Index: src/ia32/macro-assembler-ia32.cc |
diff --git a/src/ia32/macro-assembler-ia32.cc b/src/ia32/macro-assembler-ia32.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..d6d5800fe6b87c3020971e31213fe5a6a49137f5 |
--- /dev/null |
+++ b/src/ia32/macro-assembler-ia32.cc |
@@ -0,0 +1,1051 @@ |
+// Copyright 2006-2008 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#include "bootstrapper.h" |
+#include "codegen-inl.h" |
+#include "debug.h" |
+#include "runtime.h" |
+#include "serialize.h" |
+ |
+namespace v8 { namespace internal { |
+ |
+// ------------------------------------------------------------------------- |
+// MacroAssembler implementation. |
+ |
+MacroAssembler::MacroAssembler(void* buffer, int size) |
+ : Assembler(buffer, size), |
+ unresolved_(0), |
+ generating_stub_(false), |
+ allow_stub_calls_(true), |
+ code_object_(Heap::undefined_value()) { |
+} |
+ |
+ |
+static void RecordWriteHelper(MacroAssembler* masm, |
+ Register object, |
+ Register addr, |
+ Register scratch) { |
+ Label fast; |
+ |
+ // Compute the page address from the heap object pointer, leave it |
+ // in 'object'. |
+ masm->and_(object, ~Page::kPageAlignmentMask); |
+ |
+ // Compute the bit addr in the remembered set, leave it in "addr". |
+ masm->sub(addr, Operand(object)); |
+ masm->shr(addr, kObjectAlignmentBits); |
+ |
+ // If the bit offset lies beyond the normal remembered set range, it is in |
+ // the extra remembered set area of a large object. |
+ masm->cmp(addr, Page::kPageSize / kPointerSize); |
+ masm->j(less, &fast); |
+ |
+ // Adjust 'addr' to be relative to the start of the extra remembered set |
+ // and the page address in 'object' to be the address of the extra |
+ // remembered set. |
+ masm->sub(Operand(addr), Immediate(Page::kPageSize / kPointerSize)); |
+ // Load the array length into 'scratch' and multiply by four to get the |
+ // size in bytes of the elements. |
+ masm->mov(scratch, Operand(object, Page::kObjectStartOffset |
+ + FixedArray::kLengthOffset)); |
+ masm->shl(scratch, kObjectAlignmentBits); |
+ // Add the page header, array header, and array body size to the page |
+ // address. |
+ masm->add(Operand(object), Immediate(Page::kObjectStartOffset |
+ + Array::kHeaderSize)); |
+ masm->add(object, Operand(scratch)); |
+ |
+ |
+ // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction |
+ // to limit code size. We should probably evaluate this decision by |
+ // measuring the performance of an equivalent implementation using |
+ // "simpler" instructions |
+ masm->bind(&fast); |
+ masm->bts(Operand(object, 0), addr); |
+} |
+ |
+ |
+class RecordWriteStub : public CodeStub { |
+ public: |
+ RecordWriteStub(Register object, Register addr, Register scratch) |
+ : object_(object), addr_(addr), scratch_(scratch) { } |
+ |
+ void Generate(MacroAssembler* masm); |
+ |
+ private: |
+ Register object_; |
+ Register addr_; |
+ Register scratch_; |
+ |
+#ifdef DEBUG |
+ void Print() { |
+ PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n", |
+ object_.code(), addr_.code(), scratch_.code()); |
+ } |
+#endif |
+ |
+ // Minor key encoding in 12 bits of three registers (object, address and |
+ // scratch) OOOOAAAASSSS. |
+ class ScratchBits: public BitField<uint32_t, 0, 4> {}; |
+ class AddressBits: public BitField<uint32_t, 4, 4> {}; |
+ class ObjectBits: public BitField<uint32_t, 8, 4> {}; |
+ |
+ Major MajorKey() { return RecordWrite; } |
+ |
+ int MinorKey() { |
+ // Encode the registers. |
+ return ObjectBits::encode(object_.code()) | |
+ AddressBits::encode(addr_.code()) | |
+ ScratchBits::encode(scratch_.code()); |
+ } |
+}; |
+ |
+ |
+void RecordWriteStub::Generate(MacroAssembler* masm) { |
+ RecordWriteHelper(masm, object_, addr_, scratch_); |
+ masm->ret(0); |
+} |
+ |
+ |
+// Set the remembered set bit for [object+offset]. |
+// object is the object being stored into, value is the object being stored. |
+// If offset is zero, then the scratch register contains the array index into |
+// the elements array represented as a Smi. |
+// All registers are clobbered by the operation. |
+void MacroAssembler::RecordWrite(Register object, int offset, |
+ Register value, Register scratch) { |
+ // First, check if a remembered set write is even needed. The tests below |
