+ case Token::SHL: |
+ __ mov(r3, Operand(r3, LSL, r2)); |
+ // check that the *signed* result fits in a smi |
+ __ add(r2, r3, Operand(0x40000000), SetCC); |
+ __ b(mi, &slow); |
+ break; |
+ |
+ default: UNREACHABLE(); |
+ } |
+ // tag result and store it in r0 |
+ ASSERT(kSmiTag == 0); // adjust code below |
+ __ mov(r0, Operand(r3, LSL, kSmiTagSize)); |
+ __ Ret(); |
+ // slow case |
+ __ bind(&slow); |
+ __ push(r1); // restore stack |
+ __ push(r0); |
+ __ mov(r0, Operand(1)); // 1 argument (not counting receiver). |
+ switch (op_) { |
+ case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_JS); break; |
+ case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_JS); break; |
+ case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_JS); break; |
+ default: UNREACHABLE(); |
+ } |
+ break; |
+ } |
+ |
+ default: UNREACHABLE(); |
+ } |
+ // This code should be unreachable. |
+ __ stop("Unreachable"); |
+} |
+ |
+ |
+void StackCheckStub::Generate(MacroAssembler* masm) { |
+ Label within_limit; |
+ __ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit())); |
+ __ ldr(ip, MemOperand(ip)); |
+ __ cmp(sp, Operand(ip)); |
+ __ b(hs, &within_limit); |
+ // Do tail-call to runtime routine. |
+ __ push(r0); |
+ __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1); |
+ __ bind(&within_limit); |
+ |
+ __ StubReturn(1); |
+} |
+ |
+ |
+void UnarySubStub::Generate(MacroAssembler* masm) { |
+ Label undo; |
+ Label slow; |
+ Label done; |
+ |
+ // Enter runtime system if the value is not a smi. |
+ __ tst(r0, Operand(kSmiTagMask)); |
+ __ b(ne, &slow); |
+ |
+ // Enter runtime system if the value of the expression is zero |
+ // to make sure that we switch between 0 and -0. |
+ __ cmp(r0, Operand(0)); |
+ __ b(eq, &slow); |
+ |
+ // The value of the expression is a smi that is not zero. Try |
+ // optimistic subtraction '0 - value'. |
+ __ rsb(r1, r0, Operand(0), SetCC); |
+ __ b(vs, &slow); |
+ |
+ // If result is a smi we are done. |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ __ mov(r0, Operand(r1), LeaveCC, eq); // conditionally set r0 to result |
+ __ b(eq, &done); |
+ |
+ // Enter runtime system. |
+ __ bind(&slow); |
+ __ push(r0); |
+ __ mov(r0, Operand(0)); // set number of arguments |
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS); |
+ |
+ __ bind(&done); |
+ __ StubReturn(1); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
+ // r0 holds exception |
+ ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code |
+ __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
+ __ ldr(sp, MemOperand(r3)); |
+ __ pop(r2); // pop next in chain |
+ __ str(r2, MemOperand(r3)); |
+ // restore parameter- and frame-pointer and pop state. |
+ __ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit()); |
+ // Before returning we restore the context from the frame pointer if not NULL. |
+ // The frame pointer is NULL in the exception handler of a JS entry frame. |
+ __ cmp(fp, Operand(0)); |
+ // Set cp to NULL if fp is NULL. |
+ __ mov(cp, Operand(0), LeaveCC, eq); |
+ // Restore cp otherwise. |
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
+#ifdef DEBUG |
+ if (FLAG_debug_code) { |
+ __ mov(lr, Operand(pc)); |
+ } |
+#endif |
+ __ pop(pc); |
+} |
+ |
+ |
+void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) { |
+ // Fetch top stack handler. |
+ __ mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
+ __ ldr(r3, MemOperand(r3)); |
+ |
+ // Unwind the handlers until the ENTRY handler is found. |
+ Label loop, done; |
+ __ bind(&loop); |
+ // Load the type of the current stack handler. |
+ const int kStateOffset = StackHandlerConstants::kAddressDisplacement + |
+ StackHandlerConstants::kStateOffset; |
+ __ ldr(r2, MemOperand(r3, kStateOffset)); |
+ __ cmp(r2, Operand(StackHandler::ENTRY)); |
+ __ b(eq, &done); |
+ // Fetch the next handler in the list. |
+ const int kNextOffset = StackHandlerConstants::kAddressDisplacement + |
