| Index: src/codegen-arm.cc
|
| diff --git a/src/codegen-arm.cc b/src/codegen-arm.cc
|
| deleted file mode 100644
|
| index 9337454bb8a4a3959cb64da79fadd2622c79578e..0000000000000000000000000000000000000000
|
| --- a/src/codegen-arm.cc
|
| +++ /dev/null
|
| @@ -1,5151 +0,0 @@
|
| -// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following
|
| -// disclaimer in the documentation and/or other materials provided
|
| -// with the distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived
|
| -// from this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -#include "v8.h"
|
| -
|
| -#include "bootstrapper.h"
|
| -#include "codegen-inl.h"
|
| -#include "debug.h"
|
| -#include "parser.h"
|
| -#include "register-allocator-inl.h"
|
| -#include "runtime.h"
|
| -#include "scopes.h"
|
| -
|
| -
|
| -namespace v8 { namespace internal {
|
| -
|
| -#define __ ACCESS_MASM(masm_)
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenState implementation.
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner)
|
| - : owner_(owner),
|
| - typeof_state_(NOT_INSIDE_TYPEOF),
|
| - true_target_(NULL),
|
| - false_target_(NULL),
|
| - previous_(NULL) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner,
|
| - TypeofState typeof_state,
|
| - JumpTarget* true_target,
|
| - JumpTarget* false_target)
|
| - : owner_(owner),
|
| - typeof_state_(typeof_state),
|
| - true_target_(true_target),
|
| - false_target_(false_target),
|
| - previous_(owner->state()) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::~CodeGenState() {
|
| - ASSERT(owner_->state() == this);
|
| - owner_->set_state(previous_);
|
| -}
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenerator implementation
|
| -
|
| -CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
|
| - bool is_eval)
|
| - : is_eval_(is_eval),
|
| - script_(script),
|
| - deferred_(8),
|
| - masm_(new MacroAssembler(NULL, buffer_size)),
|
| - scope_(NULL),
|
| - frame_(NULL),
|
| - allocator_(NULL),
|
| - cc_reg_(al),
|
| - state_(NULL),
|
| - function_return_is_shadowed_(false),
|
| - in_spilled_code_(false) {
|
| -}
|
| -
|
| -
|
| -// Calling conventions:
|
| -// fp: caller's frame pointer
|
| -// sp: stack pointer
|
| -// r1: called JS function
|
| -// cp: callee's context
|
| -
|
| -void CodeGenerator::GenCode(FunctionLiteral* fun) {
|
| - ZoneList<Statement*>* body = fun->body();
|
| -
|
| - // Initialize state.
|
| - ASSERT(scope_ == NULL);
|
| - scope_ = fun->scope();
|
| - ASSERT(allocator_ == NULL);
|
| - RegisterAllocator register_allocator(this);
|
| - allocator_ = ®ister_allocator;
|
| - ASSERT(frame_ == NULL);
|
| - frame_ = new VirtualFrame(this);
|
| - cc_reg_ = al;
|
| - set_in_spilled_code(false);
|
| - {
|
| - CodeGenState state(this);
|
| -
|
| - // Entry:
|
| - // Stack: receiver, arguments
|
| - // lr: return address
|
| - // fp: caller's frame pointer
|
| - // sp: stack pointer
|
| - // r1: called JS function
|
| - // cp: callee's context
|
| - allocator_->Initialize();
|
| - frame_->Enter();
|
| - // tos: code slot
|
| -#ifdef DEBUG
|
| - if (strlen(FLAG_stop_at) > 0 &&
|
| - fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
| - frame_->SpillAll();
|
| - __ stop("stop-at");
|
| - }
|
| -#endif
|
| -
|
| - // Allocate space for locals and initialize them.
|
| - frame_->AllocateStackSlots(scope_->num_stack_slots());
|
| - // Initialize the function return target after the locals are set
|
| - // up, because it needs the expected frame height from the frame.
|
| - function_return_.Initialize(this, JumpTarget::BIDIRECTIONAL);
|
| - function_return_is_shadowed_ = false;
|
| -
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - if (scope_->num_heap_slots() > 0) {
|
| - // Allocate local context.
|
| - // Get outer context and create a new context based on it.
|
| - __ ldr(r0, frame_->Function());
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kNewContext, 1); // r0 holds the result
|
| -
|
| -#ifdef DEBUG
|
| - JumpTarget verified_true(this);
|
| - __ cmp(r0, Operand(cp));
|
| - verified_true.Branch(eq);
|
| - __ stop("NewContext: r0 is expected to be the same as cp");
|
| - verified_true.Bind();
|
| -#endif
|
| - // Update context local.
|
| - __ str(cp, frame_->Context());
|
| - }
|
| -
|
| - // TODO(1241774): Improve this code:
|
| - // 1) only needed if we have a context
|
| - // 2) no need to recompute context ptr every single time
|
| - // 3) don't copy parameter operand code from SlotOperand!
|
| - {
|
| - Comment cmnt2(masm_, "[ copy context parameters into .context");
|
| -
|
| - // Note that iteration order is relevant here! If we have the same
|
| - // parameter twice (e.g., function (x, y, x)), and that parameter
|
| - // needs to be copied into the context, it must be the last argument
|
| - // passed to the parameter that needs to be copied. This is a rare
|
| - // case so we don't check for it, instead we rely on the copying
|
| - // order: such a parameter is copied repeatedly into the same
|
| - // context location and thus the last value is what is seen inside
|
| - // the function.
|
| - for (int i = 0; i < scope_->num_parameters(); i++) {
|
| - Variable* par = scope_->parameter(i);
|
| - Slot* slot = par->slot();
|
| - if (slot != NULL && slot->type() == Slot::CONTEXT) {
|
| - ASSERT(!scope_->is_global_scope()); // no parameters in global scope
|
| - __ ldr(r1, frame_->ParameterAt(i));
|
| - // Loads r2 with context; used below in RecordWrite.
|
| - __ str(r1, SlotOperand(slot, r2));
|
| - // Load the offset into r3.
|
| - int slot_offset =
|
| - FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - __ mov(r3, Operand(slot_offset));
|
| - __ RecordWrite(r2, r3, r1);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Store the arguments object. This must happen after context
|
| - // initialization because the arguments object may be stored in the
|
| - // context.
|
| - if (scope_->arguments() != NULL) {
|
| - ASSERT(scope_->arguments_shadow() != NULL);
|
| - Comment cmnt(masm_, "[ allocate arguments object");
|
| - { Reference shadow_ref(this, scope_->arguments_shadow());
|
| - { Reference arguments_ref(this, scope_->arguments());
|
| - ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
|
| - __ ldr(r2, frame_->Function());
|
| - // The receiver is below the arguments, the return address,
|
| - // and the frame pointer on the stack.
|
| - const int kReceiverDisplacement = 2 + scope_->num_parameters();
|
| - __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize));
|
| - __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
| - frame_->Adjust(3);
|
| - __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit());
|
| - frame_->CallStub(&stub, 3);
|
| - frame_->EmitPush(r0);
|
| - arguments_ref.SetValue(NOT_CONST_INIT);
|
| - }
|
| - shadow_ref.SetValue(NOT_CONST_INIT);
|
| - }
|
| - frame_->Drop(); // Value is no longer needed.
|
| - }
|
| -
|
| - // Generate code to 'execute' declarations and initialize functions
|
| - // (source elements). In case of an illegal redeclaration we need to
|
| - // handle that instead of processing the declarations.
|
| - if (scope_->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ illegal redeclarations");
|
| - scope_->VisitIllegalRedeclaration(this);
|
| - } else {
|
| - Comment cmnt(masm_, "[ declarations");
|
| - ProcessDeclarations(scope_->declarations());
|
| - // Bail out if a stack-overflow exception occurred when processing
|
| - // declarations.
|
| - if (HasStackOverflow()) return;
|
| - }
|
| -
|
| - if (FLAG_trace) {
|
| - frame_->CallRuntime(Runtime::kTraceEnter, 0);
|
| - // Ignore the return value.
|
| - }
|
| - CheckStack();
|
| -
|
| - // Compile the body of the function in a vanilla state. Don't
|
| - // bother compiling all the code if the scope has an illegal
|
| - // redeclaration.
|
| - if (!scope_->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ function body");
|
| -#ifdef DEBUG
|
| - bool is_builtin = Bootstrapper::IsActive();
|
| - bool should_trace =
|
| - is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
|
| - if (should_trace) {
|
| - frame_->CallRuntime(Runtime::kDebugTrace, 0);
|
| - // Ignore the return value.
|
| - }
|
| -#endif
|
| - VisitStatementsAndSpill(body);
|
| - }
|
| - }
|
| -
|
| - // Generate the return sequence if necessary.
|
| - if (frame_ != NULL || function_return_.is_linked()) {
|
| - // exit
|
| - // r0: result
|
| - // sp: stack pointer
|
| - // fp: frame pointer
|
| - // pp: parameter pointer
|
| - // cp: callee's context
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| -
|
| - function_return_.Bind();
|
| - if (FLAG_trace) {
|
| - // Push the return value on the stack as the parameter.
|
| - // Runtime::TraceExit returns the parameter as it is.
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kTraceExit, 1);
|
| - }
|
| -
|
| - // Tear down the frame which will restore the caller's frame pointer and
|
| - // the link register.
|
| - frame_->Exit();
|
| -
|
| - __ add(sp, sp, Operand((scope_->num_parameters() + 1) * kPointerSize));
|
| - __ mov(pc, lr);
|
| - }
|
| -
|
| - // Code generation state must be reset.
|
| - ASSERT(!has_cc());
|
| - ASSERT(state_ == NULL);
|
| - ASSERT(!function_return_is_shadowed_);
|
| - function_return_.Unuse();
|
| - DeleteFrame();
|
| -
|
| - // Process any deferred code using the register allocator.
|
| - if (HasStackOverflow()) {
|
| - ClearDeferred();
|
| - } else {
|
| - ProcessDeferred();
|
| - }
|
| -
|
| - allocator_ = NULL;
|
| - scope_ = NULL;
|
| -}
|
| -
|
| -
|
| -MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
|
| - // Currently, this assertion will fail if we try to assign to
|
| - // a constant variable that is constant because it is read-only
|
| - // (such as the variable referring to a named function expression).
|
| - // We need to implement assignments to read-only variables.
|
| - // Ideally, we should do this during AST generation (by converting
|
| - // such assignments into expression statements); however, in general
|
| - // we may not be able to make the decision until past AST generation,
|
| - // that is when the entire program is known.
|
| - ASSERT(slot != NULL);
|
| - int index = slot->index();
|
| - switch (slot->type()) {
|
| - case Slot::PARAMETER:
|
| - return frame_->ParameterAt(index);
|
| -
|
| - case Slot::LOCAL:
|
| - return frame_->LocalAt(index);
|
| -
|
| - case Slot::CONTEXT: {
|
| - // Follow the context chain if necessary.
|
| - ASSERT(!tmp.is(cp)); // do not overwrite context register
|
| - Register context = cp;
|
| - int chain_length = scope()->ContextChainLength(slot->var()->scope());
|
| - for (int i = 0; i < chain_length; i++) {
|
| - // Load the closure.
|
| - // (All contexts, even 'with' contexts, have a closure,
|
| - // and it is the same for all contexts inside a function.
|
| - // There is no need to go to the function context first.)
|
| - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
| - // Load the function context (which is the incoming, outer context).
|
| - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
| - context = tmp;
|
| - }
|
| - // We may have a 'with' context now. Get the function context.
|
| - // (In fact this mov may never be the needed, since the scope analysis
|
| - // may not permit a direct context access in this case and thus we are
|
| - // always at a function context. However it is safe to dereference be-
|
| - // cause the function context of a function context is itself. Before
|
| - // deleting this mov we should try to create a counter-example first,
|
| - // though...)
|
| - __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp, index);
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return MemOperand(r0, 0);
|
| - }
|
| -}
|
| -
|
| -
|
| -MemOperand CodeGenerator::ContextSlotOperandCheckExtensions(
|
| - Slot* slot,
|
| - Register tmp,
|
| - Register tmp2,
|
| - JumpTarget* slow) {
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - Register context = cp;
|
| -
|
| - for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
| - __ tst(tmp2, tmp2);
|
| - slow->Branch(ne);
|
| - }
|
| - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
| - context = tmp;
|
| - }
|
| - }
|
| - // Check that last extension is NULL.
|
| - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
| - __ tst(tmp2, tmp2);
|
| - slow->Branch(ne);
|
| - __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp, slot->index());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadConditionAndSpill(Expression* expression,
|
| - TypeofState typeof_state,
|
| - JumpTarget* true_target,
|
| - JumpTarget* false_target,
|
| - bool force_control) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - LoadCondition(expression, typeof_state, true_target, false_target,
|
| - force_control);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -// Loads a value on TOS. If it is a boolean value, the result may have been
|
| -// (partially) translated into branches, or it may have set the condition
|
| -// code register. If force_cc is set, the value is forced to set the
|
| -// condition code register and no value is pushed. If the condition code
|
| -// register was set, has_cc() is true and cc_reg_ contains the condition to
|
| -// test for 'true'.
|
| -void CodeGenerator::LoadCondition(Expression* x,
|
| - TypeofState typeof_state,
|
| - JumpTarget* true_target,
|
| - JumpTarget* false_target,
|
| - bool force_cc) {
|
| - ASSERT(!in_spilled_code());
|
| - ASSERT(!has_cc());
|
| - int original_height = frame_->height();
|
| -
|
| - { CodeGenState new_state(this, typeof_state, true_target, false_target);
|
| - Visit(x);
|
| -
|
| - // If we hit a stack overflow, we may not have actually visited
|
| - // the expression. In that case, we ensure that we have a
|
| - // valid-looking frame state because we will continue to generate
|
| - // code as we unwind the C++ stack.
|
| - //
|
| - // It's possible to have both a stack overflow and a valid frame
|
| - // state (eg, a subexpression overflowed, visiting it returned
|
| - // with a dummied frame state, and visiting this expression
|
| - // returned with a normal-looking state).
|
| - if (HasStackOverflow() &&
|
| - has_valid_frame() &&
|
| - !has_cc() &&
|
| - frame_->height() == original_height) {
|
| - true_target->Jump();
|
| - }
|
| - }
|
| - if (force_cc && frame_ != NULL && !has_cc()) {
|
| - // Convert the TOS value to a boolean in the condition code register.
|
| - ToBoolean(true_target, false_target);
|
| - }
|
| - ASSERT(!force_cc || !has_valid_frame() || has_cc());
|
| - ASSERT(!has_valid_frame() ||
|
| - (has_cc() && frame_->height() == original_height) ||
|
| - (!has_cc() && frame_->height() == original_height + 1));
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadAndSpill(Expression* expression,
|
| - TypeofState typeof_state) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Load(expression, typeof_state);
|
| - frame_->SpillAll();
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - JumpTarget true_target(this);
|
| - JumpTarget false_target(this);
|
| - LoadCondition(x, typeof_state, &true_target, &false_target, false);
|
| -
|
| - if (has_cc()) {
|
| - // Convert cc_reg_ into a boolean value.
|
| - JumpTarget loaded(this);
|
| - JumpTarget materialize_true(this);
|
| - materialize_true.Branch(cc_reg_);
|
| - __ mov(r0, Operand(Factory::false_value()));
|
| - frame_->EmitPush(r0);
|
| - loaded.Jump();
|
| - materialize_true.Bind();
|
| - __ mov(r0, Operand(Factory::true_value()));
|
| - frame_->EmitPush(r0);
|
| - loaded.Bind();
|
| - cc_reg_ = al;
|
| - }
|
| -
|
| - if (true_target.is_linked() || false_target.is_linked()) {
|
| - // We have at least one condition value that has been "translated"
|
| - // into a branch, thus it needs to be loaded explicitly.
|
| - JumpTarget loaded(this);
|
| - if (frame_ != NULL) {
|
| - loaded.Jump(); // Don't lose the current TOS.
|
| - }
|
| - bool both = true_target.is_linked() && false_target.is_linked();
|
| - // Load "true" if necessary.
|
| - if (true_target.is_linked()) {
|
| - true_target.Bind();
|
| - __ mov(r0, Operand(Factory::true_value()));
|
| - frame_->EmitPush(r0);
|
| - }
|
| - // If both "true" and "false" need to be loaded jump across the code for
|
| - // "false".
|
| - if (both) {
|
| - loaded.Jump();
|
| - }
|
| - // Load "false" if necessary.
|
| - if (false_target.is_linked()) {
|
| - false_target.Bind();
|
| - __ mov(r0, Operand(Factory::false_value()));
|
| - frame_->EmitPush(r0);
|
| - }
|
| - // A value is loaded on all paths reaching this point.
|
| - loaded.Bind();
|
| - }
|
| - ASSERT(has_valid_frame());
|
| - ASSERT(!has_cc());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobal() {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - __ ldr(r0, GlobalObject());
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobalReceiver(Register scratch) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - __ ldr(scratch, ContextOperand(cp, Context::GLOBAL_INDEX));
|
| - __ ldr(scratch,
|
| - FieldMemOperand(scratch, GlobalObject::kGlobalReceiverOffset));
|
| - frame_->EmitPush(scratch);
|
| -}
|
| -
|
| -
|
| -// TODO(1241834): Get rid of this function in favor of just using Load, now
|
| -// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
|
| -// variables w/o reference errors elsewhere.
|
| -void CodeGenerator::LoadTypeofExpression(Expression* x) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Variable* variable = x->AsVariableProxy()->AsVariable();
|
| - if (variable != NULL && !variable->is_this() && variable->is_global()) {
|
| - // NOTE: This is somewhat nasty. We force the compiler to load
|
| - // the variable as if through '<global>.<variable>' to make sure we
|
| - // do not get reference errors.
|
| - Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
|
| - Literal key(variable->name());
|
| - // TODO(1241834): Fetch the position from the variable instead of using
|
| - // no position.
|
| - Property property(&global, &key, RelocInfo::kNoPosition);
|
| - LoadAndSpill(&property);
|
| - } else {
|
| - LoadAndSpill(x, INSIDE_TYPEOF);
|
| - }
|
| -}
|
| -
|
| -
|
| -Reference::Reference(CodeGenerator* cgen, Expression* expression)
|
| - : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
|
| - cgen->LoadReference(this);
|
| -}
|
| -
|
| -
|
| -Reference::~Reference() {
|
| - cgen_->UnloadReference(this);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadReference(Reference* ref) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ LoadReference");
|
| - Expression* e = ref->expression();
|
| - Property* property = e->AsProperty();
|
| - Variable* var = e->AsVariableProxy()->AsVariable();
|
| -
|
| - if (property != NULL) {
|
| - // The expression is either a property or a variable proxy that rewrites
|
| - // to a property.
|
| - LoadAndSpill(property->obj());
|
| - // We use a named reference if the key is a literal symbol, unless it is
|
| - // a string that can be legally parsed as an integer. This is because
|
| - // otherwise we will not get into the slow case code that handles [] on
|
| - // String objects.
|
| - Literal* literal = property->key()->AsLiteral();
|
| - uint32_t dummy;
|
| - if (literal != NULL &&
|
| - literal->handle()->IsSymbol() &&
|
| - !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - LoadAndSpill(property->key());
|
| - ref->set_type(Reference::KEYED);
|
| - }
|
| - } else if (var != NULL) {
|
| - // The expression is a variable proxy that does not rewrite to a
|
| - // property. Global variables are treated as named property references.
|
| - if (var->is_global()) {
|
| - LoadGlobal();
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - ASSERT(var->slot() != NULL);
|
| - ref->set_type(Reference::SLOT);
|
| - }
|
| - } else {
|
| - // Anything else is a runtime error.
|
| - LoadAndSpill(e);
|
| - frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::UnloadReference(Reference* ref) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // Pop a reference from the stack while preserving TOS.
|
| - Comment cmnt(masm_, "[ UnloadReference");
|
| - int size = ref->size();
|
| - if (size > 0) {
|
| - frame_->EmitPop(r0);
|
| - frame_->Drop(size);
|
| - frame_->EmitPush(r0);
|
| - }
|
| -}
|
| -
|
| -
|
| -// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given
|
| -// register to a boolean in the condition code register. The code
|
| -// may jump to 'false_target' in case the register converts to 'false'.
|
| -void CodeGenerator::ToBoolean(JumpTarget* true_target,
|
| - JumpTarget* false_target) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // Note: The generated code snippet does not change stack variables.
|
| - // Only the condition code should be set.
|
| - frame_->EmitPop(r0);
|
| -
|
| - // Fast case checks
|
| -
|
| - // Check if the value is 'false'.
|
| - __ cmp(r0, Operand(Factory::false_value()));
|
| - false_target->Branch(eq);
|
| -
|
| - // Check if the value is 'true'.
|
| - __ cmp(r0, Operand(Factory::true_value()));
|
| - true_target->Branch(eq);
|
| -
|
| - // Check if the value is 'undefined'.
|
| - __ cmp(r0, Operand(Factory::undefined_value()));
|
| - false_target->Branch(eq);
|
| -
|
| - // Check if the value is a smi.
|
| - __ cmp(r0, Operand(Smi::FromInt(0)));
|
| - false_target->Branch(eq);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - true_target->Branch(eq);
|
| -
|
| - // Slow case: call the runtime.