+ // catch stores of Smis and stores into young gen (which does not have space |
+ // for the remembered set bits. |
+ Label done; |
+ |
+ // This optimization cannot survive serialization and deserialization, |
+ // so we disable as long as serialization can take place. |
+ int32_t new_space_start = |
+ reinterpret_cast<int32_t>(ExternalReference::new_space_start().address()); |
+ if (Serializer::enabled() || new_space_start < 0) { |
+ // Cannot do smart bit-twiddling. Need to do two consecutive checks. |
+ // Check for Smi first. |
+ test(value, Immediate(kSmiTagMask)); |
+ j(zero, &done); |
+ // Test that the object address is not in the new space. We cannot |
+ // set remembered set bits in the new space. |
+ mov(value, Operand(object)); |
+ and_(value, Heap::NewSpaceMask()); |
+ cmp(Operand(value), Immediate(ExternalReference::new_space_start())); |
+ j(equal, &done); |
+ } else { |
+ // move the value SmiTag into the sign bit |
+ shl(value, 31); |
+ // combine the object with value SmiTag |
+ or_(value, Operand(object)); |
+ // remove the uninteresing bits inside the page |
+ and_(value, Heap::NewSpaceMask() | (1 << 31)); |
+ // xor has two effects: |
+ // - if the value was a smi, then the result will be negative |
+ // - if the object is pointing into new space area the page bits will |
+ // all be zero |
+ xor_(value, new_space_start | (1 << 31)); |
+ // Check for both conditions in one branch |
+ j(less_equal, &done); |
+ } |
+ |
+ if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) { |
+ // Compute the bit offset in the remembered set, leave it in 'value'. |
+ mov(value, Operand(object)); |
+ and_(value, Page::kPageAlignmentMask); |
+ add(Operand(value), Immediate(offset)); |
+ shr(value, kObjectAlignmentBits); |
+ |
+ // Compute the page address from the heap object pointer, leave it in |
+ // 'object'. |
+ and_(object, ~Page::kPageAlignmentMask); |
+ |
+ // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction |
+ // to limit code size. We should probably evaluate this decision by |
+ // measuring the performance of an equivalent implementation using |
+ // "simpler" instructions |
+ bts(Operand(object, 0), value); |
+ } else { |
+ Register dst = scratch; |
+ if (offset != 0) { |
+ lea(dst, Operand(object, offset)); |
+ } else { |
+ // array access: calculate the destination address in the same manner as |
+ // KeyedStoreIC::GenerateGeneric |
+ lea(dst, |
+ Operand(object, dst, times_2, Array::kHeaderSize - kHeapObjectTag)); |
+ } |
+ // If we are already generating a shared stub, not inlining the |
+ // record write code isn't going to save us any memory. |
+ if (generating_stub()) { |
+ RecordWriteHelper(this, object, dst, value); |
+ } else { |
+ RecordWriteStub stub(object, dst, value); |
+ CallStub(&stub); |
+ } |
+ } |
+ |
+ bind(&done); |
+} |
+ |
+ |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+void MacroAssembler::SaveRegistersToMemory(RegList regs) { |
+ ASSERT((regs & ~kJSCallerSaved) == 0); |
+ // Copy the content of registers to memory location. |
+ for (int i = 0; i < kNumJSCallerSaved; i++) { |
+ int r = JSCallerSavedCode(i); |
+ if ((regs & (1 << r)) != 0) { |
+ Register reg = { r }; |
+ ExternalReference reg_addr = |
+ ExternalReference(Debug_Address::Register(i)); |
+ mov(Operand::StaticVariable(reg_addr), reg); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { |
+ ASSERT((regs & ~kJSCallerSaved) == 0); |
+ // Copy the content of memory location to registers. |
+ for (int i = kNumJSCallerSaved; --i >= 0;) { |
+ int r = JSCallerSavedCode(i); |
+ if ((regs & (1 << r)) != 0) { |
+ Register reg = { r }; |
+ ExternalReference reg_addr = |
+ ExternalReference(Debug_Address::Register(i)); |
+ mov(reg, Operand::StaticVariable(reg_addr)); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PushRegistersFromMemory(RegList regs) { |
+ ASSERT((regs & ~kJSCallerSaved) == 0); |
+ // Push the content of the memory location to the stack. |
+ for (int i = 0; i < kNumJSCallerSaved; i++) { |
+ int r = JSCallerSavedCode(i); |
+ if ((regs & (1 << r)) != 0) { |
+ ExternalReference reg_addr = |
+ ExternalReference(Debug_Address::Register(i)); |
+ push(Operand::StaticVariable(reg_addr)); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::PopRegistersToMemory(RegList regs) { |
