Index: src/ia32/codegen-ia32.cc |
diff --git a/src/ia32/codegen-ia32.cc b/src/ia32/codegen-ia32.cc |
index 8a47e720e10aaa6fd7cae40493730e04b5979e7d..572c36c8816aed446aa478d00ccb7cbf4b498187 100644 |
--- a/src/ia32/codegen-ia32.cc |
+++ b/src/ia32/codegen-ia32.cc |
@@ -1,4 +1,4 @@ |
-// Copyright 2010 the V8 project authors. All rights reserved. |
+// Copyright 2011 the V8 project authors. All rights reserved. |
// Redistribution and use in source and binary forms, with or without |
// modification, are permitted provided that the following conditions are |
// met: |
@@ -29,81 +29,15 @@ |
#if defined(V8_TARGET_ARCH_IA32) |
-#include "codegen-inl.h" |
-#include "bootstrapper.h" |
-#include "code-stubs.h" |
-#include "compiler.h" |
-#include "debug.h" |
-#include "ic-inl.h" |
-#include "parser.h" |
-#include "regexp-macro-assembler.h" |
-#include "register-allocator-inl.h" |
-#include "scopes.h" |
-#include "virtual-frame-inl.h" |
+#include "codegen.h" |
namespace v8 { |
namespace internal { |
-#define __ ACCESS_MASM(masm) |
- |
-// ------------------------------------------------------------------------- |
-// Platform-specific FrameRegisterState functions. |
- |
-void FrameRegisterState::Save(MacroAssembler* masm) const { |
- for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { |
- int action = registers_[i]; |
- if (action == kPush) { |
- __ push(RegisterAllocator::ToRegister(i)); |
- } else if (action != kIgnore && (action & kSyncedFlag) == 0) { |
- __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); |
- } |
- } |
-} |
- |
- |
-void FrameRegisterState::Restore(MacroAssembler* masm) const { |
- // Restore registers in reverse order due to the stack. |
- for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { |
- int action = registers_[i]; |
- if (action == kPush) { |
- __ pop(RegisterAllocator::ToRegister(i)); |
- } else if (action != kIgnore) { |
- action &= ~kSyncedFlag; |
- __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); |
- } |
- } |
-} |
- |
- |
-#undef __ |
-#define __ ACCESS_MASM(masm_) |
- |
-// ------------------------------------------------------------------------- |
-// Platform-specific DeferredCode functions. |
- |
-void DeferredCode::SaveRegisters() { |
- frame_state_.Save(masm_); |
-} |
- |
- |
-void DeferredCode::RestoreRegisters() { |
- frame_state_.Restore(masm_); |
-} |
- |
// ------------------------------------------------------------------------- |
// Platform-specific RuntimeCallHelper functions. |
-void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
- frame_state_->Save(masm); |
-} |
- |
- |
-void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
- frame_state_->Restore(masm); |
-} |
- |
- |
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
masm->EnterInternalFrame(); |
} |
@@ -114,10062 +48,8 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
} |
-// ------------------------------------------------------------------------- |
-// CodeGenState implementation. |
- |
-CodeGenState::CodeGenState(CodeGenerator* owner) |
- : owner_(owner), |
- destination_(NULL), |
- previous_(NULL) { |
- owner_->set_state(this); |
-} |
- |
- |
-CodeGenState::CodeGenState(CodeGenerator* owner, |
- ControlDestination* destination) |
- : owner_(owner), |
- destination_(destination), |
- previous_(owner->state()) { |
- owner_->set_state(this); |
-} |
- |
- |
-CodeGenState::~CodeGenState() { |
- ASSERT(owner_->state() == this); |
- owner_->set_state(previous_); |
-} |
- |
-// ------------------------------------------------------------------------- |
-// CodeGenerator implementation. |
- |
-CodeGenerator::CodeGenerator(MacroAssembler* masm) |
- : deferred_(8), |
- masm_(masm), |
- info_(NULL), |
- frame_(NULL), |
- allocator_(NULL), |
- state_(NULL), |
- loop_nesting_(0), |
- in_safe_int32_mode_(false), |
- safe_int32_mode_enabled_(true), |
- function_return_is_shadowed_(false), |
- in_spilled_code_(false), |
- jit_cookie_((FLAG_mask_constants_with_cookie) ? |
- V8::RandomPrivate(Isolate::Current()) : 0) { |
-} |
- |
- |
-// Calling conventions: |
-// ebp: caller's frame pointer |
-// esp: stack pointer |
-// edi: called JS function |
-// esi: callee's context |
- |
-void CodeGenerator::Generate(CompilationInfo* info) { |
- // Record the position for debugging purposes. |
- CodeForFunctionPosition(info->function()); |
- Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); |
- |
- // Initialize state. |
- info_ = info; |
- ASSERT(allocator_ == NULL); |
- RegisterAllocator register_allocator(this); |
- allocator_ = ®ister_allocator; |
- ASSERT(frame_ == NULL); |
- frame_ = new VirtualFrame(); |
- set_in_spilled_code(false); |
- |
- // Adjust for function-level loop nesting. |
- ASSERT_EQ(0, loop_nesting_); |
- loop_nesting_ = info->is_in_loop() ? 1 : 0; |
- |
- masm()->isolate()->set_jump_target_compiling_deferred_code(false); |
- |
- { |
- CodeGenState state(this); |
- |
- // Entry: |
- // Stack: receiver, arguments, return address. |
- // ebp: caller's frame pointer |
- // esp: stack pointer |
- // edi: called JS function |
- // esi: callee's context |
- allocator_->Initialize(); |
- |
-#ifdef DEBUG |
- if (strlen(FLAG_stop_at) > 0 && |
- info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
- frame_->SpillAll(); |
- __ int3(); |
- } |
-#endif |
- |
- frame_->Enter(); |
- |
- // Allocate space for locals and initialize them. |
- frame_->AllocateStackSlots(); |
- |
- // Allocate the local context if needed. |
- int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
- if (heap_slots > 0) { |
- Comment cmnt(masm_, "[ allocate local context"); |
- // Allocate local context. |
- // Get outer context and create a new context based on it. |
- frame_->PushFunction(); |
- Result context; |
- if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
- FastNewContextStub stub(heap_slots); |
- context = frame_->CallStub(&stub, 1); |
- } else { |
- context = frame_->CallRuntime(Runtime::kNewContext, 1); |
- } |
- |
- // Update context local. |
- frame_->SaveContextRegister(); |
- |
- // Verify that the runtime call result and esi agree. |
- if (FLAG_debug_code) { |
- __ cmp(context.reg(), Operand(esi)); |
- __ Assert(equal, "Runtime::NewContext should end up in esi"); |
- } |
- } |
- |
- // TODO(1241774): Improve this code: |
- // 1) only needed if we have a context |
- // 2) no need to recompute context ptr every single time |
- // 3) don't copy parameter operand code from SlotOperand! |
- { |
- Comment cmnt2(masm_, "[ copy context parameters into .context"); |
- // Note that iteration order is relevant here! If we have the same |
- // parameter twice (e.g., function (x, y, x)), and that parameter |
- // needs to be copied into the context, it must be the last argument |
- // passed to the parameter that needs to be copied. This is a rare |
- // case so we don't check for it, instead we rely on the copying |
- // order: such a parameter is copied repeatedly into the same |
- // context location and thus the last value is what is seen inside |
- // the function. |
- for (int i = 0; i < scope()->num_parameters(); i++) { |
- Variable* par = scope()->parameter(i); |
- Slot* slot = par->AsSlot(); |
- if (slot != NULL && slot->type() == Slot::CONTEXT) { |
- // The use of SlotOperand below is safe in unspilled code |
- // because the slot is guaranteed to be a context slot. |
- // |
- // There are no parameters in the global scope. |
- ASSERT(!scope()->is_global_scope()); |
- frame_->PushParameterAt(i); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- |
- // SlotOperand loads context.reg() with the context object |
- // stored to, used below in RecordWrite. |
- Result context = allocator_->Allocate(); |
- ASSERT(context.is_valid()); |
- __ mov(SlotOperand(slot, context.reg()), value.reg()); |
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
- Result scratch = allocator_->Allocate(); |
- ASSERT(scratch.is_valid()); |
- frame_->Spill(context.reg()); |
- frame_->Spill(value.reg()); |
- __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); |
- } |
- } |
- } |
- |
- // Store the arguments object. This must happen after context |
- // initialization because the arguments object may be stored in |
- // the context. |
- if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { |
- StoreArgumentsObject(true); |
- } |
- |
- // Initialize ThisFunction reference if present. |
- if (scope()->is_function_scope() && scope()->function() != NULL) { |
- frame_->Push(FACTORY->the_hole_value()); |
- StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); |
- } |
- |
- |
- // Initialize the function return target after the locals are set |
- // up, because it needs the expected frame height from the frame. |
- function_return_.set_direction(JumpTarget::BIDIRECTIONAL); |
- function_return_is_shadowed_ = false; |
- |
- // Generate code to 'execute' declarations and initialize functions |
- // (source elements). In case of an illegal redeclaration we need to |
- // handle that instead of processing the declarations. |
- if (scope()->HasIllegalRedeclaration()) { |
- Comment cmnt(masm_, "[ illegal redeclarations"); |
- scope()->VisitIllegalRedeclaration(this); |
- } else { |
- Comment cmnt(masm_, "[ declarations"); |
- ProcessDeclarations(scope()->declarations()); |
- // Bail out if a stack-overflow exception occurred when processing |
- // declarations. |
- if (HasStackOverflow()) return; |
- } |
- |
- if (FLAG_trace) { |
- frame_->CallRuntime(Runtime::kTraceEnter, 0); |
- // Ignore the return value. |
- } |
- CheckStack(); |
- |
- // Compile the body of the function in a vanilla state. Don't |
- // bother compiling all the code if the scope has an illegal |
- // redeclaration. |
- if (!scope()->HasIllegalRedeclaration()) { |
- Comment cmnt(masm_, "[ function body"); |
-#ifdef DEBUG |
- bool is_builtin = info->isolate()->bootstrapper()->IsActive(); |
- bool should_trace = |
- is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; |
- if (should_trace) { |
- frame_->CallRuntime(Runtime::kDebugTrace, 0); |
- // Ignore the return value. |
- } |
-#endif |
- VisitStatements(info->function()->body()); |
- |
- // Handle the return from the function. |
- if (has_valid_frame()) { |
- // If there is a valid frame, control flow can fall off the end of |
- // the body. In that case there is an implicit return statement. |
- ASSERT(!function_return_is_shadowed_); |
- CodeForReturnPosition(info->function()); |
- frame_->PrepareForReturn(); |
- Result undefined(FACTORY->undefined_value()); |
- if (function_return_.is_bound()) { |
- function_return_.Jump(&undefined); |
- } else { |
- function_return_.Bind(&undefined); |
- GenerateReturnSequence(&undefined); |
- } |
- } else if (function_return_.is_linked()) { |
- // If the return target has dangling jumps to it, then we have not |
- // yet generated the return sequence. This can happen when (a) |
- // control does not flow off the end of the body so we did not |
- // compile an artificial return statement just above, and (b) there |
- // are return statements in the body but (c) they are all shadowed. |
- Result return_value; |
- function_return_.Bind(&return_value); |
- GenerateReturnSequence(&return_value); |
- } |
- } |
- } |
- |
- // Adjust for function-level loop nesting. |
- ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0); |
- loop_nesting_ = 0; |
- |
- // Code generation state must be reset. |
- ASSERT(state_ == NULL); |
- ASSERT(!function_return_is_shadowed_); |
- function_return_.Unuse(); |
- DeleteFrame(); |
- |
- // Process any deferred code using the register allocator. |
- if (!HasStackOverflow()) { |
- info->isolate()->set_jump_target_compiling_deferred_code(true); |
- ProcessDeferred(); |
- info->isolate()->set_jump_target_compiling_deferred_code(false); |
- } |
- |
- // There is no need to delete the register allocator, it is a |
- // stack-allocated local. |
- allocator_ = NULL; |
-} |
- |
- |
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
- // Currently, this assertion will fail if we try to assign to |
- // a constant variable that is constant because it is read-only |
- // (such as the variable referring to a named function expression). |
- // We need to implement assignments to read-only variables. |
- // Ideally, we should do this during AST generation (by converting |
- // such assignments into expression statements); however, in general |
- // we may not be able to make the decision until past AST generation, |
- // that is when the entire program is known. |
- ASSERT(slot != NULL); |
- int index = slot->index(); |
- switch (slot->type()) { |
- case Slot::PARAMETER: |
- return frame_->ParameterAt(index); |
- |
- case Slot::LOCAL: |
- return frame_->LocalAt(index); |
- |
- case Slot::CONTEXT: { |
- // Follow the context chain if necessary. |
- ASSERT(!tmp.is(esi)); // do not overwrite context register |
- Register context = esi; |
- int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
- for (int i = 0; i < chain_length; i++) { |
- // Load the closure. |
- // (All contexts, even 'with' contexts, have a closure, |
- // and it is the same for all contexts inside a function. |
- // There is no need to go to the function context first.) |
- __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
- // Load the function context (which is the incoming, outer context). |
- __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); |
- context = tmp; |
- } |
- // We may have a 'with' context now. Get the function context. |
- // (In fact this mov may never be the needed, since the scope analysis |
- // may not permit a direct context access in this case and thus we are |
- // always at a function context. However it is safe to dereference be- |
- // cause the function context of a function context is itself. Before |
- // deleting this mov we should try to create a counter-example first, |
- // though...) |
- __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp, index); |
- } |
- |
- default: |
- UNREACHABLE(); |
- return Operand(eax); |
- } |
-} |
- |
- |
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, |
- Result tmp, |
- JumpTarget* slow) { |
- ASSERT(slot->type() == Slot::CONTEXT); |
- ASSERT(tmp.is_register()); |
- Register context = esi; |
- |
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- // Check that extension is NULL. |
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), |
- Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- } |
- __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- context = tmp.reg(); |
- } |
- } |
- // Check that last extension is NULL. |
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp.reg(), slot->index()); |
-} |
- |
- |
-// Emit code to load the value of an expression to the top of the |
-// frame. If the expression is boolean-valued it may be compiled (or |
-// partially compiled) into control flow to the control destination. |
-// If force_control is true, control flow is forced. |
-void CodeGenerator::LoadCondition(Expression* expr, |
- ControlDestination* dest, |
- bool force_control) { |
- ASSERT(!in_spilled_code()); |
- int original_height = frame_->height(); |
- |
- { CodeGenState new_state(this, dest); |
- Visit(expr); |
- |
- // If we hit a stack overflow, we may not have actually visited |
- // the expression. In that case, we ensure that we have a |
- // valid-looking frame state because we will continue to generate |
- // code as we unwind the C++ stack. |
- // |
- // It's possible to have both a stack overflow and a valid frame |
- // state (eg, a subexpression overflowed, visiting it returned |
- // with a dummied frame state, and visiting this expression |
- // returned with a normal-looking state). |
- if (HasStackOverflow() && |
- !dest->is_used() && |
- frame_->height() == original_height) { |
- dest->Goto(true); |
- } |
- } |
- |
- if (force_control && !dest->is_used()) { |
- // Convert the TOS value into flow to the control destination. |
- ToBoolean(dest); |
- } |
- |
- ASSERT(!(force_control && !dest->is_used())); |
- ASSERT(dest->is_used() || frame_->height() == original_height + 1); |
-} |
- |
- |
-void CodeGenerator::LoadAndSpill(Expression* expression) { |
- ASSERT(in_spilled_code()); |
- set_in_spilled_code(false); |
- Load(expression); |
- frame_->SpillAll(); |
- set_in_spilled_code(true); |
-} |
- |
- |
-void CodeGenerator::LoadInSafeInt32Mode(Expression* expr, |
- BreakTarget* unsafe_bailout) { |
- set_unsafe_bailout(unsafe_bailout); |
- set_in_safe_int32_mode(true); |
- Load(expr); |
- Result value = frame_->Pop(); |
- ASSERT(frame_->HasNoUntaggedInt32Elements()); |
- if (expr->GuaranteedSmiResult()) { |
- ConvertInt32ResultToSmi(&value); |
- } else { |
- ConvertInt32ResultToNumber(&value); |
- } |
- set_in_safe_int32_mode(false); |
- set_unsafe_bailout(NULL); |
- frame_->Push(&value); |
-} |
- |
- |
-void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) { |
- set_safe_int32_mode_enabled(false); |
- Load(expr); |
- set_safe_int32_mode_enabled(true); |
-} |
- |
- |
-void CodeGenerator::ConvertInt32ResultToSmi(Result* value) { |
- ASSERT(value->is_untagged_int32()); |
- if (value->is_register()) { |
- __ add(value->reg(), Operand(value->reg())); |
- } else { |
- ASSERT(value->is_constant()); |
- ASSERT(value->handle()->IsSmi()); |
- } |
- value->set_untagged_int32(false); |
- value->set_type_info(TypeInfo::Smi()); |
-} |
- |
- |
-void CodeGenerator::ConvertInt32ResultToNumber(Result* value) { |
- ASSERT(value->is_untagged_int32()); |
- if (value->is_register()) { |
- Register val = value->reg(); |
- JumpTarget done; |
- __ add(val, Operand(val)); |
- done.Branch(no_overflow, value); |
- __ sar(val, 1); |
- // If there was an overflow, bits 30 and 31 of the original number disagree. |
- __ xor_(val, 0x80000000u); |
- if (CpuFeatures::IsSupported(SSE2)) { |
- CpuFeatures::Scope fscope(SSE2); |
- __ cvtsi2sd(xmm0, Operand(val)); |
- } else { |
- // Move val to ST[0] in the FPU |
- // Push and pop are safe with respect to the virtual frame because |
- // all synced elements are below the actual stack pointer. |
- __ push(val); |
- __ fild_s(Operand(esp, 0)); |
- __ pop(val); |
- } |
- Result scratch = allocator_->Allocate(); |
- ASSERT(scratch.is_register()); |
- Label allocation_failed; |
- __ AllocateHeapNumber(val, scratch.reg(), |
- no_reg, &allocation_failed); |
- VirtualFrame* clone = new VirtualFrame(frame_); |
- scratch.Unuse(); |
- if (CpuFeatures::IsSupported(SSE2)) { |
- CpuFeatures::Scope fscope(SSE2); |
- __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0); |
- } else { |
- __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset)); |
- } |
- done.Jump(value); |
- |
- // Establish the virtual frame, cloned from where AllocateHeapNumber |
- // jumped to allocation_failed. |
- RegisterFile empty_regs; |
- SetFrame(clone, &empty_regs); |
- __ bind(&allocation_failed); |
- if (!CpuFeatures::IsSupported(SSE2)) { |
- // Pop the value from the floating point stack. |
- __ fstp(0); |
- } |
- unsafe_bailout_->Jump(); |
- |
- done.Bind(value); |
- } else { |
- ASSERT(value->is_constant()); |
- } |
- value->set_untagged_int32(false); |
- value->set_type_info(TypeInfo::Integer32()); |
-} |
- |
- |
-void CodeGenerator::Load(Expression* expr) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- ASSERT(!in_spilled_code()); |
- |
- // If the expression should be a side-effect-free 32-bit int computation, |
- // compile that SafeInt32 path, and a bailout path. |
- if (!in_safe_int32_mode() && |
- safe_int32_mode_enabled() && |
- expr->side_effect_free() && |
- expr->num_bit_ops() > 2 && |
- CpuFeatures::IsSupported(SSE2)) { |
- BreakTarget unsafe_bailout; |
- JumpTarget done; |
- unsafe_bailout.set_expected_height(frame_->height()); |
- LoadInSafeInt32Mode(expr, &unsafe_bailout); |
- done.Jump(); |
- |
- if (unsafe_bailout.is_linked()) { |
- unsafe_bailout.Bind(); |
- LoadWithSafeInt32ModeDisabled(expr); |
- } |
- done.Bind(); |
- } else { |
- JumpTarget true_target; |
- JumpTarget false_target; |
- ControlDestination dest(&true_target, &false_target, true); |
- LoadCondition(expr, &dest, false); |
- |
- if (dest.false_was_fall_through()) { |
- // The false target was just bound. |
- JumpTarget loaded; |
- frame_->Push(FACTORY->false_value()); |
- // There may be dangling jumps to the true target. |
- if (true_target.is_linked()) { |
- loaded.Jump(); |
- true_target.Bind(); |
- frame_->Push(FACTORY->true_value()); |
- loaded.Bind(); |
- } |
- |
- } else if (dest.is_used()) { |
- // There is true, and possibly false, control flow (with true as |
- // the fall through). |
- JumpTarget loaded; |
- frame_->Push(FACTORY->true_value()); |
- if (false_target.is_linked()) { |
- loaded.Jump(); |
- false_target.Bind(); |
- frame_->Push(FACTORY->false_value()); |
- loaded.Bind(); |
- } |
- |
- } else { |
- // We have a valid value on top of the frame, but we still may |
- // have dangling jumps to the true and false targets from nested |
- // subexpressions (eg, the left subexpressions of the |
- // short-circuited boolean operators). |
- ASSERT(has_valid_frame()); |
- if (true_target.is_linked() || false_target.is_linked()) { |
- JumpTarget loaded; |
- loaded.Jump(); // Don't lose the current TOS. |
- if (true_target.is_linked()) { |
- true_target.Bind(); |
- frame_->Push(FACTORY->true_value()); |
- if (false_target.is_linked()) { |
- loaded.Jump(); |
- } |
- } |
- if (false_target.is_linked()) { |
- false_target.Bind(); |
- frame_->Push(FACTORY->false_value()); |
- } |
- loaded.Bind(); |
- } |
- } |
- } |
- ASSERT(has_valid_frame()); |
- ASSERT(frame_->height() == original_height + 1); |
-} |
- |
- |
-void CodeGenerator::LoadGlobal() { |
- if (in_spilled_code()) { |
- frame_->EmitPush(GlobalObjectOperand()); |
- } else { |
- Result temp = allocator_->Allocate(); |
- __ mov(temp.reg(), GlobalObjectOperand()); |
- frame_->Push(&temp); |
- } |
-} |
- |
- |
-void CodeGenerator::LoadGlobalReceiver() { |
- Result temp = allocator_->Allocate(); |
- Register reg = temp.reg(); |
- __ mov(reg, GlobalObjectOperand()); |
- __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
- frame_->Push(&temp); |
-} |
- |
- |
-void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
- // Special handling of identifiers as subexpressions of typeof. |
- Variable* variable = expr->AsVariableProxy()->AsVariable(); |
- if (variable != NULL && !variable->is_this() && variable->is_global()) { |
- // For a global variable we build the property reference |
- // <global>.<variable> and perform a (regular non-contextual) property |
- // load to make sure we do not get reference errors. |
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
- Literal key(variable->name()); |
- Property property(&global, &key, RelocInfo::kNoPosition); |
- Reference ref(this, &property); |
- ref.GetValue(); |
- } else if (variable != NULL && variable->AsSlot() != NULL) { |
- // For a variable that rewrites to a slot, we signal it is the immediate |
- // subexpression of a typeof. |
- LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); |
- } else { |
- // Anything else can be handled normally. |
- Load(expr); |
- } |
-} |
- |
- |
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
- if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
- |
- // In strict mode there is no need for shadow arguments. |
- ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode()); |
- |
- // We don't want to do lazy arguments allocation for functions that |
- // have heap-allocated contexts, because it interfers with the |
- // uninitialized const tracking in the context objects. |
- return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode()) |
- ? EAGER_ARGUMENTS_ALLOCATION |
- : LAZY_ARGUMENTS_ALLOCATION; |
-} |
- |
- |
-Result CodeGenerator::StoreArgumentsObject(bool initial) { |
- ArgumentsAllocationMode mode = ArgumentsMode(); |
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
- |
- Comment cmnt(masm_, "[ store arguments object"); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
- // When using lazy arguments allocation, we store the arguments marker value |
- // as a sentinel indicating that the arguments object hasn't been |
- // allocated yet. |
- frame_->Push(FACTORY->arguments_marker()); |
- } else { |