+ StackHandlerConstants::kNextOffset; |
+ __ ldr(r3, MemOperand(r3, kNextOffset)); |
+ __ jmp(&loop); |
+ __ bind(&done); |
+ |
+ // Set the top handler address to next handler past the current ENTRY handler. |
+ __ ldr(r0, MemOperand(r3, kNextOffset)); |
+ __ mov(r2, Operand(ExternalReference(Top::k_handler_address))); |
+ __ str(r0, MemOperand(r2)); |
+ |
+ // Set external caught exception to false. |
+ __ mov(r0, Operand(false)); |
+ ExternalReference external_caught(Top::k_external_caught_exception_address); |
+ __ mov(r2, Operand(external_caught)); |
+ __ str(r0, MemOperand(r2)); |
+ |
+ // Set pending exception and r0 to out of memory exception. |
+ Failure* out_of_memory = Failure::OutOfMemoryException(); |
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
+ __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address))); |
+ __ str(r0, MemOperand(r2)); |
+ |
+ // Restore the stack to the address of the ENTRY handler |
+ __ mov(sp, Operand(r3)); |
+ |
+ // Stack layout at this point. See also PushTryHandler |
+ // r3, sp -> next handler |
+ // state (ENTRY) |
+ // pp |
+ // fp |
+ // lr |
+ |
+ // Discard ENTRY state (r2 is not used), and restore parameter- |
+ // and frame-pointer and pop state. |
+ __ ldm(ia_w, sp, r2.bit() | r3.bit() | pp.bit() | fp.bit()); |
+ // Before returning we restore the context from the frame pointer if not NULL. |
+ // The frame pointer is NULL in the exception handler of a JS entry frame. |
+ __ cmp(fp, Operand(0)); |
+ // Set cp to NULL if fp is NULL. |
+ __ mov(cp, Operand(0), LeaveCC, eq); |
+ // Restore cp otherwise. |
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); |
+#ifdef DEBUG |
+ if (FLAG_debug_code) { |
+ __ mov(lr, Operand(pc)); |
+ } |
+#endif |
+ __ pop(pc); |
+} |
+ |
+ |
+void CEntryStub::GenerateCore(MacroAssembler* masm, |
+ Label* throw_normal_exception, |
+ Label* throw_out_of_memory_exception, |
+ StackFrame::Type frame_type, |
+ bool do_gc, |
+ bool always_allocate) { |
+ // r0: result parameter for PerformGC, if any |
+ // r4: number of arguments including receiver (C callee-saved) |
+ // r5: pointer to builtin function (C callee-saved) |
+ // r6: pointer to the first argument (C callee-saved) |
+ |
+ if (do_gc) { |
+ // Passing r0. |
+ __ Call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); |
+ } |
+ |
+ ExternalReference scope_depth = |
+ ExternalReference::heap_always_allocate_scope_depth(); |
+ if (always_allocate) { |
+ __ mov(r0, Operand(scope_depth)); |
+ __ ldr(r1, MemOperand(r0)); |
+ __ add(r1, r1, Operand(1)); |
+ __ str(r1, MemOperand(r0)); |
+ } |
+ |
+ // Call C built-in. |
+ // r0 = argc, r1 = argv |
+ __ mov(r0, Operand(r4)); |
+ __ mov(r1, Operand(r6)); |
+ |
+ // TODO(1242173): To let the GC traverse the return address of the exit |
+ // frames, we need to know where the return address is. Right now, |
+ // we push it on the stack to be able to find it again, but we never |
+ // restore from it in case of changes, which makes it impossible to |
+ // support moving the C entry code stub. This should be fixed, but currently |
+ // this is OK because the CEntryStub gets generated so early in the V8 boot |
+ // sequence that it is not moving ever. |
+ __ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4 |
+ __ push(lr); |
+#if !defined(__arm__) |
+ // Notify the simulator of the transition to C code. |
+ __ swi(assembler::arm::call_rt_r5); |
+#else /* !defined(__arm__) */ |
+ __ Jump(r5); |
+#endif /* !defined(__arm__) */ |
+ |
+ if (always_allocate) { |
+ // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1 |
+ // though (contain the result). |
+ __ mov(r2, Operand(scope_depth)); |
+ __ ldr(r3, MemOperand(r2)); |
+ __ sub(r3, r3, Operand(1)); |
+ __ str(r3, MemOperand(r2)); |
+ } |
+ |
+ // check for failure result |
+ Label failure_returned; |
+ ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
+ // Lower 2 bits of r2 are 0 iff r0 has failure tag. |
+ __ add(r2, r0, Operand(1)); |