+ ASSERT((regs & ~kJSCallerSaved) == 0); |
+ // Pop the content from the stack to the memory location. |
+ for (int i = kNumJSCallerSaved; --i >= 0;) { |
+ int r = JSCallerSavedCode(i); |
+ if ((regs & (1 << r)) != 0) { |
+ ExternalReference reg_addr = |
+ ExternalReference(Debug_Address::Register(i)); |
+ pop(Operand::StaticVariable(reg_addr)); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::CopyRegistersFromStackToMemory(Register base, |
+ Register scratch, |
+ RegList regs) { |
+ ASSERT((regs & ~kJSCallerSaved) == 0); |
+ // Copy the content of the stack to the memory location and adjust base. |
+ for (int i = kNumJSCallerSaved; --i >= 0;) { |
+ int r = JSCallerSavedCode(i); |
+ if ((regs & (1 << r)) != 0) { |
+ mov(scratch, Operand(base, 0)); |
+ ExternalReference reg_addr = |
+ ExternalReference(Debug_Address::Register(i)); |
+ mov(Operand::StaticVariable(reg_addr), scratch); |
+ lea(base, Operand(base, kPointerSize)); |
+ } |
+ } |
+} |
+#endif |
+ |
+void MacroAssembler::Set(Register dst, const Immediate& x) { |
+ if (x.is_zero()) { |
+ xor_(dst, Operand(dst)); // shorter than mov |
+ } else { |
+ mov(dst, x); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Set(const Operand& dst, const Immediate& x) { |
+ mov(dst, x); |
+} |
+ |
+ |
+void MacroAssembler::CmpObjectType(Register heap_object, |
+ InstanceType type, |
+ Register map) { |
+ mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
+ CmpInstanceType(map, type); |
+} |
+ |
+ |
+void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
+ cmpb(FieldOperand(map, Map::kInstanceTypeOffset), |
+ static_cast<int8_t>(type)); |
+} |
+ |
+ |
+void MacroAssembler::FCmp() { |
+ fcompp(); |
+ push(eax); |
+ fnstsw_ax(); |
+ sahf(); |
+ pop(eax); |
+} |
+ |
+ |
+void MacroAssembler::EnterFrame(StackFrame::Type type) { |
+ push(ebp); |
+ mov(ebp, Operand(esp)); |
+ push(esi); |
+ push(Immediate(Smi::FromInt(type))); |
+ push(Immediate(CodeObject())); |
+ if (FLAG_debug_code) { |
+ cmp(Operand(esp, 0), Immediate(Factory::undefined_value())); |
+ Check(not_equal, "code object not properly patched"); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
+ if (FLAG_debug_code) { |
+ cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), |
+ Immediate(Smi::FromInt(type))); |
+ Check(equal, "stack frame types must match"); |
+ } |
+ leave(); |
+} |
+ |
+ |
+void MacroAssembler::EnterExitFrame(StackFrame::Type type) { |
+ ASSERT(type == StackFrame::EXIT || type == StackFrame::EXIT_DEBUG); |
+ |
+ // Setup the frame structure on the stack. |
+ ASSERT(ExitFrameConstants::kPPDisplacement == +2 * kPointerSize); |
+ ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); |
+ ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); |
+ push(ebp); |
+ mov(ebp, Operand(esp)); |
+ |
+ // Reserve room for entry stack pointer and push the debug marker. |
+ ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); |
+ push(Immediate(0)); // saved entry sp, patched before call |
+ push(Immediate(type == StackFrame::EXIT_DEBUG ? 1 : 0)); |
+ |
+ // Save the frame pointer and the context in top. |
+ ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); |
+ ExternalReference context_address(Top::k_context_address); |
+ mov(Operand::StaticVariable(c_entry_fp_address), ebp); |
+ mov(Operand::StaticVariable(context_address), esi); |
+ |
+ // Setup argc and argv in callee-saved registers. |
+ int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
+ mov(edi, Operand(eax)); |
+ lea(esi, Operand(ebp, eax, times_4, offset)); |
+ |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+ // Save the state of all registers to the stack from the memory |
+ // location. This is needed to allow nested break points. |
+ if (type == StackFrame::EXIT_DEBUG) { |
+ // TODO(1243899): This should be symmetric to |
+ // CopyRegistersFromStackToMemory() but it isn't! esp is assumed |
+ // correct here, but computed for the other call. Very error |
+ // prone! FIX THIS. Actually there are deeper problems with |
+ // register saving than this asymmetry (see the bug report |
+ // associated with this issue). |
+ PushRegistersFromMemory(kJSCallerSaved); |
+ } |
+#endif |
+ |
+ // Reserve space for two arguments: argc and argv. |
+ sub(Operand(esp), Immediate(2 * kPointerSize)); |
+ |