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kToBool, 1);
|
| - // Convert the result (r0) to a condition code.
|
| - __ cmp(r0, Operand(Factory::false_value()));
|
| -
|
| - cc_reg_ = ne;
|
| -}
|
| -
|
| -
|
| -class GenericBinaryOpStub : public CodeStub {
|
| - public:
|
| - GenericBinaryOpStub(Token::Value op,
|
| - OverwriteMode mode)
|
| - : op_(op), mode_(mode) { }
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - OverwriteMode mode_;
|
| -
|
| - // Minor key encoding in 16 bits.
|
| - class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
| - class OpBits: public BitField<Token::Value, 2, 14> {};
|
| -
|
| - Major MajorKey() { return GenericBinaryOp; }
|
| - int MinorKey() {
|
| - // Encode the parameters in a unique 16 bit value.
|
| - return OpBits::encode(op_)
|
| - | ModeBits::encode(mode_);
|
| - }
|
| -
|
| - void Generate(MacroAssembler* masm);
|
| -
|
| - const char* GetName() {
|
| - switch (op_) {
|
| - case Token::ADD: return "GenericBinaryOpStub_ADD";
|
| - case Token::SUB: return "GenericBinaryOpStub_SUB";
|
| - case Token::MUL: return "GenericBinaryOpStub_MUL";
|
| - case Token::DIV: return "GenericBinaryOpStub_DIV";
|
| - case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
|
| - case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
|
| - case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
|
| - case Token::SAR: return "GenericBinaryOpStub_SAR";
|
| - case Token::SHL: return "GenericBinaryOpStub_SHL";
|
| - case Token::SHR: return "GenericBinaryOpStub_SHR";
|
| - default: return "GenericBinaryOpStub";
|
| - }
|
| - }
|
| -
|
| -#ifdef DEBUG
|
| - void Print() { PrintF("GenericBinaryOpStub (%s)\n", Token::String(op_)); }
|
| -#endif
|
| -};
|
| -
|
| -
|
| -void CodeGenerator::GenericBinaryOperation(Token::Value op,
|
| - OverwriteMode overwrite_mode) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // sp[0] : y
|
| - // sp[1] : x
|
| - // result : r0
|
| -
|
| - // Stub is entered with a call: 'return address' is in lr.
|
| - switch (op) {
|
| - case Token::ADD: // fall through.
|
| - case Token::SUB: // fall through.
|
| - case Token::MUL:
|
| - case Token::BIT_OR:
|
| - case Token::BIT_AND:
|
| - case Token::BIT_XOR:
|
| - case Token::SHL:
|
| - case Token::SHR:
|
| - case Token::SAR: {
|
| - frame_->EmitPop(r0); // r0 : y
|
| - frame_->EmitPop(r1); // r1 : x
|
| - GenericBinaryOpStub stub(op, overwrite_mode);
|
| - frame_->CallStub(&stub, 0);
|
| - break;
|
| - }
|
| -
|
| - case Token::DIV: {
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1));
|
| - frame_->InvokeBuiltin(Builtins::DIV, CALL_JS, &arg_count, 2);
|
| - break;
|
| - }
|
| -
|
| - case Token::MOD: {
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1));
|
| - frame_->InvokeBuiltin(Builtins::MOD, CALL_JS, &arg_count, 2);
|
| - break;
|
| - }
|
| -
|
| - case Token::COMMA:
|
| - frame_->EmitPop(r0);
|
| - // simply discard left value
|
| - frame_->Drop();
|
| - break;
|
| -
|
| - default:
|
| - // Other cases should have been handled before this point.
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -class DeferredInlineSmiOperation: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiOperation(CodeGenerator* generator,
|
| - Token::Value op,
|
| - int value,
|
| - bool reversed,
|
| - OverwriteMode overwrite_mode)
|
| - : DeferredCode(generator),
|
| - op_(op),
|
| - value_(value),
|
| - reversed_(reversed),
|
| - overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlinedSmiOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - int value_;
|
| - bool reversed_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiOperation::Generate() {
|
| - enter()->Bind();
|
| - VirtualFrame::SpilledScope spilled_scope(generator());
|
| -
|
| - switch (op_) {
|
| - case Token::ADD: {
|
| - if (reversed_) {
|
| - // revert optimistic add
|
| - __ sub(r0, r0, Operand(Smi::FromInt(value_)));
|
| - __ mov(r1, Operand(Smi::FromInt(value_)));
|
| - } else {
|
| - // revert optimistic add
|
| - __ sub(r1, r0, Operand(Smi::FromInt(value_)));
|
| - __ mov(r0, Operand(Smi::FromInt(value_)));
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - if (reversed_) {
|
| - // revert optimistic sub
|
| - __ rsb(r0, r0, Operand(Smi::FromInt(value_)));
|
| - __ mov(r1, Operand(Smi::FromInt(value_)));
|
| - } else {
|
| - __ add(r1, r0, Operand(Smi::FromInt(value_)));
|
| - __ mov(r0, Operand(Smi::FromInt(value_)));
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND: {
|
| - if (reversed_) {
|
| - __ mov(r1, Operand(Smi::FromInt(value_)));
|
| - } else {
|
| - __ mov(r1, Operand(r0));
|
| - __ mov(r0, Operand(Smi::FromInt(value_)));
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::SHL:
|
| - case Token::SHR:
|
| - case Token::SAR: {
|
| - if (!reversed_) {
|
| - __ mov(r1, Operand(r0));
|
| - __ mov(r0, Operand(Smi::FromInt(value_)));
|
| - } else {
|
| - UNREACHABLE(); // should have been handled in SmiOperation
|
| - }
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - // other cases should have been handled before this point.
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - GenericBinaryOpStub igostub(op_, overwrite_mode_);
|
| - Result arg0 = generator()->allocator()->Allocate(r1);
|
| - ASSERT(arg0.is_valid());
|
| - Result arg1 = generator()->allocator()->Allocate(r0);
|
| - ASSERT(arg1.is_valid());
|
| - generator()->frame()->CallStub(&igostub, &arg0, &arg1);
|
| - exit_.Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::SmiOperation(Token::Value op,
|
| - Handle<Object> value,
|
| - bool reversed,
|
| - OverwriteMode mode) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // NOTE: This is an attempt to inline (a bit) more of the code for
|
| - // some possible smi operations (like + and -) when (at least) one
|
| - // of the operands is a literal smi. With this optimization, the
|
| - // performance of the system is increased by ~15%, and the generated
|
| - // code size is increased by ~1% (measured on a combination of
|
| - // different benchmarks).
|
| -
|
| - // sp[0] : operand
|
| -
|
| - int int_value = Smi::cast(*value)->value();
|
| -
|
| - JumpTarget exit(this);
|
| - frame_->EmitPop(r0);
|
| -
|
| - switch (op) {
|
| - case Token::ADD: {
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(this, op, int_value, reversed, mode);
|
| -
|
| - __ add(r0, r0, Operand(value), SetCC);
|
| - deferred->enter()->Branch(vs);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - deferred->enter()->Branch(ne);
|
| - deferred->BindExit();
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(this, op, int_value, reversed, mode);
|
| -
|
| - if (!reversed) {
|
| - __ sub(r0, r0, Operand(value), SetCC);
|
| - } else {
|
| - __ rsb(r0, r0, Operand(value), SetCC);
|
| - }
|
| - deferred->enter()->Branch(vs);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - deferred->enter()->Branch(ne);
|
| - deferred->BindExit();
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND: {
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(this, op, int_value, reversed, mode);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - deferred->enter()->Branch(ne);
|
| - switch (op) {
|
| - case Token::BIT_OR: __ orr(r0, r0, Operand(value)); break;
|
| - case Token::BIT_XOR: __ eor(r0, r0, Operand(value)); break;
|
| - case Token::BIT_AND: __ and_(r0, r0, Operand(value)); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - deferred->BindExit();
|
| - break;
|
| - }
|
| -
|
| - case Token::SHL:
|
| - case Token::SHR:
|
| - case Token::SAR: {
|
| - if (reversed) {
|
| - __ mov(ip, Operand(value));
|
| - frame_->EmitPush(ip);
|
| - frame_->EmitPush(r0);
|
| - GenericBinaryOperation(op, mode);
|
| -
|
| - } else {
|
| - int shift_value = int_value & 0x1f; // least significant 5 bits
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(this, op, shift_value, false, mode);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - deferred->enter()->Branch(ne);
|
| - __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // remove tags
|
| - switch (op) {
|
| - case Token::SHL: {
|
| - __ mov(r2, Operand(r2, LSL, shift_value));
|
| - // check that the *unsigned* result fits in a smi
|
| - __ add(r3, r2, Operand(0x40000000), SetCC);
|
| - deferred->enter()->Branch(mi);
|
| - break;
|
| - }
|
| - case Token::SHR: {
|
| - // LSR by immediate 0 means shifting 32 bits.
|
| - if (shift_value != 0) {
|
| - __ mov(r2, Operand(r2, LSR, shift_value));
|
| - }
|
| - // check that the *unsigned* result fits in a smi
|
| - // neither of the two high-order bits can be set:
|
| - // - 0x80000000: high bit would be lost when smi tagging
|
| - // - 0x40000000: this number would convert to negative when
|
| - // smi tagging these two cases can only happen with shifts
|
| - // by 0 or 1 when handed a valid smi
|
| - __ and_(r3, r2, Operand(0xc0000000), SetCC);
|
| - deferred->enter()->Branch(ne);
|
| - break;
|
| - }
|
| - case Token::SAR: {
|
| - if (shift_value != 0) {
|
| - // ASR by immediate 0 means shifting 32 bits.
|
| - __ mov(r2, Operand(r2, ASR, shift_value));
|
| - }
|
| - break;
|
| - }
|
| - default: UNREACHABLE();
|
| - }
|
| - __ mov(r0, Operand(r2, LSL, kSmiTagSize));
|
| - deferred->BindExit();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - if (!reversed) {
|
| - frame_->EmitPush(r0);
|
| - __ mov(r0, Operand(value));
|
| - frame_->EmitPush(r0);
|
| - } else {
|
| - __ mov(ip, Operand(value));
|
| - frame_->EmitPush(ip);
|
| - frame_->EmitPush(r0);
|
| - }
|
| - GenericBinaryOperation(op, mode);
|
| - break;
|
| - }
|
| -
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Comparison(Condition cc, bool strict) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // sp[0] : y
|
| - // sp[1] : x
|
| - // result : cc register
|
| -
|
| - // Strict only makes sense for equality comparisons.
|
| - ASSERT(!strict || cc == eq);
|
| -
|
| - JumpTarget exit(this);
|
| - JumpTarget smi(this);
|
| - // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
|
| - if (cc == gt || cc == le) {
|
| - cc = ReverseCondition(cc);
|
| - frame_->EmitPop(r1);
|
| - frame_->EmitPop(r0);
|
| - } else {
|
| - frame_->EmitPop(r0);
|
| - frame_->EmitPop(r1);
|
| - }
|
| - __ orr(r2, r0, Operand(r1));
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - smi.Branch(eq);
|
| -
|
| - // Perform non-smi comparison by runtime call.
|
| - frame_->EmitPush(r1);
|
| -
|
| - // Figure out which native to call and setup the arguments.
|
| - Builtins::JavaScript native;
|
| - int arg_count = 1;
|
| - if (cc == eq) {
|
| - native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
| - } else {
|
| - native = Builtins::COMPARE;
|
| - int ncr; // NaN compare result
|
| - if (cc == lt || cc == le) {
|
| - ncr = GREATER;
|
| - } else {
|
| - ASSERT(cc == gt || cc == ge); // remaining cases
|
| - ncr = LESS;
|
| - }
|
| - frame_->EmitPush(r0);
|
| - arg_count++;
|
| - __ mov(r0, Operand(Smi::FromInt(ncr)));
|
| - }
|
| -
|
| - // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
| - // tagged as a small integer.
|
| - frame_->EmitPush(r0);
|
| - Result arg_count_register = allocator_->Allocate(r0);
|
| - ASSERT(arg_count_register.is_valid());
|
| - __ mov(arg_count_register.reg(), Operand(arg_count));
|
| - Result result = frame_->InvokeBuiltin(native,
|
| - CALL_JS,
|
| - &arg_count_register,
|
| - arg_count + 1);
|
| - __ cmp(result.reg(), Operand(0));
|
| - result.Unuse();
|
| - exit.Jump();
|
| -
|
| - // test smi equality by pointer comparison.
|
| - smi.Bind();
|
| - __ cmp(r1, Operand(r0));
|
| -
|
| - exit.Bind();
|
| - cc_reg_ = cc;
|
| -}
|
| -
|
| -
|
| -class CallFunctionStub: public CodeStub {
|
| - public:
|
| - explicit CallFunctionStub(int argc) : argc_(argc) {}
|
| -
|
| - void Generate(MacroAssembler* masm);
|
| -
|
| - private:
|
| - int argc_;
|
| -
|
| -#if defined(DEBUG)
|
| - void Print() { PrintF("CallFunctionStub (argc %d)\n", argc_); }
|
| -#endif // defined(DEBUG)
|
| -
|
| - Major MajorKey() { return CallFunction; }
|
| - int MinorKey() { return argc_; }
|
| -};
|
| -
|
| -
|
| -// Call the function on the stack with the given arguments.
|
| -void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
|
| - int position) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - // Record the position for debugging purposes.
|
| - CodeForSourcePosition(position);
|
| -
|
| - // Use the shared code stub to call the function.
|
| - CallFunctionStub call_function(arg_count);
|
| - frame_->CallStub(&call_function, arg_count + 1);
|
| -
|
| - // Restore context and pop function from the stack.
|
| - __ ldr(cp, frame_->Context());
|
| - frame_->Drop(); // discard the TOS
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Branch(bool if_true, JumpTarget* target) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(has_cc());
|
| - Condition cc = if_true ? cc_reg_ : NegateCondition(cc_reg_);
|
| - target->Branch(cc);
|
| - cc_reg_ = al;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::CheckStack() {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - if (FLAG_check_stack) {
|
| - Comment cmnt(masm_, "[ check stack");
|
| - StackCheckStub stub;
|
| - frame_->CallStub(&stub, 0);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAndSpill(Statement* statement) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Visit(statement);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - VisitStatements(statements);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - for (int i = 0; frame_ != NULL && i < statements->length(); i++) {
|
| - VisitAndSpill(statements->at(i));
|
| - }
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBlock(Block* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Block");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->Initialize(this);
|
| - VisitStatementsAndSpill(node->statements());
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - __ mov(r0, Operand(pairs));
|
| - frame_->EmitPush(r0);
|
| - frame_->EmitPush(cp);
|
| - __ mov(r0, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
|
| - // The result is discarded.
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDeclaration(Declaration* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Declaration");
|
| - CodeForStatementPosition(node);
|
| - Variable* var = node->proxy()->var();
|
| - ASSERT(var != NULL); // must have been resolved
|
| - Slot* slot = var->slot();
|
| -
|
| - // If it was not possible to allocate the variable at compile time,
|
| - // we need to "declare" it at runtime to make sure it actually
|
| - // exists in the local context.
|
| - if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // Variables with a "LOOKUP" slot were introduced as non-locals
|
| - // during variable resolution and must have mode DYNAMIC.
|
| - ASSERT(var->is_dynamic());
|
| - // For now, just do a runtime call.
|
| - frame_->EmitPush(cp);
|
| - __ mov(r0, Operand(var->name()));
|
| - frame_->EmitPush(r0);
|
| - // Declaration nodes are always declared in only two modes.
|
| - ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
|
| - PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
|
| - __ mov(r0, Operand(Smi::FromInt(attr)));
|
| - frame_->EmitPush(r0);
|
| - // Push initial value, if any.
|
| - // Note: For variables we must not push an initial value (such as
|
| - // 'undefined') because we may have a (legal) redeclaration and we
|
| - // must not destroy the current value.
|
| - if (node->mode() == Variable::CONST) {
|
| - __ mov(r0, Operand(Factory::the_hole_value()));
|
| - frame_->EmitPush(r0);
|
| - } else if (node->fun() != NULL) {
|
| - LoadAndSpill(node->fun());
|
| - } else {
|
| - __ mov(r0, Operand(0)); // no initial value!
|
| - frame_->EmitPush(r0);
|
| - }
|
| - frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
|
| - // Ignore the return value (declarations are statements).
|
| - ASSERT(frame_->height() == original_height);
|
| - return;
|
| - }
|
| -
|
| - ASSERT(!var->is_global());
|
| -
|
| - // If we have a function or a constant, we need to initialize the variable.
|
| - Expression* val = NULL;
|
| - if (node->mode() == Variable::CONST) {
|
| - val = new Literal(Factory::the_hole_value());
|
| - } else {
|
| - val = node->fun(); // NULL if we don't have a function
|
| - }
|
| -
|
| - if (val != NULL) {
|
| - {
|
| - // Set initial value.
|
| - Reference target(this, node->proxy());
|
| - LoadAndSpill(val);
|
| - target.SetValue(NOT_CONST_INIT);
|
| - // The reference is removed from the stack (preserving TOS) when
|
| - // it goes out of scope.
|
| - }
|
| - // Get rid of the assigned value (declarations are statements).
|
| - frame_->Drop();
|
| - }
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ExpressionStatement");
|
| - CodeForStatementPosition(node);
|
| - Expression* expression = node->expression();
|
| - expression->MarkAsStatement();
|
| - LoadAndSpill(expression);
|
| - frame_->Drop();
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "// EmptyStatement");
|
| - CodeForStatementPosition(node);
|
| - // nothing to do
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitIfStatement(IfStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ IfStatement");
|
| - // Generate different code depending on which parts of the if statement
|
| - // are present or not.