+ __ tst(r2, Operand(kFailureTagMask)); |
+ __ b(eq, &failure_returned); |
+ |
+ // Exit C frame and return. |
+ // r0:r1: result |
+ // sp: stack pointer |
+ // fp: frame pointer |
+ // pp: caller's parameter pointer pp (restored as C callee-saved) |
+ __ LeaveExitFrame(frame_type); |
+ |
+ // check if we should retry or throw exception |
+ Label retry; |
+ __ bind(&failure_returned); |
+ ASSERT(Failure::RETRY_AFTER_GC == 0); |
+ __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); |
+ __ b(eq, &retry); |
+ |
+ Label continue_exception; |
+ // If the returned failure is EXCEPTION then promote Top::pending_exception(). |
+ __ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
+ __ b(ne, &continue_exception); |
+ |
+ // Retrieve the pending exception and clear the variable. |
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
+ __ ldr(r3, MemOperand(ip)); |
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
+ __ ldr(r0, MemOperand(ip)); |
+ __ str(r3, MemOperand(ip)); |
+ |
+ __ bind(&continue_exception); |
+ // Special handling of out of memory exception. |
+ Failure* out_of_memory = Failure::OutOfMemoryException(); |
+ __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
+ __ b(eq, throw_out_of_memory_exception); |
+ |
+ // Handle normal exception. |
+ __ jmp(throw_normal_exception); |
+ |
+ __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying |
+} |
+ |
+ |
+void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) { |
+ // Called from JavaScript; parameters are on stack as if calling JS function |
+ // r0: number of arguments including receiver |
+ // r1: pointer to builtin function |
+ // fp: frame pointer (restored after C call) |
+ // sp: stack pointer (restored as callee's pp after C call) |
+ // cp: current context (C callee-saved) |
+ // pp: caller's parameter pointer pp (C callee-saved) |
+ |
+ // NOTE: Invocations of builtins may return failure objects |
+ // instead of a proper result. The builtin entry handles |
+ // this by performing a garbage collection and retrying the |
+ // builtin once. |
+ |
+ StackFrame::Type frame_type = is_debug_break |
+ ? StackFrame::EXIT_DEBUG |
+ : StackFrame::EXIT; |
+ |
+ // Enter the exit frame that transitions from JavaScript to C++. |
+ __ EnterExitFrame(frame_type); |
+ |
+ // r4: number of arguments (C callee-saved) |
+ // r5: pointer to builtin function (C callee-saved) |
+ // r6: pointer to first argument (C callee-saved) |
+ |
+ Label throw_out_of_memory_exception; |
+ Label throw_normal_exception; |
+ |
+ // Call into the runtime system. Collect garbage before the call if |
+ // running with --gc-greedy set. |
+ if (FLAG_gc_greedy) { |
+ Failure* failure = Failure::RetryAfterGC(0); |
+ __ mov(r0, Operand(reinterpret_cast<intptr_t>(failure))); |
+ } |
+ GenerateCore(masm, &throw_normal_exception, |
+ &throw_out_of_memory_exception, |
+ frame_type, |
+ FLAG_gc_greedy, |
+ false); |
+ |
+ // Do space-specific GC and retry runtime call. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_out_of_memory_exception, |
+ frame_type, |
+ true, |
+ false); |
+ |
+ // Do full GC and retry runtime call one final time. |
+ Failure* failure = Failure::InternalError(); |
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(failure))); |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_out_of_memory_exception, |
+ frame_type, |
+ true, |
+ true); |
+ |
+ __ bind(&throw_out_of_memory_exception); |
+ GenerateThrowOutOfMemory(masm); |
+ // control flow for generated will not return. |
+ |
+ __ bind(&throw_normal_exception); |
+ GenerateThrowTOS(masm); |
+} |
+ |
+ |
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
+ // r0: code entry |
+ // r1: function |
+ // r2: receiver |
+ // r3: argc |
+ // [sp+0]: argv |
+ |
+ Label invoke, exit; |
+ |
+ // Called from C, so do not pop argc and args on exit (preserve sp) |
+ // No need to save register-passed args |
+ // Save callee-saved registers (incl. cp, pp, and fp), sp, and lr |