+ // Get the required frame alignment for the OS. |
+ static const int kFrameAlignment = OS::ActivationFrameAlignment(); |
+ if (kFrameAlignment > 0) { |
+ ASSERT(IsPowerOf2(kFrameAlignment)); |
+ and_(esp, -kFrameAlignment); |
+ } |
+ |
+ // Patch the saved entry sp. |
+ mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); |
+} |
+ |
+ |
+void MacroAssembler::LeaveExitFrame(StackFrame::Type type) { |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+ // Restore the memory copy of the registers by digging them out from |
+ // the stack. This is needed to allow nested break points. |
+ if (type == StackFrame::EXIT_DEBUG) { |
+ // It's okay to clobber register ebx below because we don't need |
+ // the function pointer after this. |
+ const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; |
+ int kOffset = ExitFrameConstants::kDebugMarkOffset - kCallerSavedSize; |
+ lea(ebx, Operand(ebp, kOffset)); |
+ CopyRegistersFromStackToMemory(ebx, ecx, kJSCallerSaved); |
+ } |
+#endif |
+ |
+ // Get the return address from the stack and restore the frame pointer. |
+ mov(ecx, Operand(ebp, 1 * kPointerSize)); |
+ mov(ebp, Operand(ebp, 0 * kPointerSize)); |
+ |
+ // Pop the arguments and the receiver from the caller stack. |
+ lea(esp, Operand(esi, 1 * kPointerSize)); |
+ |
+ // Restore current context from top and clear it in debug mode. |
+ ExternalReference context_address(Top::k_context_address); |
+ mov(esi, Operand::StaticVariable(context_address)); |
+#ifdef DEBUG |
+ mov(Operand::StaticVariable(context_address), Immediate(0)); |
+#endif |
+ |
+ // Push the return address to get ready to return. |
+ push(ecx); |
+ |
+ // Clear the top frame. |
+ ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address); |
+ mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); |
+} |
+ |
+ |
+void MacroAssembler::PushTryHandler(CodeLocation try_location, |
+ HandlerType type) { |
+ ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code |
+ // The pc (return address) is already on TOS. |
+ if (try_location == IN_JAVASCRIPT) { |
+ if (type == TRY_CATCH_HANDLER) { |
+ push(Immediate(StackHandler::TRY_CATCH)); |
+ } else { |
+ push(Immediate(StackHandler::TRY_FINALLY)); |
+ } |
+ push(Immediate(Smi::FromInt(StackHandler::kCodeNotPresent))); |
+ push(ebp); |
+ push(edi); |
+ } else { |
+ ASSERT(try_location == IN_JS_ENTRY); |
+ // The parameter pointer is meaningless here and ebp does not |
+ // point to a JS frame. So we save NULL for both pp and ebp. We |
+ // expect the code throwing an exception to check ebp before |
+ // dereferencing it to restore the context. |
+ push(Immediate(StackHandler::ENTRY)); |
+ push(Immediate(Smi::FromInt(StackHandler::kCodeNotPresent))); |
+ push(Immediate(0)); // NULL frame pointer |
+ push(Immediate(0)); // NULL parameter pointer |
+ } |
+ // Cached TOS. |
+ mov(eax, Operand::StaticVariable(ExternalReference(Top::k_handler_address))); |
+ // Link this handler. |
+ mov(Operand::StaticVariable(ExternalReference(Top::k_handler_address)), esp); |
+} |
+ |
+ |
+Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, |
+ JSObject* holder, Register holder_reg, |
+ Register scratch, |
+ Label* miss) { |
+ // Make sure there's no overlap between scratch and the other |
+ // registers. |
+ ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); |
+ |
+ // Keep track of the current object in register reg. |
+ Register reg = object_reg; |
+ int depth = 1; |
+ |
+ // Check the maps in the prototype chain. |
+ // Traverse the prototype chain from the object and do map checks. |
+ while (object != holder) { |
+ depth++; |
+ |
+ // Only global objects and objects that do not require access |
+ // checks are allowed in stubs. |
+ ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
+ |
+ JSObject* prototype = JSObject::cast(object->GetPrototype()); |
+ if (Heap::InNewSpace(prototype)) { |
+ // Get the map of the current object. |
+ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); |
+ cmp(Operand(scratch), Immediate(Handle<Map>(object->map()))); |
+ // Branch on the result of the map check. |
+ j(not_equal, miss, not_taken); |
+ // Check access rights to the global object. This has to happen |
+ // after the map check so that we know that the object is |
+ // actually a global object. |