- ArgumentsAccessStub stub(is_strict_mode() |
- ? ArgumentsAccessStub::NEW_STRICT |
- : ArgumentsAccessStub::NEW_NON_STRICT); |
- frame_->PushFunction(); |
- frame_->PushReceiverSlotAddress(); |
- frame_->Push(Smi::FromInt(scope()->num_parameters())); |
- Result result = frame_->CallStub(&stub, 3); |
- frame_->Push(&result); |
- } |
- |
- Variable* arguments = scope()->arguments(); |
- Variable* shadow = scope()->arguments_shadow(); |
- |
- ASSERT(arguments != NULL && arguments->AsSlot() != NULL); |
- ASSERT((shadow != NULL && shadow->AsSlot() != NULL) || |
- scope()->is_strict_mode()); |
- |
- JumpTarget done; |
- bool skip_arguments = false; |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
- // We have to skip storing into the arguments slot if it has |
- // already been written to. This can happen if the a function |
- // has a local variable named 'arguments'. |
- LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF); |
- Result probe = frame_->Pop(); |
- if (probe.is_constant()) { |
- // We have to skip updating the arguments object if it has |
- // been assigned a proper value. |
- skip_arguments = !probe.handle()->IsArgumentsMarker(); |
- } else { |
- __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker())); |
- probe.Unuse(); |
- done.Branch(not_equal); |
- } |
- } |
- if (!skip_arguments) { |
- StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
- } |
- if (shadow != NULL) { |
- StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); |
- } |
- return frame_->Pop(); |
-} |
- |
-//------------------------------------------------------------------------------ |
-// CodeGenerator implementation of variables, lookups, and stores. |
- |
-Reference::Reference(CodeGenerator* cgen, |
- Expression* expression, |
- bool persist_after_get) |
- : cgen_(cgen), |
- expression_(expression), |
- type_(ILLEGAL), |
- persist_after_get_(persist_after_get) { |
- cgen->LoadReference(this); |
-} |
- |
- |
-Reference::~Reference() { |
- ASSERT(is_unloaded() || is_illegal()); |
-} |
- |
- |
-void CodeGenerator::LoadReference(Reference* ref) { |
- // References are loaded from both spilled and unspilled code. Set the |
- // state to unspilled to allow that (and explicitly spill after |
- // construction at the construction sites). |
- bool was_in_spilled_code = in_spilled_code_; |
- in_spilled_code_ = false; |
- |
- Comment cmnt(masm_, "[ LoadReference"); |
- Expression* e = ref->expression(); |
- Property* property = e->AsProperty(); |
- Variable* var = e->AsVariableProxy()->AsVariable(); |
- |
- if (property != NULL) { |
- // The expression is either a property or a variable proxy that rewrites |
- // to a property. |
- Load(property->obj()); |
- if (property->key()->IsPropertyName()) { |
- ref->set_type(Reference::NAMED); |
- } else { |
- Load(property->key()); |
- ref->set_type(Reference::KEYED); |
- } |
- } else if (var != NULL) { |
- // The expression is a variable proxy that does not rewrite to a |
- // property. Global variables are treated as named property references. |
- if (var->is_global()) { |
- // If eax is free, the register allocator prefers it. Thus the code |
- // generator will load the global object into eax, which is where |
- // LoadIC wants it. Most uses of Reference call LoadIC directly |
- // after the reference is created. |
- frame_->Spill(eax); |
- LoadGlobal(); |
- ref->set_type(Reference::NAMED); |
- } else { |
- ASSERT(var->AsSlot() != NULL); |
- ref->set_type(Reference::SLOT); |
- } |
- } else { |
- // Anything else is a runtime error. |
- Load(e); |
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
- } |
- |
- in_spilled_code_ = was_in_spilled_code; |
-} |
- |
- |
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and |
-// convert it to a boolean in the condition code register or jump to |
-// 'false_target'/'true_target' as appropriate. |
-void CodeGenerator::ToBoolean(ControlDestination* dest) { |
- Comment cmnt(masm_, "[ ToBoolean"); |
- |
- // The value to convert should be popped from the frame. |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- |
- if (value.is_integer32()) { // Also takes Smi case. |
- Comment cmnt(masm_, "ONLY_INTEGER_32"); |
- if (FLAG_debug_code) { |
- Label ok; |
- __ AbortIfNotNumber(value.reg()); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- __ j(zero, &ok); |
- __ fldz(); |
- __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); |
- __ FCmp(); |
- __ j(not_zero, &ok); |
- __ Abort("Smi was wrapped in HeapNumber in output from bitop"); |
- __ bind(&ok); |
- } |
- // In the integer32 case there are no Smis hidden in heap numbers, so we |
- // need only test for Smi zero. |
- __ test(value.reg(), Operand(value.reg())); |
- dest->false_target()->Branch(zero); |
- value.Unuse(); |
- dest->Split(not_zero); |
- } else if (value.is_number()) { |
- Comment cmnt(masm_, "ONLY_NUMBER"); |
- // Fast case if TypeInfo indicates only numbers. |
- if (FLAG_debug_code) { |
- __ AbortIfNotNumber(value.reg()); |
- } |
- // Smi => false iff zero. |
- STATIC_ASSERT(kSmiTag == 0); |
- __ test(value.reg(), Operand(value.reg())); |
- dest->false_target()->Branch(zero); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- dest->true_target()->Branch(zero); |
- __ fldz(); |
- __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); |
- __ FCmp(); |
- value.Unuse(); |
- dest->Split(not_zero); |
- } else { |
- // Fast case checks. |
- // 'false' => false. |
- __ cmp(value.reg(), FACTORY->false_value()); |
- dest->false_target()->Branch(equal); |
- |
- // 'true' => true. |
- __ cmp(value.reg(), FACTORY->true_value()); |
- dest->true_target()->Branch(equal); |
- |
- // 'undefined' => false. |
- __ cmp(value.reg(), FACTORY->undefined_value()); |
- dest->false_target()->Branch(equal); |
- |
- // Smi => false iff zero. |
- STATIC_ASSERT(kSmiTag == 0); |
- __ test(value.reg(), Operand(value.reg())); |
- dest->false_target()->Branch(zero); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- dest->true_target()->Branch(zero); |
- |
- // Call the stub for all other cases. |
- frame_->Push(&value); // Undo the Pop() from above. |
- ToBooleanStub stub; |
- Result temp = frame_->CallStub(&stub, 1); |
- // Convert the result to a condition code. |
- __ test(temp.reg(), Operand(temp.reg())); |
- temp.Unuse(); |
- dest->Split(not_equal); |
- } |
-} |
- |
- |
-// Perform or call the specialized stub for a binary operation. Requires the |
-// three registers left, right and dst to be distinct and spilled. This |
-// deferred operation has up to three entry points: The main one calls the |
-// runtime system. The second is for when the result is a non-Smi. The |
-// third is for when at least one of the inputs is non-Smi and we have SSE2. |
-class DeferredInlineBinaryOperation: public DeferredCode { |
- public: |
- DeferredInlineBinaryOperation(Token::Value op, |
- Register dst, |
- Register left, |
- Register right, |
- TypeInfo left_info, |
- TypeInfo right_info, |
- OverwriteMode mode) |
- : op_(op), dst_(dst), left_(left), right_(right), |
- left_info_(left_info), right_info_(right_info), mode_(mode) { |
- set_comment("[ DeferredInlineBinaryOperation"); |
- ASSERT(!left.is(right)); |
- } |
- |
- virtual void Generate(); |
- |
- // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and |
- // Exit(). |
- virtual bool AutoSaveAndRestore() { return false; } |
- |
- void JumpToAnswerOutOfRange(Condition cond); |
- void JumpToConstantRhs(Condition cond, Smi* smi_value); |
- Label* NonSmiInputLabel(); |
- |
- private: |
- void GenerateAnswerOutOfRange(); |
- void GenerateNonSmiInput(); |
- |
- Token::Value op_; |
- Register dst_; |
- Register left_; |
- Register right_; |
- TypeInfo left_info_; |
- TypeInfo right_info_; |
- OverwriteMode mode_; |
- Label answer_out_of_range_; |
- Label non_smi_input_; |
- Label constant_rhs_; |
- Smi* smi_value_; |
-}; |
- |
- |
-Label* DeferredInlineBinaryOperation::NonSmiInputLabel() { |
- if (Token::IsBitOp(op_) && |
- CpuFeatures::IsSupported(SSE2)) { |
- return &non_smi_input_; |
- } else { |
- return entry_label(); |
- } |
-} |
- |
- |
-void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) { |
- __ j(cond, &answer_out_of_range_); |
-} |
- |
- |
-void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond, |
- Smi* smi_value) { |
- smi_value_ = smi_value; |
- __ j(cond, &constant_rhs_); |
-} |
- |
- |
-void DeferredInlineBinaryOperation::Generate() { |
- // Registers are not saved implicitly for this stub, so we should not |
- // tread on the registers that were not passed to us. |
- if (CpuFeatures::IsSupported(SSE2) && |
- ((op_ == Token::ADD) || |
- (op_ == Token::SUB) || |
- (op_ == Token::MUL) || |
- (op_ == Token::DIV))) { |
- CpuFeatures::Scope use_sse2(SSE2); |
- Label call_runtime, after_alloc_failure; |
- Label left_smi, right_smi, load_right, do_op; |
- if (!left_info_.IsSmi()) { |
- __ test(left_, Immediate(kSmiTagMask)); |
- __ j(zero, &left_smi); |
- if (!left_info_.IsNumber()) { |
- __ cmp(FieldOperand(left_, HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- __ j(not_equal, &call_runtime); |
- } |
- __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); |
- if (mode_ == OVERWRITE_LEFT) { |
- __ mov(dst_, left_); |
- } |
- __ jmp(&load_right); |
- |
- __ bind(&left_smi); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left_); |
- } |
- __ SmiUntag(left_); |
- __ cvtsi2sd(xmm0, Operand(left_)); |
- __ SmiTag(left_); |
- if (mode_ == OVERWRITE_LEFT) { |
- Label alloc_failure; |
- __ push(left_); |
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
- __ pop(left_); |
- } |
- |
- __ bind(&load_right); |
- if (!right_info_.IsSmi()) { |
- __ test(right_, Immediate(kSmiTagMask)); |
- __ j(zero, &right_smi); |
- if (!right_info_.IsNumber()) { |
- __ cmp(FieldOperand(right_, HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- __ j(not_equal, &call_runtime); |
- } |
- __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); |
- if (mode_ == OVERWRITE_RIGHT) { |
- __ mov(dst_, right_); |
- } else if (mode_ == NO_OVERWRITE) { |
- Label alloc_failure; |
- __ push(left_); |
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
- __ pop(left_); |
- } |
- __ jmp(&do_op); |
- |
- __ bind(&right_smi); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(right_); |
- } |
- __ SmiUntag(right_); |
- __ cvtsi2sd(xmm1, Operand(right_)); |
- __ SmiTag(right_); |
- if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { |
- __ push(left_); |
- __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); |
- __ pop(left_); |
- } |
- |
- __ bind(&do_op); |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); |
- Exit(); |
- |
- |
- __ bind(&after_alloc_failure); |
- __ pop(left_); |
- __ bind(&call_runtime); |
- } |
- // Register spilling is not done implicitly for this stub. |
- // We can't postpone it any more now though. |
- SaveRegisters(); |
- |
- GenericBinaryOpStub stub(op_, |
- mode_, |
- NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(left_info_, right_info_)); |
- stub.GenerateCall(masm_, left_, right_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
- RestoreRegisters(); |
- Exit(); |
- |
- if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) { |
- GenerateNonSmiInput(); |
- } |
- if (answer_out_of_range_.is_linked()) { |
- GenerateAnswerOutOfRange(); |
- } |
-} |
- |
- |
-void DeferredInlineBinaryOperation::GenerateNonSmiInput() { |
- // We know at least one of the inputs was not a Smi. |
- // This is a third entry point into the deferred code. |
- // We may not overwrite left_ because we want to be able |
- // to call the handling code for non-smi answer and it |
- // might want to overwrite the heap number in left_. |
- ASSERT(!right_.is(dst_)); |
- ASSERT(!left_.is(dst_)); |
- ASSERT(!left_.is(right_)); |
- // This entry point is used for bit ops where the right hand side |
- // is a constant Smi and the left hand side is a heap object. It |
- // is also used for bit ops where both sides are unknown, but where |
- // at least one of them is a heap object. |
- bool rhs_is_constant = constant_rhs_.is_linked(); |
- // We can't generate code for both cases. |
- ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked()); |
- |
- if (FLAG_debug_code) { |
- __ int3(); // We don't fall through into this code. |
- } |
- |
- __ bind(&non_smi_input_); |
- |
- if (rhs_is_constant) { |
- __ bind(&constant_rhs_); |
- // In this case the input is a heap object and it is in the dst_ register. |
- // The left_ and right_ registers have not been initialized yet. |
- __ mov(right_, Immediate(smi_value_)); |
- __ mov(left_, Operand(dst_)); |
- if (!CpuFeatures::IsSupported(SSE2)) { |
- __ jmp(entry_label()); |
- return; |
- } else { |
- CpuFeatures::Scope use_sse2(SSE2); |
- __ JumpIfNotNumber(dst_, left_info_, entry_label()); |
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); |
- __ SmiUntag(right_); |
- } |
- } else { |
- // We know we have SSE2 here because otherwise the label is not linked (see |
- // NonSmiInputLabel). |
- CpuFeatures::Scope use_sse2(SSE2); |
- // Handle the non-constant right hand side situation: |
- if (left_info_.IsSmi()) { |
- // Right is a heap object. |
- __ JumpIfNotNumber(right_, right_info_, entry_label()); |
- __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label()); |
- __ mov(dst_, Operand(left_)); |
- __ SmiUntag(dst_); |
- } else if (right_info_.IsSmi()) { |
- // Left is a heap object. |
- __ JumpIfNotNumber(left_, left_info_, entry_label()); |
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); |
- __ SmiUntag(right_); |
- } else { |
- // Here we don't know if it's one or both that is a heap object. |
- Label only_right_is_heap_object, got_both; |
- __ mov(dst_, Operand(left_)); |
- __ SmiUntag(dst_, &only_right_is_heap_object); |
- // Left was a heap object. |
- __ JumpIfNotNumber(left_, left_info_, entry_label()); |
- __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); |
- __ SmiUntag(right_, &got_both); |
- // Both were heap objects. |
- __ rcl(right_, 1); // Put tag back. |
- __ JumpIfNotNumber(right_, right_info_, entry_label()); |
- __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); |
- __ jmp(&got_both); |
- __ bind(&only_right_is_heap_object); |
- __ JumpIfNotNumber(right_, right_info_, entry_label()); |
- __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); |
- __ bind(&got_both); |
- } |
- } |
- ASSERT(op_ == Token::BIT_AND || |
- op_ == Token::BIT_OR || |
- op_ == Token::BIT_XOR || |
- right_.is(ecx)); |
- switch (op_) { |
- case Token::BIT_AND: __ and_(dst_, Operand(right_)); break; |
- case Token::BIT_OR: __ or_(dst_, Operand(right_)); break; |
- case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break; |
- case Token::SHR: __ shr_cl(dst_); break; |
- case Token::SAR: __ sar_cl(dst_); break; |
- case Token::SHL: __ shl_cl(dst_); break; |
- default: UNREACHABLE(); |
- } |
- if (op_ == Token::SHR) { |
- // Check that the *unsigned* result fits in a smi. Neither of |
- // the two high-order bits can be set: |
- // * 0x80000000: high bit would be lost when smi tagging. |
- // * 0x40000000: this number would convert to negative when smi |
- // tagging. |
- __ test(dst_, Immediate(0xc0000000)); |
- __ j(not_zero, &answer_out_of_range_); |
- } else { |
- // Check that the *signed* result fits in a smi. |
- __ cmp(dst_, 0xc0000000); |
- __ j(negative, &answer_out_of_range_); |
- } |
- __ SmiTag(dst_); |
- Exit(); |
-} |
- |
- |
-void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() { |
- Label after_alloc_failure2; |
- Label allocation_ok; |
- __ bind(&after_alloc_failure2); |
- // We have to allocate a number, causing a GC, while keeping hold of |
- // the answer in dst_. The answer is not a Smi. We can't just call the |
- // runtime shift function here because we already threw away the inputs. |
- __ xor_(left_, Operand(left_)); |
- __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits. |
- __ rcr(left_, 1); // Rotate with carry. |
- __ push(dst_); // Smi tagged low 31 bits. |
- __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases. |
- __ CallRuntime(Runtime::kNumberAlloc, 0); |
- if (!left_.is(eax)) { |
- __ mov(left_, eax); |
- } |
- __ pop(right_); // High bit. |
- __ pop(dst_); // Low 31 bits. |
- __ shr(dst_, 1); // Put 0 in top bit. |
- __ or_(dst_, Operand(right_)); |
- __ jmp(&allocation_ok); |
- |
- // This is the second entry point to the deferred code. It is used only by |
- // the bit operations. |
- // The dst_ register has the answer. It is not Smi tagged. If mode_ is |
- // OVERWRITE_LEFT then left_ must contain either an overwritable heap number |
- // or a Smi. |
- // Put a heap number pointer in left_. |
- __ bind(&answer_out_of_range_); |
- SaveRegisters(); |
- if (mode_ == OVERWRITE_LEFT) { |
- __ test(left_, Immediate(kSmiTagMask)); |
- __ j(not_zero, &allocation_ok); |
- } |
- // This trashes right_. |
- __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2); |
- __ bind(&allocation_ok); |
- if (CpuFeatures::IsSupported(SSE2) && |
- op_ != Token::SHR) { |
- CpuFeatures::Scope use_sse2(SSE2); |
- ASSERT(Token::IsBitOp(op_)); |
- // Signed conversion. |
- __ cvtsi2sd(xmm0, Operand(dst_)); |
- __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0); |
- } else { |
- if (op_ == Token::SHR) { |
- __ push(Immediate(0)); // High word of unsigned value. |
- __ push(dst_); |
- __ fild_d(Operand(esp, 0)); |
- __ Drop(2); |
- } else { |
- ASSERT(Token::IsBitOp(op_)); |
- __ push(dst_); |
- __ fild_s(Operand(esp, 0)); // Signed conversion. |
- __ pop(dst_); |
- } |
- __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset)); |
- } |
- __ mov(dst_, left_); |
- RestoreRegisters(); |
- Exit(); |
-} |
- |
- |
-static TypeInfo CalculateTypeInfo(TypeInfo operands_type, |
- Token::Value op, |
- const Result& right, |
- const Result& left) { |
- // Set TypeInfo of result according to the operation performed. |
- // Rely on the fact that smis have a 31 bit payload on ia32. |
- STATIC_ASSERT(kSmiValueSize == 31); |
- switch (op) { |
- case Token::COMMA: |
- return right.type_info(); |
- case Token::OR: |
- case Token::AND: |
- // Result type can be either of the two input types. |
- return operands_type; |
- case Token::BIT_AND: { |
- // Anding with positive Smis will give you a Smi. |
- if (right.is_constant() && right.handle()->IsSmi() && |
- Smi::cast(*right.handle())->value() >= 0) { |
- return TypeInfo::Smi(); |
- } else if (left.is_constant() && left.handle()->IsSmi() && |
- Smi::cast(*left.handle())->value() >= 0) { |
- return TypeInfo::Smi(); |
- } |
- return (operands_type.IsSmi()) |
- ? TypeInfo::Smi() |
- : TypeInfo::Integer32(); |
- } |
- case Token::BIT_OR: { |
- // Oring with negative Smis will give you a Smi. |
- if (right.is_constant() && right.handle()->IsSmi() && |
- Smi::cast(*right.handle())->value() < 0) { |
- return TypeInfo::Smi(); |
- } else if (left.is_constant() && left.handle()->IsSmi() && |
- Smi::cast(*left.handle())->value() < 0) { |
- return TypeInfo::Smi(); |
- } |
- return (operands_type.IsSmi()) |
- ? TypeInfo::Smi() |
- : TypeInfo::Integer32(); |
- } |
- case Token::BIT_XOR: |
- // Result is always a 32 bit integer. Smi property of inputs is preserved. |
- return (operands_type.IsSmi()) |
- ? TypeInfo::Smi() |
- : TypeInfo::Integer32(); |
- case Token::SAR: |
- if (left.is_smi()) return TypeInfo::Smi(); |
- // Result is a smi if we shift by a constant >= 1, otherwise an integer32. |
- // Shift amount is masked with 0x1F (ECMA standard 11.7.2). |
- return (right.is_constant() && right.handle()->IsSmi() |
- && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) |
- ? TypeInfo::Smi() |
- : TypeInfo::Integer32(); |
- case Token::SHR: |
- // Result is a smi if we shift by a constant >= 2, an integer32 if |
- // we shift by 1, and an unsigned 32-bit integer if we shift by 0. |
- if (right.is_constant() && right.handle()->IsSmi()) { |
- int shift_amount = Smi::cast(*right.handle())->value() & 0x1F; |
- if (shift_amount > 1) { |
- return TypeInfo::Smi(); |
- } else if (shift_amount > 0) { |
- return TypeInfo::Integer32(); |
- } |
- } |
- return TypeInfo::Number(); |
- case Token::ADD: |
- if (operands_type.IsSmi()) { |
- // The Integer32 range is big enough to take the sum of any two Smis. |
- return TypeInfo::Integer32(); |
- } else if (operands_type.IsNumber()) { |
- return TypeInfo::Number(); |
- } else if (left.type_info().IsString() || right.type_info().IsString()) { |
- return TypeInfo::String(); |
- } else { |
- return TypeInfo::Unknown(); |
- } |
- case Token::SHL: |
- return TypeInfo::Integer32(); |
- case Token::SUB: |
- // The Integer32 range is big enough to take the difference of any two |
- // Smis. |
- return (operands_type.IsSmi()) ? |
- TypeInfo::Integer32() : |
- TypeInfo::Number(); |
- case Token::MUL: |
- case Token::DIV: |
- case Token::MOD: |
- // Result is always a number. |
- return TypeInfo::Number(); |
- default: |
- UNREACHABLE(); |
- } |
- UNREACHABLE(); |
- return TypeInfo::Unknown(); |
-} |
- |
- |
-void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, |
- OverwriteMode overwrite_mode) { |
- Comment cmnt(masm_, "[ BinaryOperation"); |
- Token::Value op = expr->op(); |
- Comment cmnt_token(masm_, Token::String(op)); |
- |
- if (op == Token::COMMA) { |
- // Simply discard left value. |
- frame_->Nip(1); |
- return; |
- } |
- |
- Result right = frame_->Pop(); |
- Result left = frame_->Pop(); |
- |
- if (op == Token::ADD) { |
- const bool left_is_string = left.type_info().IsString(); |
- const bool right_is_string = right.type_info().IsString(); |
- // Make sure constant strings have string type info. |
- ASSERT(!(left.is_constant() && left.handle()->IsString()) || |
- left_is_string); |
- ASSERT(!(right.is_constant() && right.handle()->IsString()) || |
- right_is_string); |
- if (left_is_string || right_is_string) { |
- frame_->Push(&left); |
- frame_->Push(&right); |
- Result answer; |
- if (left_is_string) { |
- if (right_is_string) { |
- StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
- answer = frame_->CallStub(&stub, 2); |
- } else { |
- StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB); |
- answer = frame_->CallStub(&stub, 2); |
- } |
- } else if (right_is_string) { |
- StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
- answer = frame_->CallStub(&stub, 2); |
- } |
- answer.set_type_info(TypeInfo::String()); |
- frame_->Push(&answer); |
- return; |
- } |
- // Neither operand is known to be a string. |
- } |
- |
- bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); |
- bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); |
- bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); |
- bool right_is_non_smi_constant = |
- right.is_constant() && !right.handle()->IsSmi(); |
- |
- if (left_is_smi_constant && right_is_smi_constant) { |
- // Compute the constant result at compile time, and leave it on the frame. |
- int left_int = Smi::cast(*left.handle())->value(); |
- int right_int = Smi::cast(*right.handle())->value(); |
- if (FoldConstantSmis(op, left_int, right_int)) return; |
- } |
- |
- // Get number type of left and right sub-expressions. |
- TypeInfo operands_type = |
- TypeInfo::Combine(left.type_info(), right.type_info()); |
- |
- TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); |
- |
- Result answer; |
- if (left_is_non_smi_constant || right_is_non_smi_constant) { |
- // Go straight to the slow case, with no smi code. |
- GenericBinaryOpStub stub(op, |
- overwrite_mode, |
- NO_SMI_CODE_IN_STUB, |
- operands_type); |
- answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); |
- } else if (right_is_smi_constant) { |
- answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), |
- false, overwrite_mode); |
- } else if (left_is_smi_constant) { |
- answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), |
- true, overwrite_mode); |
- } else { |
- // Set the flags based on the operation, type and loop nesting level. |
- // Bit operations always assume they likely operate on Smis. Still only |
- // generate the inline Smi check code if this operation is part of a loop. |
- // For all other operations only inline the Smi check code for likely smis |
- // if the operation is part of a loop. |
- if (loop_nesting() > 0 && |