|
| - bool has_then_stm = node->HasThenStatement();
|
| - bool has_else_stm = node->HasElseStatement();
|
| -
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget exit(this);
|
| - if (has_then_stm && has_else_stm) {
|
| - Comment cmnt(masm_, "[ IfThenElse");
|
| - JumpTarget then(this);
|
| - JumpTarget else_(this);
|
| - // if (cond)
|
| - LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
|
| - &then, &else_, true);
|
| - if (frame_ != NULL) {
|
| - Branch(false, &else_);
|
| - }
|
| - // then
|
| - if (frame_ != NULL || then.is_linked()) {
|
| - then.Bind();
|
| - VisitAndSpill(node->then_statement());
|
| - }
|
| - if (frame_ != NULL) {
|
| - exit.Jump();
|
| - }
|
| - // else
|
| - if (else_.is_linked()) {
|
| - else_.Bind();
|
| - VisitAndSpill(node->else_statement());
|
| - }
|
| -
|
| - } else if (has_then_stm) {
|
| - Comment cmnt(masm_, "[ IfThen");
|
| - ASSERT(!has_else_stm);
|
| - JumpTarget then(this);
|
| - // if (cond)
|
| - LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
|
| - &then, &exit, true);
|
| - if (frame_ != NULL) {
|
| - Branch(false, &exit);
|
| - }
|
| - // then
|
| - if (frame_ != NULL || then.is_linked()) {
|
| - then.Bind();
|
| - VisitAndSpill(node->then_statement());
|
| - }
|
| -
|
| - } else if (has_else_stm) {
|
| - Comment cmnt(masm_, "[ IfElse");
|
| - ASSERT(!has_then_stm);
|
| - JumpTarget else_(this);
|
| - // if (!cond)
|
| - LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
|
| - &exit, &else_, true);
|
| - if (frame_ != NULL) {
|
| - Branch(true, &exit);
|
| - }
|
| - // else
|
| - if (frame_ != NULL || else_.is_linked()) {
|
| - else_.Bind();
|
| - VisitAndSpill(node->else_statement());
|
| - }
|
| -
|
| - } else {
|
| - Comment cmnt(masm_, "[ If");
|
| - ASSERT(!has_then_stm && !has_else_stm);
|
| - // if (cond)
|
| - LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
|
| - &exit, &exit, false);
|
| - if (frame_ != NULL) {
|
| - if (has_cc()) {
|
| - cc_reg_ = al;
|
| - } else {
|
| - frame_->Drop();
|
| - }
|
| - }
|
| - }
|
| -
|
| - // end
|
| - if (exit.is_linked()) {
|
| - exit.Bind();
|
| - }
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ContinueStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->continue_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ BreakStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->break_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ReturnStatement");
|
| -
|
| - if (function_return_is_shadowed_) {
|
| - CodeForStatementPosition(node);
|
| - LoadAndSpill(node->expression());
|
| - frame_->EmitPop(r0);
|
| - function_return_.Jump();
|
| - } else {
|
| - // Load the returned value.
|
| - CodeForStatementPosition(node);
|
| - LoadAndSpill(node->expression());
|
| -
|
| - // Pop the result from the frame and prepare the frame for
|
| - // returning thus making it easier to merge.
|
| - frame_->EmitPop(r0);
|
| - frame_->PrepareForReturn();
|
| -
|
| - function_return_.Jump();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ WithEnterStatement");
|
| - CodeForStatementPosition(node);
|
| - LoadAndSpill(node->expression());
|
| - if (node->is_catch_block()) {
|
| - frame_->CallRuntime(Runtime::kPushCatchContext, 1);
|
| - } else {
|
| - frame_->CallRuntime(Runtime::kPushContext, 1);
|
| - }
|
| -#ifdef DEBUG
|
| - JumpTarget verified_true(this);
|
| - __ cmp(r0, Operand(cp));
|
| - verified_true.Branch(eq);
|
| - __ stop("PushContext: r0 is expected to be the same as cp");
|
| - verified_true.Bind();
|
| -#endif
|
| - // Update context local.
|
| - __ str(cp, frame_->Context());
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ WithExitStatement");
|
| - CodeForStatementPosition(node);
|
| - // Pop context.
|
| - __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX));
|
| - // Update context local.
|
| - __ str(cp, frame_->Context());
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
|
| - return kFastSwitchMaxOverheadFactor;
|
| -}
|
| -
|
| -int CodeGenerator::FastCaseSwitchMinCaseCount() {
|
| - return kFastSwitchMinCaseCount;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateFastCaseSwitchJumpTable(
|
| - SwitchStatement* node,
|
| - int min_index,
|
| - int range,
|
| - Label* default_label,
|
| - Vector<Label*> case_targets,
|
| - Vector<Label> case_labels) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - JumpTarget setup_default(this);
|
| - JumpTarget is_smi(this);
|
| -
|
| - // A non-null default label pointer indicates a default case among
|
| - // the case labels. Otherwise we use the break target as a
|
| - // "default" for failure to hit the jump table.
|
| - JumpTarget* default_target =
|
| - (default_label == NULL) ? node->break_target() : &setup_default;
|
| -
|
| - ASSERT(kSmiTag == 0 && kSmiTagSize <= 2);
|
| - frame_->EmitPop(r0);
|
| -
|
| - // Test for a Smi value in a HeapNumber.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - is_smi.Branch(eq);
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - __ cmp(r1, Operand(HEAP_NUMBER_TYPE));
|
| - default_target->Branch(ne);
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kNumberToSmi, 1);
|
| - is_smi.Bind();
|
| -
|
| - if (min_index != 0) {
|
| - // Small positive numbers can be immediate operands.
|
| - if (min_index < 0) {
|
| - // If min_index is Smi::kMinValue, -min_index is not a Smi.
|
| - if (Smi::IsValid(-min_index)) {
|
| - __ add(r0, r0, Operand(Smi::FromInt(-min_index)));
|
| - } else {
|
| - __ add(r0, r0, Operand(Smi::FromInt(-min_index - 1)));
|
| - __ add(r0, r0, Operand(Smi::FromInt(1)));
|
| - }
|
| - } else {
|
| - __ sub(r0, r0, Operand(Smi::FromInt(min_index)));
|
| - }
|
| - }
|
| - __ tst(r0, Operand(0x80000000 | kSmiTagMask));
|
| - default_target->Branch(ne);
|
| - __ cmp(r0, Operand(Smi::FromInt(range)));
|
| - default_target->Branch(ge);
|
| - VirtualFrame* start_frame = new VirtualFrame(frame_);
|
| - __ SmiJumpTable(r0, case_targets);
|
| -
|
| - GenerateFastCaseSwitchCases(node, case_labels, start_frame);
|
| -
|
| - // If there was a default case among the case labels, we need to
|
| - // emit code to jump to it from the default target used for failure
|
| - // to hit the jump table.
|
| - if (default_label != NULL) {
|
| - if (has_valid_frame()) {
|
| - node->break_target()->Jump();
|
| - }
|
| - setup_default.Bind();
|
| - frame_->MergeTo(start_frame);
|
| - __ b(default_label);
|
| - DeleteFrame();
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| -
|
| - delete start_frame;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ SwitchStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->Initialize(this);
|
| -
|
| - LoadAndSpill(node->tag());
|
| - if (TryGenerateFastCaseSwitchStatement(node)) {
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| - return;
|
| - }
|
| -
|
| - JumpTarget next_test(this);
|
| - JumpTarget fall_through(this);
|
| - JumpTarget default_entry(this);
|
| - JumpTarget default_exit(this, JumpTarget::BIDIRECTIONAL);
|
| - ZoneList<CaseClause*>* cases = node->cases();
|
| - int length = cases->length();
|
| - CaseClause* default_clause = NULL;
|
| -
|
| - for (int i = 0; i < length; i++) {
|
| - CaseClause* clause = cases->at(i);
|
| - if (clause->is_default()) {
|
| - // Remember the default clause and compile it at the end.
|
| - default_clause = clause;
|
| - continue;
|
| - }
|
| -
|
| - Comment cmnt(masm_, "[ Case clause");
|
| - // Compile the test.
|
| - next_test.Bind();
|
| - next_test.Unuse();
|
| - // Duplicate TOS.
|
| - __ ldr(r0, frame_->Top());
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(clause->label());
|
| - Comparison(eq, true);
|
| - Branch(false, &next_test);
|
| -
|
| - // Before entering the body from the test, remove the switch value from
|
| - // the stack.
|
| - frame_->Drop();
|
| -
|
| - // Label the body so that fall through is enabled.
|
| - if (i > 0 && cases->at(i - 1)->is_default()) {
|
| - default_exit.Bind();
|
| - } else {
|
| - fall_through.Bind();
|
| - fall_through.Unuse();
|
| - }
|
| - VisitStatementsAndSpill(clause->statements());
|
| -
|
| - // If control flow can fall through from the body, jump to the next body
|
| - // or the end of the statement.
|
| - if (frame_ != NULL) {
|
| - if (i < length - 1 && cases->at(i + 1)->is_default()) {
|
| - default_entry.Jump();
|
| - } else {
|
| - fall_through.Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - // The final "test" removes the switch value.
|
| - next_test.Bind();
|
| - frame_->Drop();
|
| -
|
| - // If there is a default clause, compile it.
|
| - if (default_clause != NULL) {
|
| - Comment cmnt(masm_, "[ Default clause");
|
| - default_entry.Bind();
|
| - VisitStatementsAndSpill(default_clause->statements());
|
| - // If control flow can fall out of the default and there is a case after
|
| - // it, jup to that case's body.
|
| - if (frame_ != NULL && default_exit.is_bound()) {
|
| - default_exit.Jump();
|
| - }
|
| - }
|
| -
|
| - if (fall_through.is_linked()) {
|
| - fall_through.Bind();
|
| - }
|
| -
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ LoopStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->Initialize(this);
|
| -
|
| - // Simple condition analysis. ALWAYS_TRUE and ALWAYS_FALSE represent a
|
| - // known result for the test expression, with no side effects.
|
| - enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
|
| - if (node->cond() == NULL) {
|
| - ASSERT(node->type() == LoopStatement::FOR_LOOP);
|
| - info = ALWAYS_TRUE;
|
| - } else {
|
| - Literal* lit = node->cond()->AsLiteral();
|
| - if (lit != NULL) {
|
| - if (lit->IsTrue()) {
|
| - info = ALWAYS_TRUE;
|
| - } else if (lit->IsFalse()) {
|
| - info = ALWAYS_FALSE;
|
| - }
|
| - }
|
| - }
|
| -
|
| - switch (node->type()) {
|
| - case LoopStatement::DO_LOOP: {
|
| - JumpTarget body(this, JumpTarget::BIDIRECTIONAL);
|
| -
|
| - // Label the top of the loop for the backward CFG edge. If the test
|
| - // is always true we can use the continue target, and if the test is
|
| - // always false there is no need.
|
| - if (info == ALWAYS_TRUE) {
|
| - node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else if (info == ALWAYS_FALSE) {
|
| - node->continue_target()->Initialize(this);
|
| - } else {
|
| - ASSERT(info == DONT_KNOW);
|
| - node->continue_target()->Initialize(this);
|
| - body.Bind();
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - // Compile the test.
|
| - if (info == ALWAYS_TRUE) {
|
| - if (has_valid_frame()) {
|
| - // If control can fall off the end of the body, jump back to the
|
| - // top.
|
| - node->continue_target()->Jump();
|
| - }
|
| - } else if (info == ALWAYS_FALSE) {
|
| - // If we have a continue in the body, we only have to bind its jump
|
| - // target.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - } else {
|
| - ASSERT(info == DONT_KNOW);
|
| - // We have to compile the test expression if it can be reached by
|
| - // control flow falling out of the body or via continue.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
|
| - &body, node->break_target(), true);
|
| - if (has_valid_frame()) {
|
| - // A invalid frame here indicates that control did not
|
| - // fall out of the test expression.
|
| - Branch(true, &body);
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case LoopStatement::WHILE_LOOP: {
|
| - // If the test is never true and has no side effects there is no need
|
| - // to compile the test or body.
|
| - if (info == ALWAYS_FALSE) break;
|
| -
|
| - // Label the top of the loop with the continue target for the backward
|
| - // CFG edge.
|
| - node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| -
|
| - if (info == DONT_KNOW) {
|
| - JumpTarget body(this);
|
| - LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
|
| - &body, node->break_target(), true);
|
| - if (has_valid_frame()) {
|
| - // A NULL frame indicates that control did not fall out of the
|
| - // test expression.
|
| - Branch(false, node->break_target());
|
| - }
|
| - if (has_valid_frame() || body.is_linked()) {
|
| - body.Bind();
|
| - }
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - // If control flow can fall out of the body, jump back to the top.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case LoopStatement::FOR_LOOP: {
|
| - JumpTarget loop(this, JumpTarget::BIDIRECTIONAL);
|
| -
|
| - if (node->init() != NULL) {
|
| - VisitAndSpill(node->init());
|
| - }
|
| -
|
| - // There is no need to compile the test or body.
|
| - if (info == ALWAYS_FALSE) break;
|
| -
|
| - // If there is no update statement, label the top of the loop with the
|
| - // continue target, otherwise with the loop target.
|
| - if (node->next() == NULL) {
|
| - node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else {
|
| - node->continue_target()->Initialize(this);
|
| - loop.Bind();
|
| - }
|
| -
|
| - // If the test is always true, there is no need to compile it.
|
| - if (info == DONT_KNOW) {
|
| - JumpTarget body(this);
|
| - LoadConditionAndSpill(node->cond(), NOT_INSIDE_TYPEOF,
|
| - &body, node->break_target(), true);
|
| - if (has_valid_frame()) {
|
| - Branch(false, node->break_target());
|
| - }
|
| - if (has_valid_frame() || body.is_linked()) {
|
| - body.Bind();
|
| - }
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - if (node->next() == NULL) {
|
| - // If there is no update statement and control flow can fall out
|
| - // of the loop, jump directly to the continue label.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - } else {
|
| - // If there is an update statement and control flow can reach it
|
| - // via falling out of the body of the loop or continuing, we
|
| - // compile the update statement.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - // Record source position of the statement as this code which is
|
| - // after the code for the body actually belongs to the loop
|
| - // statement and not the body.
|
| - CodeForStatementPosition(node);
|
| - VisitAndSpill(node->next());
|
| - loop.Jump();
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - }
|
| -
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitForInStatement(ForInStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ForInStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget primitive(this);
|
| - JumpTarget jsobject(this);
|
| - JumpTarget fixed_array(this);
|
| - JumpTarget entry(this, JumpTarget::BIDIRECTIONAL);
|
| - JumpTarget end_del_check(this);
|
| - JumpTarget exit(this);
|
| -
|
| - // Get the object to enumerate over (converted to JSObject).
|
| - LoadAndSpill(node->enumerable());
|
| -
|
| - // Both SpiderMonkey and kjs ignore null and undefined in contrast
|
| - // to the specification. 12.6.4 mandates a call to ToObject.
|
| - frame_->EmitPop(r0);
|
| - __ cmp(r0, Operand(Factory::undefined_value()));
|
| - exit.Branch(eq);
|
| - __ cmp(r0, Operand(Factory::null_value()));
|
| - exit.Branch(eq);
|
| -
|
| - // Stack layout in body:
|
| - // [iteration counter (Smi)]
|
| - // [length of array]
|
| - // [FixedArray]
|
| - // [Map or 0]
|
| - // [Object]
|
| -
|
| - // Check if enumerable is already a JSObject
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - primitive.Branch(eq);
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
|
| - jsobject.Branch(hs);
|
| -
|
| - primitive.Bind();
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(0));
|
| - frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, &arg_count, 1);
|
| -
|
| - jsobject.Bind();
|
| - // Get the set of properties (as a FixedArray or Map).
|
| - frame_->EmitPush(r0); // duplicate the object being enumerated
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
|
| -
|
| - // If we got a Map, we can do a fast modification check.
|
| - // Otherwise, we got a FixedArray, and we have to do a slow check.
|
| - __ mov(r2, Operand(r0));
|
| - __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
|
| - __ cmp(r1, Operand(Factory::meta_map()));
|
| - fixed_array.Branch(ne);
|
| -
|
| - // Get enum cache
|
| - __ mov(r1, Operand(r0));
|
| - __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
|
| - __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
|
| - __ ldr(r2,
|
| - FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
| -
|
| - frame_->EmitPush(r0); // map
|
| - frame_->EmitPush(r2); // enum cache bridge cache
|
| - __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset));
|
| - __ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
| - frame_->EmitPush(r0);
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - frame_->EmitPush(r0);
|
| - entry.Jump();
|
| -
|
| - fixed_array.Bind();
|
| - __ mov(r1, Operand(Smi::FromInt(0)));
|
| - frame_->EmitPush(r1); // insert 0 in place of Map
|
| - frame_->EmitPush(r0);
|
| -
|
| - // Push the length of the array and the initial index onto the stack.
|
| - __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset));
|
| - __ mov(r0, Operand(r0, LSL, kSmiTagSize));
|
| - frame_->EmitPush(r0);
|
| - __ mov(r0, Operand(Smi::FromInt(0))); // init index
|
| - frame_->EmitPush(r0);
|
| -
|
| - // Condition.
|
| - entry.Bind();
|
| - // sp[0] : index
|
| - // sp[1] : array/enum cache length
|
| - // sp[2] : array or enum cache
|
| - // sp[3] : 0 or map
|
| - // sp[4] : enumerable
|
| - // Grab the current frame's height for the break and continue
|
| - // targets only after all the state is pushed on the frame.
|
| - node->break_target()->Initialize(this);
|
| - node->continue_target()->Initialize(this);
|
| -
|
| - __ ldr(r0, frame_->ElementAt(0)); // load the current count
|
| - __ ldr(r1, frame_->ElementAt(1)); // load the length
|
| - __ cmp(r0, Operand(r1)); // compare to the array length
|
| - node->break_target()->Branch(hs);
|
| -
|
| - __ ldr(r0, frame_->ElementAt(0));
|
| -
|
| - // Get the i'th entry of the array.
|
| - __ ldr(r2, frame_->ElementAt(2));
|
| - __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
| - __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| -
|
| - // Get Map or 0.
|
| - __ ldr(r2, frame_->ElementAt(3));
|
| - // Check if this (still) matches the map of the enumerable.
|
| - // If not, we have to filter the key.
|
| - __ ldr(r1, frame_->ElementAt(4));
|
| - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ cmp(r1, Operand(r2));
|
| - end_del_check.Branch(eq);
|
| -
|
| - // Convert the entry to a string (or null if it isn't a property anymore).
|
| - __ ldr(r0, frame_->ElementAt(4)); // push enumerable
|
| - frame_->EmitPush(r0);
|
| - frame_->EmitPush(r3); // push entry
|
| - Result arg_count_register = allocator_->Allocate(r0);
|
| - ASSERT(arg_count_register.is_valid());
|
| - __ mov(arg_count_register.reg(), Operand(1));
|
| - Result result = frame_->InvokeBuiltin(Builtins::FILTER_KEY,
|
| - CALL_JS,
|
| - &arg_count_register,
|
| - 2);
|
| - __ mov(r3, Operand(result.reg()));
|
| - result.Unuse();
|
| -
|
| - // If the property has been removed while iterating, we just skip it.
|
| - __ cmp(r3, Operand(Factory::null_value()));
|
| - node->continue_target()->Branch(eq);
|
| -
|
| - end_del_check.Bind();
|
| - // Store the entry in the 'each' expression and take another spin in the
|
| - // loop. r3: i'th entry of the enum cache (or string there of)
|
| - frame_->EmitPush(r3); // push entry
|
| - { Reference each(this, node->each());
|
| - if (!each.is_illegal()) {
|
| - if (each.size() > 0) {
|
| - __ ldr(r0, frame_->ElementAt(each.size()));
|
| - frame_->EmitPush(r0);
|
| - }
|
| - // If the reference was to a slot we rely on the convenient property
|
| - // that it doesn't matter whether a value (eg, r3 pushed above) is
|
| - // right on top of or right underneath a zero-sized reference.
|
| - each.SetValue(NOT_CONST_INIT);
|
| - if (each.size() > 0) {
|
| - // It's safe to pop the value lying on top of the reference before
|
| - // unloading the reference itself (which preserves the top of stack,
|
| - // ie, now the topmost value of the non-zero sized reference), since
|
| - // we will discard the top of stack after unloading the reference
|
| - // anyway.
|
| - frame_->EmitPop(r0);
|
| - }
|
| - }
|
| - }
|
| - // Discard the i'th entry pushed above or else the remainder of the
|
| - // reference, whichever is currently on top of the stack.
|
| - frame_->Drop();
|
| -
|
| - // Body.