+ if (object->IsJSGlobalProxy()) { |
+ CheckAccessGlobalProxy(reg, scratch, miss); |
+ |
+ // Restore scratch register to be the map of the object. |
+ // We load the prototype from the map in the scratch register. |
+ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset)); |
+ } |
+ // The prototype is in new space; we cannot store a reference |
+ // to it in the code. Load it from the map. |
+ reg = holder_reg; // from now the object is in holder_reg |
+ mov(reg, FieldOperand(scratch, Map::kPrototypeOffset)); |
+ |
+ } else { |
+ // Check the map of the current object. |
+ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
+ Immediate(Handle<Map>(object->map()))); |
+ // Branch on the result of the map check. |
+ j(not_equal, miss, not_taken); |
+ // Check access rights to the global object. This has to happen |
+ // after the map check so that we know that the object is |
+ // actually a global object. |
+ if (object->IsJSGlobalProxy()) { |
+ CheckAccessGlobalProxy(reg, scratch, miss); |
+ } |
+ // The prototype is in old space; load it directly. |
+ reg = holder_reg; // from now the object is in holder_reg |
+ mov(reg, Handle<JSObject>(prototype)); |
+ } |
+ |
+ // Go to the next object in the prototype chain. |
+ object = prototype; |
+ } |
+ |
+ // Check the holder map. |
+ cmp(FieldOperand(reg, HeapObject::kMapOffset), |
+ Immediate(Handle<Map>(holder->map()))); |
+ j(not_equal, miss, not_taken); |
+ |
+ // Log the check depth. |
+ LOG(IntEvent("check-maps-depth", depth)); |
+ |
+ // Perform security check for access to the global object and return |
+ // the holder register. |
+ ASSERT(object == holder); |
+ ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); |
+ if (object->IsJSGlobalProxy()) { |
+ CheckAccessGlobalProxy(reg, scratch, miss); |
+ } |
+ return reg; |
+} |
+ |
+ |
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
+ Register scratch, |
+ Label* miss) { |
+ Label same_contexts; |
+ |
+ ASSERT(!holder_reg.is(scratch)); |
+ |
+ // Load current lexical context from the stack frame. |
+ mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset)); |
+ |
+ // When generating debug code, make sure the lexical context is set. |
+ if (FLAG_debug_code) { |
+ cmp(Operand(scratch), Immediate(0)); |
+ Check(not_equal, "we should not have an empty lexical context"); |
+ } |
+ // Load the global context of the current context. |
+ int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
+ mov(scratch, FieldOperand(scratch, offset)); |
+ mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); |
+ |
+ // Check the context is a global context. |
+ if (FLAG_debug_code) { |
+ push(scratch); |
+ // Read the first word and compare to global_context_map. |
+ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); |
+ cmp(scratch, Factory::global_context_map()); |
+ Check(equal, "JSGlobalObject::global_context should be a global context."); |
+ pop(scratch); |
+ } |
+ |
+ // Check if both contexts are the same. |
+ cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
+ j(equal, &same_contexts, taken); |
+ |
+ // Compare security tokens, save holder_reg on the stack so we can use it |
+ // as a temporary register. |
+ // |
+ // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
+ push(holder_reg); |
+ // Check that the security token in the calling global object is |
+ // compatible with the security token in the receiving global |
+ // object. |
+ mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
+ |
+ // Check the context is a global context. |
+ if (FLAG_debug_code) { |
+ cmp(holder_reg, Factory::null_value()); |
+ Check(not_equal, "JSGlobalProxy::context() should not be null."); |
+ |
+ push(holder_reg); |
+ // Read the first word and compare to global_context_map(), |
+ mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); |
+ cmp(holder_reg, Factory::global_context_map()); |
+ Check(equal, "JSGlobalObject::global_context should be a global context."); |
+ pop(holder_reg); |
+ } |
+ |
+ int token_offset = Context::kHeaderSize + |
+ Context::SECURITY_TOKEN_INDEX * kPointerSize; |
+ mov(scratch, FieldOperand(scratch, token_offset)); |
+ cmp(scratch, FieldOperand(holder_reg, token_offset)); |
+ pop(holder_reg); |
+ j(not_equal, miss, not_taken); |
+ |
+ bind(&same_contexts); |
+} |
+ |
+ |