- (Token::IsBitOp(op) || |
- operands_type.IsInteger32() || |
- expr->type()->IsLikelySmi())) { |
- answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); |
- } else { |
- GenericBinaryOpStub stub(op, |
- overwrite_mode, |
- NO_GENERIC_BINARY_FLAGS, |
- operands_type); |
- answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); |
- } |
- } |
- |
- answer.set_type_info(result_type); |
- frame_->Push(&answer); |
-} |
- |
- |
-Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub, |
- Result* left, |
- Result* right) { |
- if (stub->ArgsInRegistersSupported()) { |
- stub->SetArgsInRegisters(); |
- return frame_->CallStub(stub, left, right); |
- } else { |
- frame_->Push(left); |
- frame_->Push(right); |
- return frame_->CallStub(stub, 2); |
- } |
-} |
- |
- |
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { |
- Object* answer_object = HEAP->undefined_value(); |
- switch (op) { |
- case Token::ADD: |
- if (Smi::IsValid(left + right)) { |
- answer_object = Smi::FromInt(left + right); |
- } |
- break; |
- case Token::SUB: |
- if (Smi::IsValid(left - right)) { |
- answer_object = Smi::FromInt(left - right); |
- } |
- break; |
- case Token::MUL: { |
- double answer = static_cast<double>(left) * right; |
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { |
- // If the product is zero and the non-zero factor is negative, |
- // the spec requires us to return floating point negative zero. |
- if (answer != 0 || (left >= 0 && right >= 0)) { |
- answer_object = Smi::FromInt(static_cast<int>(answer)); |
- } |
- } |
- } |
- break; |
- case Token::DIV: |
- case Token::MOD: |
- break; |
- case Token::BIT_OR: |
- answer_object = Smi::FromInt(left | right); |
- break; |
- case Token::BIT_AND: |
- answer_object = Smi::FromInt(left & right); |
- break; |
- case Token::BIT_XOR: |
- answer_object = Smi::FromInt(left ^ right); |
- break; |
- |
- case Token::SHL: { |
- int shift_amount = right & 0x1F; |
- if (Smi::IsValid(left << shift_amount)) { |
- answer_object = Smi::FromInt(left << shift_amount); |
- } |
- break; |
- } |
- case Token::SHR: { |
- int shift_amount = right & 0x1F; |
- unsigned int unsigned_left = left; |
- unsigned_left >>= shift_amount; |
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { |
- answer_object = Smi::FromInt(unsigned_left); |
- } |
- break; |
- } |
- case Token::SAR: { |
- int shift_amount = right & 0x1F; |
- unsigned int unsigned_left = left; |
- if (left < 0) { |
- // Perform arithmetic shift of a negative number by |
- // complementing number, logical shifting, complementing again. |
- unsigned_left = ~unsigned_left; |
- unsigned_left >>= shift_amount; |
- unsigned_left = ~unsigned_left; |
- } else { |
- unsigned_left >>= shift_amount; |
- } |
- ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left))); |
- answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left)); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- if (answer_object->IsUndefined()) { |
- return false; |
- } |
- frame_->Push(Handle<Object>(answer_object)); |
- return true; |
-} |
- |
- |
-void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left, |
- Result* right, |
- JumpTarget* both_smi) { |
- TypeInfo left_info = left->type_info(); |
- TypeInfo right_info = right->type_info(); |
- if (left_info.IsDouble() || left_info.IsString() || |
- right_info.IsDouble() || right_info.IsString()) { |
- // We know that left and right are not both smi. Don't do any tests. |
- return; |
- } |
- |
- if (left->reg().is(right->reg())) { |
- if (!left_info.IsSmi()) { |
- __ test(left->reg(), Immediate(kSmiTagMask)); |
- both_smi->Branch(zero); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); |
- left->Unuse(); |
- right->Unuse(); |
- both_smi->Jump(); |
- } |
- } else if (!left_info.IsSmi()) { |
- if (!right_info.IsSmi()) { |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), left->reg()); |
- __ or_(temp.reg(), Operand(right->reg())); |
- __ test(temp.reg(), Immediate(kSmiTagMask)); |
- temp.Unuse(); |
- both_smi->Branch(zero); |
- } else { |
- __ test(left->reg(), Immediate(kSmiTagMask)); |
- both_smi->Branch(zero); |
- } |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); |
- if (!right_info.IsSmi()) { |
- __ test(right->reg(), Immediate(kSmiTagMask)); |
- both_smi->Branch(zero); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); |
- left->Unuse(); |
- right->Unuse(); |
- both_smi->Jump(); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, |
- Register right, |
- Register scratch, |
- TypeInfo left_info, |
- TypeInfo right_info, |
- DeferredCode* deferred) { |
- JumpIfNotBothSmiUsingTypeInfo(left, |
- right, |
- scratch, |
- left_info, |
- right_info, |
- deferred->entry_label()); |
-} |
- |
- |
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, |
- Register right, |
- Register scratch, |
- TypeInfo left_info, |
- TypeInfo right_info, |
- Label* on_not_smi) { |
- if (left.is(right)) { |
- if (!left_info.IsSmi()) { |
- __ test(left, Immediate(kSmiTagMask)); |
- __ j(not_zero, on_not_smi); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left); |
- } |
- } else if (!left_info.IsSmi()) { |
- if (!right_info.IsSmi()) { |
- __ mov(scratch, left); |
- __ or_(scratch, Operand(right)); |
- __ test(scratch, Immediate(kSmiTagMask)); |
- __ j(not_zero, on_not_smi); |
- } else { |
- __ test(left, Immediate(kSmiTagMask)); |
- __ j(not_zero, on_not_smi); |
- if (FLAG_debug_code) __ AbortIfNotSmi(right); |
- } |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left); |
- if (!right_info.IsSmi()) { |
- __ test(right, Immediate(kSmiTagMask)); |
- __ j(not_zero, on_not_smi); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(right); |
- } |
- } |
-} |
- |
- |
-// Implements a binary operation using a deferred code object and some |
-// inline code to operate on smis quickly. |
-Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, |
- Result* left, |
- Result* right, |
- OverwriteMode overwrite_mode) { |
- // Copy the type info because left and right may be overwritten. |
- TypeInfo left_type_info = left->type_info(); |
- TypeInfo right_type_info = right->type_info(); |
- Token::Value op = expr->op(); |
- Result answer; |
- // Special handling of div and mod because they use fixed registers. |
- if (op == Token::DIV || op == Token::MOD) { |
- // We need eax as the quotient register, edx as the remainder |
- // register, neither left nor right in eax or edx, and left copied |
- // to eax. |
- Result quotient; |
- Result remainder; |
- bool left_is_in_eax = false; |
- // Step 1: get eax for quotient. |
- if ((left->is_register() && left->reg().is(eax)) || |
- (right->is_register() && right->reg().is(eax))) { |
- // One or both is in eax. Use a fresh non-edx register for |
- // them. |
- Result fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- if (fresh.reg().is(edx)) { |
- remainder = fresh; |
- fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- } |
- if (left->is_register() && left->reg().is(eax)) { |
- quotient = *left; |
- *left = fresh; |
- left_is_in_eax = true; |
- } |
- if (right->is_register() && right->reg().is(eax)) { |
- quotient = *right; |
- *right = fresh; |
- } |
- __ mov(fresh.reg(), eax); |
- } else { |
- // Neither left nor right is in eax. |
- quotient = allocator_->Allocate(eax); |
- } |
- ASSERT(quotient.is_register() && quotient.reg().is(eax)); |
- ASSERT(!(left->is_register() && left->reg().is(eax))); |
- ASSERT(!(right->is_register() && right->reg().is(eax))); |
- |
- // Step 2: get edx for remainder if necessary. |
- if (!remainder.is_valid()) { |
- if ((left->is_register() && left->reg().is(edx)) || |
- (right->is_register() && right->reg().is(edx))) { |
- Result fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- if (left->is_register() && left->reg().is(edx)) { |
- remainder = *left; |
- *left = fresh; |
- } |
- if (right->is_register() && right->reg().is(edx)) { |
- remainder = *right; |
- *right = fresh; |
- } |
- __ mov(fresh.reg(), edx); |
- } else { |
- // Neither left nor right is in edx. |
- remainder = allocator_->Allocate(edx); |
- } |
- } |
- ASSERT(remainder.is_register() && remainder.reg().is(edx)); |
- ASSERT(!(left->is_register() && left->reg().is(edx))); |
- ASSERT(!(right->is_register() && right->reg().is(edx))); |
- |
- left->ToRegister(); |
- right->ToRegister(); |
- frame_->Spill(eax); |
- frame_->Spill(edx); |
- // DeferredInlineBinaryOperation requires all the registers that it is |
- // told about to be spilled and distinct. |
- Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); |
- |
- // Check that left and right are smi tagged. |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- (op == Token::DIV) ? eax : edx, |
- left->reg(), |
- distinct_right.reg(), |
- left_type_info, |
- right_type_info, |
- overwrite_mode); |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx, |
- left_type_info, right_type_info, deferred); |
- if (!left_is_in_eax) { |
- __ mov(eax, left->reg()); |
- } |
- // Sign extend eax into edx:eax. |
- __ cdq(); |
- // Check for 0 divisor. |
- __ test(right->reg(), Operand(right->reg())); |
- deferred->Branch(zero); |
- // Divide edx:eax by the right operand. |
- __ idiv(right->reg()); |
- |
- // Complete the operation. |
- if (op == Token::DIV) { |
- // Check for negative zero result. If result is zero, and divisor |
- // is negative, return a floating point negative zero. The |
- // virtual frame is unchanged in this block, so local control flow |
- // can use a Label rather than a JumpTarget. If the context of this |
- // expression will treat -0 like 0, do not do this test. |
- if (!expr->no_negative_zero()) { |
- Label non_zero_result; |
- __ test(left->reg(), Operand(left->reg())); |
- __ j(not_zero, &non_zero_result); |
- __ test(right->reg(), Operand(right->reg())); |
- deferred->Branch(negative); |
- __ bind(&non_zero_result); |
- } |
- // Check for the corner case of dividing the most negative smi by |
- // -1. We cannot use the overflow flag, since it is not set by |
- // idiv instruction. |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
- __ cmp(eax, 0x40000000); |
- deferred->Branch(equal); |
- // Check that the remainder is zero. |
- __ test(edx, Operand(edx)); |
- deferred->Branch(not_zero); |
- // Tag the result and store it in the quotient register. |
- __ SmiTag(eax); |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- answer = quotient; |
- } else { |
- ASSERT(op == Token::MOD); |
- // Check for a negative zero result. If the result is zero, and |
- // the dividend is negative, return a floating point negative |
- // zero. The frame is unchanged in this block, so local control |
- // flow can use a Label rather than a JumpTarget. |
- if (!expr->no_negative_zero()) { |
- Label non_zero_result; |
- __ test(edx, Operand(edx)); |
- __ j(not_zero, &non_zero_result, taken); |
- __ test(left->reg(), Operand(left->reg())); |
- deferred->Branch(negative); |
- __ bind(&non_zero_result); |
- } |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- answer = remainder; |
- } |
- ASSERT(answer.is_valid()); |
- return answer; |
- } |
- |
- // Special handling of shift operations because they use fixed |
- // registers. |
- if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { |
- // Move left out of ecx if necessary. |
- if (left->is_register() && left->reg().is(ecx)) { |
- *left = allocator_->Allocate(); |
- ASSERT(left->is_valid()); |
- __ mov(left->reg(), ecx); |
- } |
- right->ToRegister(ecx); |
- left->ToRegister(); |
- ASSERT(left->is_register() && !left->reg().is(ecx)); |
- ASSERT(right->is_register() && right->reg().is(ecx)); |
- if (left_type_info.IsSmi()) { |
- if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); |
- } |
- if (right_type_info.IsSmi()) { |
- if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); |
- } |
- |
- // We will modify right, it must be spilled. |
- frame_->Spill(ecx); |
- // DeferredInlineBinaryOperation requires all the registers that it is told |
- // about to be spilled and distinct. We know that right is ecx and left is |
- // not ecx. |
- frame_->Spill(left->reg()); |
- |
- // Use a fresh answer register to avoid spilling the left operand. |
- answer = allocator_->Allocate(); |
- ASSERT(answer.is_valid()); |
- |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- answer.reg(), |
- left->reg(), |
- ecx, |
- left_type_info, |
- right_type_info, |
- overwrite_mode); |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), |
- left_type_info, right_type_info, |
- deferred->NonSmiInputLabel()); |
- |
- // Untag both operands. |
- __ mov(answer.reg(), left->reg()); |
- __ SmiUntag(answer.reg()); |
- __ SmiUntag(right->reg()); // Right is ecx. |
- |
- // Perform the operation. |
- ASSERT(right->reg().is(ecx)); |
- switch (op) { |
- case Token::SAR: { |
- __ sar_cl(answer.reg()); |
- if (!left_type_info.IsSmi()) { |
- // Check that the *signed* result fits in a smi. |
- __ cmp(answer.reg(), 0xc0000000); |
- deferred->JumpToAnswerOutOfRange(negative); |
- } |
- break; |
- } |
- case Token::SHR: { |
- __ shr_cl(answer.reg()); |
- // Check that the *unsigned* result fits in a smi. Neither of |
- // the two high-order bits can be set: |
- // * 0x80000000: high bit would be lost when smi tagging. |
- // * 0x40000000: this number would convert to negative when smi |
- // tagging. |
- // These two cases can only happen with shifts by 0 or 1 when |
- // handed a valid smi. If the answer cannot be represented by a |
- // smi, restore the left and right arguments, and jump to slow |
- // case. The low bit of the left argument may be lost, but only |
- // in a case where it is dropped anyway. |
- __ test(answer.reg(), Immediate(0xc0000000)); |
- deferred->JumpToAnswerOutOfRange(not_zero); |
- break; |
- } |
- case Token::SHL: { |
- __ shl_cl(answer.reg()); |
- // Check that the *signed* result fits in a smi. |
- __ cmp(answer.reg(), 0xc0000000); |
- deferred->JumpToAnswerOutOfRange(negative); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- // Smi-tag the result in answer. |
- __ SmiTag(answer.reg()); |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- ASSERT(answer.is_valid()); |
- return answer; |
- } |
- |
- // Handle the other binary operations. |
- left->ToRegister(); |
- right->ToRegister(); |
- // DeferredInlineBinaryOperation requires all the registers that it is told |
- // about to be spilled. |
- Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); |
- // A newly allocated register answer is used to hold the answer. The |
- // registers containing left and right are not modified so they don't |
- // need to be spilled in the fast case. |
- answer = allocator_->Allocate(); |
- ASSERT(answer.is_valid()); |
- |
- // Perform the smi tag check. |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- answer.reg(), |
- left->reg(), |
- distinct_right.reg(), |
- left_type_info, |
- right_type_info, |
- overwrite_mode); |
- Label non_smi_bit_op; |
- if (op != Token::BIT_OR) { |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), |
- left_type_info, right_type_info, |
- deferred->NonSmiInputLabel()); |
- } |
- |
- __ mov(answer.reg(), left->reg()); |
- switch (op) { |
- case Token::ADD: |
- __ add(answer.reg(), Operand(right->reg())); |
- deferred->Branch(overflow); |
- break; |
- |
- case Token::SUB: |
- __ sub(answer.reg(), Operand(right->reg())); |
- deferred->Branch(overflow); |
- break; |
- |
- case Token::MUL: { |
- // If the smi tag is 0 we can just leave the tag on one operand. |
- STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
- // Remove smi tag from the left operand (but keep sign). |
- // Left-hand operand has been copied into answer. |
- __ SmiUntag(answer.reg()); |
- // Do multiplication of smis, leaving result in answer. |
- __ imul(answer.reg(), Operand(right->reg())); |
- // Go slow on overflows. |
- deferred->Branch(overflow); |
- // Check for negative zero result. If product is zero, and one |
- // argument is negative, go to slow case. The frame is unchanged |
- // in this block, so local control flow can use a Label rather |
- // than a JumpTarget. |
- if (!expr->no_negative_zero()) { |
- Label non_zero_result; |
- __ test(answer.reg(), Operand(answer.reg())); |
- __ j(not_zero, &non_zero_result, taken); |
- __ mov(answer.reg(), left->reg()); |
- __ or_(answer.reg(), Operand(right->reg())); |
- deferred->Branch(negative); |
- __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. |
- __ bind(&non_zero_result); |
- } |
- break; |
- } |
- |
- case Token::BIT_OR: |
- __ or_(answer.reg(), Operand(right->reg())); |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- __ j(not_zero, deferred->NonSmiInputLabel()); |
- break; |
- |
- case Token::BIT_AND: |
- __ and_(answer.reg(), Operand(right->reg())); |
- break; |
- |
- case Token::BIT_XOR: |
- __ xor_(answer.reg(), Operand(right->reg())); |
- break; |
- |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- ASSERT(answer.is_valid()); |
- return answer; |
-} |
- |
- |
-// Call the appropriate binary operation stub to compute src op value |
-// and leave the result in dst. |
-class DeferredInlineSmiOperation: public DeferredCode { |
- public: |
- DeferredInlineSmiOperation(Token::Value op, |
- Register dst, |
- Register src, |
- TypeInfo type_info, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : op_(op), |
- dst_(dst), |
- src_(src), |
- type_info_(type_info), |
- value_(value), |
- overwrite_mode_(overwrite_mode) { |
- if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; |
- set_comment("[ DeferredInlineSmiOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Token::Value op_; |
- Register dst_; |
- Register src_; |
- TypeInfo type_info_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-void DeferredInlineSmiOperation::Generate() { |
- // For mod we don't generate all the Smi code inline. |
- GenericBinaryOpStub stub( |
- op_, |
- overwrite_mode_, |
- (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(TypeInfo::Smi(), type_info_)); |
- stub.GenerateCall(masm_, src_, value_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-// Call the appropriate binary operation stub to compute value op src |
-// and leave the result in dst. |
-class DeferredInlineSmiOperationReversed: public DeferredCode { |
- public: |
- DeferredInlineSmiOperationReversed(Token::Value op, |
- Register dst, |
- Smi* value, |
- Register src, |
- TypeInfo type_info, |
- OverwriteMode overwrite_mode) |
- : op_(op), |
- dst_(dst), |
- type_info_(type_info), |
- value_(value), |
- src_(src), |
- overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiOperationReversed"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Token::Value op_; |
- Register dst_; |
- TypeInfo type_info_; |
- Smi* value_; |
- Register src_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-void DeferredInlineSmiOperationReversed::Generate() { |
- GenericBinaryOpStub stub( |
- op_, |
- overwrite_mode_, |
- NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(TypeInfo::Smi(), type_info_)); |
- stub.GenerateCall(masm_, value_, src_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-// The result of src + value is in dst. It either overflowed or was not |
-// smi tagged. Undo the speculative addition and call the appropriate |
-// specialized stub for add. The result is left in dst. |
-class DeferredInlineSmiAdd: public DeferredCode { |
- public: |
- DeferredInlineSmiAdd(Register dst, |
- TypeInfo type_info, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), |
- type_info_(type_info), |
- value_(value), |
- overwrite_mode_(overwrite_mode) { |
- if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE; |
- set_comment("[ DeferredInlineSmiAdd"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- TypeInfo type_info_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-void DeferredInlineSmiAdd::Generate() { |
- // Undo the optimistic add operation and call the shared stub. |
- __ sub(Operand(dst_), Immediate(value_)); |
- GenericBinaryOpStub igostub( |
- Token::ADD, |
- overwrite_mode_, |
- NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(TypeInfo::Smi(), type_info_)); |
- igostub.GenerateCall(masm_, dst_, value_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-// The result of value + src is in dst. It either overflowed or was not |
-// smi tagged. Undo the speculative addition and call the appropriate |
-// specialized stub for add. The result is left in dst. |
-class DeferredInlineSmiAddReversed: public DeferredCode { |
- public: |
- DeferredInlineSmiAddReversed(Register dst, |
- TypeInfo type_info, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), |
- type_info_(type_info), |
- value_(value), |
- overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiAddReversed"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- TypeInfo type_info_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-void DeferredInlineSmiAddReversed::Generate() { |
- // Undo the optimistic add operation and call the shared stub. |
- __ sub(Operand(dst_), Immediate(value_)); |
- GenericBinaryOpStub igostub( |
- Token::ADD, |
- overwrite_mode_, |
- NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(TypeInfo::Smi(), type_info_)); |
- igostub.GenerateCall(masm_, value_, dst_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-// The result of src - value is in dst. It either overflowed or was not |
-// smi tagged. Undo the speculative subtraction and call the |
-// appropriate specialized stub for subtract. The result is left in |
-// dst. |
-class DeferredInlineSmiSub: public DeferredCode { |
- public: |
- DeferredInlineSmiSub(Register dst, |
- TypeInfo type_info, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), |
- type_info_(type_info), |
- value_(value), |
- overwrite_mode_(overwrite_mode) { |
- if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; |
- set_comment("[ DeferredInlineSmiSub"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- TypeInfo type_info_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-void DeferredInlineSmiSub::Generate() { |
- // Undo the optimistic sub operation and call the shared stub. |
- __ add(Operand(dst_), Immediate(value_)); |
- GenericBinaryOpStub igostub( |
- Token::SUB, |
- overwrite_mode_, |
- NO_SMI_CODE_IN_STUB, |
- TypeInfo::Combine(TypeInfo::Smi(), type_info_)); |
- igostub.GenerateCall(masm_, dst_, value_); |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, |
- Result* operand, |
- Handle<Object> value, |
- bool reversed, |
- OverwriteMode overwrite_mode) { |
- // Generate inline code for a binary operation when one of the |
- // operands is a constant smi. Consumes the argument "operand". |
- if (IsUnsafeSmi(value)) { |
- Result unsafe_operand(value); |
- if (reversed) { |
- return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, |
- overwrite_mode); |
- } else { |
- return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, |
- overwrite_mode); |
- } |
- } |
- |
- // Get the literal value. |
- Smi* smi_value = Smi::cast(*value); |
- int int_value = smi_value->value(); |
- |
- Token::Value op = expr->op(); |
- Result answer; |
- switch (op) { |
- case Token::ADD: { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- |
- // Optimistically add. Call the specialized add stub if the |
- // result is not a smi or overflows. |
- DeferredCode* deferred = NULL; |
- if (reversed) { |
- deferred = new DeferredInlineSmiAddReversed(operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- } else { |
- deferred = new DeferredInlineSmiAdd(operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- } |
- __ add(Operand(operand->reg()), Immediate(value)); |
- deferred->Branch(overflow); |
- if (!operand->type_info().IsSmi()) { |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- deferred->BindExit(); |
- answer = *operand; |
- break; |
- } |
- |
- case Token::SUB: { |
- DeferredCode* deferred = NULL; |
- if (reversed) { |
- // The reversed case is only hit when the right operand is not a |
- // constant. |
- ASSERT(operand->is_register()); |
- answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- __ Set(answer.reg(), Immediate(value)); |
- deferred = |
- new DeferredInlineSmiOperationReversed(op, |
- answer.reg(), |
- smi_value, |
- operand->reg(), |
- operand->type_info(), |
- overwrite_mode); |