+ __ stm(db_w, sp, kCalleeSaved | lr.bit()); |
+ |
+ // Get address of argv, see stm above. |
+ // r0: code entry |
+ // r1: function |
+ // r2: receiver |
+ // r3: argc |
+ __ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize)); |
+ __ ldr(r4, MemOperand(r4)); // argv |
+ |
+ // Push a frame with special values setup to mark it as an entry frame. |
+ // r0: code entry |
+ // r1: function |
+ // r2: receiver |
+ // r3: argc |
+ // r4: argv |
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
+ __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
+ __ mov(r7, Operand(~ArgumentsAdaptorFrame::SENTINEL)); |
+ __ mov(r6, Operand(Smi::FromInt(marker))); |
+ __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
+ __ ldr(r5, MemOperand(r5)); |
+ __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit()); |
+ |
+ // Setup frame pointer for the frame to be pushed. |
+ __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
+ |
+ // Call a faked try-block that does the invoke. |
+ __ bl(&invoke); |
+ |
+ // Caught exception: Store result (exception) in the pending |
+ // exception field in the JSEnv and return a failure sentinel. |
+ // Coming in here the fp will be invalid because the PushTryHandler below |
+ // sets it to 0 to signal the existence of the JSEntry frame. |
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
+ __ str(r0, MemOperand(ip)); |
+ __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
+ __ b(&exit); |
+ |
+ // Invoke: Link this frame into the handler chain. |
+ __ bind(&invoke); |
+ // Must preserve r0-r4, r5-r7 are available. |
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
+ // If an exception not caught by another handler occurs, this handler returns |
+ // control to the code after the bl(&invoke) above, which restores all |
+ // kCalleeSaved registers (including cp, pp and fp) to their saved values |
+ // before returning a failure to C. |
+ |
+ // Clear any pending exceptions. |
+ __ mov(ip, Operand(ExternalReference::the_hole_value_location())); |
+ __ ldr(r5, MemOperand(ip)); |
+ __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address))); |
+ __ str(r5, MemOperand(ip)); |
+ |
+ // Invoke the function by calling through JS entry trampoline builtin. |
+ // Notice that we cannot store a reference to the trampoline code directly in |
+ // this stub, because runtime stubs are not traversed when doing GC. |
+ |
+ // Expected registers by Builtins::JSEntryTrampoline |
+ // r0: code entry |
+ // r1: function |
+ // r2: receiver |
+ // r3: argc |
+ // r4: argv |
+ if (is_construct) { |
+ ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); |
+ __ mov(ip, Operand(construct_entry)); |
+ } else { |
+ ExternalReference entry(Builtins::JSEntryTrampoline); |
+ __ mov(ip, Operand(entry)); |
+ } |
+ __ ldr(ip, MemOperand(ip)); // deref address |
+ |
+ // Branch and link to JSEntryTrampoline. We don't use the double underscore |
+ // macro for the add instruction because we don't want the coverage tool |
+ // inserting instructions here after we read the pc. |
+ __ mov(lr, Operand(pc)); |
+ masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
+ |
+ // Unlink this frame from the handler chain. When reading the |
+ // address of the next handler, there is no need to use the address |
+ // displacement since the current stack pointer (sp) points directly |
+ // to the stack handler. |
+ __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
+ __ mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
+ __ str(r3, MemOperand(ip)); |
+ // No need to restore registers |
+ __ add(sp, sp, Operand(StackHandlerConstants::kSize)); |
+ |
+ |
+ __ bind(&exit); // r0 holds result |
+ // Restore the top frame descriptors from the stack. |
+ __ pop(r3); |
+ __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
+ __ str(r3, MemOperand(ip)); |
+ |
+ // Reset the stack to the callee saved registers. |