+void MacroAssembler::NegativeZeroTest(CodeGenerator* cgen, |
+ Register result, |
+ Register op, |
+ JumpTarget* then_target) { |
+ JumpTarget ok(cgen); |
+ test(result, Operand(result)); |
+ ok.Branch(not_zero, taken); |
+ test(op, Operand(op)); |
+ then_target->Branch(sign, not_taken); |
+ ok.Bind(); |
+} |
+ |
+ |
+void MacroAssembler::NegativeZeroTest(Register result, |
+ Register op, |
+ Label* then_label) { |
+ Label ok; |
+ test(result, Operand(result)); |
+ j(not_zero, &ok, taken); |
+ test(op, Operand(op)); |
+ j(sign, then_label, not_taken); |
+ bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::NegativeZeroTest(Register result, |
+ Register op1, |
+ Register op2, |
+ Register scratch, |
+ Label* then_label) { |
+ Label ok; |
+ test(result, Operand(result)); |
+ j(not_zero, &ok, taken); |
+ mov(scratch, Operand(op1)); |
+ or_(scratch, Operand(op2)); |
+ j(sign, then_label, not_taken); |
+ bind(&ok); |
+} |
+ |
+ |
+void MacroAssembler::TryGetFunctionPrototype(Register function, |
+ Register result, |
+ Register scratch, |
+ Label* miss) { |
+ // Check that the receiver isn't a smi. |
+ test(function, Immediate(kSmiTagMask)); |
+ j(zero, miss, not_taken); |
+ |
+ // Check that the function really is a function. |
+ CmpObjectType(function, JS_FUNCTION_TYPE, result); |
+ j(not_equal, miss, not_taken); |
+ |
+ // Make sure that the function has an instance prototype. |
+ Label non_instance; |
+ movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); |
+ test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); |
+ j(not_zero, &non_instance, not_taken); |
+ |
+ // Get the prototype or initial map from the function. |
+ mov(result, |
+ FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ // If the prototype or initial map is the hole, don't return it and |
+ // simply miss the cache instead. This will allow us to allocate a |
+ // prototype object on-demand in the runtime system. |
+ cmp(Operand(result), Immediate(Factory::the_hole_value())); |
+ j(equal, miss, not_taken); |
+ |
+ // If the function does not have an initial map, we're done. |
+ Label done; |
+ CmpObjectType(result, MAP_TYPE, scratch); |
+ j(not_equal, &done); |
+ |
+ // Get the prototype from the initial map. |
+ mov(result, FieldOperand(result, Map::kPrototypeOffset)); |
+ jmp(&done); |
+ |
+ // Non-instance prototype: Fetch prototype from constructor field |
+ // in initial map. |
+ bind(&non_instance); |
+ mov(result, FieldOperand(result, Map::kConstructorOffset)); |
+ |
+ // All done. |
+ bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::CallStub(CodeStub* stub) { |
+ ASSERT(allow_stub_calls()); // calls are not allowed in some stubs |
+ call(stub->GetCode(), RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void MacroAssembler::StubReturn(int argc) { |
+ ASSERT(argc >= 1 && generating_stub()); |
+ ret((argc - 1) * kPointerSize); |
+} |
+ |
+ |
+void MacroAssembler::IllegalOperation(int num_arguments) { |
+ if (num_arguments > 0) { |
+ add(Operand(esp), Immediate(num_arguments * kPointerSize)); |
+ } |
+ mov(eax, Immediate(Factory::undefined_value())); |
+} |
+ |
+ |
+void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { |
+ CallRuntime(Runtime::FunctionForId(id), num_arguments); |
+} |
+ |
+ |
+void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { |
+ // If the expected number of arguments of the runtime function is |
+ // constant, we check that the actual number of arguments match the |
+ // expectation. |
+ if (f->nargs >= 0 && f->nargs != num_arguments) { |
+ IllegalOperation(num_arguments); |
+ return; |
+ } |
+ |
+ Runtime::FunctionId function_id = |
+ static_cast<Runtime::FunctionId>(f->stub_id); |
+ RuntimeStub stub(function_id, num_arguments); |
+ CallStub(&stub); |
+} |
+ |
+ |
+void MacroAssembler::TailCallRuntime(const ExternalReference& ext, |
+ int num_arguments) { |
+ // TODO(1236192): Most runtime routines don't need the number of |
+ // arguments passed in because it is constant. At some point we |
+ // should remove this need and make the runtime routine entry code |
+ // smarter. |
+ Set(eax, Immediate(num_arguments)); |
+ JumpToBuiltin(ext); |
+} |
+ |
+ |
+void MacroAssembler::JumpToBuiltin(const ExternalReference& ext) { |
+ // Set the entry point and jump to the C entry runtime stub. |