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - // Next. Reestablish a spilled frame in case we are coming here via
|
| - // a continue in the body.
|
| - node->continue_target()->Bind();
|
| - frame_->SpillAll();
|
| - frame_->EmitPop(r0);
|
| - __ add(r0, r0, Operand(Smi::FromInt(1)));
|
| - frame_->EmitPush(r0);
|
| - entry.Jump();
|
| -
|
| - // Cleanup. No need to spill because VirtualFrame::Drop is safe for
|
| - // any frame.
|
| - node->break_target()->Bind();
|
| - frame_->Drop(5);
|
| -
|
| - // Exit.
|
| - exit.Bind();
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryCatch(TryCatch* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ TryCatch");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget try_block(this);
|
| - JumpTarget exit(this);
|
| -
|
| - try_block.Call();
|
| - // --- Catch block ---
|
| - frame_->EmitPush(r0);
|
| -
|
| - // Store the caught exception in the catch variable.
|
| - { Reference ref(this, node->catch_var());
|
| - ASSERT(ref.is_slot());
|
| - // Here we make use of the convenient property that it doesn't matter
|
| - // whether a value is immediately on top of or underneath a zero-sized
|
| - // reference.
|
| - ref.SetValue(NOT_CONST_INIT);
|
| - }
|
| -
|
| - // Remove the exception from the stack.
|
| - frame_->Drop();
|
| -
|
| - VisitStatementsAndSpill(node->catch_block()->statements());
|
| - if (frame_ != NULL) {
|
| - exit.Jump();
|
| - }
|
| -
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_CATCH_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the labels for all escapes from the try block, including
|
| - // returns. During shadowing, the original label is hidden as the
|
| - // LabelShadow and operations on the original actually affect the
|
| - // shadowing label.
|
| - //
|
| - // We should probably try to unify the escaping labels and the return
|
| - // label.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original labels are unshadowed and the
|
| - // LabelShadows represent the formerly shadowing labels.
|
| - bool has_unlinks = false;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - has_unlinks = has_unlinks || shadows[i]->is_linked();
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Top::k_handler_address);
|
| -
|
| - // The next handler address is at kNextIndex in the stack.
|
| - const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize;
|
| - // If we can fall off the end of the try block, unlink from try chain.
|
| - if (has_valid_frame()) {
|
| - __ ldr(r1, frame_->ElementAt(kNextIndex));
|
| - __ mov(r3, Operand(handler_address));
|
| - __ str(r1, MemOperand(r3));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize);
|
| - if (has_unlinks) {
|
| - exit.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate unlink code for the (formerly) shadowing labels that have been
|
| - // jumped to. Deallocate each shadow target.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // Unlink from try chain;
|
| - shadows[i]->Bind();
|
| - // Because we can be jumping here (to spilled code) from unspilled
|
| - // code, we need to reestablish a spilled frame at this block.
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that we
|
| - // break from (eg, for...in) may have left stuff on the stack.
|
| - __ mov(r3, Operand(handler_address));
|
| - __ ldr(sp, MemOperand(r3));
|
| - // The stack pointer was restored to just below the code slot
|
| - // (the topmost slot) in the handler.
|
| - frame_->Forget(frame_->height() - handler_height + 1);
|
| -
|
| - // kNextIndex is off by one because the code slot has already
|
| - // been dropped.
|
| - __ ldr(r1, frame_->ElementAt(kNextIndex - 1));
|
| - __ str(r1, MemOperand(r3));
|
| - // The code slot has already been dropped from the handler.
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
|
| - frame_->PrepareForReturn();
|
| - }
|
| - shadows[i]->other_target()->Jump();
|
| - }
|
| - delete shadows[i];
|
| - }
|
| -
|
| - exit.Bind();
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryFinally(TryFinally* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ TryFinally");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // State: Used to keep track of reason for entering the finally
|
| - // block. Should probably be extended to hold information for
|
| - // break/continue from within the try block.
|
| - enum { FALLING, THROWING, JUMPING };
|
| -
|
| - JumpTarget try_block(this);
|
| - JumpTarget finally_block(this);
|
| -
|
| - try_block.Call();
|
| -
|
| - frame_->EmitPush(r0); // save exception object on the stack
|
| - // In case of thrown exceptions, this is where we continue.
|
| - __ mov(r2, Operand(Smi::FromInt(THROWING)));
|
| - finally_block.Jump();
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_FINALLY_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the labels for all escapes from the try block, including
|
| - // returns. Shadowing hides the original label as the LabelShadow and
|
| - // operations on the original actually affect the shadowing label.
|
| - //
|
| - // We should probably try to unify the escaping labels and the return
|
| - // label.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original labels are unshadowed and the
|
| - // LabelShadows represent the formerly shadowing labels.
|
| - int nof_unlinks = 0;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - if (shadows[i]->is_linked()) nof_unlinks++;
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Top::k_handler_address);
|
| -
|
| - // The next handler address is at kNextIndex in the stack.
|
| - const int kNextIndex = StackHandlerConstants::kNextOffset / kPointerSize;
|
| - // If we can fall off the end of the try block, unlink from the try
|
| - // chain and set the state on the frame to FALLING.
|
| - if (has_valid_frame()) {
|
| - __ ldr(r1, frame_->ElementAt(kNextIndex));
|
| - __ mov(r3, Operand(handler_address));
|
| - __ str(r1, MemOperand(r3));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize);
|
| -
|
| - // Fake a top of stack value (unneeded when FALLING) and set the
|
| - // state in r2, then jump around the unlink blocks if any.
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| - frame_->EmitPush(r0);
|
| - __ mov(r2, Operand(Smi::FromInt(FALLING)));
|
| - if (nof_unlinks > 0) {
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate code to unlink and set the state for the (formerly)
|
| - // shadowing targets that have been jumped to.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // If we have come from the shadowed return, the return value is
|
| - // in (a non-refcounted reference to) r0. We must preserve it
|
| - // until it is pushed.
|
| - //
|
| - // Because we can be jumping here (to spilled code) from
|
| - // unspilled code, we need to reestablish a spilled frame at
|
| - // this block.
|
| - shadows[i]->Bind();
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that
|
| - // we break from (eg, for...in) may have left stuff on the
|
| - // stack.
|
| - __ mov(r3, Operand(handler_address));
|
| - __ ldr(sp, MemOperand(r3));
|
| - // The stack pointer was restored to the address slot in the handler.
|
| - ASSERT(StackHandlerConstants::kNextOffset == 1 * kPointerSize);
|
| - frame_->Forget(frame_->height() - handler_height + 1);
|
| -
|
| - // Unlink this handler and drop it from the frame. The next
|
| - // handler address is now on top of the frame.
|
| - frame_->EmitPop(r1);
|
| - __ str(r1, MemOperand(r3));
|
| - // The top (code) and the second (handler) slot have both been
|
| - // dropped already.
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 2);
|
| -
|
| - if (i == kReturnShadowIndex) {
|
| - // If this label shadowed the function return, materialize the
|
| - // return value on the stack.
|
| - frame_->EmitPush(r0);
|
| - } else {
|
| - // Fake TOS for targets that shadowed breaks and continues.
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| - frame_->EmitPush(r0);
|
| - }
|
| - __ mov(r2, Operand(Smi::FromInt(JUMPING + i)));
|
| - if (--nof_unlinks > 0) {
|
| - // If this is not the last unlink block, jump around the next.
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - // --- Finally block ---
|
| - finally_block.Bind();
|
| -
|
| - // Push the state on the stack.
|
| - frame_->EmitPush(r2);
|
| -
|
| - // We keep two elements on the stack - the (possibly faked) result
|
| - // and the state - while evaluating the finally block.
|
| - //
|
| - // Generate code for the statements in the finally block.
|
| - VisitStatementsAndSpill(node->finally_block()->statements());
|
| -
|
| - if (has_valid_frame()) {
|
| - // Restore state and return value or faked TOS.
|
| - frame_->EmitPop(r2);
|
| - frame_->EmitPop(r0);
|
| - }
|
| -
|
| - // Generate code to jump to the right destination for all used
|
| - // formerly shadowing targets. Deallocate each shadow target.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (has_valid_frame() && shadows[i]->is_bound()) {
|
| - JumpTarget* original = shadows[i]->other_target();
|
| - __ cmp(r2, Operand(Smi::FromInt(JUMPING + i)));
|
| - if (!function_return_is_shadowed_ && i == kReturnShadowIndex) {
|
| - JumpTarget skip(this);
|
| - skip.Branch(ne);
|
| - frame_->PrepareForReturn();
|
| - original->Jump();
|
| - skip.Bind();
|
| - } else {
|
| - original->Branch(eq);
|
| - }
|
| - }
|
| - delete shadows[i];
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - // Check if we need to rethrow the exception.
|
| - JumpTarget exit(this);
|
| - __ cmp(r2, Operand(Smi::FromInt(THROWING)));
|
| - exit.Branch(ne);
|
| -
|
| - // Rethrow exception.
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kReThrow, 1);
|
| -
|
| - // Done.
|
| - exit.Bind();
|
| - }
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ DebuggerStatament");
|
| - CodeForStatementPosition(node);
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - frame_->CallRuntime(Runtime::kDebugBreak, 0);
|
| -#endif
|
| - // Ignore the return value.
|
| - ASSERT(frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(boilerplate->IsBoilerplate());
|
| -
|
| - // Push the boilerplate on the stack.
|
| - __ mov(r0, Operand(boilerplate));
|
| - frame_->EmitPush(r0);
|
| -
|
| - // Create a new closure.
|
| - frame_->EmitPush(cp);
|
| - frame_->CallRuntime(Runtime::kNewClosure, 2);
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ FunctionLiteral");
|
| -
|
| - // Build the function boilerplate and instantiate it.
|
| - Handle<JSFunction> boilerplate = BuildBoilerplate(node);
|
| - // Check for stack-overflow exception.
|
| - if (HasStackOverflow()) {
|
| - ASSERT(frame_->height() == original_height);
|
| - return;
|
| - }
|
| - InstantiateBoilerplate(boilerplate);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitFunctionBoilerplateLiteral(
|
| - FunctionBoilerplateLiteral* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
|
| - InstantiateBoilerplate(node->boilerplate());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitConditional(Conditional* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Conditional");
|
| - JumpTarget then(this);
|
| - JumpTarget else_(this);
|
| - JumpTarget exit(this);
|
| - LoadConditionAndSpill(node->condition(), NOT_INSIDE_TYPEOF,
|
| - &then, &else_, true);
|
| - Branch(false, &else_);
|
| - then.Bind();
|
| - LoadAndSpill(node->then_expression(), typeof_state());
|
| - exit.Jump();
|
| - else_.Bind();
|
| - LoadAndSpill(node->else_expression(), typeof_state());
|
| - exit.Bind();
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| -
|
| - JumpTarget slow(this);
|
| - JumpTarget done(this);
|
| -
|
| - // Generate fast-case code for variables that might be shadowed by
|
| - // eval-introduced variables. Eval is used a lot without
|
| - // introducing variables. In those cases, we do not want to
|
| - // perform a runtime call for all variables in the scope
|
| - // containing the eval.
|
| - if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
|
| - LoadFromGlobalSlotCheckExtensions(slot, typeof_state, r1, r2, &slow);
|
| - // If there was no control flow to slow, we can exit early.
|
| - if (!slow.is_linked()) {
|
| - frame_->EmitPush(r0);
|
| - return;
|
| - }
|
| -
|
| - done.Jump();
|
| -
|
| - } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
|
| - Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
|
| - // Only generate the fast case for locals that rewrite to slots.
|
| - // This rules out argument loads.
|
| - if (potential_slot != NULL) {
|
| - __ ldr(r0,
|
| - ContextSlotOperandCheckExtensions(potential_slot,
|
| - r1,
|
| - r2,
|
| - &slow));
|
| - if (potential_slot->var()->mode() == Variable::CONST) {
|
| - __ cmp(r0, Operand(Factory::the_hole_value()));
|
| - __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
|
| - }
|
| - // There is always control flow to slow from
|
| - // ContextSlotOperandCheckExtensions so we have to jump around
|
| - // it.
|
| - done.Jump();
|
| - }
|
| - }
|
| -
|
| - slow.Bind();
|
| - frame_->EmitPush(cp);
|
| - __ mov(r0, Operand(slot->var()->name()));
|
| - frame_->EmitPush(r0);
|
| -
|
| - if (typeof_state == INSIDE_TYPEOF) {
|
| - frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
|
| - } else {
|
| - frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - }
|
| -
|
| - done.Bind();
|
| - frame_->EmitPush(r0);
|
| -
|
| - } else {
|
| - // Note: We would like to keep the assert below, but it fires because of
|
| - // some nasty code in LoadTypeofExpression() which should be removed...
|
| - // ASSERT(!slot->var()->is_dynamic());
|
| -
|
| - // Special handling for locals allocated in registers.
|
| - __ ldr(r0, SlotOperand(slot, r2));
|
| - frame_->EmitPush(r0);
|
| - if (slot->var()->mode() == Variable::CONST) {
|
| - // Const slots may contain 'the hole' value (the constant hasn't been
|
| - // initialized yet) which needs to be converted into the 'undefined'
|
| - // value.
|
| - Comment cmnt(masm_, "[ Unhole const");
|
| - frame_->EmitPop(r0);
|
| - __ cmp(r0, Operand(Factory::the_hole_value()));
|
| - __ mov(r0, Operand(Factory::undefined_value()), LeaveCC, eq);
|
| - frame_->EmitPush(r0);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot,
|
| - TypeofState typeof_state,
|
| - Register tmp,
|
| - Register tmp2,
|
| - JumpTarget* slow) {
|
| - // Check that no extension objects have been created by calls to
|
| - // eval from the current scope to the global scope.
|
| - Register context = cp;
|
| - Scope* s = scope();
|
| - while (s != NULL) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX));
|
| - __ tst(tmp2, tmp2);
|
| - slow->Branch(ne);
|
| - }
|
| - // Load next context in chain.
|
| - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
| - context = tmp;
|
| - }
|
| - // If no outer scope calls eval, we do not need to check more
|
| - // context extensions.
|
| - if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
|
| - s = s->outer_scope();
|
| - }
|
| -
|
| - if (s->is_eval_scope()) {
|
| - Label next, fast;
|
| - if (!context.is(tmp)) {
|
| - __ mov(tmp, Operand(context));
|
| - }
|
| - __ bind(&next);
|
| - // Terminate at global context.
|
| - __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset));
|
| - __ cmp(tmp2, Operand(Factory::global_context_map()));
|
| - __ b(eq, &fast);
|
| - // Check that extension is NULL.
|
| - __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX));
|
| - __ tst(tmp2, tmp2);
|
| - slow->Branch(ne);
|
| - // Load next context in chain.
|
| - __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX));
|
| - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset));
|
| - __ b(&next);
|
| - __ bind(&fast);
|
| - }
|
| -
|
| - // All extension objects were empty and it is safe to use a global
|
| - // load IC call.
|
| - Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
| - // Load the global object.
|
| - LoadGlobal();
|
| - // Setup the name register.
|
| - Result name = allocator_->Allocate(r2);
|
| - ASSERT(name.is_valid()); // We are in spilled code.
|
| - __ mov(name.reg(), Operand(slot->var()->name()));
|
| - // Call IC stub.
|
| - if (typeof_state == INSIDE_TYPEOF) {
|
| - frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, &name, 0);
|
| - } else {
|
| - frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET_CONTEXT, &name, 0);
|
| - }
|
| -
|
| - // Drop the global object. The result is in r0.
|
| - frame_->Drop();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSlot(Slot* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Slot");
|
| - LoadFromSlot(node, typeof_state());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ VariableProxy");
|
| -
|
| - Variable* var = node->var();
|
| - Expression* expr = var->rewrite();
|
| - if (expr != NULL) {
|
| - Visit(expr);
|
| - } else {
|
| - ASSERT(var->is_global());
|
| - Reference ref(this, node);
|
| - ref.GetValueAndSpill(typeof_state());
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitLiteral(Literal* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Literal");
|
| - __ mov(r0, Operand(node->handle()));
|
| - frame_->EmitPush(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ RexExp Literal");
|
| -
|
| - // Retrieve the literal array and check the allocated entry.
|
| -
|
| - // Load the function of this activation.
|
| - __ ldr(r1, frame_->Function());
|
| -
|
| - // Load the literals array of the function.
|
| - __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
| -
|
| - // Load the literal at the ast saved index.
|
| - int literal_offset =
|
| - FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
| - __ ldr(r2, FieldMemOperand(r1, literal_offset));
|
| -
|
| - JumpTarget done(this);
|
| - __ cmp(r2, Operand(Factory::undefined_value()));
|
| - done.Branch(ne);
|
| -
|
| - // If the entry is undefined we call the runtime system to computed
|
| - // the literal.
|
| - frame_->EmitPush(r1); // literal array (0)
|
| - __ mov(r0, Operand(Smi::FromInt(node->literal_index())));
|
| - frame_->EmitPush(r0); // literal index (1)
|
| - __ mov(r0, Operand(node->pattern())); // RegExp pattern (2)
|
| - frame_->EmitPush(r0);
|
| - __ mov(r0, Operand(node->flags())); // RegExp flags (3)
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
|
| - __ mov(r2, Operand(r0));
|
| -
|
| - done.Bind();
|
| - // Push the literal.
|
| - frame_->EmitPush(r2);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -// This deferred code stub will be used for creating the boilerplate
|
| -// by calling Runtime_CreateObjectLiteralBoilerplate.
|
| -// Each created boilerplate is stored in the JSFunction and they are
|
| -// therefore context dependent.
|
| -class DeferredObjectLiteral: public DeferredCode {
|
| - public:
|
| - DeferredObjectLiteral(CodeGenerator* generator, ObjectLiteral* node)
|
| - : DeferredCode(generator), node_(node) {
|
| - set_comment("[ DeferredObjectLiteral");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - ObjectLiteral* node_;
|
| -};
|
| -
|
| -
|
| -void DeferredObjectLiteral::Generate() {
|
| - // Argument is passed in r1.
|
| - enter()->Bind();
|
| - VirtualFrame::SpilledScope spilled_scope(generator());
|
| -
|
| - // If the entry is undefined we call the runtime system to compute
|
| - // the literal.
|
| -
|
| - VirtualFrame* frame = generator()->frame();
|
| - // Literal array (0).
|
| - frame->EmitPush(r1);
|
| - // Literal index (1).
|
| - __ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
|
| - frame->EmitPush(r0);
|
| - // Constant properties (2).
|
| - __ mov(r0, Operand(node_->constant_properties()));
|
| - frame->EmitPush(r0);
|
| - Result boilerplate =
|
| - frame->CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
|
| - __ mov(r2, Operand(boilerplate.reg()));
|
| - // Result is returned in r2.