- __ sub(answer.reg(), Operand(operand->reg())); |
- } else { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- answer = *operand; |
- deferred = new DeferredInlineSmiSub(operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- __ sub(Operand(operand->reg()), Immediate(value)); |
- } |
- deferred->Branch(overflow); |
- if (!operand->type_info().IsSmi()) { |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- deferred->BindExit(); |
- operand->Unuse(); |
- break; |
- } |
- |
- case Token::SAR: |
- if (reversed) { |
- Result constant_operand(value); |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- if (!operand->type_info().IsSmi()) { |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- if (shift_value > 0) { |
- __ sar(operand->reg(), shift_value); |
- __ and_(operand->reg(), ~kSmiTagMask); |
- } |
- deferred->BindExit(); |
- } else { |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- if (shift_value > 0) { |
- __ sar(operand->reg(), shift_value); |
- __ and_(operand->reg(), ~kSmiTagMask); |
- } |
- } |
- answer = *operand; |
- } |
- break; |
- |
- case Token::SHR: |
- if (reversed) { |
- Result constant_operand(value); |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- answer.reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- if (!operand->type_info().IsSmi()) { |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- __ mov(answer.reg(), operand->reg()); |
- __ SmiUntag(answer.reg()); |
- __ shr(answer.reg(), shift_value); |
- // A negative Smi shifted right two is in the positive Smi range. |
- if (shift_value < 2) { |
- __ test(answer.reg(), Immediate(0xc0000000)); |
- deferred->Branch(not_zero); |
- } |
- operand->Unuse(); |
- __ SmiTag(answer.reg()); |
- deferred->BindExit(); |
- } |
- break; |
- |
- case Token::SHL: |
- if (reversed) { |
- // Move operand into ecx and also into a second register. |
- // If operand is already in a register, take advantage of that. |
- // This lets us modify ecx, but still bail out to deferred code. |
- Result right; |
- Result right_copy_in_ecx; |
- TypeInfo right_type_info = operand->type_info(); |
- operand->ToRegister(); |
- if (operand->reg().is(ecx)) { |
- right = allocator()->Allocate(); |
- __ mov(right.reg(), ecx); |
- frame_->Spill(ecx); |
- right_copy_in_ecx = *operand; |
- } else { |
- right_copy_in_ecx = allocator()->Allocate(ecx); |
- __ mov(ecx, operand->reg()); |
- right = *operand; |
- } |
- operand->Unuse(); |
- |
- answer = allocator()->Allocate(); |
- DeferredInlineSmiOperationReversed* deferred = |
- new DeferredInlineSmiOperationReversed(op, |
- answer.reg(), |
- smi_value, |
- right.reg(), |
- right_type_info, |
- overwrite_mode); |
- __ mov(answer.reg(), Immediate(int_value)); |
- __ sar(ecx, kSmiTagSize); |
- if (!right_type_info.IsSmi()) { |
- deferred->Branch(carry); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(right.reg()); |
- } |
- __ shl_cl(answer.reg()); |
- __ cmp(answer.reg(), 0xc0000000); |
- deferred->Branch(sign); |
- __ SmiTag(answer.reg()); |
- |
- deferred->BindExit(); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- if (shift_value == 0) { |
- // Spill operand so it can be overwritten in the slow case. |
- frame_->Spill(operand->reg()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- deferred->BindExit(); |
- answer = *operand; |
- } else { |
- // Use a fresh temporary for nonzero shift values. |
- answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- answer.reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- if (!operand->type_info().IsSmi()) { |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- __ mov(answer.reg(), operand->reg()); |
- STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case |
- // We do no shifts, only the Smi conversion, if shift_value is 1. |
- if (shift_value > 1) { |
- __ shl(answer.reg(), shift_value - 1); |
- } |
- // Convert int result to Smi, checking that it is in int range. |
- STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case |
- __ add(answer.reg(), Operand(answer.reg())); |
- deferred->Branch(overflow); |
- deferred->BindExit(); |
- operand->Unuse(); |
- } |
- } |
- break; |
- |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: { |
- operand->ToRegister(); |
- // DeferredInlineBinaryOperation requires all the registers that it is |
- // told about to be spilled. |
- frame_->Spill(operand->reg()); |
- DeferredInlineBinaryOperation* deferred = NULL; |
- if (!operand->type_info().IsSmi()) { |
- Result left = allocator()->Allocate(); |
- ASSERT(left.is_valid()); |
- Result right = allocator()->Allocate(); |
- ASSERT(right.is_valid()); |
- deferred = new DeferredInlineBinaryOperation( |
- op, |
- operand->reg(), |
- left.reg(), |
- right.reg(), |
- operand->type_info(), |
- TypeInfo::Smi(), |
- overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT); |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- deferred->JumpToConstantRhs(not_zero, smi_value); |
- } else if (FLAG_debug_code) { |
- __ AbortIfNotSmi(operand->reg()); |
- } |
- if (op == Token::BIT_AND) { |
- __ and_(Operand(operand->reg()), Immediate(value)); |
- } else if (op == Token::BIT_XOR) { |
- if (int_value != 0) { |
- __ xor_(Operand(operand->reg()), Immediate(value)); |
- } |
- } else { |
- ASSERT(op == Token::BIT_OR); |
- if (int_value != 0) { |
- __ or_(Operand(operand->reg()), Immediate(value)); |
- } |
- } |
- if (deferred != NULL) deferred->BindExit(); |
- answer = *operand; |
- break; |
- } |
- |
- case Token::DIV: |
- if (!reversed && int_value == 2) { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- // Check that lowest log2(value) bits of operand are zero, and test |
- // smi tag at the same time. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- __ test(operand->reg(), Immediate(3)); |
- deferred->Branch(not_zero); // Branch if non-smi or odd smi. |
- __ sar(operand->reg(), 1); |
- deferred->BindExit(); |
- answer = *operand; |
- } else { |
- // Cannot fall through MOD to default case, so we duplicate the |
- // default case here. |
- Result constant_operand(value); |
- if (reversed) { |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, |
- overwrite_mode); |
- } |
- } |
- break; |
- |
- // Generate inline code for mod of powers of 2 and negative powers of 2. |
- case Token::MOD: |
- if (!reversed && |
- int_value != 0 && |
- (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- operand->type_info(), |
- smi_value, |
- overwrite_mode); |
- // Check for negative or non-Smi left hand side. |
- __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask)); |
- deferred->Branch(not_zero); |
- if (int_value < 0) int_value = -int_value; |
- if (int_value == 1) { |
- __ mov(operand->reg(), Immediate(Smi::FromInt(0))); |
- } else { |
- __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); |
- } |
- deferred->BindExit(); |
- answer = *operand; |
- break; |
- } |
- // Fall through if we did not find a power of 2 on the right hand side! |
- // The next case must be the default. |
- |
- default: { |
- Result constant_operand(value); |
- if (reversed) { |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, |
- overwrite_mode); |
- } |
- break; |
- } |
- } |
- ASSERT(answer.is_valid()); |
- return answer; |
-} |
- |
- |
-static bool CouldBeNaN(const Result& result) { |
- if (result.type_info().IsSmi()) return false; |
- if (result.type_info().IsInteger32()) return false; |
- if (!result.is_constant()) return true; |
- if (!result.handle()->IsHeapNumber()) return false; |
- return isnan(HeapNumber::cast(*result.handle())->value()); |
-} |
- |
- |
-// Convert from signed to unsigned comparison to match the way EFLAGS are set |
-// by FPU and XMM compare instructions. |
-static Condition DoubleCondition(Condition cc) { |
- switch (cc) { |
- case less: return below; |
- case equal: return equal; |
- case less_equal: return below_equal; |
- case greater: return above; |
- case greater_equal: return above_equal; |
- default: UNREACHABLE(); |
- } |
- UNREACHABLE(); |
- return equal; |
-} |
- |
- |
-static CompareFlags ComputeCompareFlags(NaNInformation nan_info, |
- bool inline_number_compare) { |
- CompareFlags flags = NO_SMI_COMPARE_IN_STUB; |
- if (nan_info == kCantBothBeNaN) { |
- flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN); |
- } |
- if (inline_number_compare) { |
- flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB); |
- } |
- return flags; |
-} |
- |
- |
-void CodeGenerator::Comparison(AstNode* node, |
- Condition cc, |
- bool strict, |
- ControlDestination* dest) { |
- // Strict only makes sense for equality comparisons. |
- ASSERT(!strict || cc == equal); |
- |
- Result left_side; |
- Result right_side; |
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
- if (cc == greater || cc == less_equal) { |
- cc = ReverseCondition(cc); |
- left_side = frame_->Pop(); |
- right_side = frame_->Pop(); |
- } else { |
- right_side = frame_->Pop(); |
- left_side = frame_->Pop(); |
- } |
- ASSERT(cc == less || cc == equal || cc == greater_equal); |
- |
- // If either side is a constant smi, optimize the comparison. |
- bool left_side_constant_smi = false; |
- bool left_side_constant_null = false; |
- bool left_side_constant_1_char_string = false; |
- if (left_side.is_constant()) { |
- left_side_constant_smi = left_side.handle()->IsSmi(); |
- left_side_constant_null = left_side.handle()->IsNull(); |
- left_side_constant_1_char_string = |
- (left_side.handle()->IsString() && |
- String::cast(*left_side.handle())->length() == 1 && |
- String::cast(*left_side.handle())->IsAsciiRepresentation()); |
- } |
- bool right_side_constant_smi = false; |
- bool right_side_constant_null = false; |
- bool right_side_constant_1_char_string = false; |
- if (right_side.is_constant()) { |
- right_side_constant_smi = right_side.handle()->IsSmi(); |
- right_side_constant_null = right_side.handle()->IsNull(); |
- right_side_constant_1_char_string = |
- (right_side.handle()->IsString() && |
- String::cast(*right_side.handle())->length() == 1 && |
- String::cast(*right_side.handle())->IsAsciiRepresentation()); |
- } |
- |
- if (left_side_constant_smi || right_side_constant_smi) { |
- bool is_loop_condition = (node->AsExpression() != NULL) && |
- node->AsExpression()->is_loop_condition(); |
- ConstantSmiComparison(cc, strict, dest, &left_side, &right_side, |
- left_side_constant_smi, right_side_constant_smi, |
- is_loop_condition); |
- } else if (left_side_constant_1_char_string || |
- right_side_constant_1_char_string) { |
- if (left_side_constant_1_char_string && right_side_constant_1_char_string) { |
- // Trivial case, comparing two constants. |
- int left_value = String::cast(*left_side.handle())->Get(0); |
- int right_value = String::cast(*right_side.handle())->Get(0); |
- switch (cc) { |
- case less: |
- dest->Goto(left_value < right_value); |
- break; |
- case equal: |
- dest->Goto(left_value == right_value); |
- break; |
- case greater_equal: |
- dest->Goto(left_value >= right_value); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } else { |
- // Only one side is a constant 1 character string. |
- // If left side is a constant 1-character string, reverse the operands. |
- // Since one side is a constant string, conversion order does not matter. |
- if (left_side_constant_1_char_string) { |
- Result temp = left_side; |
- left_side = right_side; |
- right_side = temp; |
- cc = ReverseCondition(cc); |
- // This may reintroduce greater or less_equal as the value of cc. |
- // CompareStub and the inline code both support all values of cc. |
- } |
- // Implement comparison against a constant string, inlining the case |
- // where both sides are strings. |
- left_side.ToRegister(); |
- |
- // Here we split control flow to the stub call and inlined cases |
- // before finally splitting it to the control destination. We use |
- // a jump target and branching to duplicate the virtual frame at |
- // the first split. We manually handle the off-frame references |
- // by reconstituting them on the non-fall-through path. |
- JumpTarget is_not_string, is_string; |
- Register left_reg = left_side.reg(); |
- Handle<Object> right_val = right_side.handle(); |
- ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); |
- __ test(left_side.reg(), Immediate(kSmiTagMask)); |
- is_not_string.Branch(zero, &left_side); |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), |
- FieldOperand(left_side.reg(), HeapObject::kMapOffset)); |
- __ movzx_b(temp.reg(), |
- FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); |
- // If we are testing for equality then make use of the symbol shortcut. |
- // Check if the right left hand side has the same type as the left hand |
- // side (which is always a symbol). |
- if (cc == equal) { |
- Label not_a_symbol; |
- STATIC_ASSERT(kSymbolTag != 0); |
- // Ensure that no non-strings have the symbol bit set. |
- STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
- __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. |
- __ j(zero, ¬_a_symbol); |
- // They are symbols, so do identity compare. |
- __ cmp(left_side.reg(), right_side.handle()); |
- dest->true_target()->Branch(equal); |
- dest->false_target()->Branch(not_equal); |
- __ bind(¬_a_symbol); |
- } |
- // Call the compare stub if the left side is not a flat ascii string. |
- __ and_(temp.reg(), |
- kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); |
- __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag); |
- temp.Unuse(); |
- is_string.Branch(equal, &left_side); |
- |
- // Setup and call the compare stub. |
- is_not_string.Bind(&left_side); |
- CompareFlags flags = |
- static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB); |
- CompareStub stub(cc, strict, flags); |
- Result result = frame_->CallStub(&stub, &left_side, &right_side); |
- result.ToRegister(); |
- __ cmp(result.reg(), 0); |
- result.Unuse(); |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
- |
- is_string.Bind(&left_side); |
- // left_side is a sequential ASCII string. |
- left_side = Result(left_reg); |
- right_side = Result(right_val); |
- // Test string equality and comparison. |
- Label comparison_done; |
- if (cc == equal) { |
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), |
- Immediate(Smi::FromInt(1))); |
- __ j(not_equal, &comparison_done); |
- uint8_t char_value = |
- static_cast<uint8_t>(String::cast(*right_val)->Get(0)); |
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), |
- char_value); |
- } else { |
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), |
- Immediate(Smi::FromInt(1))); |
- // If the length is 0 then the jump is taken and the flags |
- // correctly represent being less than the one-character string. |
- __ j(below, &comparison_done); |
- // Compare the first character of the string with the |
- // constant 1-character string. |
- uint8_t char_value = |
- static_cast<uint8_t>(String::cast(*right_val)->Get(0)); |
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), |
- char_value); |
- __ j(not_equal, &comparison_done); |
- // If the first character is the same then the long string sorts after |
- // the short one. |
- __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), |
- Immediate(Smi::FromInt(1))); |
- } |
- __ bind(&comparison_done); |
- left_side.Unuse(); |
- right_side.Unuse(); |
- dest->Split(cc); |
- } |
- } else { |
- // Neither side is a constant Smi, constant 1-char string or constant null. |
- // If either side is a non-smi constant, or known to be a heap number, |
- // skip the smi check. |
- bool known_non_smi = |
- (left_side.is_constant() && !left_side.handle()->IsSmi()) || |
- (right_side.is_constant() && !right_side.handle()->IsSmi()) || |
- left_side.type_info().IsDouble() || |
- right_side.type_info().IsDouble(); |
- |
- NaNInformation nan_info = |
- (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? |
- kBothCouldBeNaN : |
- kCantBothBeNaN; |
- |
- // Inline number comparison handling any combination of smi's and heap |
- // numbers if: |
- // code is in a loop |
- // the compare operation is different from equal |
- // compare is not a for-loop comparison |
- // The reason for excluding equal is that it will most likely be done |
- // with smi's (not heap numbers) and the code to comparing smi's is inlined |
- // separately. The same reason applies for for-loop comparison which will |
- // also most likely be smi comparisons. |
- bool is_loop_condition = (node->AsExpression() != NULL) |
- && node->AsExpression()->is_loop_condition(); |
- bool inline_number_compare = |
- loop_nesting() > 0 && cc != equal && !is_loop_condition; |
- |
- // Left and right needed in registers for the following code. |
- left_side.ToRegister(); |
- right_side.ToRegister(); |
- |
- if (known_non_smi) { |
- // Inlined equality check: |
- // If at least one of the objects is not NaN, then if the objects |
- // are identical, they are equal. |
- if (nan_info == kCantBothBeNaN && cc == equal) { |
- __ cmp(left_side.reg(), Operand(right_side.reg())); |
- dest->true_target()->Branch(equal); |
- } |
- |
- // Inlined number comparison: |
- if (inline_number_compare) { |
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
- } |
- |
- // End of in-line compare, call out to the compare stub. Don't include |
- // number comparison in the stub if it was inlined. |
- CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare); |
- CompareStub stub(cc, strict, flags); |
- Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
- __ test(answer.reg(), Operand(answer.reg())); |
- answer.Unuse(); |
- dest->Split(cc); |
- } else { |
- // Here we split control flow to the stub call and inlined cases |
- // before finally splitting it to the control destination. We use |
- // a jump target and branching to duplicate the virtual frame at |
- // the first split. We manually handle the off-frame references |
- // by reconstituting them on the non-fall-through path. |
- JumpTarget is_smi; |
- Register left_reg = left_side.reg(); |
- Register right_reg = right_side.reg(); |
- |
- // In-line check for comparing two smis. |
- JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi); |
- |
- if (has_valid_frame()) { |
- // Inline the equality check if both operands can't be a NaN. If both |
- // objects are the same they are equal. |
- if (nan_info == kCantBothBeNaN && cc == equal) { |
- __ cmp(left_side.reg(), Operand(right_side.reg())); |
- dest->true_target()->Branch(equal); |
- } |
- |
- // Inlined number comparison: |
- if (inline_number_compare) { |
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
- } |
- |
- // End of in-line compare, call out to the compare stub. Don't include |
- // number comparison in the stub if it was inlined. |
- CompareFlags flags = |
- ComputeCompareFlags(nan_info, inline_number_compare); |
- CompareStub stub(cc, strict, flags); |
- Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
- __ test(answer.reg(), Operand(answer.reg())); |
- answer.Unuse(); |
- if (is_smi.is_linked()) { |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
- } else { |
- dest->Split(cc); |
- } |
- } |
- |
- if (is_smi.is_linked()) { |
- is_smi.Bind(); |
- left_side = Result(left_reg); |
- right_side = Result(right_reg); |
- __ cmp(left_side.reg(), Operand(right_side.reg())); |
- right_side.Unuse(); |
- left_side.Unuse(); |
- dest->Split(cc); |
- } |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::ConstantSmiComparison(Condition cc, |
- bool strict, |
- ControlDestination* dest, |
- Result* left_side, |
- Result* right_side, |
- bool left_side_constant_smi, |
- bool right_side_constant_smi, |
- bool is_loop_condition) { |
- if (left_side_constant_smi && right_side_constant_smi) { |
- // Trivial case, comparing two constants. |
- int left_value = Smi::cast(*left_side->handle())->value(); |
- int right_value = Smi::cast(*right_side->handle())->value(); |
- switch (cc) { |
- case less: |
- dest->Goto(left_value < right_value); |
- break; |
- case equal: |
- dest->Goto(left_value == right_value); |
- break; |
- case greater_equal: |
- dest->Goto(left_value >= right_value); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } else { |
- // Only one side is a constant Smi. |
- // If left side is a constant Smi, reverse the operands. |
- // Since one side is a constant Smi, conversion order does not matter. |
- if (left_side_constant_smi) { |
- Result* temp = left_side; |
- left_side = right_side; |
- right_side = temp; |
- cc = ReverseCondition(cc); |
- // This may re-introduce greater or less_equal as the value of cc. |
- // CompareStub and the inline code both support all values of cc. |
- } |
- // Implement comparison against a constant Smi, inlining the case |
- // where both sides are Smis. |
- left_side->ToRegister(); |
- Register left_reg = left_side->reg(); |
- Handle<Object> right_val = right_side->handle(); |
- |
- if (left_side->is_smi()) { |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left_reg); |
- } |
- // Test smi equality and comparison by signed int comparison. |
- if (IsUnsafeSmi(right_side->handle())) { |
- right_side->ToRegister(); |
- __ cmp(left_reg, Operand(right_side->reg())); |
- } else { |
- __ cmp(Operand(left_reg), Immediate(right_side->handle())); |
- } |
- left_side->Unuse(); |
- right_side->Unuse(); |
- dest->Split(cc); |
- } else { |
- // Only the case where the left side could possibly be a non-smi is left. |
- JumpTarget is_smi; |
- if (cc == equal) { |
- // We can do the equality comparison before the smi check. |
- __ cmp(Operand(left_reg), Immediate(right_side->handle())); |
- dest->true_target()->Branch(equal); |
- __ test(left_reg, Immediate(kSmiTagMask)); |
- dest->false_target()->Branch(zero); |
- } else { |
- // Do the smi check, then the comparison. |
- __ test(left_reg, Immediate(kSmiTagMask)); |
- is_smi.Branch(zero, left_side, right_side); |
- } |
- |
- // Jump or fall through to here if we are comparing a non-smi to a |
- // constant smi. If the non-smi is a heap number and this is not |
- // a loop condition, inline the floating point code. |
- if (!is_loop_condition && |
- CpuFeatures::IsSupported(SSE2)) { |
- // Right side is a constant smi and left side has been checked |
- // not to be a smi. |
- CpuFeatures::Scope use_sse2(SSE2); |
- JumpTarget not_number; |
- __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset), |
- Immediate(FACTORY->heap_number_map())); |
- not_number.Branch(not_equal, left_side); |
- __ movdbl(xmm1, |
- FieldOperand(left_reg, HeapNumber::kValueOffset)); |
- int value = Smi::cast(*right_val)->value(); |
- if (value == 0) { |
- __ xorpd(xmm0, xmm0); |
- } else { |
- Result temp = allocator()->Allocate(); |
- __ mov(temp.reg(), Immediate(value)); |
- __ cvtsi2sd(xmm0, Operand(temp.reg())); |
- temp.Unuse(); |
- } |
- __ ucomisd(xmm1, xmm0); |
- // Jump to builtin for NaN. |
- not_number.Branch(parity_even, left_side); |
- left_side->Unuse(); |
- dest->true_target()->Branch(DoubleCondition(cc)); |
- dest->false_target()->Jump(); |
- not_number.Bind(left_side); |
- } |
- |
- // Setup and call the compare stub. |
- CompareFlags flags = |
- static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB); |
- CompareStub stub(cc, strict, flags); |
- Result result = frame_->CallStub(&stub, left_side, right_side); |
- result.ToRegister(); |
- __ test(result.reg(), Operand(result.reg())); |
- result.Unuse(); |
- if (cc == equal) { |
- dest->Split(cc); |
- } else { |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
- |
- // It is important for performance for this case to be at the end. |
- is_smi.Bind(left_side, right_side); |
- if (IsUnsafeSmi(right_side->handle())) { |
- right_side->ToRegister(); |
- __ cmp(left_reg, Operand(right_side->reg())); |
- } else { |
- __ cmp(Operand(left_reg), Immediate(right_side->handle())); |
- } |
- left_side->Unuse(); |
- right_side->Unuse(); |
- dest->Split(cc); |
- } |
- } |
- } |
-} |
- |
- |
-// Check that the comparison operand is a number. Jump to not_numbers jump |
-// target passing the left and right result if the operand is not a number. |
-static void CheckComparisonOperand(MacroAssembler* masm_, |
- Result* operand, |
- Result* left_side, |
- Result* right_side, |
- JumpTarget* not_numbers) { |
- // Perform check if operand is not known to be a number. |