+ __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
+ |
+ // Restore callee-saved registers and return. |
+#ifdef DEBUG |
+ if (FLAG_debug_code) { |
+ __ mov(lr, Operand(pc)); |
+ } |
+#endif |
+ __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL)); |
+ __ b(eq, &adaptor); |
+ |
+ // Nothing to do: The formal number of parameters has already been |
+ // passed in register r0 by calling function. Just return it. |
+ __ mov(pc, lr); |
+ |
+ // Arguments adaptor case: Read the arguments length from the |
+ // adaptor frame and return it. |
+ __ bind(&adaptor); |
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ mov(pc, lr); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
+ // The displacement is the offset of the last parameter (if any) |
+ // relative to the frame pointer. |
+ static const int kDisplacement = |
+ StandardFrameConstants::kCallerSPOffset - kPointerSize; |
+ |
+ // Check that the key is a smi. |
+ Label slow; |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ __ b(ne, &slow); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL)); |
+ __ b(eq, &adaptor); |
+ |
+ // Check index against formal parameters count limit passed in |
+ // through register eax. Use unsigned comparison to get negative |
+ // check for free. |
+ __ cmp(r1, r0); |
+ __ b(cs, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ __ sub(r3, r0, r1); |
+ __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
+ __ ldr(r0, MemOperand(r3, kDisplacement)); |
+ __ mov(pc, lr); |
+ |
+ // Arguments adaptor case: Check index against actual arguments |
+ // limit found in the arguments adaptor frame. Use unsigned |
+ // comparison to get negative check for free. |
+ __ bind(&adaptor); |
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ cmp(r1, r0); |
+ __ b(cs, &slow); |
+ |
+ // Read the argument from the adaptor frame and return it. |
+ __ sub(r3, r0, r1); |
+ __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize)); |
+ __ ldr(r0, MemOperand(r3, kDisplacement)); |
+ __ mov(pc, lr); |
+ |
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments |
+ // by calling the runtime system. |
+ __ bind(&slow); |
+ __ push(r1); |
+ __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label runtime; |
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); |
+ __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL)); |
+ __ b(ne, &runtime); |
+ |
+ // Patch the arguments.length and the parameters pointer. |
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ str(r0, MemOperand(sp, 0 * kPointerSize)); |
+ __ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize)); |
+ __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); |
+ __ str(r3, MemOperand(sp, 1 * kPointerSize)); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3); |
+} |
+ |
+ |
+void CallFunctionStub::Generate(MacroAssembler* masm) { |
+ Label slow; |
+ // Get the function to call from the stack. |
+ // function, receiver [, arguments] |
+ __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
+ |
+ // Check that the function is really a JavaScript function. |
+ // r1: pushed function (to be verified) |
+ __ tst(r1, Operand(kSmiTagMask)); |
+ __ b(eq, &slow); |
+ // Get the map of the function object. |
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
+ __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); |
+ __ cmp(r2, Operand(JS_FUNCTION_TYPE)); |
+ __ b(ne, &slow); |
+ |
+ // Fast-case: Invoke the function now. |
+ // r1: pushed function |
+ ParameterCount actual(argc_); |
+ __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
+ |
+ // Slow-case: Non-function called. |
+ __ bind(&slow); |
+ __ mov(r0, Operand(argc_)); // Setup the number of arguments. |
+ __ mov(r2, Operand(0)); |
+ __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION); |
+ __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)), |
+ RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+#undef __ |
+ |
+} } // namespace v8::internal |