|
| - exit_.Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ObjectLiteral");
|
| -
|
| - DeferredObjectLiteral* deferred = new DeferredObjectLiteral(this, node);
|
| -
|
| - // Retrieve the literal array and check the allocated entry.
|
| -
|
| - // Load the function of this activation.
|
| - __ ldr(r1, frame_->Function());
|
| -
|
| - // Load the literals array of the function.
|
| - __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
| -
|
| - // Load the literal at the ast saved index.
|
| - int literal_offset =
|
| - FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
| - __ ldr(r2, FieldMemOperand(r1, literal_offset));
|
| -
|
| - // Check whether we need to materialize the object literal boilerplate.
|
| - // If so, jump to the deferred code.
|
| - __ cmp(r2, Operand(Factory::undefined_value()));
|
| - deferred->enter()->Branch(eq);
|
| - deferred->BindExit();
|
| -
|
| - // Push the object literal boilerplate.
|
| - frame_->EmitPush(r2);
|
| -
|
| - // Clone the boilerplate object.
|
| - Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
|
| - if (node->depth() == 1) {
|
| - clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
|
| - }
|
| - frame_->CallRuntime(clone_function_id, 1);
|
| - frame_->EmitPush(r0); // save the result
|
| - // r0: cloned object literal
|
| -
|
| - for (int i = 0; i < node->properties()->length(); i++) {
|
| - ObjectLiteral::Property* property = node->properties()->at(i);
|
| - Literal* key = property->key();
|
| - Expression* value = property->value();
|
| - switch (property->kind()) {
|
| - case ObjectLiteral::Property::CONSTANT:
|
| - break;
|
| - case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
| - if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
|
| - // else fall through
|
| - case ObjectLiteral::Property::COMPUTED: // fall through
|
| - case ObjectLiteral::Property::PROTOTYPE: {
|
| - frame_->EmitPush(r0); // dup the result
|
| - LoadAndSpill(key);
|
| - LoadAndSpill(value);
|
| - frame_->CallRuntime(Runtime::kSetProperty, 3);
|
| - // restore r0
|
| - __ ldr(r0, frame_->Top());
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::SETTER: {
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(key);
|
| - __ mov(r0, Operand(Smi::FromInt(1)));
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(value);
|
| - frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - __ ldr(r0, frame_->Top());
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::GETTER: {
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(key);
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(value);
|
| - frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - __ ldr(r0, frame_->Top());
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -// This deferred code stub will be used for creating the boilerplate
|
| -// by calling Runtime_CreateArrayLiteralBoilerplate.
|
| -// Each created boilerplate is stored in the JSFunction and they are
|
| -// therefore context dependent.
|
| -class DeferredArrayLiteral: public DeferredCode {
|
| - public:
|
| - DeferredArrayLiteral(CodeGenerator* generator, ArrayLiteral* node)
|
| - : DeferredCode(generator), node_(node) {
|
| - set_comment("[ DeferredArrayLiteral");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - ArrayLiteral* node_;
|
| -};
|
| -
|
| -
|
| -void DeferredArrayLiteral::Generate() {
|
| - // Argument is passed in r1.
|
| - enter()->Bind();
|
| - VirtualFrame::SpilledScope spilled_scope(generator());
|
| -
|
| - // If the entry is undefined we call the runtime system to computed
|
| - // the literal.
|
| -
|
| - VirtualFrame* frame = generator()->frame();
|
| - // Literal array (0).
|
| - frame->EmitPush(r1);
|
| - // Literal index (1).
|
| - __ mov(r0, Operand(Smi::FromInt(node_->literal_index())));
|
| - frame->EmitPush(r0);
|
| - // Constant properties (2).
|
| - __ mov(r0, Operand(node_->literals()));
|
| - frame->EmitPush(r0);
|
| - Result boilerplate =
|
| - frame->CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
|
| - __ mov(r2, Operand(boilerplate.reg()));
|
| - // Result is returned in r2.
|
| - exit_.Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ ArrayLiteral");
|
| -
|
| - DeferredArrayLiteral* deferred = new DeferredArrayLiteral(this, node);
|
| -
|
| - // Retrieve the literal array and check the allocated entry.
|
| -
|
| - // Load the function of this activation.
|
| - __ ldr(r1, frame_->Function());
|
| -
|
| - // Load the literals array of the function.
|
| - __ ldr(r1, FieldMemOperand(r1, JSFunction::kLiteralsOffset));
|
| -
|
| - // Load the literal at the ast saved index.
|
| - int literal_offset =
|
| - FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
| - __ ldr(r2, FieldMemOperand(r1, literal_offset));
|
| -
|
| - // Check whether we need to materialize the object literal boilerplate.
|
| - // If so, jump to the deferred code.
|
| - __ cmp(r2, Operand(Factory::undefined_value()));
|
| - deferred->enter()->Branch(eq);
|
| - deferred->BindExit();
|
| -
|
| - // Push the object literal boilerplate.
|
| - frame_->EmitPush(r2);
|
| -
|
| - // Clone the boilerplate object.
|
| - Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
|
| - if (node->depth() == 1) {
|
| - clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
|
| - }
|
| - frame_->CallRuntime(clone_function_id, 1);
|
| - frame_->EmitPush(r0); // save the result
|
| - // r0: cloned object literal
|
| -
|
| - // Generate code to set the elements in the array that are not
|
| - // literals.
|
| - for (int i = 0; i < node->values()->length(); i++) {
|
| - Expression* value = node->values()->at(i);
|
| -
|
| - // If value is a literal the property value is already set in the
|
| - // boilerplate object.
|
| - if (value->AsLiteral() != NULL) continue;
|
| - // If value is a materialized literal the property value is already set
|
| - // in the boilerplate object if it is simple.
|
| - if (CompileTimeValue::IsCompileTimeValue(value)) continue;
|
| -
|
| - // The property must be set by generated code.
|
| - LoadAndSpill(value);
|
| - frame_->EmitPop(r0);
|
| -
|
| - // Fetch the object literal.
|
| - __ ldr(r1, frame_->Top());
|
| - // Get the elements array.
|
| - __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
|
| -
|
| - // Write to the indexed properties array.
|
| - int offset = i * kPointerSize + Array::kHeaderSize;
|
| - __ str(r0, FieldMemOperand(r1, offset));
|
| -
|
| - // Update the write barrier for the array address.
|
| - __ mov(r3, Operand(offset));
|
| - __ RecordWrite(r1, r3, r2);
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // Call runtime routine to allocate the catch extension object and
|
| - // assign the exception value to the catch variable.
|
| - Comment cmnt(masm_, "[ CatchExtensionObject");
|
| - LoadAndSpill(node->key());
|
| - LoadAndSpill(node->value());
|
| - Result result =
|
| - frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
|
| - frame_->EmitPush(result.reg());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Assignment");
|
| - CodeForStatementPosition(node);
|
| -
|
| - { Reference target(this, node->target());
|
| - if (target.is_illegal()) {
|
| - // Fool the virtual frame into thinking that we left the assignment's
|
| - // value on the frame.
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - frame_->EmitPush(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| - return;
|
| - }
|
| -
|
| - if (node->op() == Token::ASSIGN ||
|
| - node->op() == Token::INIT_VAR ||
|
| - node->op() == Token::INIT_CONST) {
|
| - LoadAndSpill(node->value());
|
| -
|
| - } else {
|
| - // +=, *= and similar binary assignments.
|
| - // Get the old value of the lhs.
|
| - target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
|
| - Literal* literal = node->value()->AsLiteral();
|
| - bool overwrite =
|
| - (node->value()->AsBinaryOperation() != NULL &&
|
| - node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
|
| - if (literal != NULL && literal->handle()->IsSmi()) {
|
| - SmiOperation(node->binary_op(),
|
| - literal->handle(),
|
| - false,
|
| - overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - frame_->EmitPush(r0);
|
| -
|
| - } else {
|
| - LoadAndSpill(node->value());
|
| - GenericBinaryOperation(node->binary_op(),
|
| - overwrite ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - frame_->EmitPush(r0);
|
| - }
|
| - }
|
| -
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - if (var != NULL &&
|
| - (var->mode() == Variable::CONST) &&
|
| - node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
|
| - // Assignment ignored - leave the value on the stack.
|
| -
|
| - } else {
|
| - CodeForSourcePosition(node->position());
|
| - if (node->op() == Token::INIT_CONST) {
|
| - // Dynamic constant initializations must use the function context
|
| - // and initialize the actual constant declared. Dynamic variable
|
| - // initializations are simply assignments and use SetValue.
|
| - target.SetValue(CONST_INIT);
|
| - } else {
|
| - target.SetValue(NOT_CONST_INIT);
|
| - }
|
| - }
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThrow(Throw* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Throw");
|
| -
|
| - LoadAndSpill(node->exception());
|
| - CodeForSourcePosition(node->position());
|
| - frame_->CallRuntime(Runtime::kThrow, 1);
|
| - frame_->EmitPush(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitProperty(Property* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Property");
|
| -
|
| - { Reference property(this, node);
|
| - property.GetValueAndSpill(typeof_state());
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCall(Call* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ Call");
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| -
|
| - CodeForStatementPosition(node);
|
| - // Standard function call.
|
| -
|
| - // Check if the function is a variable or a property.
|
| - Expression* function = node->expression();
|
| - Variable* var = function->AsVariableProxy()->AsVariable();
|
| - Property* property = function->AsProperty();
|
| -
|
| - // ------------------------------------------------------------------------
|
| - // Fast-case: Use inline caching.
|
| - // ---
|
| - // According to ECMA-262, section 11.2.3, page 44, the function to call
|
| - // must be resolved after the arguments have been evaluated. The IC code
|
| - // automatically handles this by loading the arguments before the function
|
| - // is resolved in cache misses (this also holds for megamorphic calls).
|
| - // ------------------------------------------------------------------------
|
| -
|
| - if (var != NULL && !var->is_this() && var->is_global()) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is global
|
| - // ----------------------------------
|
| -
|
| - // Push the name of the function and the receiver onto the stack.
|
| - __ mov(r0, Operand(var->name()));
|
| - frame_->EmitPush(r0);
|
| -
|
| - // Pass the global object as the receiver and let the IC stub
|
| - // patch the stack to use the global proxy as 'this' in the
|
| - // invoked function.
|
| - LoadGlobal();
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - // Setup the receiver register and call the IC initialization code.
|
| - Handle<Code> stub = ComputeCallInitialize(arg_count);
|
| - CodeForSourcePosition(node->position());
|
| - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT,
|
| - arg_count + 1);
|
| - __ ldr(cp, frame_->Context());
|
| - // Remove the function from the stack.
|
| - frame_->Drop();
|
| - frame_->EmitPush(r0);
|
| -
|
| - } else if (var != NULL && var->slot() != NULL &&
|
| - var->slot()->type() == Slot::LOOKUP) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
|
| - // ----------------------------------
|
| -
|
| - // Load the function
|
| - frame_->EmitPush(cp);
|
| - __ mov(r0, Operand(var->name()));
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - // r0: slot value; r1: receiver
|
| -
|
| - // Load the receiver.
|
| - frame_->EmitPush(r0); // function
|
| - frame_->EmitPush(r1); // receiver
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, node->position());
|
| - frame_->EmitPush(r0);
|
| -
|
| - } else if (property != NULL) {
|
| - // Check if the key is a literal string.
|
| - Literal* literal = property->key()->AsLiteral();
|
| -
|
| - if (literal != NULL && literal->handle()->IsSymbol()) {
|
| - // ------------------------------------------------------------------
|
| - // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
|
| - // ------------------------------------------------------------------
|
| -
|
| - // Push the name of the function and the receiver onto the stack.
|
| - __ mov(r0, Operand(literal->handle()));
|
| - frame_->EmitPush(r0);
|
| - LoadAndSpill(property->obj());
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - // Set the receiver register and call the IC initialization code.
|
| - Handle<Code> stub = ComputeCallInitialize(arg_count);
|
| - CodeForSourcePosition(node->position());
|
| - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
|
| - __ ldr(cp, frame_->Context());
|
| -
|
| - // Remove the function from the stack.
|
| - frame_->Drop();
|
| -
|
| - frame_->EmitPush(r0); // push after get rid of function from the stack
|
| -
|
| - } else {
|
| - // -------------------------------------------
|
| - // JavaScript example: 'array[index](1, 2, 3)'
|
| - // -------------------------------------------
|
| -
|
| - // Load the function to call from the property through a reference.
|
| - Reference ref(this, property);
|
| - ref.GetValueAndSpill(NOT_INSIDE_TYPEOF); // receiver
|
| -
|
| - // Pass receiver to called function.
|
| - if (property->is_synthetic()) {
|
| - LoadGlobalReceiver(r0);
|
| - } else {
|
| - __ ldr(r0, frame_->ElementAt(ref.size()));
|
| - frame_->EmitPush(r0);
|
| - }
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, node->position());
|
| - frame_->EmitPush(r0);
|
| - }
|
| -
|
| - } else {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is not global
|
| - // ----------------------------------
|
| -
|
| - // Load the function.
|
| - LoadAndSpill(function);
|
| -
|
| - // Pass the global proxy as the receiver.
|
| - LoadGlobalReceiver(r0);
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, node->position());
|
| - frame_->EmitPush(r0);
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallEval(CallEval* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ CallEval");
|
| -
|
| - // In a call to eval, we first call %ResolvePossiblyDirectEval to resolve
|
| - // the function we need to call and the receiver of the call.
|
| - // Then we call the resolved function using the given arguments.
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - Expression* function = node->expression();
|
| -
|
| - CodeForStatementPosition(node);
|
| -
|
| - // Prepare stack for call to resolved function.
|
| - LoadAndSpill(function);
|
| - __ mov(r2, Operand(Factory::undefined_value()));
|
| - frame_->EmitPush(r2); // Slot for receiver
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - // Prepare stack for call to ResolvePossiblyDirectEval.
|
| - __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize));
|
| - frame_->EmitPush(r1);
|
| - if (arg_count > 0) {
|
| - __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
|
| - frame_->EmitPush(r1);
|
| - } else {
|
| - frame_->EmitPush(r2);
|
| - }
|
| -
|
| - // Resolve the call.
|
| - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
|
| -
|
| - // Touch up stack with the right values for the function and the receiver.
|
| - __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize));
|
| - __ str(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
|
| - __ ldr(r1, FieldMemOperand(r0, FixedArray::kHeaderSize + kPointerSize));
|
| - __ str(r1, MemOperand(sp, arg_count * kPointerSize));
|
| -
|
| - // Call the function.
|
| - CodeForSourcePosition(node->position());
|
| -
|
| - CallFunctionStub call_function(arg_count);
|
| - frame_->CallStub(&call_function, arg_count + 1);
|
| -
|
| - __ ldr(cp, frame_->Context());
|
| - // Remove the function from the stack.
|
| - frame_->Drop();
|
| - frame_->EmitPush(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallNew(CallNew* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ CallNew");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // According to ECMA-262, section 11.2.2, page 44, the function
|
| - // expression in new calls must be evaluated before the
|
| - // arguments. This is different from ordinary calls, where the
|
| - // actual function to call is resolved after the arguments have been
|
| - // evaluated.
|
| -
|
| - // Compute function to call and use the global object as the
|
| - // receiver. There is no need to use the global proxy here because
|
| - // it will always be replaced with a newly allocated object.
|
| - LoadAndSpill(node->expression());
|
| - LoadGlobal();
|
| -
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - // r0: the number of arguments.
|
| - Result num_args = allocator_->Allocate(r0);
|
| - ASSERT(num_args.is_valid());
|
| - __ mov(num_args.reg(), Operand(arg_count));
|
| -
|
| - // Load the function into r1 as per calling convention.
|
| - Result function = allocator_->Allocate(r1);
|
| - ASSERT(function.is_valid());
|
| - __ ldr(function.reg(), frame_->ElementAt(arg_count + 1));
|
| -
|
| - // Call the construct call builtin that handles allocation and
|
| - // constructor invocation.
|
| - CodeForSourcePosition(node->position());
|
| - Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall));
|
| - Result result = frame_->CallCodeObject(ic,
|
| - RelocInfo::CONSTRUCT_CALL,
|
| - &num_args,
|
| - &function,
|
| - arg_count + 1);
|
| -
|
| - // Discard old TOS value and push r0 on the stack (same as Pop(), push(r0)).
|
| - __ str(r0, frame_->Top());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 1);
|
| - JumpTarget leave(this);
|
| - LoadAndSpill(args->at(0));
|
| - frame_->EmitPop(r0); // r0 contains object.
|
| - // if (object->IsSmi()) return the object.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - leave.Branch(eq);
|
| - // It is a heap object - get map.
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - // if (!object->IsJSValue()) return the object.
|
| - __ cmp(r1, Operand(JS_VALUE_TYPE));
|
| - leave.Branch(ne);
|
| - // Load the value.
|
| - __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
|
| - leave.Bind();
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 2);
|
| - JumpTarget leave(this);
|
| - LoadAndSpill(args->at(0)); // Load the object.
|
| - LoadAndSpill(args->at(1)); // Load the value.
|
| - frame_->EmitPop(r0); // r0 contains value
|
| - frame_->EmitPop(r1); // r1 contains object
|
| - // if (object->IsSmi()) return object.
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - leave.Branch(eq);
|
| - // It is a heap object - get map.
|
| - __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
| - // if (!object->IsJSValue()) return object.
|
| - __ cmp(r2, Operand(JS_VALUE_TYPE));
|
| - leave.Branch(ne);
|
| - // Store the value.
|
| - __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
|
| - // Update the write barrier.
|
| - __ mov(r2, Operand(JSValue::kValueOffset - kHeapObjectTag));
|
| - __ RecordWrite(r1, r2, r3);
|
| - // Leave.
|
| - leave.Bind();
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 1);
|
| - LoadAndSpill(args->at(0));
|
| - frame_->EmitPop(r0);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - cc_reg_ = eq;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc.
|
| - ASSERT_EQ(args->length(), 3);
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - if (ShouldGenerateLog(args->at(0))) {
|
| - LoadAndSpill(args->at(1));
|
| - LoadAndSpill(args->at(2));
|
| - __ CallRuntime(Runtime::kLog, 2);
|
| - }
|
| -#endif
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 1);
|
| - LoadAndSpill(args->at(0));
|
| - frame_->EmitPop(r0);
|
| - __ tst(r0, Operand(kSmiTagMask | 0x80000000));
|
| - cc_reg_ = eq;
|
| -}
|
| -
|
| -
|
| -// This should generate code that performs a charCodeAt() call or returns
|
| -// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
|
| -// It is not yet implemented on ARM, so it always goes to the slow case.
|
| -void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 2);
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 1);
|
| - LoadAndSpill(args->at(0));
|
| - JumpTarget answer(this);
|
| - // We need the CC bits to come out as not_equal in the case where the
|
| - // object is a smi. This can't be done with the usual test opcode so
|
| - // we use XOR to get the right CC bits.
|
| - frame_->EmitPop(r0);
|
| - __ and_(r1, r0, Operand(kSmiTagMask));
|
| - __ eor(r1, r1, Operand(kSmiTagMask), SetCC);
|
| - answer.Branch(ne);
|
| - // It is a heap object - get the map.
|
| - __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - // Check if the object is a JS array or not.
|
| - __ cmp(r1, Operand(JS_ARRAY_TYPE));
|
| - answer.Bind();
|
| - cc_reg_ = eq;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 0);
|
| -
|
| - // Seed the result with the formal parameters count, which will be used
|
| - // in case no arguments adaptor frame is found below the current frame.
|
| - __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
| -
|
| - // Call the shared stub to get to the arguments.length.
|
| - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
|
| - frame_->CallStub(&stub, 0);
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 1);
|
| -
|
| - // Satisfy contract with ArgumentsAccessStub:
|
| - // Load the key into r1 and the formal parameters count into r0.
|
| - LoadAndSpill(args->at(0));
|
| - frame_->EmitPop(r1);
|
| - __ mov(r0, Operand(Smi::FromInt(scope_->num_parameters())));
|
| -
|
| - // Call the shared stub to get to arguments[key].
|
| - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
|
| - frame_->CallStub(&stub, 0);
|
| - frame_->EmitPush(r0);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - ASSERT(args->length() == 2);
|
| -
|
| - // Load the two objects into registers and perform the comparison.
|
| - LoadAndSpill(args->at(0));
|
| - LoadAndSpill(args->at(1));
|
| - frame_->EmitPop(r0);
|
| - frame_->EmitPop(r1);
|
| - __ cmp(r0, Operand(r1));
|
| - cc_reg_ = eq;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - if (CheckForInlineRuntimeCall(node)) {
|
| - ASSERT((has_cc() && frame_->height() == original_height) ||
|
| - (!has_cc() && frame_->height() == original_height + 1));
|
| - return;
|
| - }
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - Comment cmnt(masm_, "[ CallRuntime");
|
| - Runtime::Function* function = node->function();
|
| -
|
| - if (function == NULL) {
|
| - // Prepare stack for calling JS runtime function.
|
| - __ mov(r0, Operand(node->name()));
|
| - frame_->EmitPush(r0);
|
| - // Push the builtins object found in the current global object.
|
| - __ ldr(r1, GlobalObject());
|
| - __ ldr(r0, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
|
| - frame_->EmitPush(r0);
|
| - }
|
| -
|
| - // Push the arguments ("left-to-right").