- if (!operand->type_info().IsNumber()) { |
- Label done; |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- __ j(zero, &done); |
- __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->heap_number_map())); |
- not_numbers->Branch(not_equal, left_side, right_side, not_taken); |
- __ bind(&done); |
- } |
-} |
- |
- |
-// Load a comparison operand to the FPU stack. This assumes that the operand has |
-// already been checked and is a number. |
-static void LoadComparisonOperand(MacroAssembler* masm_, |
- Result* operand) { |
- Label done; |
- if (operand->type_info().IsDouble()) { |
- // Operand is known to be a heap number, just load it. |
- __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- } else if (operand->type_info().IsSmi()) { |
- // Operand is known to be a smi. Convert it to double and keep the original |
- // smi. |
- __ SmiUntag(operand->reg()); |
- __ push(operand->reg()); |
- __ fild_s(Operand(esp, 0)); |
- __ pop(operand->reg()); |
- __ SmiTag(operand->reg()); |
- } else { |
- // Operand type not known, check for smi otherwise assume heap number. |
- Label smi; |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- __ j(zero, &smi); |
- __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- __ bind(&smi); |
- __ SmiUntag(operand->reg()); |
- __ push(operand->reg()); |
- __ fild_s(Operand(esp, 0)); |
- __ pop(operand->reg()); |
- __ SmiTag(operand->reg()); |
- __ jmp(&done); |
- } |
- __ bind(&done); |
-} |
- |
- |
-// Load a comparison operand into into a XMM register. Jump to not_numbers jump |
-// target passing the left and right result if the operand is not a number. |
-static void LoadComparisonOperandSSE2(MacroAssembler* masm_, |
- Result* operand, |
- XMMRegister xmm_reg, |
- Result* left_side, |
- Result* right_side, |
- JumpTarget* not_numbers) { |
- Label done; |
- if (operand->type_info().IsDouble()) { |
- // Operand is known to be a heap number, just load it. |
- __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- } else if (operand->type_info().IsSmi()) { |
- // Operand is known to be a smi. Convert it to double and keep the original |
- // smi. |
- __ SmiUntag(operand->reg()); |
- __ cvtsi2sd(xmm_reg, Operand(operand->reg())); |
- __ SmiTag(operand->reg()); |
- } else { |
- // Operand type not known, check for smi or heap number. |
- Label smi; |
- __ test(operand->reg(), Immediate(kSmiTagMask)); |
- __ j(zero, &smi); |
- if (!operand->type_info().IsNumber()) { |
- __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->heap_number_map())); |
- not_numbers->Branch(not_equal, left_side, right_side, taken); |
- } |
- __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- |
- __ bind(&smi); |
- // Comvert smi to float and keep the original smi. |
- __ SmiUntag(operand->reg()); |
- __ cvtsi2sd(xmm_reg, Operand(operand->reg())); |
- __ SmiTag(operand->reg()); |
- __ jmp(&done); |
- } |
- __ bind(&done); |
-} |
- |
- |
-void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, |
- Result* right_side, |
- Condition cc, |
- ControlDestination* dest) { |
- ASSERT(left_side->is_register()); |
- ASSERT(right_side->is_register()); |
- |
- JumpTarget not_numbers; |
- if (CpuFeatures::IsSupported(SSE2)) { |
- CpuFeatures::Scope use_sse2(SSE2); |
- |
- // Load left and right operand into registers xmm0 and xmm1 and compare. |
- LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side, |
- ¬_numbers); |
- LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side, |
- ¬_numbers); |
- __ ucomisd(xmm0, xmm1); |
- } else { |
- Label check_right, compare; |
- |
- // Make sure that both comparison operands are numbers. |
- CheckComparisonOperand(masm_, left_side, left_side, right_side, |
- ¬_numbers); |
- CheckComparisonOperand(masm_, right_side, left_side, right_side, |
- ¬_numbers); |
- |
- // Load right and left operand to FPU stack and compare. |
- LoadComparisonOperand(masm_, right_side); |
- LoadComparisonOperand(masm_, left_side); |
- __ FCmp(); |
- } |
- |
- // Bail out if a NaN is involved. |
- not_numbers.Branch(parity_even, left_side, right_side, not_taken); |
- |
- // Split to destination targets based on comparison. |
- left_side->Unuse(); |
- right_side->Unuse(); |
- dest->true_target()->Branch(DoubleCondition(cc)); |
- dest->false_target()->Jump(); |
- |
- not_numbers.Bind(left_side, right_side); |
-} |
- |
- |
-// Call the function just below TOS on the stack with the given |
-// arguments. The receiver is the TOS. |
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
- CallFunctionFlags flags, |
- int position) { |
- // Push the arguments ("left-to-right") on the stack. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
- |
- // Record the position for debugging purposes. |
- CodeForSourcePosition(position); |
- |
- // Use the shared code stub to call the function. |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- CallFunctionStub call_function(arg_count, in_loop, flags); |
- Result answer = frame_->CallStub(&call_function, arg_count + 1); |
- // Restore context and replace function on the stack with the |
- // result of the stub invocation. |
- frame_->RestoreContextRegister(); |
- frame_->SetElementAt(0, &answer); |
-} |
- |
- |
-void CodeGenerator::CallApplyLazy(Expression* applicand, |
- Expression* receiver, |
- VariableProxy* arguments, |
- int position) { |
- // An optimized implementation of expressions of the form |
- // x.apply(y, arguments). |
- // If the arguments object of the scope has not been allocated, |
- // and x.apply is Function.prototype.apply, this optimization |
- // just copies y and the arguments of the current function on the |
- // stack, as receiver and arguments, and calls x. |
- // In the implementation comments, we call x the applicand |
- // and y the receiver. |
- ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); |
- ASSERT(arguments->IsArguments()); |
- |
- // Load applicand.apply onto the stack. This will usually |
- // give us a megamorphic load site. Not super, but it works. |
- Load(applicand); |
- frame()->Dup(); |
- Handle<String> name = FACTORY->LookupAsciiSymbol("apply"); |
- frame()->Push(name); |
- Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); |
- __ nop(); |
- frame()->Push(&answer); |
- |
- // Load the receiver and the existing arguments object onto the |
- // expression stack. Avoid allocating the arguments object here. |
- Load(receiver); |
- LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); |
- |
- // Emit the source position information after having loaded the |
- // receiver and the arguments. |
- CodeForSourcePosition(position); |
- // Contents of frame at this point: |
- // Frame[0]: arguments object of the current function or the hole. |
- // Frame[1]: receiver |
- // Frame[2]: applicand.apply |
- // Frame[3]: applicand. |
- |
- // Check if the arguments object has been lazily allocated |
- // already. If so, just use that instead of copying the arguments |
- // from the stack. This also deals with cases where a local variable |
- // named 'arguments' has been introduced. |
- frame_->Dup(); |
- Result probe = frame_->Pop(); |
- { VirtualFrame::SpilledScope spilled_scope; |
- Label slow, done; |
- bool try_lazy = true; |
- if (probe.is_constant()) { |
- try_lazy = probe.handle()->IsArgumentsMarker(); |
- } else { |
- __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker())); |
- probe.Unuse(); |
- __ j(not_equal, &slow); |
- } |
- |
- if (try_lazy) { |
- Label build_args; |
- // Get rid of the arguments object probe. |
- frame_->Drop(); // Can be called on a spilled frame. |
- // Stack now has 3 elements on it. |
- // Contents of stack at this point: |
- // esp[0]: receiver |
- // esp[1]: applicand.apply |
- // esp[2]: applicand. |
- |
- // Check that the receiver really is a JavaScript object. |
- __ mov(eax, Operand(esp, 0)); |
- __ test(eax, Immediate(kSmiTagMask)); |
- __ j(zero, &build_args); |
- // We allow all JSObjects including JSFunctions. As long as |
- // JS_FUNCTION_TYPE is the last instance type and it is right |
- // after LAST_JS_OBJECT_TYPE, we do not have to check the upper |
- // bound. |
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
- __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
- __ j(below, &build_args); |
- |
- // Check that applicand.apply is Function.prototype.apply. |
- __ mov(eax, Operand(esp, kPointerSize)); |
- __ test(eax, Immediate(kSmiTagMask)); |
- __ j(zero, &build_args); |
- __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx); |
- __ j(not_equal, &build_args); |
- __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset)); |
- __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
- Handle<Code> apply_code(masm()->isolate()->builtins()->builtin( |
- Builtins::kFunctionApply)); |
- __ cmp(Operand(ecx), Immediate(apply_code)); |
- __ j(not_equal, &build_args); |
- |
- // Check that applicand is a function. |
- __ mov(edi, Operand(esp, 2 * kPointerSize)); |
- __ test(edi, Immediate(kSmiTagMask)); |
- __ j(zero, &build_args); |
- __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
- __ j(not_equal, &build_args); |
- |
- // Copy the arguments to this function possibly from the |
- // adaptor frame below it. |
- Label invoke, adapted; |
- __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
- __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); |
- __ cmp(Operand(ecx), |
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- __ j(equal, &adapted); |
- |
- // No arguments adaptor frame. Copy fixed number of arguments. |
- __ mov(eax, Immediate(scope()->num_parameters())); |
- for (int i = 0; i < scope()->num_parameters(); i++) { |
- __ push(frame_->ParameterAt(i)); |
- } |
- __ jmp(&invoke); |
- |
- // Arguments adaptor frame present. Copy arguments from there, but |
- // avoid copying too many arguments to avoid stack overflows. |
- __ bind(&adapted); |
- static const uint32_t kArgumentsLimit = 1 * KB; |
- __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ SmiUntag(eax); |
- __ mov(ecx, Operand(eax)); |
- __ cmp(eax, kArgumentsLimit); |
- __ j(above, &build_args); |
- |
- // Loop through the arguments pushing them onto the execution |
- // stack. We don't inform the virtual frame of the push, so we don't |
- // have to worry about getting rid of the elements from the virtual |
- // frame. |
- Label loop; |
- // ecx is a small non-negative integer, due to the test above. |
- __ test(ecx, Operand(ecx)); |
- __ j(zero, &invoke); |
- __ bind(&loop); |
- __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize)); |
- __ dec(ecx); |
- __ j(not_zero, &loop); |
- |
- // Invoke the function. |
- __ bind(&invoke); |
- ParameterCount actual(eax); |
- __ InvokeFunction(edi, actual, CALL_FUNCTION); |
- // Drop applicand.apply and applicand from the stack, and push |
- // the result of the function call, but leave the spilled frame |
- // unchanged, with 3 elements, so it is correct when we compile the |
- // slow-case code. |
- __ add(Operand(esp), Immediate(2 * kPointerSize)); |
- __ push(eax); |
- // Stack now has 1 element: |
- // esp[0]: result |
- __ jmp(&done); |
- |
- // Slow-case: Allocate the arguments object since we know it isn't |
- // there, and fall-through to the slow-case where we call |
- // applicand.apply. |
- __ bind(&build_args); |
- // Stack now has 3 elements, because we have jumped from where: |
- // esp[0]: receiver |
- // esp[1]: applicand.apply |
- // esp[2]: applicand. |
- |
- // StoreArgumentsObject requires a correct frame, and may modify it. |
- Result arguments_object = StoreArgumentsObject(false); |
- frame_->SpillAll(); |
- arguments_object.ToRegister(); |
- frame_->EmitPush(arguments_object.reg()); |
- arguments_object.Unuse(); |
- // Stack and frame now have 4 elements. |
- __ bind(&slow); |
- } |
- |
- // Generic computation of x.apply(y, args) with no special optimization. |
- // Flip applicand.apply and applicand on the stack, so |
- // applicand looks like the receiver of the applicand.apply call. |
- // Then process it as a normal function call. |
- __ mov(eax, Operand(esp, 3 * kPointerSize)); |
- __ mov(ebx, Operand(esp, 2 * kPointerSize)); |
- __ mov(Operand(esp, 2 * kPointerSize), eax); |
- __ mov(Operand(esp, 3 * kPointerSize), ebx); |
- |
- CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); |
- Result res = frame_->CallStub(&call_function, 3); |
- // The function and its two arguments have been dropped. |
- frame_->Drop(1); // Drop the receiver as well. |
- res.ToRegister(); |
- frame_->EmitPush(res.reg()); |
- // Stack now has 1 element: |
- // esp[0]: result |
- if (try_lazy) __ bind(&done); |
- } // End of spilled scope. |
- // Restore the context register after a call. |
- frame_->RestoreContextRegister(); |
-} |
- |
- |
-class DeferredStackCheck: public DeferredCode { |
- public: |
- DeferredStackCheck() { |
- set_comment("[ DeferredStackCheck"); |
- } |
- |
- virtual void Generate(); |
-}; |
- |
- |
-void DeferredStackCheck::Generate() { |
- StackCheckStub stub; |
- __ CallStub(&stub); |
-} |
- |
- |
-void CodeGenerator::CheckStack() { |
- DeferredStackCheck* deferred = new DeferredStackCheck; |
- ExternalReference stack_limit = |
- ExternalReference::address_of_stack_limit(masm()->isolate()); |
- __ cmp(esp, Operand::StaticVariable(stack_limit)); |
- deferred->Branch(below); |
- deferred->BindExit(); |
-} |
- |
- |
-void CodeGenerator::VisitAndSpill(Statement* statement) { |
- ASSERT(in_spilled_code()); |
- set_in_spilled_code(false); |
- Visit(statement); |
- if (frame_ != NULL) { |
- frame_->SpillAll(); |
- } |
- set_in_spilled_code(true); |
-} |
- |
- |
-void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- ASSERT(in_spilled_code()); |
- set_in_spilled_code(false); |
- VisitStatements(statements); |
- if (frame_ != NULL) { |
- frame_->SpillAll(); |
- } |
- set_in_spilled_code(true); |
- |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- ASSERT(!in_spilled_code()); |
- for (int i = 0; has_valid_frame() && i < statements->length(); i++) { |
- Visit(statements->at(i)); |
- } |
- ASSERT(!has_valid_frame() || frame_->height() == original_height); |
-} |
- |
- |
-void CodeGenerator::VisitBlock(Block* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ Block"); |
- CodeForStatementPosition(node); |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- VisitStatements(node->statements()); |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- node->break_target()->Unuse(); |
-} |
- |
- |
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
- // Call the runtime to declare the globals. The inevitable call |
- // will sync frame elements to memory anyway, so we do it eagerly to |
- // allow us to push the arguments directly into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- |
- frame_->EmitPush(esi); // The context is the first argument. |
- frame_->EmitPush(Immediate(pairs)); |
- frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); |
- frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag()))); |
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4); |
- // Return value is ignored. |
-} |
- |
- |
-void CodeGenerator::VisitDeclaration(Declaration* node) { |
- Comment cmnt(masm_, "[ Declaration"); |
- Variable* var = node->proxy()->var(); |
- ASSERT(var != NULL); // must have been resolved |
- Slot* slot = var->AsSlot(); |
- |
- // If it was not possible to allocate the variable at compile time, |
- // we need to "declare" it at runtime to make sure it actually |
- // exists in the local context. |
- if (slot != NULL && slot->type() == Slot::LOOKUP) { |
- // Variables with a "LOOKUP" slot were introduced as non-locals |
- // during variable resolution and must have mode DYNAMIC. |
- ASSERT(var->is_dynamic()); |
- // For now, just do a runtime call. Sync the virtual frame eagerly |
- // so we can simply push the arguments into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- frame_->EmitPush(esi); |
- frame_->EmitPush(Immediate(var->name())); |
- // Declaration nodes are always introduced in one of two modes. |
- ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); |
- PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; |
- frame_->EmitPush(Immediate(Smi::FromInt(attr))); |
- // Push initial value, if any. |
- // Note: For variables we must not push an initial value (such as |
- // 'undefined') because we may have a (legal) redeclaration and we |
- // must not destroy the current value. |
- if (node->mode() == Variable::CONST) { |
- frame_->EmitPush(Immediate(FACTORY->the_hole_value())); |
- } else if (node->fun() != NULL) { |
- Load(node->fun()); |
- } else { |
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! |
- } |
- Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); |
- // Ignore the return value (declarations are statements). |
- return; |
- } |
- |
- ASSERT(!var->is_global()); |
- |
- // If we have a function or a constant, we need to initialize the variable. |
- Expression* val = NULL; |
- if (node->mode() == Variable::CONST) { |
- val = new Literal(FACTORY->the_hole_value()); |
- } else { |
- val = node->fun(); // NULL if we don't have a function |
- } |
- |
- if (val != NULL) { |
- { |
- // Set the initial value. |
- Reference target(this, node->proxy()); |
- Load(val); |
- target.SetValue(NOT_CONST_INIT); |
- // The reference is removed from the stack (preserving TOS) when |
- // it goes out of scope. |
- } |
- // Get rid of the assigned value (declarations are statements). |
- frame_->Drop(); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ ExpressionStatement"); |
- CodeForStatementPosition(node); |
- Expression* expression = node->expression(); |
- expression->MarkAsStatement(); |
- Load(expression); |
- // Remove the lingering expression result from the top of stack. |
- frame_->Drop(); |
-} |
- |
- |
-void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "// EmptyStatement"); |
- CodeForStatementPosition(node); |
- // nothing to do |
-} |
- |
- |
-void CodeGenerator::VisitIfStatement(IfStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ IfStatement"); |
- // Generate different code depending on which parts of the if statement |
- // are present or not. |
- bool has_then_stm = node->HasThenStatement(); |
- bool has_else_stm = node->HasElseStatement(); |
- |
- CodeForStatementPosition(node); |
- JumpTarget exit; |
- if (has_then_stm && has_else_stm) { |
- JumpTarget then; |
- JumpTarget else_; |
- ControlDestination dest(&then, &else_, true); |
- LoadCondition(node->condition(), &dest, true); |
- |
- if (dest.false_was_fall_through()) { |
- // The else target was bound, so we compile the else part first. |
- Visit(node->else_statement()); |
- |
- // We may have dangling jumps to the then part. |
- if (then.is_linked()) { |
- if (has_valid_frame()) exit.Jump(); |
- then.Bind(); |
- Visit(node->then_statement()); |
- } |
- } else { |
- // The then target was bound, so we compile the then part first. |
- Visit(node->then_statement()); |
- |
- if (else_.is_linked()) { |
- if (has_valid_frame()) exit.Jump(); |
- else_.Bind(); |
- Visit(node->else_statement()); |
- } |
- } |
- |
- } else if (has_then_stm) { |
- ASSERT(!has_else_stm); |
- JumpTarget then; |
- ControlDestination dest(&then, &exit, true); |
- LoadCondition(node->condition(), &dest, true); |
- |
- if (dest.false_was_fall_through()) { |
- // The exit label was bound. We may have dangling jumps to the |
- // then part. |
- if (then.is_linked()) { |
- exit.Unuse(); |
- exit.Jump(); |
- then.Bind(); |
- Visit(node->then_statement()); |
- } |
- } else { |
- // The then label was bound. |
- Visit(node->then_statement()); |
- } |
- |
- } else if (has_else_stm) { |
- ASSERT(!has_then_stm); |
- JumpTarget else_; |
- ControlDestination dest(&exit, &else_, false); |
- LoadCondition(node->condition(), &dest, true); |
- |
- if (dest.true_was_fall_through()) { |
- // The exit label was bound. We may have dangling jumps to the |
- // else part. |
- if (else_.is_linked()) { |
- exit.Unuse(); |
- exit.Jump(); |
- else_.Bind(); |
- Visit(node->else_statement()); |
- } |
- } else { |
- // The else label was bound. |
- Visit(node->else_statement()); |
- } |
- |
- } else { |
- ASSERT(!has_then_stm && !has_else_stm); |
- // We only care about the condition's side effects (not its value |
- // or control flow effect). LoadCondition is called without |
- // forcing control flow. |
- ControlDestination dest(&exit, &exit, true); |
- LoadCondition(node->condition(), &dest, false); |
- if (!dest.is_used()) { |
- // We got a value on the frame rather than (or in addition to) |
- // control flow. |
- frame_->Drop(); |
- } |
- } |
- |
- if (exit.is_linked()) { |
- exit.Bind(); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ ContinueStatement"); |
- CodeForStatementPosition(node); |
- node->target()->continue_target()->Jump(); |
-} |
- |
- |
-void CodeGenerator::VisitBreakStatement(BreakStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ BreakStatement"); |
- CodeForStatementPosition(node); |
- node->target()->break_target()->Jump(); |
-} |
- |
- |
-void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ ReturnStatement"); |
- |
- CodeForStatementPosition(node); |
- Load(node->expression()); |
- Result return_value = frame_->Pop(); |
- masm()->positions_recorder()->WriteRecordedPositions(); |
- if (function_return_is_shadowed_) { |
- function_return_.Jump(&return_value); |
- } else { |
- frame_->PrepareForReturn(); |
- if (function_return_.is_bound()) { |
- // If the function return label is already bound we reuse the |
- // code by jumping to the return site. |
- function_return_.Jump(&return_value); |
- } else { |
- function_return_.Bind(&return_value); |
- GenerateReturnSequence(&return_value); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateReturnSequence(Result* return_value) { |
- // The return value is a live (but not currently reference counted) |
- // reference to eax. This is safe because the current frame does not |
- // contain a reference to eax (it is prepared for the return by spilling |
- // all registers). |
- if (FLAG_trace) { |
- frame_->Push(return_value); |
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); |
- } |
- return_value->ToRegister(eax); |
- |
- // Add a label for checking the size of the code used for returning. |
-#ifdef DEBUG |
- Label check_exit_codesize; |
- masm_->bind(&check_exit_codesize); |
-#endif |
- |
- // Leave the frame and return popping the arguments and the |
- // receiver. |
- frame_->Exit(); |
- int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize; |
- __ Ret(arguments_bytes, ecx); |
- DeleteFrame(); |
- |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
- // Check that the size of the code used for returning is large enough |
- // for the debugger's requirements. |
- ASSERT(Assembler::kJSReturnSequenceLength <= |
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); |
-#endif |
-} |
- |
- |
-void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ WithEnterStatement"); |
- CodeForStatementPosition(node); |
- Load(node->expression()); |
- Result context; |
- if (node->is_catch_block()) { |
- context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); |
- } else { |
- context = frame_->CallRuntime(Runtime::kPushContext, 1); |
- } |
- |
- // Update context local. |
- frame_->SaveContextRegister(); |
- |
- // Verify that the runtime call result and esi agree. |
- if (FLAG_debug_code) { |
- __ cmp(context.reg(), Operand(esi)); |
- __ Assert(equal, "Runtime::NewContext should end up in esi"); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ WithExitStatement"); |
- CodeForStatementPosition(node); |
- // Pop context. |
- __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); |
- // Update context local. |
- frame_->SaveContextRegister(); |
-} |
- |
- |
-void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ SwitchStatement"); |
- CodeForStatementPosition(node); |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- |
- // Compile the switch value. |
- Load(node->tag()); |
- |
- ZoneList<CaseClause*>* cases = node->cases(); |
- int length = cases->length(); |
- CaseClause* default_clause = NULL; |
- |
- JumpTarget next_test; |
- // Compile the case label expressions and comparisons. Exit early |