+ mov(ebx, Immediate(ext)); |
+ CEntryStub ces; |
+ jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
+} |
+ |
+ |
+void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ Handle<Code> code_constant, |
+ const Operand& code_operand, |
+ Label* done, |
+ InvokeFlag flag) { |
+ bool definitely_matches = false; |
+ Label invoke; |
+ if (expected.is_immediate()) { |
+ ASSERT(actual.is_immediate()); |
+ if (expected.immediate() == actual.immediate()) { |
+ definitely_matches = true; |
+ } else { |
+ mov(eax, actual.immediate()); |
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
+ if (expected.immediate() == sentinel) { |
+ // Don't worry about adapting arguments for builtins that |
+ // don't want that done. Skip adaption code by making it look |
+ // like we have a match between expected and actual number of |
+ // arguments. |
+ definitely_matches = true; |
+ } else { |
+ mov(ebx, expected.immediate()); |
+ } |
+ } |
+ } else { |
+ if (actual.is_immediate()) { |
+ // Expected is in register, actual is immediate. This is the |
+ // case when we invoke function values without going through the |
+ // IC mechanism. |
+ cmp(expected.reg(), actual.immediate()); |
+ j(equal, &invoke); |
+ ASSERT(expected.reg().is(ebx)); |
+ mov(eax, actual.immediate()); |
+ } else if (!expected.reg().is(actual.reg())) { |
+ // Both expected and actual are in (different) registers. This |
+ // is the case when we invoke functions using call and apply. |
+ cmp(expected.reg(), Operand(actual.reg())); |
+ j(equal, &invoke); |
+ ASSERT(actual.reg().is(eax)); |
+ ASSERT(expected.reg().is(ebx)); |
+ } |
+ } |
+ |
+ if (!definitely_matches) { |
+ Handle<Code> adaptor = |
+ Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
+ if (!code_constant.is_null()) { |
+ mov(edx, Immediate(code_constant)); |
+ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
+ } else if (!code_operand.is_reg(edx)) { |
+ mov(edx, code_operand); |
+ } |
+ |
+ if (flag == CALL_FUNCTION) { |
+ call(adaptor, RelocInfo::CODE_TARGET); |
+ jmp(done); |
+ } else { |
+ jmp(adaptor, RelocInfo::CODE_TARGET); |
+ } |
+ bind(&invoke); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::InvokeCode(const Operand& code, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ InvokeFlag flag) { |
+ Label done; |
+ InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); |
+ if (flag == CALL_FUNCTION) { |
+ call(code); |
+ } else { |
+ ASSERT(flag == JUMP_FUNCTION); |
+ jmp(code); |
+ } |
+ bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::InvokeCode(Handle<Code> code, |
+ const ParameterCount& expected, |
+ const ParameterCount& actual, |
+ RelocInfo::Mode rmode, |
+ InvokeFlag flag) { |
+ Label done; |
+ Operand dummy(eax); |
+ InvokePrologue(expected, actual, code, dummy, &done, flag); |
+ if (flag == CALL_FUNCTION) { |
+ call(code, rmode); |
+ } else { |
+ ASSERT(flag == JUMP_FUNCTION); |
+ jmp(code, rmode); |
+ } |
+ bind(&done); |
+} |
+ |
+ |
+void MacroAssembler::InvokeFunction(Register fun, |
+ const ParameterCount& actual, |
+ InvokeFlag flag) { |
+ ASSERT(fun.is(edi)); |
+ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
+ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
+ mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); |
+ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); |
+ lea(edx, FieldOperand(edx, Code::kHeaderSize)); |
+ |
+ ParameterCount expected(ebx); |
+ InvokeCode(Operand(edx), expected, actual, flag); |
+} |
+ |
+ |
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) { |
+ bool resolved; |
+ Handle<Code> code = ResolveBuiltin(id, &resolved); |
+ |
+ // Calls are not allowed in some stubs. |
+ ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); |
+ |
+ // Rely on the assertion to check that the number of provided |
+ // arguments match the expected number of arguments. Fake a |
+ // parameter count to avoid emitting code to do the check. |
+ ParameterCount expected(0); |
+ InvokeCode(Handle<Code>(code), expected, expected, |
+ RelocInfo::CODE_TARGET, flag); |
+ |
+ const char* name = Builtins::GetName(id); |
+ int argc = Builtins::GetArgumentsCount(id); |
+ |
+ if (!resolved) { |
+ uint32_t flags = |
+ Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | |
+ Bootstrapper::FixupFlagsIsPCRelative::encode(true) | |