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - LoadAndSpill(args->at(i));
|
| - }
|
| -
|
| - if (function == NULL) {
|
| - // Call the JS runtime function.
|
| - Handle<Code> stub = ComputeCallInitialize(arg_count);
|
| - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1);
|
| - __ ldr(cp, frame_->Context());
|
| - frame_->Drop();
|
| - frame_->EmitPush(r0);
|
| - } else {
|
| - // Call the C runtime function.
|
| - frame_->CallRuntime(function, arg_count);
|
| - frame_->EmitPush(r0);
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ UnaryOperation");
|
| -
|
| - Token::Value op = node->op();
|
| -
|
| - if (op == Token::NOT) {
|
| - LoadConditionAndSpill(node->expression(),
|
| - NOT_INSIDE_TYPEOF,
|
| - false_target(),
|
| - true_target(),
|
| - true);
|
| - cc_reg_ = NegateCondition(cc_reg_);
|
| -
|
| - } else if (op == Token::DELETE) {
|
| - Property* property = node->expression()->AsProperty();
|
| - Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
|
| - if (property != NULL) {
|
| - LoadAndSpill(property->obj());
|
| - LoadAndSpill(property->key());
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1)); // not counting receiver
|
| - frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
|
| -
|
| - } else if (variable != NULL) {
|
| - Slot* slot = variable->slot();
|
| - if (variable->is_global()) {
|
| - LoadGlobal();
|
| - __ mov(r0, Operand(variable->name()));
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1)); // not counting receiver
|
| - frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
|
| -
|
| - } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // lookup the context holding the named variable
|
| - frame_->EmitPush(cp);
|
| - __ mov(r0, Operand(variable->name()));
|
| - frame_->EmitPush(r0);
|
| - frame_->CallRuntime(Runtime::kLookupContext, 2);
|
| - // r0: context
|
| - frame_->EmitPush(r0);
|
| - __ mov(r0, Operand(variable->name()));
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1)); // not counting receiver
|
| - frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, &arg_count, 2);
|
| -
|
| - } else {
|
| - // Default: Result of deleting non-global, not dynamically
|
| - // introduced variables is false.
|
| - __ mov(r0, Operand(Factory::false_value()));
|
| - }
|
| -
|
| - } else {
|
| - // Default: Result of deleting expressions is true.
|
| - LoadAndSpill(node->expression()); // may have side-effects
|
| - frame_->Drop();
|
| - __ mov(r0, Operand(Factory::true_value()));
|
| - }
|
| - frame_->EmitPush(r0);
|
| -
|
| - } else if (op == Token::TYPEOF) {
|
| - // Special case for loading the typeof expression; see comment on
|
| - // LoadTypeofExpression().
|
| - LoadTypeofExpression(node->expression());
|
| - frame_->CallRuntime(Runtime::kTypeof, 1);
|
| - frame_->EmitPush(r0); // r0 has result
|
| -
|
| - } else {
|
| - LoadAndSpill(node->expression());
|
| - frame_->EmitPop(r0);
|
| - switch (op) {
|
| - case Token::NOT:
|
| - case Token::DELETE:
|
| - case Token::TYPEOF:
|
| - UNREACHABLE(); // handled above
|
| - break;
|
| -
|
| - case Token::SUB: {
|
| - UnarySubStub stub;
|
| - frame_->CallStub(&stub, 0);
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_NOT: {
|
| - // smi check
|
| - JumpTarget smi_label(this);
|
| - JumpTarget continue_label(this);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - smi_label.Branch(eq);
|
| -
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(0)); // not counting receiver
|
| - frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_JS, &arg_count, 1);
|
| -
|
| - continue_label.Jump();
|
| - smi_label.Bind();
|
| - __ mvn(r0, Operand(r0));
|
| - __ bic(r0, r0, Operand(kSmiTagMask)); // bit-clear inverted smi-tag
|
| - continue_label.Bind();
|
| - break;
|
| - }
|
| -
|
| - case Token::VOID:
|
| - // since the stack top is cached in r0, popping and then
|
| - // pushing a value can be done by just writing to r0.
|
| - __ mov(r0, Operand(Factory::undefined_value()));
|
| - break;
|
| -
|
| - case Token::ADD: {
|
| - // Smi check.
|
| - JumpTarget continue_label(this);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - continue_label.Branch(eq);
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(0)); // not counting receiver
|
| - frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
|
| - continue_label.Bind();
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - frame_->EmitPush(r0); // r0 has result
|
| - }
|
| - ASSERT((has_cc() && frame_->height() == original_height) ||
|
| - (!has_cc() && frame_->height() == original_height + 1));
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCountOperation(CountOperation* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ CountOperation");
|
| -
|
| - bool is_postfix = node->is_postfix();
|
| - bool is_increment = node->op() == Token::INC;
|
| -
|
| - Variable* var = node->expression()->AsVariableProxy()->AsVariable();
|
| - bool is_const = (var != NULL && var->mode() == Variable::CONST);
|
| -
|
| - // Postfix: Make room for the result.
|
| - if (is_postfix) {
|
| - __ mov(r0, Operand(0));
|
| - frame_->EmitPush(r0);
|
| - }
|
| -
|
| - { Reference target(this, node->expression());
|
| - if (target.is_illegal()) {
|
| - // Spoof the virtual frame to have the expected height (one higher
|
| - // than on entry).
|
| - if (!is_postfix) {
|
| - __ mov(r0, Operand(Smi::FromInt(0)));
|
| - frame_->EmitPush(r0);
|
| - }
|
| - ASSERT(frame_->height() == original_height + 1);
|
| - return;
|
| - }
|
| - target.GetValueAndSpill(NOT_INSIDE_TYPEOF);
|
| - frame_->EmitPop(r0);
|
| -
|
| - JumpTarget slow(this);
|
| - JumpTarget exit(this);
|
| -
|
| - // Load the value (1) into register r1.
|
| - __ mov(r1, Operand(Smi::FromInt(1)));
|
| -
|
| - // Check for smi operand.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - slow.Branch(ne);
|
| -
|
| - // Postfix: Store the old value as the result.
|
| - if (is_postfix) {
|
| - __ str(r0, frame_->ElementAt(target.size()));
|
| - }
|
| -
|
| - // Perform optimistic increment/decrement.
|
| - if (is_increment) {
|
| - __ add(r0, r0, Operand(r1), SetCC);
|
| - } else {
|
| - __ sub(r0, r0, Operand(r1), SetCC);
|
| - }
|
| -
|
| - // If the increment/decrement didn't overflow, we're done.
|
| - exit.Branch(vc);
|
| -
|
| - // Revert optimistic increment/decrement.
|
| - if (is_increment) {
|
| - __ sub(r0, r0, Operand(r1));
|
| - } else {
|
| - __ add(r0, r0, Operand(r1));
|
| - }
|
| -
|
| - // Slow case: Convert to number.
|
| - slow.Bind();
|
| - {
|
| - // Convert the operand to a number.
|
| - frame_->EmitPush(r0);
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(0));
|
| - frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, &arg_count, 1);
|
| - }
|
| - if (is_postfix) {
|
| - // Postfix: store to result (on the stack).
|
| - __ str(r0, frame_->ElementAt(target.size()));
|
| - }
|
| -
|
| - // Compute the new value.
|
| - __ mov(r1, Operand(Smi::FromInt(1)));
|
| - frame_->EmitPush(r0);
|
| - frame_->EmitPush(r1);
|
| - if (is_increment) {
|
| - frame_->CallRuntime(Runtime::kNumberAdd, 2);
|
| - } else {
|
| - frame_->CallRuntime(Runtime::kNumberSub, 2);
|
| - }
|
| -
|
| - // Store the new value in the target if not const.
|
| - exit.Bind();
|
| - frame_->EmitPush(r0);
|
| - if (!is_const) target.SetValue(NOT_CONST_INIT);
|
| - }
|
| -
|
| - // Postfix: Discard the new value and use the old.
|
| - if (is_postfix) frame_->EmitPop(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ BinaryOperation");
|
| - Token::Value op = node->op();
|
| -
|
| - // According to ECMA-262 section 11.11, page 58, the binary logical
|
| - // operators must yield the result of one of the two expressions
|
| - // before any ToBoolean() conversions. This means that the value
|
| - // produced by a && or || operator is not necessarily a boolean.
|
| -
|
| - // NOTE: If the left hand side produces a materialized value (not in
|
| - // the CC register), we force the right hand side to do the
|
| - // same. This is necessary because we may have to branch to the exit
|
| - // after evaluating the left hand side (due to the shortcut
|
| - // semantics), but the compiler must (statically) know if the result
|
| - // of compiling the binary operation is materialized or not.
|
| -
|
| - if (op == Token::AND) {
|
| - JumpTarget is_true(this);
|
| - LoadConditionAndSpill(node->left(),
|
| - NOT_INSIDE_TYPEOF,
|
| - &is_true,
|
| - false_target(),
|
| - false);
|
| - if (has_cc()) {
|
| - Branch(false, false_target());
|
| -
|
| - // Evaluate right side expression.
|
| - is_true.Bind();
|
| - LoadConditionAndSpill(node->right(),
|
| - NOT_INSIDE_TYPEOF,
|
| - true_target(),
|
| - false_target(),
|
| - false);
|
| -
|
| - } else {
|
| - JumpTarget pop_and_continue(this);
|
| - JumpTarget exit(this);
|
| -
|
| - __ ldr(r0, frame_->Top()); // dup the stack top
|
| - frame_->EmitPush(r0);
|
| - // Avoid popping the result if it converts to 'false' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - ToBoolean(&pop_and_continue, &exit);
|
| - Branch(false, &exit);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - pop_and_continue.Bind();
|
| - frame_->EmitPop(r0);
|
| -
|
| - // Evaluate right side expression.
|
| - is_true.Bind();
|
| - LoadAndSpill(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| -
|
| - } else if (op == Token::OR) {
|
| - JumpTarget is_false(this);
|
| - LoadConditionAndSpill(node->left(),
|
| - NOT_INSIDE_TYPEOF,
|
| - true_target(),
|
| - &is_false,
|
| - false);
|
| - if (has_cc()) {
|
| - Branch(true, true_target());
|
| -
|
| - // Evaluate right side expression.
|
| - is_false.Bind();
|
| - LoadConditionAndSpill(node->right(),
|
| - NOT_INSIDE_TYPEOF,
|
| - true_target(),
|
| - false_target(),
|
| - false);
|
| -
|
| - } else {
|
| - JumpTarget pop_and_continue(this);
|
| - JumpTarget exit(this);
|
| -
|
| - __ ldr(r0, frame_->Top());
|
| - frame_->EmitPush(r0);
|
| - // Avoid popping the result if it converts to 'true' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - ToBoolean(&exit, &pop_and_continue);
|
| - Branch(true, &exit);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - pop_and_continue.Bind();
|
| - frame_->EmitPop(r0);
|
| -
|
| - // Evaluate right side expression.
|
| - is_false.Bind();
|
| - LoadAndSpill(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| -
|
| - } else {
|
| - // Optimize for the case where (at least) one of the expressions
|
| - // is a literal small integer.
|
| - Literal* lliteral = node->left()->AsLiteral();
|
| - Literal* rliteral = node->right()->AsLiteral();
|
| - // NOTE: The code below assumes that the slow cases (calls to runtime)
|
| - // never return a constant/immutable object.
|
| - bool overwrite_left =
|
| - (node->left()->AsBinaryOperation() != NULL &&
|
| - node->left()->AsBinaryOperation()->ResultOverwriteAllowed());
|
| - bool overwrite_right =
|
| - (node->right()->AsBinaryOperation() != NULL &&
|
| - node->right()->AsBinaryOperation()->ResultOverwriteAllowed());
|
| -
|
| - if (rliteral != NULL && rliteral->handle()->IsSmi()) {
|
| - LoadAndSpill(node->left());
|
| - SmiOperation(node->op(),
|
| - rliteral->handle(),
|
| - false,
|
| - overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| -
|
| - } else if (lliteral != NULL && lliteral->handle()->IsSmi()) {
|
| - LoadAndSpill(node->right());
|
| - SmiOperation(node->op(),
|
| - lliteral->handle(),
|
| - true,
|
| - overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE);
|
| -
|
| - } else {
|
| - OverwriteMode overwrite_mode = NO_OVERWRITE;
|
| - if (overwrite_left) {
|
| - overwrite_mode = OVERWRITE_LEFT;
|
| - } else if (overwrite_right) {
|
| - overwrite_mode = OVERWRITE_RIGHT;
|
| - }
|
| - LoadAndSpill(node->left());
|
| - LoadAndSpill(node->right());
|
| - GenericBinaryOperation(node->op(), overwrite_mode);
|
| - }
|
| - frame_->EmitPush(r0);
|
| - }
|
| - ASSERT((has_cc() && frame_->height() == original_height) ||
|
| - (!has_cc() && frame_->height() == original_height + 1));
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThisFunction(ThisFunction* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - __ ldr(r0, frame_->Function());
|
| - frame_->EmitPush(r0);
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - VirtualFrame::SpilledScope spilled_scope(this);
|
| - Comment cmnt(masm_, "[ CompareOperation");
|
| -
|
| - // Get the expressions from the node.
|
| - Expression* left = node->left();
|
| - Expression* right = node->right();
|
| - Token::Value op = node->op();
|
| -
|
| - // To make null checks efficient, we check if either left or right is the
|
| - // literal 'null'. If so, we optimize the code by inlining a null check
|
| - // instead of calling the (very) general runtime routine for checking
|
| - // equality.
|
| - if (op == Token::EQ || op == Token::EQ_STRICT) {
|
| - bool left_is_null =
|
| - left->AsLiteral() != NULL && left->AsLiteral()->IsNull();
|
| - bool right_is_null =
|
| - right->AsLiteral() != NULL && right->AsLiteral()->IsNull();
|
| - // The 'null' value can only be equal to 'null' or 'undefined'.
|
| - if (left_is_null || right_is_null) {
|
| - LoadAndSpill(left_is_null ? right : left);
|
| - frame_->EmitPop(r0);
|
| - __ cmp(r0, Operand(Factory::null_value()));
|
| -
|
| - // The 'null' value is only equal to 'undefined' if using non-strict
|
| - // comparisons.
|
| - if (op != Token::EQ_STRICT) {
|
| - true_target()->Branch(eq);
|
| -
|
| - __ cmp(r0, Operand(Factory::undefined_value()));
|
| - true_target()->Branch(eq);
|
| -
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - false_target()->Branch(eq);
|
| -
|
| - // It can be an undetectable object.
|
| - __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - __ ldrb(r0, FieldMemOperand(r0, Map::kBitFieldOffset));
|
| - __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
|
| - __ cmp(r0, Operand(1 << Map::kIsUndetectable));
|
| - }
|
| -
|
| - cc_reg_ = eq;
|
| - ASSERT(has_cc() && frame_->height() == original_height);
|
| - return;
|
| - }
|
| - }
|
| -
|
| - // To make typeof testing for natives implemented in JavaScript really
|
| - // efficient, we generate special code for expressions of the form:
|
| - // 'typeof <expression> == <string>'.
|
| - UnaryOperation* operation = left->AsUnaryOperation();
|
| - if ((op == Token::EQ || op == Token::EQ_STRICT) &&
|
| - (operation != NULL && operation->op() == Token::TYPEOF) &&
|
| - (right->AsLiteral() != NULL &&
|
| - right->AsLiteral()->handle()->IsString())) {
|
| - Handle<String> check(String::cast(*right->AsLiteral()->handle()));
|
| -
|
| - // Load the operand, move it to register r1.
|
| - LoadTypeofExpression(operation->expression());
|
| - frame_->EmitPop(r1);
|
| -
|
| - if (check->Equals(Heap::number_symbol())) {
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - true_target()->Branch(eq);
|
| - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ cmp(r1, Operand(Factory::heap_number_map()));
|
| - cc_reg_ = eq;
|
| -
|
| - } else if (check->Equals(Heap::string_symbol())) {
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - false_target()->Branch(eq);
|
| -
|
| - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| -
|
| - // It can be an undetectable string object.
|
| - __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
| - __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
| - __ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
| - false_target()->Branch(eq);
|
| -
|
| - __ ldrb(r2, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - __ cmp(r2, Operand(FIRST_NONSTRING_TYPE));
|
| - cc_reg_ = lt;
|
| -
|
| - } else if (check->Equals(Heap::boolean_symbol())) {
|
| - __ cmp(r1, Operand(Factory::true_value()));
|
| - true_target()->Branch(eq);
|
| - __ cmp(r1, Operand(Factory::false_value()));
|
| - cc_reg_ = eq;
|
| -
|
| - } else if (check->Equals(Heap::undefined_symbol())) {
|
| - __ cmp(r1, Operand(Factory::undefined_value()));
|
| - true_target()->Branch(eq);
|
| -
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - false_target()->Branch(eq);
|
| -
|
| - // It can be an undetectable object.
|
| - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r2, FieldMemOperand(r1, Map::kBitFieldOffset));
|
| - __ and_(r2, r2, Operand(1 << Map::kIsUndetectable));
|
| - __ cmp(r2, Operand(1 << Map::kIsUndetectable));
|
| -
|
| - cc_reg_ = eq;
|
| -
|
| - } else if (check->Equals(Heap::function_symbol())) {
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - false_target()->Branch(eq);
|
| - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
|
| - __ cmp(r1, Operand(JS_FUNCTION_TYPE));
|
| - cc_reg_ = eq;
|
| -
|
| - } else if (check->Equals(Heap::object_symbol())) {
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - false_target()->Branch(eq);
|
| -
|
| - __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ cmp(r1, Operand(Factory::null_value()));
|
| - true_target()->Branch(eq);
|
| -
|
| - // It can be an undetectable object.