- // if a comparison is unconditionally true. The target next_test is |
- // bound before the loop in order to indicate control flow to the |
- // first comparison. |
- next_test.Bind(); |
- for (int i = 0; i < length && !next_test.is_unused(); i++) { |
- CaseClause* clause = cases->at(i); |
- // The default is not a test, but remember it for later. |
- if (clause->is_default()) { |
- default_clause = clause; |
- continue; |
- } |
- |
- Comment cmnt(masm_, "[ Case comparison"); |
- // We recycle the same target next_test for each test. Bind it if |
- // the previous test has not done so and then unuse it for the |
- // loop. |
- if (next_test.is_linked()) { |
- next_test.Bind(); |
- } |
- next_test.Unuse(); |
- |
- // Duplicate the switch value. |
- frame_->Dup(); |
- |
- // Compile the label expression. |
- Load(clause->label()); |
- |
- // Compare and branch to the body if true or the next test if |
- // false. Prefer the next test as a fall through. |
- ControlDestination dest(clause->body_target(), &next_test, false); |
- Comparison(node, equal, true, &dest); |
- |
- // If the comparison fell through to the true target, jump to the |
- // actual body. |
- if (dest.true_was_fall_through()) { |
- clause->body_target()->Unuse(); |
- clause->body_target()->Jump(); |
- } |
- } |
- |
- // If there was control flow to a next test from the last one |
- // compiled, compile a jump to the default or break target. |
- if (!next_test.is_unused()) { |
- if (next_test.is_linked()) { |
- next_test.Bind(); |
- } |
- // Drop the switch value. |
- frame_->Drop(); |
- if (default_clause != NULL) { |
- default_clause->body_target()->Jump(); |
- } else { |
- node->break_target()->Jump(); |
- } |
- } |
- |
- // The last instruction emitted was a jump, either to the default |
- // clause or the break target, or else to a case body from the loop |
- // that compiles the tests. |
- ASSERT(!has_valid_frame()); |
- // Compile case bodies as needed. |
- for (int i = 0; i < length; i++) { |
- CaseClause* clause = cases->at(i); |
- |
- // There are two ways to reach the body: from the corresponding |
- // test or as the fall through of the previous body. |
- if (clause->body_target()->is_linked() || has_valid_frame()) { |
- if (clause->body_target()->is_linked()) { |
- if (has_valid_frame()) { |
- // If we have both a jump to the test and a fall through, put |
- // a jump on the fall through path to avoid the dropping of |
- // the switch value on the test path. The exception is the |
- // default which has already had the switch value dropped. |
- if (clause->is_default()) { |
- clause->body_target()->Bind(); |
- } else { |
- JumpTarget body; |
- body.Jump(); |
- clause->body_target()->Bind(); |
- frame_->Drop(); |
- body.Bind(); |
- } |
- } else { |
- // No fall through to worry about. |
- clause->body_target()->Bind(); |
- if (!clause->is_default()) { |
- frame_->Drop(); |
- } |
- } |
- } else { |
- // Otherwise, we have only fall through. |
- ASSERT(has_valid_frame()); |
- } |
- |
- // We are now prepared to compile the body. |
- Comment cmnt(masm_, "[ Case body"); |
- VisitStatements(clause->statements()); |
- } |
- clause->body_target()->Unuse(); |
- } |
- |
- // We may not have a valid frame here so bind the break target only |
- // if needed. |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- node->break_target()->Unuse(); |
-} |
- |
- |
-void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ DoWhileStatement"); |
- CodeForStatementPosition(node); |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- JumpTarget body(JumpTarget::BIDIRECTIONAL); |
- IncrementLoopNesting(); |
- |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- // Label the top of the loop for the backward jump if necessary. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // Use the continue target. |
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
- node->continue_target()->Bind(); |
- break; |
- case ALWAYS_FALSE: |
- // No need to label it. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- break; |
- case DONT_KNOW: |
- // Continue is the test, so use the backward body target. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- body.Bind(); |
- break; |
- } |
- |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- Visit(node->body()); |
- |
- // Compile the test. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // If control flow can fall off the end of the body, jump back |
- // to the top and bind the break target at the exit. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- break; |
- case ALWAYS_FALSE: |
- // We may have had continues or breaks in the body. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- break; |
- case DONT_KNOW: |
- // We have to compile the test expression if it can be reached by |
- // control flow falling out of the body or via continue. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- if (has_valid_frame()) { |
- Comment cmnt(masm_, "[ DoWhileCondition"); |
- CodeForDoWhileConditionPosition(node); |
- ControlDestination dest(&body, node->break_target(), false); |
- LoadCondition(node->cond(), &dest, true); |
- } |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- break; |
- } |
- |
- DecrementLoopNesting(); |
- node->continue_target()->Unuse(); |
- node->break_target()->Unuse(); |
-} |
- |
- |
-void CodeGenerator::VisitWhileStatement(WhileStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ WhileStatement"); |
- CodeForStatementPosition(node); |
- |
- // If the condition is always false and has no side effects, we do not |
- // need to compile anything. |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- if (info == ALWAYS_FALSE) return; |
- |
- // Do not duplicate conditions that may have function literal |
- // subexpressions. This can cause us to compile the function literal |
- // twice. |
- bool test_at_bottom = !node->may_have_function_literal(); |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- IncrementLoopNesting(); |
- JumpTarget body; |
- if (test_at_bottom) { |
- body.set_direction(JumpTarget::BIDIRECTIONAL); |
- } |
- |
- // Based on the condition analysis, compile the test as necessary. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // We will not compile the test expression. Label the top of the |
- // loop with the continue target. |
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
- node->continue_target()->Bind(); |
- break; |
- case DONT_KNOW: { |
- if (test_at_bottom) { |
- // Continue is the test at the bottom, no need to label the test |
- // at the top. The body is a backward target. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- } else { |
- // Label the test at the top as the continue target. The body |
- // is a forward-only target. |
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
- node->continue_target()->Bind(); |
- } |
- // Compile the test with the body as the true target and preferred |
- // fall-through and with the break target as the false target. |
- ControlDestination dest(&body, node->break_target(), true); |
- LoadCondition(node->cond(), &dest, true); |
- |
- if (dest.false_was_fall_through()) { |
- // If we got the break target as fall-through, the test may have |
- // been unconditionally false (if there are no jumps to the |
- // body). |
- if (!body.is_linked()) { |
- DecrementLoopNesting(); |
- return; |
- } |
- |
- // Otherwise, jump around the body on the fall through and then |
- // bind the body target. |
- node->break_target()->Unuse(); |
- node->break_target()->Jump(); |
- body.Bind(); |
- } |
- break; |
- } |
- case ALWAYS_FALSE: |
- UNREACHABLE(); |
- break; |
- } |
- |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- Visit(node->body()); |
- |
- // Based on the condition analysis, compile the backward jump as |
- // necessary. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // The loop body has been labeled with the continue target. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- break; |
- case DONT_KNOW: |
- if (test_at_bottom) { |
- // If we have chosen to recompile the test at the bottom, |
- // then it is the continue target. |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- if (has_valid_frame()) { |
- // The break target is the fall-through (body is a backward |
- // jump from here and thus an invalid fall-through). |
- ControlDestination dest(&body, node->break_target(), false); |
- LoadCondition(node->cond(), &dest, true); |
- } |
- } else { |
- // If we have chosen not to recompile the test at the bottom, |
- // jump back to the one at the top. |
- if (has_valid_frame()) { |
- node->continue_target()->Jump(); |
- } |
- } |
- break; |
- case ALWAYS_FALSE: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // The break target may be already bound (by the condition), or there |
- // may not be a valid frame. Bind it only if needed. |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- DecrementLoopNesting(); |
-} |
- |
- |
-void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) { |
- ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER); |
- if (slot->type() == Slot::LOCAL) { |
- frame_->SetTypeForLocalAt(slot->index(), info); |
- } else { |
- frame_->SetTypeForParamAt(slot->index(), info); |
- } |
- if (FLAG_debug_code && info.IsSmi()) { |
- if (slot->type() == Slot::LOCAL) { |
- frame_->PushLocalAt(slot->index()); |
- } else { |
- frame_->PushParameterAt(slot->index()); |
- } |
- Result var = frame_->Pop(); |
- var.ToRegister(); |
- __ AbortIfNotSmi(var.reg()); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitForStatement(ForStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ ForStatement"); |
- CodeForStatementPosition(node); |
- |
- // Compile the init expression if present. |
- if (node->init() != NULL) { |
- Visit(node->init()); |
- } |
- |
- // If the condition is always false and has no side effects, we do not |
- // need to compile anything else. |
- ConditionAnalysis info = AnalyzeCondition(node->cond()); |
- if (info == ALWAYS_FALSE) return; |
- |
- // Do not duplicate conditions that may have function literal |
- // subexpressions. This can cause us to compile the function literal |
- // twice. |
- bool test_at_bottom = !node->may_have_function_literal(); |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- IncrementLoopNesting(); |
- |
- // Target for backward edge if no test at the bottom, otherwise |
- // unused. |
- JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
- |
- // Target for backward edge if there is a test at the bottom, |
- // otherwise used as target for test at the top. |
- JumpTarget body; |
- if (test_at_bottom) { |
- body.set_direction(JumpTarget::BIDIRECTIONAL); |
- } |
- |
- // Based on the condition analysis, compile the test as necessary. |
- switch (info) { |
- case ALWAYS_TRUE: |
- // We will not compile the test expression. Label the top of the |
- // loop. |
- if (node->next() == NULL) { |
- // Use the continue target if there is no update expression. |
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
- node->continue_target()->Bind(); |
- } else { |
- // Otherwise use the backward loop target. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- loop.Bind(); |
- } |
- break; |
- case DONT_KNOW: { |
- if (test_at_bottom) { |
- // Continue is either the update expression or the test at the |
- // bottom, no need to label the test at the top. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- } else if (node->next() == NULL) { |
- // We are not recompiling the test at the bottom and there is no |
- // update expression. |
- node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); |
- node->continue_target()->Bind(); |
- } else { |
- // We are not recompiling the test at the bottom and there is an |
- // update expression. |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- loop.Bind(); |
- } |
- |
- // Compile the test with the body as the true target and preferred |
- // fall-through and with the break target as the false target. |
- ControlDestination dest(&body, node->break_target(), true); |
- LoadCondition(node->cond(), &dest, true); |
- |
- if (dest.false_was_fall_through()) { |
- // If we got the break target as fall-through, the test may have |
- // been unconditionally false (if there are no jumps to the |
- // body). |
- if (!body.is_linked()) { |
- DecrementLoopNesting(); |
- return; |
- } |
- |
- // Otherwise, jump around the body on the fall through and then |
- // bind the body target. |
- node->break_target()->Unuse(); |
- node->break_target()->Jump(); |
- body.Bind(); |
- } |
- break; |
- } |
- case ALWAYS_FALSE: |
- UNREACHABLE(); |
- break; |
- } |
- |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- |
- // We know that the loop index is a smi if it is not modified in the |
- // loop body and it is checked against a constant limit in the loop |
- // condition. In this case, we reset the static type information of the |
- // loop index to smi before compiling the body, the update expression, and |
- // the bottom check of the loop condition. |
- if (node->is_fast_smi_loop()) { |
- // Set number type of the loop variable to smi. |
- SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); |
- } |
- |
- Visit(node->body()); |
- |
- // If there is an update expression, compile it if necessary. |
- if (node->next() != NULL) { |
- if (node->continue_target()->is_linked()) { |
- node->continue_target()->Bind(); |
- } |
- |
- // Control can reach the update by falling out of the body or by a |
- // continue. |
- if (has_valid_frame()) { |
- // Record the source position of the statement as this code which |
- // is after the code for the body actually belongs to the loop |
- // statement and not the body. |
- CodeForStatementPosition(node); |
- Visit(node->next()); |
- } |
- } |
- |
- // Set the type of the loop variable to smi before compiling the test |
- // expression if we are in a fast smi loop condition. |
- if (node->is_fast_smi_loop() && has_valid_frame()) { |
- // Set number type of the loop variable to smi. |
- SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); |
- } |
- |
- // Based on the condition analysis, compile the backward jump as |
- // necessary. |
- switch (info) { |
- case ALWAYS_TRUE: |
- if (has_valid_frame()) { |
- if (node->next() == NULL) { |
- node->continue_target()->Jump(); |
- } else { |
- loop.Jump(); |
- } |
- } |
- break; |
- case DONT_KNOW: |
- if (test_at_bottom) { |
- if (node->continue_target()->is_linked()) { |
- // We can have dangling jumps to the continue target if there |
- // was no update expression. |
- node->continue_target()->Bind(); |
- } |
- // Control can reach the test at the bottom by falling out of |
- // the body, by a continue in the body, or from the update |
- // expression. |
- if (has_valid_frame()) { |
- // The break target is the fall-through (body is a backward |
- // jump from here). |
- ControlDestination dest(&body, node->break_target(), false); |
- LoadCondition(node->cond(), &dest, true); |
- } |
- } else { |
- // Otherwise, jump back to the test at the top. |
- if (has_valid_frame()) { |
- if (node->next() == NULL) { |
- node->continue_target()->Jump(); |
- } else { |
- loop.Jump(); |
- } |
- } |
- } |
- break; |
- case ALWAYS_FALSE: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // The break target may be already bound (by the condition), or there |
- // may not be a valid frame. Bind it only if needed. |
- if (node->break_target()->is_linked()) { |
- node->break_target()->Bind(); |
- } |
- DecrementLoopNesting(); |
-} |
- |
- |
-void CodeGenerator::VisitForInStatement(ForInStatement* node) { |
- ASSERT(!in_spilled_code()); |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ ForInStatement"); |
- CodeForStatementPosition(node); |
- |
- JumpTarget primitive; |
- JumpTarget jsobject; |
- JumpTarget fixed_array; |
- JumpTarget entry(JumpTarget::BIDIRECTIONAL); |
- JumpTarget end_del_check; |
- JumpTarget exit; |
- |
- // Get the object to enumerate over (converted to JSObject). |
- LoadAndSpill(node->enumerable()); |
- |
- // Both SpiderMonkey and kjs ignore null and undefined in contrast |
- // to the specification. 12.6.4 mandates a call to ToObject. |
- frame_->EmitPop(eax); |
- |
- // eax: value to be iterated over |
- __ cmp(eax, FACTORY->undefined_value()); |
- exit.Branch(equal); |
- __ cmp(eax, FACTORY->null_value()); |
- exit.Branch(equal); |
- |
- // Stack layout in body: |
- // [iteration counter (smi)] <- slot 0 |
- // [length of array] <- slot 1 |
- // [FixedArray] <- slot 2 |
- // [Map or 0] <- slot 3 |
- // [Object] <- slot 4 |
- |
- // Check if enumerable is already a JSObject |
- // eax: value to be iterated over |
- __ test(eax, Immediate(kSmiTagMask)); |
- primitive.Branch(zero); |
- __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); |
- jsobject.Branch(above_equal); |
- |
- primitive.Bind(); |
- frame_->EmitPush(eax); |
- frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); |
- // function call returns the value in eax, which is where we want it below |
- |
- jsobject.Bind(); |
- // Get the set of properties (as a FixedArray or Map). |
- // eax: value to be iterated over |
- frame_->EmitPush(eax); // Push the object being iterated over. |
- |
- // Check cache validity in generated code. This is a fast case for |
- // the JSObject::IsSimpleEnum cache validity checks. If we cannot |
- // guarantee cache validity, call the runtime system to check cache |
- // validity or get the property names in a fixed array. |
- JumpTarget call_runtime; |
- JumpTarget loop(JumpTarget::BIDIRECTIONAL); |
- JumpTarget check_prototype; |
- JumpTarget use_cache; |
- __ mov(ecx, eax); |
- loop.Bind(); |
- // Check that there are no elements. |
- __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset)); |
- __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array())); |
- call_runtime.Branch(not_equal); |
- // Check that instance descriptors are not empty so that we can |
- // check for an enum cache. Leave the map in ebx for the subsequent |
- // prototype load. |
- __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); |
- __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); |
- __ cmp(Operand(edx), Immediate(FACTORY->empty_descriptor_array())); |
- call_runtime.Branch(equal); |
- // Check that there in an enum cache in the non-empty instance |
- // descriptors. This is the case if the next enumeration index |
- // field does not contain a smi. |
- __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); |
- __ test(edx, Immediate(kSmiTagMask)); |
- call_runtime.Branch(zero); |
- // For all objects but the receiver, check that the cache is empty. |
- __ cmp(ecx, Operand(eax)); |
- check_prototype.Branch(equal); |
- __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
- __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array())); |
- call_runtime.Branch(not_equal); |
- check_prototype.Bind(); |
- // Load the prototype from the map and loop if non-null. |
- __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); |
- __ cmp(Operand(ecx), Immediate(FACTORY->null_value())); |
- loop.Branch(not_equal); |
- // The enum cache is valid. Load the map of the object being |
- // iterated over and use the cache for the iteration. |
- __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); |
- use_cache.Jump(); |
- |
- call_runtime.Bind(); |
- // Call the runtime to get the property names for the object. |
- frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call |
- frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); |
- |
- // If we got a map from the runtime call, we can do a fast |
- // modification check. Otherwise, we got a fixed array, and we have |
- // to do a slow check. |
- // eax: map or fixed array (result from call to |
- // Runtime::kGetPropertyNamesFast) |
- __ mov(edx, Operand(eax)); |
- __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); |
- __ cmp(ecx, FACTORY->meta_map()); |
- fixed_array.Branch(not_equal); |
- |
- use_cache.Bind(); |
- // Get enum cache |
- // eax: map (either the result from a call to |
- // Runtime::kGetPropertyNamesFast or has been fetched directly from |
- // the object) |
- __ mov(ecx, Operand(eax)); |
- |
- __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); |
- // Get the bridge array held in the enumeration index field. |
- __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); |
- // Get the cache from the bridge array. |
- __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
- |
- frame_->EmitPush(eax); // <- slot 3 |
- frame_->EmitPush(edx); // <- slot 2 |
- __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); |
- frame_->EmitPush(eax); // <- slot 1 |
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 |
- entry.Jump(); |
- |
- fixed_array.Bind(); |
- // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) |
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 |
- frame_->EmitPush(eax); // <- slot 2 |
- |
- // Push the length of the array and the initial index onto the stack. |
- __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); |
- frame_->EmitPush(eax); // <- slot 1 |
- frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 |
- |
- // Condition. |
- entry.Bind(); |
- // Grab the current frame's height for the break and continue |
- // targets only after all the state is pushed on the frame. |
- node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); |
- |
- __ mov(eax, frame_->ElementAt(0)); // load the current count |
- __ cmp(eax, frame_->ElementAt(1)); // compare to the array length |
- node->break_target()->Branch(above_equal); |
- |
- // Get the i'th entry of the array. |
- __ mov(edx, frame_->ElementAt(2)); |
- __ mov(ebx, FixedArrayElementOperand(edx, eax)); |
- |
- // Get the expected map from the stack or a zero map in the |
- // permanent slow case eax: current iteration count ebx: i'th entry |
- // of the enum cache |
- __ mov(edx, frame_->ElementAt(3)); |
- // Check if the expected map still matches that of the enumerable. |
- // If not, we have to filter the key. |
- // eax: current iteration count |
- // ebx: i'th entry of the enum cache |
- // edx: expected map value |
- __ mov(ecx, frame_->ElementAt(4)); |
- __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); |
- __ cmp(ecx, Operand(edx)); |
- end_del_check.Branch(equal); |
- |
- // Convert the entry to a string (or null if it isn't a property anymore). |
- frame_->EmitPush(frame_->ElementAt(4)); // push enumerable |
- frame_->EmitPush(ebx); // push entry |
- frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); |
- __ mov(ebx, Operand(eax)); |
- |
- // If the property has been removed while iterating, we just skip it. |
- __ test(ebx, Operand(ebx)); |
- node->continue_target()->Branch(equal); |
- |
- end_del_check.Bind(); |
- // Store the entry in the 'each' expression and take another spin in the |
- // loop. edx: i'th entry of the enum cache (or string there of) |
- frame_->EmitPush(ebx); |
- { Reference each(this, node->each()); |
- if (!each.is_illegal()) { |
- if (each.size() > 0) { |
- // Loading a reference may leave the frame in an unspilled state. |
- frame_->SpillAll(); |
- // Get the value (under the reference on the stack) from memory. |
- frame_->EmitPush(frame_->ElementAt(each.size())); |
- each.SetValue(NOT_CONST_INIT); |
- frame_->Drop(2); |
- } else { |
- // If the reference was to a slot we rely on the convenient property |
- // that it doesn't matter whether a value (eg, ebx pushed above) is |
- // right on top of or right underneath a zero-sized reference. |
- each.SetValue(NOT_CONST_INIT); |
- frame_->Drop(); |
- } |
- } |
- } |
- // Unloading a reference may leave the frame in an unspilled state. |
- frame_->SpillAll(); |
- |
- // Body. |
- CheckStack(); // TODO(1222600): ignore if body contains calls. |
- VisitAndSpill(node->body()); |
- |
- // Next. Reestablish a spilled frame in case we are coming here via |
- // a continue in the body. |
- node->continue_target()->Bind(); |
- frame_->SpillAll(); |
- frame_->EmitPop(eax); |
- __ add(Operand(eax), Immediate(Smi::FromInt(1))); |
- frame_->EmitPush(eax); |
- entry.Jump(); |
- |
- // Cleanup. No need to spill because VirtualFrame::Drop is safe for |