+ Bootstrapper::FixupFlagsUseCodeObject::encode(false); |
+ Unresolved entry = { pc_offset() - sizeof(int32_t), flags, name }; |
+ unresolved_.Add(entry); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
+ bool resolved; |
+ Handle<Code> code = ResolveBuiltin(id, &resolved); |
+ |
+ const char* name = Builtins::GetName(id); |
+ int argc = Builtins::GetArgumentsCount(id); |
+ |
+ mov(Operand(target), Immediate(code)); |
+ if (!resolved) { |
+ uint32_t flags = |
+ Bootstrapper::FixupFlagsArgumentsCount::encode(argc) | |
+ Bootstrapper::FixupFlagsIsPCRelative::encode(false) | |
+ Bootstrapper::FixupFlagsUseCodeObject::encode(true); |
+ Unresolved entry = { pc_offset() - sizeof(int32_t), flags, name }; |
+ unresolved_.Add(entry); |
+ } |
+ add(Operand(target), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
+} |
+ |
+ |
+Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id, |
+ bool* resolved) { |
+ // Move the builtin function into the temporary function slot by |
+ // reading it from the builtins object. NOTE: We should be able to |
+ // reduce this to two instructions by putting the function table in |
+ // the global object instead of the "builtins" object and by using a |
+ // real register for the function. |
+ mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ mov(edx, FieldOperand(edx, GlobalObject::kBuiltinsOffset)); |
+ int builtins_offset = |
+ JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize); |
+ mov(edi, FieldOperand(edx, builtins_offset)); |
+ |
+ |
+ return Builtins::GetCode(id, resolved); |
+} |
+ |
+ |
+void MacroAssembler::Ret() { |
+ ret(0); |
+} |
+ |
+ |
+void MacroAssembler::SetCounter(StatsCounter* counter, int value) { |
+ if (FLAG_native_code_counters && counter->Enabled()) { |
+ mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); |
+ } |
+} |
+ |
+ |
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
+ ASSERT(value > 0); |
+ if (FLAG_native_code_counters && counter->Enabled()) { |
+ Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
+ if (value == 1) { |
+ inc(operand); |
+ } else { |
+ add(operand, Immediate(value)); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
+ ASSERT(value > 0); |
+ if (FLAG_native_code_counters && counter->Enabled()) { |
+ Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
+ if (value == 1) { |
+ dec(operand); |
+ } else { |
+ sub(operand, Immediate(value)); |
+ } |
+ } |
+} |
+ |
+ |
+void MacroAssembler::Assert(Condition cc, const char* msg) { |
+ if (FLAG_debug_code) Check(cc, msg); |
+} |
+ |
+ |
+void MacroAssembler::Check(Condition cc, const char* msg) { |
+ Label L; |
+ j(cc, &L, taken); |
+ Abort(msg); |
+ // will not return here |
+ bind(&L); |
+} |
+ |
+ |
+void MacroAssembler::Abort(const char* msg) { |
+ // We want to pass the msg string like a smi to avoid GC |
+ // problems, however msg is not guaranteed to be aligned |
+ // properly. Instead, we pass an aligned pointer that is |
+ // a proper v8 smi, but also pass the alignment difference |
+ // from the real pointer as a smi. |
+ intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
+ intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
+ ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
+#ifdef DEBUG |
+ if (msg != NULL) { |
+ RecordComment("Abort message: "); |
+ RecordComment(msg); |
+ } |
+#endif |
+ push(eax); |
+ push(Immediate(p0)); |
+ push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0)))); |
+ CallRuntime(Runtime::kAbort, 2); |
+ // will not return here |
+} |
+ |
+ |
+CodePatcher::CodePatcher(byte* address, int size) |
+ : address_(address), size_(size), masm_(address, size + Assembler::kGap) { |
+ // Create a new macro assembler pointing to the address of the code to patch. |
+ // The size is adjusted with kGap on order for the assembler to generate size |
+ // bytes of instructions without failing with buffer size constraints. |
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
+} |
+ |
+ |
+CodePatcher::~CodePatcher() { |
+ // Indicate that code has changed. |
+ CPU::FlushICache(address_, size_); |
+ |
+ // Check that the code was patched as expected. |
+ ASSERT(masm_.pc_ == address_ + size_); |
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
+} |
+ |
+ |
+} } // namespace v8::internal |