|
| - __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
|
| - __ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
|
| - __ cmp(r1, Operand(1 << Map::kIsUndetectable));
|
| - false_target()->Branch(eq);
|
| -
|
| - __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
| - __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
|
| - false_target()->Branch(lt);
|
| - __ cmp(r2, Operand(LAST_JS_OBJECT_TYPE));
|
| - cc_reg_ = le;
|
| -
|
| - } else {
|
| - // Uncommon case: typeof testing against a string literal that is
|
| - // never returned from the typeof operator.
|
| - false_target()->Jump();
|
| - }
|
| - ASSERT(!has_valid_frame() ||
|
| - (has_cc() && frame_->height() == original_height));
|
| - return;
|
| - }
|
| -
|
| - LoadAndSpill(left);
|
| - LoadAndSpill(right);
|
| - switch (op) {
|
| - case Token::EQ:
|
| - Comparison(eq, false);
|
| - break;
|
| -
|
| - case Token::LT:
|
| - Comparison(lt);
|
| - break;
|
| -
|
| - case Token::GT:
|
| - Comparison(gt);
|
| - break;
|
| -
|
| - case Token::LTE:
|
| - Comparison(le);
|
| - break;
|
| -
|
| - case Token::GTE:
|
| - Comparison(ge);
|
| - break;
|
| -
|
| - case Token::EQ_STRICT:
|
| - Comparison(eq, true);
|
| - break;
|
| -
|
| - case Token::IN: {
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1)); // not counting receiver
|
| - Result result = frame_->InvokeBuiltin(Builtins::IN,
|
| - CALL_JS,
|
| - &arg_count,
|
| - 2);
|
| - frame_->EmitPush(result.reg());
|
| - break;
|
| - }
|
| -
|
| - case Token::INSTANCEOF: {
|
| - Result arg_count = allocator_->Allocate(r0);
|
| - ASSERT(arg_count.is_valid());
|
| - __ mov(arg_count.reg(), Operand(1)); // not counting receiver
|
| - Result result = frame_->InvokeBuiltin(Builtins::INSTANCE_OF,
|
| - CALL_JS,
|
| - &arg_count,
|
| - 2);
|
| - __ tst(result.reg(), Operand(result.reg()));
|
| - cc_reg_ = eq;
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - ASSERT((has_cc() && frame_->height() == original_height) ||
|
| - (!has_cc() && frame_->height() == original_height + 1));
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -bool CodeGenerator::HasValidEntryRegisters() { return true; }
|
| -#endif
|
| -
|
| -
|
| -#undef __
|
| -#define __ ACCESS_MASM(masm)
|
| -
|
| -
|
| -Handle<String> Reference::GetName() {
|
| - ASSERT(type_ == NAMED);
|
| - Property* property = expression_->AsProperty();
|
| - if (property == NULL) {
|
| - // Global variable reference treated as a named property reference.
|
| - VariableProxy* proxy = expression_->AsVariableProxy();
|
| - ASSERT(proxy->AsVariable() != NULL);
|
| - ASSERT(proxy->AsVariable()->is_global());
|
| - return proxy->name();
|
| - } else {
|
| - Literal* raw_name = property->key()->AsLiteral();
|
| - ASSERT(raw_name != NULL);
|
| - return Handle<String>(String::cast(*raw_name->handle()));
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::GetValueAndSpill(TypeofState typeof_state) {
|
| - ASSERT(cgen_->in_spilled_code());
|
| - cgen_->set_in_spilled_code(false);
|
| - GetValue(typeof_state);
|
| - cgen_->frame()->SpillAll();
|
| - cgen_->set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void Reference::GetValue(TypeofState typeof_state) {
|
| - ASSERT(!cgen_->in_spilled_code());
|
| - ASSERT(cgen_->HasValidEntryRegisters());
|
| - ASSERT(!is_illegal());
|
| - ASSERT(!cgen_->has_cc());
|
| - MacroAssembler* masm = cgen_->masm();
|
| - Property* property = expression_->AsProperty();
|
| - if (property != NULL) {
|
| - cgen_->CodeForSourcePosition(property->position());
|
| - }
|
| -
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Load from Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
| - ASSERT(slot != NULL);
|
| - cgen_->LoadFromSlot(slot, typeof_state);
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - // TODO(1241834): Make sure that this it is safe to ignore the
|
| - // distinction between expressions in a typeof and not in a typeof. If
|
| - // there is a chance that reference errors can be thrown below, we
|
| - // must distinguish between the two kinds of loads (typeof expression
|
| - // loads must not throw a reference error).
|
| - VirtualFrame* frame = cgen_->frame();
|
| - Comment cmnt(masm, "[ Load from named Property");
|
| - Handle<String> name(GetName());
|
| - Variable* var = expression_->AsVariableProxy()->AsVariable();
|
| - Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
|
| - // Setup the name register.
|
| - Result name_reg = cgen_->allocator()->Allocate(r2);
|
| - ASSERT(name_reg.is_valid());
|
| - __ mov(name_reg.reg(), Operand(name));
|
| - ASSERT(var == NULL || var->is_global());
|
| - RelocInfo::Mode rmode = (var == NULL)
|
| - ? RelocInfo::CODE_TARGET
|
| - : RelocInfo::CODE_TARGET_CONTEXT;
|
| - Result answer = frame->CallCodeObject(ic, rmode, &name_reg, 0);
|
| - frame->EmitPush(answer.reg());
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - // TODO(1241834): Make sure that this it is safe to ignore the
|
| - // distinction between expressions in a typeof and not in a typeof.
|
| -
|
| - // TODO(181): Implement inlined version of array indexing once
|
| - // loop nesting is properly tracked on ARM.
|
| - VirtualFrame* frame = cgen_->frame();
|
| - Comment cmnt(masm, "[ Load from keyed Property");
|
| - ASSERT(property != NULL);
|
| - Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
|
| - Variable* var = expression_->AsVariableProxy()->AsVariable();
|
| - ASSERT(var == NULL || var->is_global());
|
| - RelocInfo::Mode rmode = (var == NULL)
|
| - ? RelocInfo::CODE_TARGET
|
| - : RelocInfo::CODE_TARGET_CONTEXT;
|
| - Result answer = frame->CallCodeObject(ic, rmode, 0);
|
| - frame->EmitPush(answer.reg());
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::SetValue(InitState init_state) {
|
| - ASSERT(!is_illegal());
|
| - ASSERT(!cgen_->has_cc());
|
| - MacroAssembler* masm = cgen_->masm();
|
| - VirtualFrame* frame = cgen_->frame();
|
| - Property* property = expression_->AsProperty();
|
| - if (property != NULL) {
|
| - cgen_->CodeForSourcePosition(property->position());
|
| - }
|
| -
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Store to Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
|
| - ASSERT(slot != NULL);
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| -
|
| - // For now, just do a runtime call.
|
| - frame->EmitPush(cp);
|
| - __ mov(r0, Operand(slot->var()->name()));
|
| - frame->EmitPush(r0);
|
| -
|
| - if (init_state == CONST_INIT) {
|
| - // Same as the case for a normal store, but ignores attribute
|
| - // (e.g. READ_ONLY) of context slot so that we can initialize
|
| - // const properties (introduced via eval("const foo = (some
|
| - // expr);")). Also, uses the current function context instead of
|
| - // the top context.
|
| - //
|
| - // Note that we must declare the foo upon entry of eval(), via a
|
| - // context slot declaration, but we cannot initialize it at the
|
| - // same time, because the const declaration may be at the end of
|
| - // the eval code (sigh...) and the const variable may have been
|
| - // used before (where its value is 'undefined'). Thus, we can only
|
| - // do the initialization when we actually encounter the expression
|
| - // and when the expression operands are defined and valid, and
|
| - // thus we need the split into 2 operations: declaration of the
|
| - // context slot followed by initialization.
|
| - frame->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
|
| - } else {
|
| - frame->CallRuntime(Runtime::kStoreContextSlot, 3);
|
| - }
|
| - // Storing a variable must keep the (new) value on the expression
|
| - // stack. This is necessary for compiling assignment expressions.
|
| - frame->EmitPush(r0);
|
| -
|
| - } else {
|
| - ASSERT(!slot->var()->is_dynamic());
|
| -
|
| - JumpTarget exit(cgen_);
|
| - if (init_state == CONST_INIT) {
|
| - ASSERT(slot->var()->mode() == Variable::CONST);
|
| - // Only the first const initialization must be executed (the slot
|
| - // still contains 'the hole' value). When the assignment is
|
| - // executed, the code is identical to a normal store (see below).
|
| - Comment cmnt(masm, "[ Init const");
|
| - __ ldr(r2, cgen_->SlotOperand(slot, r2));
|
| - __ cmp(r2, Operand(Factory::the_hole_value()));
|
| - exit.Branch(ne);
|
| - }
|
| -
|
| - // We must execute the store. Storing a variable must keep the
|
| - // (new) value on the stack. This is necessary for compiling
|
| - // assignment expressions.
|
| - //
|
| - // Note: We will reach here even with slot->var()->mode() ==
|
| - // Variable::CONST because of const declarations which will
|
| - // initialize consts to 'the hole' value and by doing so, end up
|
| - // calling this code. r2 may be loaded with context; used below in
|
| - // RecordWrite.
|
| - frame->EmitPop(r0);
|
| - __ str(r0, cgen_->SlotOperand(slot, r2));
|
| - frame->EmitPush(r0);
|
| - if (slot->type() == Slot::CONTEXT) {
|
| - // Skip write barrier if the written value is a smi.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - exit.Branch(eq);
|
| - // r2 is loaded with context when calling SlotOperand above.
|
| - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - __ mov(r3, Operand(offset));
|
| - __ RecordWrite(r2, r3, r1);
|
| - }
|
| - // If we definitely did not jump over the assignment, we do not need
|
| - // to bind the exit label. Doing so can defeat peephole
|
| - // optimization.
|
| - if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) {
|
| - exit.Bind();
|
| - }
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - Comment cmnt(masm, "[ Store to named Property");
|
| - // Call the appropriate IC code.
|
| - Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
|
| - Handle<String> name(GetName());
|
| -
|
| - Result value = cgen_->allocator()->Allocate(r0);
|
| - ASSERT(value.is_valid());
|
| - frame->EmitPop(value.reg());
|
| -
|
| - // Setup the name register.
|
| - Result property_name = cgen_->allocator()->Allocate(r2);
|
| - ASSERT(property_name.is_valid());
|
| - __ mov(property_name.reg(), Operand(name));
|
| - Result answer = frame->CallCodeObject(ic,
|
| - RelocInfo::CODE_TARGET,
|
| - &value,
|
| - &property_name,
|
| - 0);
|
| - frame->EmitPush(answer.reg());
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - Comment cmnt(masm, "[ Store to keyed Property");
|
| - Property* property = expression_->AsProperty();
|
| - ASSERT(property != NULL);
|
| - cgen_->CodeForSourcePosition(property->position());
|
| -
|
| - // Call IC code.
|
| - Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
|
| - // TODO(1222589): Make the IC grab the values from the stack.
|
| - Result value = cgen_->allocator()->Allocate(r0);
|
| - ASSERT(value.is_valid());
|
| - frame->EmitPop(value.reg()); // value
|
| - Result result =
|
| - frame->CallCodeObject(ic, RelocInfo::CODE_TARGET, &value, 0);
|
| - frame->EmitPush(result.reg());
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -static void HandleBinaryOpSlowCases(MacroAssembler* masm,
|
| - Label* not_smi,
|
| - const Builtins::JavaScript& builtin,
|
| - Token::Value operation,
|
| - int swi_number,
|
| - OverwriteMode mode) {
|
| - Label slow;
|
| - if (mode == NO_OVERWRITE) {
|
| - __ bind(not_smi);
|
| - }
|
| - __ bind(&slow);
|
| - __ push(r1);
|
| - __ push(r0);
|
| - __ mov(r0, Operand(1)); // Set number of arguments.
|
| - __ InvokeBuiltin(builtin, JUMP_JS); // Tail call.
|
| -
|
| - // Could it be a double-double op? If we already have a place to put
|
| - // the answer then we can do the op and skip the builtin and runtime call.
|
| - if (mode != NO_OVERWRITE) {
|
| - __ bind(not_smi);
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(eq, &slow); // We can't handle a Smi-double combination yet.
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(eq, &slow); // We can't handle a Smi-double combination yet.
|
| - // Get map of r0 into r2.
|
| - __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
|
| - // Get type of r0 into r3.
|
| - __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
| - __ cmp(r3, Operand(HEAP_NUMBER_TYPE));
|
| - __ b(ne, &slow);
|
| - // Get type of r1 into r3.
|
| - __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - // Check they are both the same map (heap number map).
|
| - __ cmp(r2, r3);
|
| - __ b(ne, &slow);
|
| - // Both are doubles.
|
| - // Calling convention says that second double is in r2 and r3.
|
| - __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset));
|
| - __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
|
| - __ push(lr);
|
| - if (mode == OVERWRITE_LEFT) {
|
| - __ push(r1);
|
| - } else {
|
| - __ push(r0);
|
| - }
|
| - // Calling convention says that first double is in r0 and r1.
|
| - __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset));
|
| - __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
|
| - // Call C routine that may not cause GC or other trouble.
|
| - __ mov(r5, Operand(ExternalReference::double_fp_operation(operation)));
|
| -#if !defined(__arm__)
|
| - // Notify the simulator that we are calling an add routine in C.
|
| - __ swi(swi_number);
|
| -#else
|
| - // Actually call the add routine written in C.
|
| - __ Call(r5);
|
| -#endif
|
| - // Store answer in the overwritable heap number.
|
| - __ pop(r4);
|
| -#if !defined(__ARM_EABI__) && defined(__arm__)
|
| - // Double returned in fp coprocessor register 0 and 1, encoded as register
|
| - // cr8. Offsets must be divisible by 4 for coprocessor so we need to
|
| - // substract the tag from r4.
|
| - __ sub(r5, r4, Operand(kHeapObjectTag));
|
| - __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset));
|
| -#else
|
| - // Double returned in fp coprocessor register 0 and 1.
|
| - __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset));
|
| - __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + kPointerSize));
|
| -#endif
|
| - __ mov(r0, Operand(r4));
|
| - // And we are done.
|
| - __ pop(pc);
|
| - }
|
| -}
|
| -
|
| -
|
| -void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
| - // r1 : x
|
| - // r0 : y
|
| - // result : r0
|
| -
|
| - // All ops need to know whether we are dealing with two Smis. Set up r2 to
|
| - // tell us that.
|
| - __ orr(r2, r1, Operand(r0)); // r2 = x | y;
|
| -
|
| - switch (op_) {
|
| - case Token::ADD: {
|
| - Label not_smi;
|
| - // Fast path.
|
| - ASSERT(kSmiTag == 0); // Adjust code below.
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smi);
|
| - __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
|
| - // Return if no overflow.
|
| - __ Ret(vc);
|
| - __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
|
| -
|
| - HandleBinaryOpSlowCases(masm,
|
| - ¬_smi,
|
| - Builtins::ADD,
|
| - Token::ADD,
|
| - assembler::arm::simulator_fp_add,
|
| - mode_);
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - Label not_smi;
|
| - // Fast path.
|
| - ASSERT(kSmiTag == 0); // Adjust code below.
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smi);
|
| - __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
|
| - // Return if no overflow.
|
| - __ Ret(vc);
|
| - __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
|
| -
|
| - HandleBinaryOpSlowCases(masm,
|
| - ¬_smi,
|
| - Builtins::SUB,
|
| - Token::SUB,
|
| - assembler::arm::simulator_fp_sub,
|
| - mode_);
|
| - break;
|
| - }
|
| -
|
| - case Token::MUL: {
|
| - Label not_smi, slow;
|
| - ASSERT(kSmiTag == 0); // adjust code below
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, ¬_smi);
|
| - // Remove tag from one operand (but keep sign), so that result is Smi.
|
| - __ mov(ip, Operand(r0, ASR, kSmiTagSize));
|
| - // Do multiplication
|
| - __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1.
|
| - // Go slow on overflows (overflow bit is not set).
|
| - __ mov(ip, Operand(r3, ASR, 31));
|
| - __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical
|
| - __ b(ne, &slow);
|
| - // Go slow on zero result to handle -0.
|
| - __ tst(r3, Operand(r3));
|
| - __ mov(r0, Operand(r3), LeaveCC, ne);
|
| - __ Ret(ne);
|
| - // Slow case.
|
| - __ bind(&slow);
|
| -
|
| - HandleBinaryOpSlowCases(masm,
|
| - ¬_smi,
|
| - Builtins::MUL,
|
| - Token::MUL,
|
| - assembler::arm::simulator_fp_mul,
|
| - mode_);
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_AND:
|
| - case Token::BIT_XOR: {
|
| - Label slow;
|
| - ASSERT(kSmiTag == 0); // adjust code below
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, &slow);
|
| - switch (op_) {
|
| - case Token::BIT_OR: __ orr(r0, r0, Operand(r1)); break;
|
| - case Token::BIT_AND: __ and_(r0, r0, Operand(r1)); break;
|
| - case Token::BIT_XOR: __ eor(r0, r0, Operand(r1)); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ Ret();
|
| - __ bind(&slow);
|
| - __ push(r1); // restore stack
|
| - __ push(r0);
|
| - __ mov(r0, Operand(1)); // 1 argument (not counting receiver).
|
| - switch (op_) {
|
| - case Token::BIT_OR:
|
| - __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
|
| - break;
|
| - case Token::BIT_AND:
|
| - __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
|
| - break;
|
| - case Token::BIT_XOR:
|
| - __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::SHL:
|
| - case Token::SHR:
|
| - case Token::SAR: {
|
| - Label slow;
|
| - ASSERT(kSmiTag == 0); // adjust code below
|
| - __ tst(r2, Operand(kSmiTagMask));
|
| - __ b(ne, &slow);
|
| - // remove tags from operands (but keep sign)
|
| - __ mov(r3, Operand(r1, ASR, kSmiTagSize)); // x
|
| - __ mov(r2, Operand(r0, ASR, kSmiTagSize)); // y
|
| - // use only the 5 least significant bits of the shift count
|
| - __ and_(r2, r2, Operand(0x1f));
|
| - // perform operation
|
| - switch (op_) {
|
| - case Token::SAR:
|
| - __ mov(r3, Operand(r3, ASR, r2));
|
| - // no checks of result necessary
|
| - break;
|
| -
|
| - case Token::SHR:
|
| - __ mov(r3, Operand(r3, LSR, r2));
|
| - // check that the *unsigned* result fits in a smi
|
| - // neither of the two high-order bits can be set:
|
| - // - 0x80000000: high bit would be lost when smi tagging
|
| - // - 0x40000000: this number would convert to negative when
|
| - // smi tagging these two cases can only happen with shifts
|
| - // by 0 or 1 when handed a valid smi
|
| - __ and_(r2, r3, Operand(0xc0000000), SetCC);
|
| - __ b(ne, &slow);
|
| - break;
|
| -
|
| - case Token::SHL:
|
| - __ mov(r3, Operand(r3, LSL, r2));
|
| - // check that the *signed* result fits in a smi
|
| - __ add(r2, r3, Operand(0x40000000), SetCC);
|
| - __ b(mi, &slow);
|
| - break;
|
| -
|
| - default: UNREACHABLE();
|
| - }
|
| - // tag result and store it in r0
|
| - ASSERT(kSmiTag == 0); // adjust code below
|
| - __ mov(r0, Operand(r3, LSL, kSmiTagSize));
|
| - __ Ret();
|
| - // slow case
|
| - __ bind(&slow);
|
| - __ push(r1); // restore stack
|
| - __ push(r0);
|
| - __ mov(r0, Operand(1)); // 1 argument (not counting receiver).
|
| - switch (op_) {
|
| - case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_JS); break;
|
| - case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_JS); break;
|
| - case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_JS); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - default: UNREACHABLE();
|
| - }
|
| - // This code should be unreachable.
|
| - __ stop("Unreachable");
|
| -}
|
| -
|
| -
|
| -void StackCheckStub::Generate(MacroAssembler* masm) {
|
| - Label within_limit;
|
| - __ mov(ip, Operand(ExternalReference::address_of_stack_guard_limit()));
|
| - __ ldr(ip, MemOperand(ip));
|
| - __ cmp(sp, Operand(ip));
|
| - __ b(hs, &within_limit);
|
| - // Do tail-call to runtime routine.
|
| - __ push(r0);
|
| - __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
|
| - __ bind(&within_limit);
|
| -
|
| - __ StubReturn(1);
|
| -}
|
| -
|
| -
|
| -void UnarySubStub::Generate(MacroAssembler* masm) {
|
| - Label undo;
|
| - Label slow;
|
| - Label done;
|
| -
|
| - // Enter runtime system if the value is not a smi.
|
| - __ tst(r0, Operand(kSmiTagMask));
|
| - __ b(ne, &slow);
|
| -
|
| - // Enter runtime system if the value of the expression is zero
|
| - // to make sure that we switch between 0 and -0.
|
| - __ cmp(r0, Operand(0));
|
| - __ b(eq, &slow);
|
| -
|
| - // The value of the expression is a smi that is not zero. Try
|
| - // optimistic subtraction '0 - value'.
|
| - __ rsb(r1, r0, Operand(0), SetCC);
|
| - __ b(vs, &slow);
|
| -
|
| - // If result is a smi we are done.