- // any frame. |
- node->break_target()->Bind(); |
- frame_->Drop(5); |
- |
- // Exit. |
- exit.Bind(); |
- |
- node->continue_target()->Unuse(); |
- node->break_target()->Unuse(); |
-} |
- |
- |
-void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { |
- ASSERT(!in_spilled_code()); |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ TryCatchStatement"); |
- CodeForStatementPosition(node); |
- |
- JumpTarget try_block; |
- JumpTarget exit; |
- |
- try_block.Call(); |
- // --- Catch block --- |
- frame_->EmitPush(eax); |
- |
- // Store the caught exception in the catch variable. |
- Variable* catch_var = node->catch_var()->var(); |
- ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); |
- StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); |
- |
- // Remove the exception from the stack. |
- frame_->Drop(); |
- |
- VisitStatementsAndSpill(node->catch_block()->statements()); |
- if (has_valid_frame()) { |
- exit.Jump(); |
- } |
- |
- |
- // --- Try block --- |
- try_block.Bind(); |
- |
- frame_->PushTryHandler(TRY_CATCH_HANDLER); |
- int handler_height = frame_->height(); |
- |
- // Shadow the jump targets for all escapes from the try block, including |
- // returns. During shadowing, the original target is hidden as the |
- // ShadowTarget and operations on the original actually affect the |
- // shadowing target. |
- // |
- // We should probably try to unify the escaping targets and the return |
- // target. |
- int nof_escapes = node->escaping_targets()->length(); |
- List<ShadowTarget*> shadows(1 + nof_escapes); |
- |
- // Add the shadow target for the function return. |
- static const int kReturnShadowIndex = 0; |
- shadows.Add(new ShadowTarget(&function_return_)); |
- bool function_return_was_shadowed = function_return_is_shadowed_; |
- function_return_is_shadowed_ = true; |
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
- |
- // Add the remaining shadow targets. |
- for (int i = 0; i < nof_escapes; i++) { |
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
- } |
- |
- // Generate code for the statements in the try block. |
- VisitStatementsAndSpill(node->try_block()->statements()); |
- |
- // Stop the introduced shadowing and count the number of required unlinks. |
- // After shadowing stops, the original targets are unshadowed and the |
- // ShadowTargets represent the formerly shadowing targets. |
- bool has_unlinks = false; |
- for (int i = 0; i < shadows.length(); i++) { |
- shadows[i]->StopShadowing(); |
- has_unlinks = has_unlinks || shadows[i]->is_linked(); |
- } |
- function_return_is_shadowed_ = function_return_was_shadowed; |
- |
- // Get an external reference to the handler address. |
- ExternalReference handler_address(Isolate::k_handler_address, |
- masm()->isolate()); |
- |
- // Make sure that there's nothing left on the stack above the |
- // handler structure. |
- if (FLAG_debug_code) { |
- __ mov(eax, Operand::StaticVariable(handler_address)); |
- __ cmp(esp, Operand(eax)); |
- __ Assert(equal, "stack pointer should point to top handler"); |
- } |
- |
- // If we can fall off the end of the try block, unlink from try chain. |
- if (has_valid_frame()) { |
- // The next handler address is on top of the frame. Unlink from |
- // the handler list and drop the rest of this handler from the |
- // frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(Operand::StaticVariable(handler_address)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- if (has_unlinks) { |
- exit.Jump(); |
- } |
- } |
- |
- // Generate unlink code for the (formerly) shadowing targets that |
- // have been jumped to. Deallocate each shadow target. |
- Result return_value; |
- for (int i = 0; i < shadows.length(); i++) { |
- if (shadows[i]->is_linked()) { |
- // Unlink from try chain; be careful not to destroy the TOS if |
- // there is one. |
- if (i == kReturnShadowIndex) { |
- shadows[i]->Bind(&return_value); |
- return_value.ToRegister(eax); |
- } else { |
- shadows[i]->Bind(); |
- } |
- // Because we can be jumping here (to spilled code) from |
- // unspilled code, we need to reestablish a spilled frame at |
- // this block. |
- frame_->SpillAll(); |
- |
- // Reload sp from the top handler, because some statements that we |
- // break from (eg, for...in) may have left stuff on the stack. |
- __ mov(esp, Operand::StaticVariable(handler_address)); |
- frame_->Forget(frame_->height() - handler_height); |
- |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(Operand::StaticVariable(handler_address)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- if (i == kReturnShadowIndex) { |
- if (!function_return_is_shadowed_) frame_->PrepareForReturn(); |
- shadows[i]->other_target()->Jump(&return_value); |
- } else { |
- shadows[i]->other_target()->Jump(); |
- } |
- } |
- } |
- |
- exit.Bind(); |
-} |
- |
- |
-void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { |
- ASSERT(!in_spilled_code()); |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ TryFinallyStatement"); |
- CodeForStatementPosition(node); |
- |
- // State: Used to keep track of reason for entering the finally |
- // block. Should probably be extended to hold information for |
- // break/continue from within the try block. |
- enum { FALLING, THROWING, JUMPING }; |
- |
- JumpTarget try_block; |
- JumpTarget finally_block; |
- |
- try_block.Call(); |
- |
- frame_->EmitPush(eax); |
- // In case of thrown exceptions, this is where we continue. |
- __ Set(ecx, Immediate(Smi::FromInt(THROWING))); |
- finally_block.Jump(); |
- |
- // --- Try block --- |
- try_block.Bind(); |
- |
- frame_->PushTryHandler(TRY_FINALLY_HANDLER); |
- int handler_height = frame_->height(); |
- |
- // Shadow the jump targets for all escapes from the try block, including |
- // returns. During shadowing, the original target is hidden as the |
- // ShadowTarget and operations on the original actually affect the |
- // shadowing target. |
- // |
- // We should probably try to unify the escaping targets and the return |
- // target. |
- int nof_escapes = node->escaping_targets()->length(); |
- List<ShadowTarget*> shadows(1 + nof_escapes); |
- |
- // Add the shadow target for the function return. |
- static const int kReturnShadowIndex = 0; |
- shadows.Add(new ShadowTarget(&function_return_)); |
- bool function_return_was_shadowed = function_return_is_shadowed_; |
- function_return_is_shadowed_ = true; |
- ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); |
- |
- // Add the remaining shadow targets. |
- for (int i = 0; i < nof_escapes; i++) { |
- shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); |
- } |
- |
- // Generate code for the statements in the try block. |
- VisitStatementsAndSpill(node->try_block()->statements()); |
- |
- // Stop the introduced shadowing and count the number of required unlinks. |
- // After shadowing stops, the original targets are unshadowed and the |
- // ShadowTargets represent the formerly shadowing targets. |
- int nof_unlinks = 0; |
- for (int i = 0; i < shadows.length(); i++) { |
- shadows[i]->StopShadowing(); |
- if (shadows[i]->is_linked()) nof_unlinks++; |
- } |
- function_return_is_shadowed_ = function_return_was_shadowed; |
- |
- // Get an external reference to the handler address. |
- ExternalReference handler_address(Isolate::k_handler_address, |
- masm()->isolate()); |
- |
- // If we can fall off the end of the try block, unlink from the try |
- // chain and set the state on the frame to FALLING. |
- if (has_valid_frame()) { |
- // The next handler address is on top of the frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(Operand::StaticVariable(handler_address)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- // Fake a top of stack value (unneeded when FALLING) and set the |
- // state in ecx, then jump around the unlink blocks if any. |
- frame_->EmitPush(Immediate(FACTORY->undefined_value())); |
- __ Set(ecx, Immediate(Smi::FromInt(FALLING))); |
- if (nof_unlinks > 0) { |
- finally_block.Jump(); |
- } |
- } |
- |
- // Generate code to unlink and set the state for the (formerly) |
- // shadowing targets that have been jumped to. |
- for (int i = 0; i < shadows.length(); i++) { |
- if (shadows[i]->is_linked()) { |
- // If we have come from the shadowed return, the return value is |
- // on the virtual frame. We must preserve it until it is |
- // pushed. |
- if (i == kReturnShadowIndex) { |
- Result return_value; |
- shadows[i]->Bind(&return_value); |
- return_value.ToRegister(eax); |
- } else { |
- shadows[i]->Bind(); |
- } |
- // Because we can be jumping here (to spilled code) from |
- // unspilled code, we need to reestablish a spilled frame at |
- // this block. |
- frame_->SpillAll(); |
- |
- // Reload sp from the top handler, because some statements that |
- // we break from (eg, for...in) may have left stuff on the |
- // stack. |
- __ mov(esp, Operand::StaticVariable(handler_address)); |
- frame_->Forget(frame_->height() - handler_height); |
- |
- // Unlink this handler and drop it from the frame. |
- STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
- frame_->EmitPop(Operand::StaticVariable(handler_address)); |
- frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); |
- |
- if (i == kReturnShadowIndex) { |
- // If this target shadowed the function return, materialize |
- // the return value on the stack. |
- frame_->EmitPush(eax); |
- } else { |
- // Fake TOS for targets that shadowed breaks and continues. |
- frame_->EmitPush(Immediate(FACTORY->undefined_value())); |
- } |
- __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); |
- if (--nof_unlinks > 0) { |
- // If this is not the last unlink block, jump around the next. |
- finally_block.Jump(); |
- } |
- } |
- } |
- |
- // --- Finally block --- |
- finally_block.Bind(); |
- |
- // Push the state on the stack. |
- frame_->EmitPush(ecx); |
- |
- // We keep two elements on the stack - the (possibly faked) result |
- // and the state - while evaluating the finally block. |
- // |
- // Generate code for the statements in the finally block. |
- VisitStatementsAndSpill(node->finally_block()->statements()); |
- |
- if (has_valid_frame()) { |
- // Restore state and return value or faked TOS. |
- frame_->EmitPop(ecx); |
- frame_->EmitPop(eax); |
- } |
- |
- // Generate code to jump to the right destination for all used |
- // formerly shadowing targets. Deallocate each shadow target. |
- for (int i = 0; i < shadows.length(); i++) { |
- if (has_valid_frame() && shadows[i]->is_bound()) { |
- BreakTarget* original = shadows[i]->other_target(); |
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); |
- if (i == kReturnShadowIndex) { |
- // The return value is (already) in eax. |
- Result return_value = allocator_->Allocate(eax); |
- ASSERT(return_value.is_valid()); |
- if (function_return_is_shadowed_) { |
- original->Branch(equal, &return_value); |
- } else { |
- // Branch around the preparation for return which may emit |
- // code. |
- JumpTarget skip; |
- skip.Branch(not_equal); |
- frame_->PrepareForReturn(); |
- original->Jump(&return_value); |
- skip.Bind(); |
- } |
- } else { |
- original->Branch(equal); |
- } |
- } |
- } |
- |
- if (has_valid_frame()) { |
- // Check if we need to rethrow the exception. |
- JumpTarget exit; |
- __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); |
- exit.Branch(not_equal); |
- |
- // Rethrow exception. |
- frame_->EmitPush(eax); // undo pop from above |
- frame_->CallRuntime(Runtime::kReThrow, 1); |
- |
- // Done. |
- exit.Bind(); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { |
- ASSERT(!in_spilled_code()); |
- Comment cmnt(masm_, "[ DebuggerStatement"); |
- CodeForStatementPosition(node); |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
- // Spill everything, even constants, to the frame. |
- frame_->SpillAll(); |
- |
- frame_->DebugBreak(); |
- // Ignore the return value. |
-#endif |
-} |
- |
- |
-Result CodeGenerator::InstantiateFunction( |
- Handle<SharedFunctionInfo> function_info, |
- bool pretenure) { |
- // The inevitable call will sync frame elements to memory anyway, so |
- // we do it eagerly to allow us to push the arguments directly into |
- // place. |
- frame()->SyncRange(0, frame()->element_count() - 1); |
- |
- // Use the fast case closure allocation code that allocates in new |
- // space for nested functions that don't need literals cloning. |
- if (!pretenure && |
- scope()->is_function_scope() && |
- function_info->num_literals() == 0) { |
- FastNewClosureStub stub( |
- function_info->strict_mode() ? kStrictMode : kNonStrictMode); |
- frame()->EmitPush(Immediate(function_info)); |
- return frame()->CallStub(&stub, 1); |
- } else { |
- // Call the runtime to instantiate the function based on the |
- // shared function info. |
- frame()->EmitPush(esi); |
- frame()->EmitPush(Immediate(function_info)); |
- frame()->EmitPush(Immediate(pretenure |
- ? FACTORY->true_value() |
- : FACTORY->false_value())); |
- return frame()->CallRuntime(Runtime::kNewClosure, 3); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { |
- Comment cmnt(masm_, "[ FunctionLiteral"); |
- ASSERT(!in_safe_int32_mode()); |
- // Build the function info and instantiate it. |
- Handle<SharedFunctionInfo> function_info = |
- Compiler::BuildFunctionInfo(node, script()); |
- // Check for stack-overflow exception. |
- if (function_info.is_null()) { |
- SetStackOverflow(); |
- return; |
- } |
- Result result = InstantiateFunction(function_info, node->pretenure()); |
- frame()->Push(&result); |
-} |
- |
- |
-void CodeGenerator::VisitSharedFunctionInfoLiteral( |
- SharedFunctionInfoLiteral* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); |
- Result result = InstantiateFunction(node->shared_function_info(), false); |
- frame()->Push(&result); |
-} |
- |
- |
-void CodeGenerator::VisitConditional(Conditional* node) { |
- Comment cmnt(masm_, "[ Conditional"); |
- ASSERT(!in_safe_int32_mode()); |
- JumpTarget then; |
- JumpTarget else_; |
- JumpTarget exit; |
- ControlDestination dest(&then, &else_, true); |
- LoadCondition(node->condition(), &dest, true); |
- |
- if (dest.false_was_fall_through()) { |
- // The else target was bound, so we compile the else part first. |
- Load(node->else_expression()); |
- |
- if (then.is_linked()) { |
- exit.Jump(); |
- then.Bind(); |
- Load(node->then_expression()); |
- } |
- } else { |
- // The then target was bound, so we compile the then part first. |
- Load(node->then_expression()); |
- |
- if (else_.is_linked()) { |
- exit.Jump(); |
- else_.Bind(); |
- Load(node->else_expression()); |
- } |
- } |
- |
- exit.Bind(); |
-} |
- |
- |
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
- JumpTarget slow; |
- JumpTarget done; |
- Result value; |
- |
- // Generate fast case for loading from slots that correspond to |
- // local/global variables or arguments unless they are shadowed by |
- // eval-introduced bindings. |
- EmitDynamicLoadFromSlotFastCase(slot, |
- typeof_state, |
- &value, |
- &slow, |
- &done); |
- |
- slow.Bind(); |
- // A runtime call is inevitable. We eagerly sync frame elements |
- // to memory so that we can push the arguments directly into place |
- // on top of the frame. |
- frame()->SyncRange(0, frame()->element_count() - 1); |
- frame()->EmitPush(esi); |
- frame()->EmitPush(Immediate(slot->var()->name())); |
- if (typeof_state == INSIDE_TYPEOF) { |
- value = |
- frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
- } else { |
- value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2); |
- } |
- |
- done.Bind(&value); |
- frame_->Push(&value); |
- |
- } else if (slot->var()->mode() == Variable::CONST) { |
- // Const slots may contain 'the hole' value (the constant hasn't been |
- // initialized yet) which needs to be converted into the 'undefined' |
- // value. |
- // |
- // We currently spill the virtual frame because constants use the |
- // potentially unsafe direct-frame access of SlotOperand. |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ Load const"); |
- Label exit; |
- __ mov(ecx, SlotOperand(slot, ecx)); |
- __ cmp(ecx, FACTORY->the_hole_value()); |
- __ j(not_equal, &exit); |
- __ mov(ecx, FACTORY->undefined_value()); |
- __ bind(&exit); |
- frame()->EmitPush(ecx); |
- |
- } else if (slot->type() == Slot::PARAMETER) { |
- frame()->PushParameterAt(slot->index()); |
- |
- } else if (slot->type() == Slot::LOCAL) { |
- frame()->PushLocalAt(slot->index()); |
- |
- } else { |
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach |
- // here. |
- // |
- // The use of SlotOperand below is safe for an unspilled frame |
- // because it will always be a context slot. |
- ASSERT(slot->type() == Slot::CONTEXT); |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), SlotOperand(slot, temp.reg())); |
- frame()->Push(&temp); |
- } |
-} |
- |
- |
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
- TypeofState state) { |
- LoadFromSlot(slot, state); |
- |
- // Bail out quickly if we're not using lazy arguments allocation. |
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
- |
- // ... or if the slot isn't a non-parameter arguments slot. |
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
- |
- // If the loaded value is a constant, we know if the arguments |
- // object has been lazily loaded yet. |
- Result result = frame()->Pop(); |
- if (result.is_constant()) { |
- if (result.handle()->IsArgumentsMarker()) { |
- result = StoreArgumentsObject(false); |
- } |
- frame()->Push(&result); |
- return; |
- } |
- ASSERT(result.is_register()); |
- // The loaded value is in a register. If it is the sentinel that |
- // indicates that we haven't loaded the arguments object yet, we |
- // need to do it now. |
- JumpTarget exit; |
- __ cmp(Operand(result.reg()), Immediate(FACTORY->arguments_marker())); |
- frame()->Push(&result); |
- exit.Branch(not_equal); |
- |
- result = StoreArgumentsObject(false); |
- frame()->SetElementAt(0, &result); |
- result.Unuse(); |
- exit.Bind(); |
- return; |
-} |
- |
- |
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( |
- Slot* slot, |
- TypeofState typeof_state, |
- JumpTarget* slow) { |
- ASSERT(!in_safe_int32_mode()); |
- // Check that no extension objects have been created by calls to |
- // eval from the current scope to the global scope. |
- Register context = esi; |
- Result tmp = allocator_->Allocate(); |
- ASSERT(tmp.is_valid()); // All non-reserved registers were available. |
- |
- Scope* s = scope(); |
- while (s != NULL) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- // Check that extension is NULL. |
- __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), |
- Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- } |
- // Load next context in chain. |
- __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- context = tmp.reg(); |
- } |
- // If no outer scope calls eval, we do not need to check more |
- // context extensions. If we have reached an eval scope, we check |
- // all extensions from this point. |
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
- s = s->outer_scope(); |
- } |
- |
- if (s != NULL && s->is_eval_scope()) { |
- // Loop up the context chain. There is no frame effect so it is |
- // safe to use raw labels here. |
- Label next, fast; |
- if (!context.is(tmp.reg())) { |
- __ mov(tmp.reg(), context); |
- } |
- __ bind(&next); |
- // Terminate at global context. |
- __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->global_context_map())); |
- __ j(equal, &fast); |
- // Check that extension is NULL. |
- __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- // Load next context in chain. |
- __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); |
- __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- __ jmp(&next); |
- __ bind(&fast); |
- } |
- tmp.Unuse(); |
- |
- // All extension objects were empty and it is safe to use a global |
- // load IC call. |
- // The register allocator prefers eax if it is free, so the code generator |
- // will load the global object directly into eax, which is where the LoadIC |
- // expects it. |
- frame_->Spill(eax); |
- LoadGlobal(); |
- frame_->Push(slot->var()->name()); |
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) |
- ? RelocInfo::CODE_TARGET |
- : RelocInfo::CODE_TARGET_CONTEXT; |
- Result answer = frame_->CallLoadIC(mode); |
- // A test eax instruction following the call signals that the inobject |
- // property case was inlined. Ensure that there is not a test eax |
- // instruction here. |
- __ nop(); |
- return answer; |
-} |
- |
- |
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
- TypeofState typeof_state, |
- Result* result, |
- JumpTarget* slow, |
- JumpTarget* done) { |
- // Generate fast-case code for variables that might be shadowed by |
- // eval-introduced variables. Eval is used a lot without |
- // introducing variables. In those cases, we do not want to |
- // perform a runtime call for all variables in the scope |
- // containing the eval. |
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
- *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
- done->Jump(result); |
- |
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); |
- Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
- if (potential_slot != NULL) { |
- // Generate fast case for locals that rewrite to slots. |
- // Allocate a fresh register to use as a temp in |
- // ContextSlotOperandCheckExtensions and to hold the result |
- // value. |
- *result = allocator()->Allocate(); |
- ASSERT(result->is_valid()); |
- __ mov(result->reg(), |
- ContextSlotOperandCheckExtensions(potential_slot, *result, slow)); |
- if (potential_slot->var()->mode() == Variable::CONST) { |
- __ cmp(result->reg(), FACTORY->the_hole_value()); |
- done->Branch(not_equal, result); |
- __ mov(result->reg(), FACTORY->undefined_value()); |
- } |
- done->Jump(result); |
- } else if (rewrite != NULL) { |
- // Generate fast case for calls of an argument function. |
- Property* property = rewrite->AsProperty(); |
- if (property != NULL) { |
- VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
- Literal* key_literal = property->key()->AsLiteral(); |
- if (obj_proxy != NULL && |
- key_literal != NULL && |
- obj_proxy->IsArguments() && |
- key_literal->handle()->IsSmi()) { |
- // Load arguments object if there are no eval-introduced |
- // variables. Then load the argument from the arguments |
- // object using keyed load. |
- Result arguments = allocator()->Allocate(); |
- ASSERT(arguments.is_valid()); |
- __ mov(arguments.reg(), |
- ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), |
- arguments, |
- slow)); |
- frame_->Push(&arguments); |
- frame_->Push(key_literal->handle()); |
- *result = EmitKeyedLoad(); |
- done->Jump(result); |
- } |
- } |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
- |
- // For now, just do a runtime call. Since the call is inevitable, |
- // we eagerly sync the virtual frame so we can directly push the |
- // arguments into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- |
- frame_->EmitPush(esi); |
- frame_->EmitPush(Immediate(slot->var()->name())); |
- |
- Result value; |
- if (init_state == CONST_INIT) { |
- // Same as the case for a normal store, but ignores attribute |
- // (e.g. READ_ONLY) of context slot so that we can initialize const |
- // properties (introduced via eval("const foo = (some expr);")). Also, |
- // uses the current function context instead of the top context. |
- // |
- // Note that we must declare the foo upon entry of eval(), via a |
- // context slot declaration, but we cannot initialize it at the same |
- // time, because the const declaration may be at the end of the eval |
- // code (sigh...) and the const variable may have been used before |
- // (where its value is 'undefined'). Thus, we can only do the |
- // initialization when we actually encounter the expression and when |
- // the expression operands are defined and valid, and thus we need the |
- // split into 2 operations: declaration of the context slot followed |
- // by initialization. |
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
- } else { |
- frame_->Push(Smi::FromInt(strict_mode_flag())); |
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4); |
- } |
- // Storing a variable must keep the (new) value on the expression |