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ mov(r0, Operand(r1), LeaveCC, eq); // conditionally set r0 to result
|
| - __ b(eq, &done);
|
| -
|
| - // Enter runtime system.
|
| - __ bind(&slow);
|
| - __ push(r0);
|
| - __ mov(r0, Operand(0)); // set number of arguments
|
| - __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
|
| -
|
| - __ bind(&done);
|
| - __ StubReturn(1);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
| - // r0 holds exception
|
| - ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize); // adjust this code
|
| - __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ ldr(sp, MemOperand(r3));
|
| - __ pop(r2); // pop next in chain
|
| - __ str(r2, MemOperand(r3));
|
| - // restore parameter- and frame-pointer and pop state.
|
| - __ ldm(ia_w, sp, r3.bit() | pp.bit() | fp.bit());
|
| - // Before returning we restore the context from the frame pointer if not NULL.
|
| - // The frame pointer is NULL in the exception handler of a JS entry frame.
|
| - __ cmp(fp, Operand(0));
|
| - // Set cp to NULL if fp is NULL.
|
| - __ mov(cp, Operand(0), LeaveCC, eq);
|
| - // Restore cp otherwise.
|
| - __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - __ pop(pc);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
|
| - // Fetch top stack handler.
|
| - __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ ldr(r3, MemOperand(r3));
|
| -
|
| - // Unwind the handlers until the ENTRY handler is found.
|
| - Label loop, done;
|
| - __ bind(&loop);
|
| - // Load the type of the current stack handler.
|
| - const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
|
| - StackHandlerConstants::kStateOffset;
|
| - __ ldr(r2, MemOperand(r3, kStateOffset));
|
| - __ cmp(r2, Operand(StackHandler::ENTRY));
|
| - __ b(eq, &done);
|
| - // Fetch the next handler in the list.
|
| - const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
|
| - StackHandlerConstants::kNextOffset;
|
| - __ ldr(r3, MemOperand(r3, kNextOffset));
|
| - __ jmp(&loop);
|
| - __ bind(&done);
|
| -
|
| - // Set the top handler address to next handler past the current ENTRY handler.
|
| - __ ldr(r0, MemOperand(r3, kNextOffset));
|
| - __ mov(r2, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ str(r0, MemOperand(r2));
|
| -
|
| - // Set external caught exception to false.
|
| - __ mov(r0, Operand(false));
|
| - ExternalReference external_caught(Top::k_external_caught_exception_address);
|
| - __ mov(r2, Operand(external_caught));
|
| - __ str(r0, MemOperand(r2));
|
| -
|
| - // Set pending exception and r0 to out of memory exception.
|
| - Failure* out_of_memory = Failure::OutOfMemoryException();
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
| - __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r0, MemOperand(r2));
|
| -
|
| - // Restore the stack to the address of the ENTRY handler
|
| - __ mov(sp, Operand(r3));
|
| -
|
| - // Stack layout at this point. See also PushTryHandler
|
| - // r3, sp -> next handler
|
| - // state (ENTRY)
|
| - // pp
|
| - // fp
|
| - // lr
|
| -
|
| - // Discard ENTRY state (r2 is not used), and restore parameter-
|
| - // and frame-pointer and pop state.
|
| - __ ldm(ia_w, sp, r2.bit() | r3.bit() | pp.bit() | fp.bit());
|
| - // Before returning we restore the context from the frame pointer if not NULL.
|
| - // The frame pointer is NULL in the exception handler of a JS entry frame.
|
| - __ cmp(fp, Operand(0));
|
| - // Set cp to NULL if fp is NULL.
|
| - __ mov(cp, Operand(0), LeaveCC, eq);
|
| - // Restore cp otherwise.
|
| - __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - __ pop(pc);
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateCore(MacroAssembler* masm,
|
| - Label* throw_normal_exception,
|
| - Label* throw_out_of_memory_exception,
|
| - StackFrame::Type frame_type,
|
| - bool do_gc,
|
| - bool always_allocate) {
|
| - // r0: result parameter for PerformGC, if any
|
| - // r4: number of arguments including receiver (C callee-saved)
|
| - // r5: pointer to builtin function (C callee-saved)
|
| - // r6: pointer to the first argument (C callee-saved)
|
| -
|
| - if (do_gc) {
|
| - // Passing r0.
|
| - __ Call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
|
| - }
|
| -
|
| - ExternalReference scope_depth =
|
| - ExternalReference::heap_always_allocate_scope_depth();
|
| - if (always_allocate) {
|
| - __ mov(r0, Operand(scope_depth));
|
| - __ ldr(r1, MemOperand(r0));
|
| - __ add(r1, r1, Operand(1));
|
| - __ str(r1, MemOperand(r0));
|
| - }
|
| -
|
| - // Call C built-in.
|
| - // r0 = argc, r1 = argv
|
| - __ mov(r0, Operand(r4));
|
| - __ mov(r1, Operand(r6));
|
| -
|
| - // TODO(1242173): To let the GC traverse the return address of the exit
|
| - // frames, we need to know where the return address is. Right now,
|
| - // we push it on the stack to be able to find it again, but we never
|
| - // restore from it in case of changes, which makes it impossible to
|
| - // support moving the C entry code stub. This should be fixed, but currently
|
| - // this is OK because the CEntryStub gets generated so early in the V8 boot
|
| - // sequence that it is not moving ever.
|
| - __ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
|
| - __ push(lr);
|
| -#if !defined(__arm__)
|
| - // Notify the simulator of the transition to C code.
|
| - __ swi(assembler::arm::call_rt_r5);
|
| -#else /* !defined(__arm__) */
|
| - __ Jump(r5);
|
| -#endif /* !defined(__arm__) */
|
| -
|
| - if (always_allocate) {
|
| - // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
|
| - // though (contain the result).
|
| - __ mov(r2, Operand(scope_depth));
|
| - __ ldr(r3, MemOperand(r2));
|
| - __ sub(r3, r3, Operand(1));
|
| - __ str(r3, MemOperand(r2));
|
| - }
|
| -
|
| - // check for failure result
|
| - Label failure_returned;
|
| - ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
| - // Lower 2 bits of r2 are 0 iff r0 has failure tag.
|
| - __ add(r2, r0, Operand(1));
|
| - __ tst(r2, Operand(kFailureTagMask));
|
| - __ b(eq, &failure_returned);
|
| -
|
| - // Exit C frame and return.
|
| - // r0:r1: result
|
| - // sp: stack pointer
|
| - // fp: frame pointer
|
| - // pp: caller's parameter pointer pp (restored as C callee-saved)
|
| - __ LeaveExitFrame(frame_type);
|
| -
|
| - // check if we should retry or throw exception
|
| - Label retry;
|
| - __ bind(&failure_returned);
|
| - ASSERT(Failure::RETRY_AFTER_GC == 0);
|
| - __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
| - __ b(eq, &retry);
|
| -
|
| - Label continue_exception;
|
| - // If the returned failure is EXCEPTION then promote Top::pending_exception().
|
| - __ cmp(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
| - __ b(ne, &continue_exception);
|
| -
|
| - // Retrieve the pending exception and clear the variable.
|
| - __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
| - __ ldr(r3, MemOperand(ip));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ ldr(r0, MemOperand(ip));
|
| - __ str(r3, MemOperand(ip));
|
| -
|
| - __ bind(&continue_exception);
|
| - // Special handling of out of memory exception.
|
| - Failure* out_of_memory = Failure::OutOfMemoryException();
|
| - __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
| - __ b(eq, throw_out_of_memory_exception);
|
| -
|
| - // Handle normal exception.
|
| - __ jmp(throw_normal_exception);
|
| -
|
| - __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
|
| -}
|
| -
|
| -
|
| -void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
|
| - // Called from JavaScript; parameters are on stack as if calling JS function
|
| - // r0: number of arguments including receiver
|
| - // r1: pointer to builtin function
|
| - // fp: frame pointer (restored after C call)
|
| - // sp: stack pointer (restored as callee's pp after C call)
|
| - // cp: current context (C callee-saved)
|
| - // pp: caller's parameter pointer pp (C callee-saved)
|
| -
|
| - // NOTE: Invocations of builtins may return failure objects
|
| - // instead of a proper result. The builtin entry handles
|
| - // this by performing a garbage collection and retrying the
|
| - // builtin once.
|
| -
|
| - StackFrame::Type frame_type = is_debug_break
|
| - ? StackFrame::EXIT_DEBUG
|
| - : StackFrame::EXIT;
|
| -
|
| - // Enter the exit frame that transitions from JavaScript to C++.
|
| - __ EnterExitFrame(frame_type);
|
| -
|
| - // r4: number of arguments (C callee-saved)
|
| - // r5: pointer to builtin function (C callee-saved)
|
| - // r6: pointer to first argument (C callee-saved)
|
| -
|
| - Label throw_out_of_memory_exception;
|
| - Label throw_normal_exception;
|
| -
|
| - // Call into the runtime system. Collect garbage before the call if
|
| - // running with --gc-greedy set.
|
| - if (FLAG_gc_greedy) {
|
| - Failure* failure = Failure::RetryAfterGC(0);
|
| - __ mov(r0, Operand(reinterpret_cast<intptr_t>(failure)));
|
| - }
|
| - GenerateCore(masm, &throw_normal_exception,
|
| - &throw_out_of_memory_exception,
|
| - frame_type,
|
| - FLAG_gc_greedy,
|
| - false);
|
| -
|
| - // Do space-specific GC and retry runtime call.
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_out_of_memory_exception,
|
| - frame_type,
|
| - true,
|
| - false);
|
| -
|
| - // Do full GC and retry runtime call one final time.
|
| - Failure* failure = Failure::InternalError();
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
|
| - GenerateCore(masm,
|
| - &throw_normal_exception,
|
| - &throw_out_of_memory_exception,
|
| - frame_type,
|
| - true,
|
| - true);
|
| -
|
| - __ bind(&throw_out_of_memory_exception);
|
| - GenerateThrowOutOfMemory(masm);
|
| - // control flow for generated will not return.
|
| -
|
| - __ bind(&throw_normal_exception);
|
| - GenerateThrowTOS(masm);
|
| -}
|
| -
|
| -
|
| -void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // [sp+0]: argv
|
| -
|
| - Label invoke, exit;
|
| -
|
| - // Called from C, so do not pop argc and args on exit (preserve sp)
|
| - // No need to save register-passed args
|
| - // Save callee-saved registers (incl. cp, pp, and fp), sp, and lr
|
| - __ stm(db_w, sp, kCalleeSaved | lr.bit());
|
| -
|
| - // Get address of argv, see stm above.
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - __ add(r4, sp, Operand((kNumCalleeSaved + 1)*kPointerSize));
|
| - __ ldr(r4, MemOperand(r4)); // argv
|
| -
|
| - // Push a frame with special values setup to mark it as an entry frame.
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // r4: argv
|
| - int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
| - __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
|
| - __ mov(r7, Operand(~ArgumentsAdaptorFrame::SENTINEL));
|
| - __ mov(r6, Operand(Smi::FromInt(marker)));
|
| - __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
| - __ ldr(r5, MemOperand(r5));
|
| - __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | r8.bit());
|
| -
|
| - // Setup frame pointer for the frame to be pushed.
|
| - __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
| -
|
| - // Call a faked try-block that does the invoke.
|
| - __ bl(&invoke);
|
| -
|
| - // Caught exception: Store result (exception) in the pending
|
| - // exception field in the JSEnv and return a failure sentinel.
|
| - // Coming in here the fp will be invalid because the PushTryHandler below
|
| - // sets it to 0 to signal the existence of the JSEntry frame.
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r0, MemOperand(ip));
|
| - __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
| - __ b(&exit);
|
| -
|
| - // Invoke: Link this frame into the handler chain.
|
| - __ bind(&invoke);
|
| - // Must preserve r0-r4, r5-r7 are available.
|
| - __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
| - // If an exception not caught by another handler occurs, this handler returns
|
| - // control to the code after the bl(&invoke) above, which restores all
|
| - // kCalleeSaved registers (including cp, pp and fp) to their saved values
|
| - // before returning a failure to C.
|
| -
|
| - // Clear any pending exceptions.
|
| - __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
|
| - __ ldr(r5, MemOperand(ip));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
|
| - __ str(r5, MemOperand(ip));
|
| -
|
| - // Invoke the function by calling through JS entry trampoline builtin.
|
| - // Notice that we cannot store a reference to the trampoline code directly in
|
| - // this stub, because runtime stubs are not traversed when doing GC.
|
| -
|
| - // Expected registers by Builtins::JSEntryTrampoline
|
| - // r0: code entry
|
| - // r1: function
|
| - // r2: receiver
|
| - // r3: argc
|
| - // r4: argv
|
| - if (is_construct) {
|
| - ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
| - __ mov(ip, Operand(construct_entry));
|
| - } else {
|
| - ExternalReference entry(Builtins::JSEntryTrampoline);
|
| - __ mov(ip, Operand(entry));
|
| - }
|
| - __ ldr(ip, MemOperand(ip)); // deref address
|
| -
|
| - // Branch and link to JSEntryTrampoline. We don't use the double underscore
|
| - // macro for the add instruction because we don't want the coverage tool
|
| - // inserting instructions here after we read the pc.
|
| - __ mov(lr, Operand(pc));
|
| - masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| -
|
| - // Unlink this frame from the handler chain. When reading the
|
| - // address of the next handler, there is no need to use the address
|
| - // displacement since the current stack pointer (sp) points directly
|
| - // to the stack handler.
|
| - __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
|
| - __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
|
| - __ str(r3, MemOperand(ip));
|
| - // No need to restore registers
|
| - __ add(sp, sp, Operand(StackHandlerConstants::kSize));
|
| -
|
| -
|
| - __ bind(&exit); // r0 holds result
|
| - // Restore the top frame descriptors from the stack.
|
| - __ pop(r3);
|
| - __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
|
| - __ str(r3, MemOperand(ip));
|
| -
|
| - // Reset the stack to the callee saved registers.
|
| - __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
|
| -
|
| - // Restore callee-saved registers and return.
|
| -#ifdef DEBUG
|
| - if (FLAG_debug_code) {
|
| - __ mov(lr, Operand(pc));
|
| - }
|
| -#endif
|
| - __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor;
|
| - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
| - __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
| - __ b(eq, &adaptor);
|
| -
|
| - // Nothing to do: The formal number of parameters has already been
|
| - // passed in register r0 by calling function. Just return it.
|
| - __ mov(pc, lr);
|
| -
|
| - // Arguments adaptor case: Read the arguments length from the
|
| - // adaptor frame and return it.
|
| - __ bind(&adaptor);
|
| - __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ mov(pc, lr);
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
| - // The displacement is the offset of the last parameter (if any)
|
| - // relative to the frame pointer.
|
| - static const int kDisplacement =
|
| - StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
| -
|
| - // Check that the key is a smi.
|
| - Label slow;
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(ne, &slow);
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label adaptor;
|
| - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
| - __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
| - __ b(eq, &adaptor);
|
| -
|
| - // Check index against formal parameters count limit passed in
|
| - // through register eax. Use unsigned comparison to get negative
|
| - // check for free.
|
| - __ cmp(r1, r0);
|
| - __ b(cs, &slow);
|
| -
|
| - // Read the argument from the stack and return it.
|
| - __ sub(r3, r0, r1);
|
| - __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ ldr(r0, MemOperand(r3, kDisplacement));
|
| - __ mov(pc, lr);
|
| -
|
| - // Arguments adaptor case: Check index against actual arguments
|
| - // limit found in the arguments adaptor frame. Use unsigned
|
| - // comparison to get negative check for free.
|
| - __ bind(&adaptor);
|
| - __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ cmp(r1, r0);
|
| - __ b(cs, &slow);
|
| -
|
| - // Read the argument from the adaptor frame and return it.
|
| - __ sub(r3, r0, r1);
|
| - __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ ldr(r0, MemOperand(r3, kDisplacement));
|
| - __ mov(pc, lr);
|
| -
|
| - // Slow-case: Handle non-smi or out-of-bounds access to arguments
|
| - // by calling the runtime system.
|
| - __ bind(&slow);
|
| - __ push(r1);
|
| - __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
|
| -}
|
| -
|
| -
|
| -void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - Label runtime;
|
| - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
|
| - __ cmp(r3, Operand(ArgumentsAdaptorFrame::SENTINEL));
|
| - __ b(ne, &runtime);
|
| -
|
| - // Patch the arguments.length and the parameters pointer.
|
| - __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ str(r0, MemOperand(sp, 0 * kPointerSize));
|
| - __ add(r3, r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
|
| - __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
|
| - __ str(r3, MemOperand(sp, 1 * kPointerSize));
|
| -
|
| - // Do the runtime call to allocate the arguments object.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
|
| -}
|
| -
|
| -
|
| -void CallFunctionStub::Generate(MacroAssembler* masm) {
|
| - Label slow;
|
| - // Get the function to call from the stack.
|
| - // function, receiver [, arguments]
|
| - __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
|
| -
|
| - // Check that the function is really a JavaScript function.
|
| - // r1: pushed function (to be verified)
|
| - __ tst(r1, Operand(kSmiTagMask));
|
| - __ b(eq, &slow);
|
| - // Get the map of the function object.
|
| - __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
|
| - __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
|
| - __ cmp(r2, Operand(JS_FUNCTION_TYPE));
|
| - __ b(ne, &slow);
|
| -
|
| - // Fast-case: Invoke the function now.
|
| - // r1: pushed function
|
| - ParameterCount actual(argc_);
|
| - __ InvokeFunction(r1, actual, JUMP_FUNCTION);
|
| -
|
| - // Slow-case: Non-function called.
|
| - __ bind(&slow);
|
| - __ mov(r0, Operand(argc_)); // Setup the number of arguments.
|
| - __ mov(r2, Operand(0));
|
| - __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
|
| - __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
|
| - RelocInfo::CODE_TARGET);
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -
|
| -} } // namespace v8::internal
|
|
|