- // stack. This is necessary for compiling chained assignment |
- // expressions. |
- frame_->Push(&value); |
- |
- } else { |
- ASSERT(!slot->var()->is_dynamic()); |
- |
- JumpTarget exit; |
- if (init_state == CONST_INIT) { |
- ASSERT(slot->var()->mode() == Variable::CONST); |
- // Only the first const initialization must be executed (the slot |
- // still contains 'the hole' value). When the assignment is executed, |
- // the code is identical to a normal store (see below). |
- // |
- // We spill the frame in the code below because the direct-frame |
- // access of SlotOperand is potentially unsafe with an unspilled |
- // frame. |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ Init const"); |
- __ mov(ecx, SlotOperand(slot, ecx)); |
- __ cmp(ecx, FACTORY->the_hole_value()); |
- exit.Branch(not_equal); |
- } |
- |
- // We must execute the store. Storing a variable must keep the (new) |
- // value on the stack. This is necessary for compiling assignment |
- // expressions. |
- // |
- // Note: We will reach here even with slot->var()->mode() == |
- // Variable::CONST because of const declarations which will initialize |
- // consts to 'the hole' value and by doing so, end up calling this code. |
- if (slot->type() == Slot::PARAMETER) { |
- frame_->StoreToParameterAt(slot->index()); |
- } else if (slot->type() == Slot::LOCAL) { |
- frame_->StoreToLocalAt(slot->index()); |
- } else { |
- // The other slot types (LOOKUP and GLOBAL) cannot reach here. |
- // |
- // The use of SlotOperand below is safe for an unspilled frame |
- // because the slot is a context slot. |
- ASSERT(slot->type() == Slot::CONTEXT); |
- frame_->Dup(); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- Result start = allocator_->Allocate(); |
- ASSERT(start.is_valid()); |
- __ mov(SlotOperand(slot, start.reg()), value.reg()); |
- // RecordWrite may destroy the value registers. |
- // |
- // TODO(204): Avoid actually spilling when the value is not |
- // needed (probably the common case). |
- frame_->Spill(value.reg()); |
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); |
- // The results start, value, and temp are unused by going out of |
- // scope. |
- } |
- |
- exit.Bind(); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitSlot(Slot* slot) { |
- Comment cmnt(masm_, "[ Slot"); |
- if (in_safe_int32_mode()) { |
- if ((slot->type() == Slot::LOCAL && !slot->is_arguments())) { |
- frame()->UntaggedPushLocalAt(slot->index()); |
- } else if (slot->type() == Slot::PARAMETER) { |
- frame()->UntaggedPushParameterAt(slot->index()); |
- } else { |
- UNREACHABLE(); |
- } |
- } else { |
- LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitVariableProxy(VariableProxy* node) { |
- Comment cmnt(masm_, "[ VariableProxy"); |
- Variable* var = node->var(); |
- Expression* expr = var->rewrite(); |
- if (expr != NULL) { |
- Visit(expr); |
- } else { |
- ASSERT(var->is_global()); |
- ASSERT(!in_safe_int32_mode()); |
- Reference ref(this, node); |
- ref.GetValue(); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitLiteral(Literal* node) { |
- Comment cmnt(masm_, "[ Literal"); |
- if (frame_->ConstantPoolOverflowed()) { |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- if (in_safe_int32_mode()) { |
- temp.set_untagged_int32(true); |
- } |
- __ Set(temp.reg(), Immediate(node->handle())); |
- frame_->Push(&temp); |
- } else { |
- if (in_safe_int32_mode()) { |
- frame_->PushUntaggedElement(node->handle()); |
- } else { |
- frame_->Push(node->handle()); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::PushUnsafeSmi(Handle<Object> value) { |
- ASSERT(value->IsSmi()); |
- int bits = reinterpret_cast<int>(*value); |
- __ push(Immediate(bits ^ jit_cookie_)); |
- __ xor_(Operand(esp, 0), Immediate(jit_cookie_)); |
-} |
- |
- |
-void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) { |
- ASSERT(value->IsSmi()); |
- int bits = reinterpret_cast<int>(*value); |
- __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_)); |
- __ xor_(Operand(ebp, offset), Immediate(jit_cookie_)); |
-} |
- |
- |
-void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) { |
- ASSERT(target.is_valid()); |
- ASSERT(value->IsSmi()); |
- int bits = reinterpret_cast<int>(*value); |
- __ Set(target, Immediate(bits ^ jit_cookie_)); |
- __ xor_(target, jit_cookie_); |
-} |
- |
- |
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { |
- if (!value->IsSmi()) return false; |
- int int_value = Smi::cast(*value)->value(); |
- return !is_intn(int_value, kMaxSmiInlinedBits); |
-} |
- |
- |
-// Materialize the regexp literal 'node' in the literals array |
-// 'literals' of the function. Leave the regexp boilerplate in |
-// 'boilerplate'. |
-class DeferredRegExpLiteral: public DeferredCode { |
- public: |
- DeferredRegExpLiteral(Register boilerplate, |
- Register literals, |
- RegExpLiteral* node) |
- : boilerplate_(boilerplate), literals_(literals), node_(node) { |
- set_comment("[ DeferredRegExpLiteral"); |
- } |
- |
- void Generate(); |
- |
- private: |
- Register boilerplate_; |
- Register literals_; |
- RegExpLiteral* node_; |
-}; |
- |
- |
-void DeferredRegExpLiteral::Generate() { |
- // Since the entry is undefined we call the runtime system to |
- // compute the literal. |
- // Literal array (0). |
- __ push(literals_); |
- // Literal index (1). |
- __ push(Immediate(Smi::FromInt(node_->literal_index()))); |
- // RegExp pattern (2). |
- __ push(Immediate(node_->pattern())); |
- // RegExp flags (3). |
- __ push(Immediate(node_->flags())); |
- __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); |
- if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); |
-} |
- |
- |
-class DeferredAllocateInNewSpace: public DeferredCode { |
- public: |
- DeferredAllocateInNewSpace(int size, |
- Register target, |
- int registers_to_save = 0) |
- : size_(size), target_(target), registers_to_save_(registers_to_save) { |
- ASSERT(size >= kPointerSize && size <= HEAP->MaxObjectSizeInNewSpace()); |
- ASSERT_EQ(0, registers_to_save & target.bit()); |
- set_comment("[ DeferredAllocateInNewSpace"); |
- } |
- void Generate(); |
- |
- private: |
- int size_; |
- Register target_; |
- int registers_to_save_; |
-}; |
- |
- |
-void DeferredAllocateInNewSpace::Generate() { |
- for (int i = 0; i < kNumRegs; i++) { |
- if (registers_to_save_ & (1 << i)) { |
- Register save_register = { i }; |
- __ push(save_register); |
- } |
- } |
- __ push(Immediate(Smi::FromInt(size_))); |
- __ CallRuntime(Runtime::kAllocateInNewSpace, 1); |
- if (!target_.is(eax)) { |
- __ mov(target_, eax); |
- } |
- for (int i = kNumRegs - 1; i >= 0; i--) { |
- if (registers_to_save_ & (1 << i)) { |
- Register save_register = { i }; |
- __ pop(save_register); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ RegExp Literal"); |
- |
- // Retrieve the literals array and check the allocated entry. Begin |
- // with a writable copy of the function of this activation in a |
- // register. |
- frame_->PushFunction(); |
- Result literals = frame_->Pop(); |
- literals.ToRegister(); |
- frame_->Spill(literals.reg()); |
- |
- // Load the literals array of the function. |
- __ mov(literals.reg(), |
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
- |
- // Load the literal at the ast saved index. |
- Result boilerplate = allocator_->Allocate(); |
- ASSERT(boilerplate.is_valid()); |
- int literal_offset = |
- FixedArray::kHeaderSize + node->literal_index() * kPointerSize; |
- __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); |
- |
- // Check whether we need to materialize the RegExp object. If so, |
- // jump to the deferred code passing the literals array. |
- DeferredRegExpLiteral* deferred = |
- new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); |
- __ cmp(boilerplate.reg(), FACTORY->undefined_value()); |
- deferred->Branch(equal); |
- deferred->BindExit(); |
- |
- // Register of boilerplate contains RegExp object. |
- |
- Result tmp = allocator()->Allocate(); |
- ASSERT(tmp.is_valid()); |
- |
- int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
- |
- DeferredAllocateInNewSpace* allocate_fallback = |
- new DeferredAllocateInNewSpace(size, literals.reg()); |
- frame_->Push(&boilerplate); |
- frame_->SpillTop(); |
- __ AllocateInNewSpace(size, |
- literals.reg(), |
- tmp.reg(), |
- no_reg, |
- allocate_fallback->entry_label(), |
- TAG_OBJECT); |
- allocate_fallback->BindExit(); |
- boilerplate = frame_->Pop(); |
- // Copy from boilerplate to clone and return clone. |
- |
- for (int i = 0; i < size; i += kPointerSize) { |
- __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i)); |
- __ mov(FieldOperand(literals.reg(), i), tmp.reg()); |
- } |
- frame_->Push(&literals); |
-} |
- |
- |
-void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ ObjectLiteral"); |
- |
- // Load a writable copy of the function of this activation in a |
- // register. |
- frame_->PushFunction(); |
- Result literals = frame_->Pop(); |
- literals.ToRegister(); |
- frame_->Spill(literals.reg()); |
- |
- // Load the literals array of the function. |
- __ mov(literals.reg(), |
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
- // Literal array. |
- frame_->Push(&literals); |
- // Literal index. |
- frame_->Push(Smi::FromInt(node->literal_index())); |
- // Constant properties. |
- frame_->Push(node->constant_properties()); |
- // Should the object literal have fast elements? |
- frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0)); |
- Result clone; |
- if (node->depth() > 1) { |
- clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); |
- } else { |
- clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); |
- } |
- frame_->Push(&clone); |
- |
- // Mark all computed expressions that are bound to a key that |
- // is shadowed by a later occurrence of the same key. For the |
- // marked expressions, no store code is emitted. |
- node->CalculateEmitStore(); |
- |
- for (int i = 0; i < node->properties()->length(); i++) { |
- ObjectLiteral::Property* property = node->properties()->at(i); |
- switch (property->kind()) { |
- case ObjectLiteral::Property::CONSTANT: |
- break; |
- case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
- if (CompileTimeValue::IsCompileTimeValue(property->value())) break; |
- // else fall through. |
- case ObjectLiteral::Property::COMPUTED: { |
- Handle<Object> key(property->key()->handle()); |
- if (key->IsSymbol()) { |
- // Duplicate the object as the IC receiver. |
- frame_->Dup(); |
- Load(property->value()); |
- if (property->emit_store()) { |
- Result ignored = |
- frame_->CallStoreIC(Handle<String>::cast(key), false, |
- strict_mode_flag()); |
- // A test eax instruction following the store IC call would |
- // indicate the presence of an inlined version of the |
- // store. Add a nop to indicate that there is no such |
- // inlined version. |
- __ nop(); |
- } else { |
- frame_->Drop(2); |
- } |
- break; |
- } |
- // Fall through |
- } |
- case ObjectLiteral::Property::PROTOTYPE: { |
- // Duplicate the object as an argument to the runtime call. |
- frame_->Dup(); |
- Load(property->key()); |
- Load(property->value()); |
- if (property->emit_store()) { |
- frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes |
- // Ignore the result. |
- Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4); |
- } else { |
- frame_->Drop(3); |
- } |
- break; |
- } |
- case ObjectLiteral::Property::SETTER: { |
- // Duplicate the object as an argument to the runtime call. |
- frame_->Dup(); |
- Load(property->key()); |
- frame_->Push(Smi::FromInt(1)); |
- Load(property->value()); |
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
- // Ignore the result. |
- break; |
- } |
- case ObjectLiteral::Property::GETTER: { |
- // Duplicate the object as an argument to the runtime call. |
- frame_->Dup(); |
- Load(property->key()); |
- frame_->Push(Smi::FromInt(0)); |
- Load(property->value()); |
- Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); |
- // Ignore the result. |
- break; |
- } |
- default: UNREACHABLE(); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ ArrayLiteral"); |
- |
- // Load a writable copy of the function of this activation in a |
- // register. |
- frame_->PushFunction(); |
- Result literals = frame_->Pop(); |
- literals.ToRegister(); |
- frame_->Spill(literals.reg()); |
- |
- // Load the literals array of the function. |
- __ mov(literals.reg(), |
- FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); |
- |
- frame_->Push(&literals); |
- frame_->Push(Smi::FromInt(node->literal_index())); |
- frame_->Push(node->constant_elements()); |
- int length = node->values()->length(); |
- Result clone; |
- if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) { |
- FastCloneShallowArrayStub stub( |
- FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); |
- clone = frame_->CallStub(&stub, 3); |
- Counters* counters = masm()->isolate()->counters(); |
- __ IncrementCounter(counters->cow_arrays_created_stub(), 1); |
- } else if (node->depth() > 1) { |
- clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); |
- } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
- clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); |
- } else { |
- FastCloneShallowArrayStub stub( |
- FastCloneShallowArrayStub::CLONE_ELEMENTS, length); |
- clone = frame_->CallStub(&stub, 3); |
- } |
- frame_->Push(&clone); |
- |
- // Generate code to set the elements in the array that are not |
- // literals. |
- for (int i = 0; i < length; i++) { |
- Expression* value = node->values()->at(i); |
- |
- if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) { |
- continue; |
- } |
- |
- // The property must be set by generated code. |
- Load(value); |
- |
- // Get the property value off the stack. |
- Result prop_value = frame_->Pop(); |
- prop_value.ToRegister(); |
- |
- // Fetch the array literal while leaving a copy on the stack and |
- // use it to get the elements array. |
- frame_->Dup(); |
- Result elements = frame_->Pop(); |
- elements.ToRegister(); |
- frame_->Spill(elements.reg()); |
- // Get the elements array. |
- __ mov(elements.reg(), |
- FieldOperand(elements.reg(), JSObject::kElementsOffset)); |
- |
- // Write to the indexed properties array. |
- int offset = i * kPointerSize + FixedArray::kHeaderSize; |
- __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); |
- |
- // Update the write barrier for the array address. |
- frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. |
- Result scratch = allocator_->Allocate(); |
- ASSERT(scratch.is_valid()); |
- __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { |
- ASSERT(!in_safe_int32_mode()); |
- ASSERT(!in_spilled_code()); |
- // Call runtime routine to allocate the catch extension object and |
- // assign the exception value to the catch variable. |
- Comment cmnt(masm_, "[ CatchExtensionObject"); |
- Load(node->key()); |
- Load(node->value()); |
- Result result = |
- frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::EmitSlotAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Comment cmnt(masm(), "[ Variable Assignment"); |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- ASSERT(var != NULL); |
- Slot* slot = var->AsSlot(); |
- ASSERT(slot != NULL); |
- |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
- Load(node->value()); |
- |
- // Perform the binary operation. |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- // Construct the implicit binary operation. |
- BinaryOperation expr(node); |
- GenericBinaryOperation(&expr, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- // For non-compound assignment just load the right-hand side. |
- Load(node->value()); |
- } |
- |
- // Perform the assignment. |
- if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { |
- CodeForSourcePosition(node->position()); |
- StoreToSlot(slot, |
- node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); |
- } |
- ASSERT(frame()->height() == original_height + 1); |
-} |
- |
- |
-void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Comment cmnt(masm(), "[ Named Property Assignment"); |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- Property* prop = node->target()->AsProperty(); |
- ASSERT(var == NULL || (prop == NULL && var->is_global())); |
- |
- // Initialize name and evaluate the receiver sub-expression if necessary. If |
- // the receiver is trivial it is not placed on the stack at this point, but |
- // loaded whenever actually needed. |
- Handle<String> name; |
- bool is_trivial_receiver = false; |
- if (var != NULL) { |
- name = var->name(); |
- } else { |
- Literal* lit = prop->key()->AsLiteral(); |
- ASSERT_NOT_NULL(lit); |
- name = Handle<String>::cast(lit->handle()); |
- // Do not materialize the receiver on the frame if it is trivial. |
- is_trivial_receiver = prop->obj()->IsTrivial(); |
- if (!is_trivial_receiver) Load(prop->obj()); |
- } |
- |
- // Change to slow case in the beginning of an initialization block to |
- // avoid the quadratic behavior of repeatedly adding fast properties. |
- if (node->starts_initialization_block()) { |
- // Initialization block consists of assignments of the form expr.x = ..., so |
- // this will never be an assignment to a variable, so there must be a |
- // receiver object. |
- ASSERT_EQ(NULL, var); |
- if (is_trivial_receiver) { |
- frame()->Push(prop->obj()); |
- } else { |
- frame()->Dup(); |
- } |
- Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); |
- } |
- |
- // Change to fast case at the end of an initialization block. To prepare for |
- // that add an extra copy of the receiver to the frame, so that it can be |
- // converted back to fast case after the assignment. |
- if (node->ends_initialization_block() && !is_trivial_receiver) { |
- frame()->Dup(); |
- } |
- |
- // Stack layout: |
- // [tos] : receiver (only materialized if non-trivial) |
- // [tos+1] : receiver if at the end of an initialization block |
- |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- if (is_trivial_receiver) { |
- frame()->Push(prop->obj()); |
- } else if (var != NULL) { |
- // The LoadIC stub expects the object in eax. |
- // Freeing eax causes the code generator to load the global into it. |
- frame_->Spill(eax); |
- LoadGlobal(); |
- } else { |
- frame()->Dup(); |
- } |
- Result value = EmitNamedLoad(name, var != NULL); |
- frame()->Push(&value); |
- Load(node->value()); |
- |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- // Construct the implicit binary operation. |
- BinaryOperation expr(node); |
- GenericBinaryOperation(&expr, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- // For non-compound assignment just load the right-hand side. |
- Load(node->value()); |
- } |
- |
- // Stack layout: |
- // [tos] : value |
- // [tos+1] : receiver (only materialized if non-trivial) |
- // [tos+2] : receiver if at the end of an initialization block |
- |
- // Perform the assignment. It is safe to ignore constants here. |
- ASSERT(var == NULL || var->mode() != Variable::CONST); |
- ASSERT_NE(Token::INIT_CONST, node->op()); |
- if (is_trivial_receiver) { |
- Result value = frame()->Pop(); |
- frame()->Push(prop->obj()); |
- frame()->Push(&value); |
- } |
- CodeForSourcePosition(node->position()); |
- bool is_contextual = (var != NULL); |
- Result answer = EmitNamedStore(name, is_contextual); |
- frame()->Push(&answer); |
- |
- // Stack layout: |
- // [tos] : result |
- // [tos+1] : receiver if at the end of an initialization block |
- |
- if (node->ends_initialization_block()) { |
- ASSERT_EQ(NULL, var); |
- // The argument to the runtime call is the receiver. |
- if (is_trivial_receiver) { |
- frame()->Push(prop->obj()); |
- } else { |
- // A copy of the receiver is below the value of the assignment. Swap |
- // the receiver and the value of the assignment expression. |
- Result result = frame()->Pop(); |
- Result receiver = frame()->Pop(); |
- frame()->Push(&result); |
- frame()->Push(&receiver); |
- } |
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); |
- } |
- |
- // Stack layout: |
- // [tos] : result |
- |
- ASSERT_EQ(frame()->height(), original_height + 1); |
-} |
- |
- |
-void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Comment cmnt(masm_, "[ Keyed Property Assignment"); |
- Property* prop = node->target()->AsProperty(); |
- ASSERT_NOT_NULL(prop); |
- |
- // Evaluate the receiver subexpression. |
- Load(prop->obj()); |
- |
- // Change to slow case in the beginning of an initialization block to |
- // avoid the quadratic behavior of repeatedly adding fast properties. |
- if (node->starts_initialization_block()) { |
- frame_->Dup(); |
- Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); |
- } |
- |
- // Change to fast case at the end of an initialization block. To prepare for |
- // that add an extra copy of the receiver to the frame, so that it can be |
- // converted back to fast case after the assignment. |
- if (node->ends_initialization_block()) { |
- frame_->Dup(); |
- } |
- |
- // Evaluate the key subexpression. |
- Load(prop->key()); |
- |
- // Stack layout: |
- // [tos] : key |
- // [tos+1] : receiver |
- // [tos+2] : receiver if at the end of an initialization block |
- |
- // Evaluate the right-hand side. |
- if (node->is_compound()) { |
- // For a compound assignment the right-hand side is a binary operation |
- // between the current property value and the actual right-hand side. |
- // Duplicate receiver and key for loading the current property value. |
- frame()->PushElementAt(1); |
- frame()->PushElementAt(1); |
- Result value = EmitKeyedLoad(); |
- frame()->Push(&value); |
- Load(node->value()); |
- |
- // Perform the binary operation. |
- bool overwrite_value = node->value()->ResultOverwriteAllowed(); |
- BinaryOperation expr(node); |
- GenericBinaryOperation(&expr, |
- overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); |
- } else { |
- // For non-compound assignment just load the right-hand side. |
- Load(node->value()); |
- } |
- |
- // Stack layout: |
- // [tos] : value |
- // [tos+1] : key |
- // [tos+2] : receiver |
- // [tos+3] : receiver if at the end of an initialization block |
- |
- // Perform the assignment. It is safe to ignore constants here. |
- ASSERT(node->op() != Token::INIT_CONST); |
- CodeForSourcePosition(node->position()); |
- Result answer = EmitKeyedStore(prop->key()->type()); |
- frame()->Push(&answer); |
- |
- // Stack layout: |
- // [tos] : result |
- // [tos+1] : receiver if at the end of an initialization block |
- |
- // Change to fast case at the end of an initialization block. |
- if (node->ends_initialization_block()) { |
- // The argument to the runtime call is the extra copy of the receiver, |
- // which is below the value of the assignment. Swap the receiver and |
- // the value of the assignment expression. |
- Result result = frame()->Pop(); |
- Result receiver = frame()->Pop(); |
- frame()->Push(&result); |
- frame()->Push(&receiver); |
- Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); |
- } |
- |
- // Stack layout: |
- // [tos] : result |
- |
- ASSERT(frame()->height() == original_height + 1); |
-} |
- |
- |
-void CodeGenerator::VisitAssignment(Assignment* node) { |
- ASSERT(!in_safe_int32_mode()); |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Variable* var = node->target()->AsVariableProxy()->AsVariable(); |
- Property* prop = node->target()->AsProperty(); |
- |
- if (var != NULL && !var->is_global()) { |
- EmitSlotAssignment(node); |
- |
- } else if ((prop != NULL && prop->key()->IsPropertyName()) || |
- (var != NULL && var->is_global())) { |
- // Properties whose keys are property names and global variables are |
- // treated as named property references. We do not need to consider |
- // global 'this' because it is not a valid left-hand side. |
- EmitNamedPropertyAssignment(node); |
- |
- } else if (prop != NULL) { |
- // Other properties (including rewritten parameters for a function that |
- // uses arguments) are keyed property assignments. |
- EmitKeyedPropertyAssignment(node); |
- |
- } else { |
- // Invalid left-hand side. |
- Load(node->target()); |
- Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); |
- // The runtime call doesn't actually return but the code generator will |
- // still generate code and expects a certain frame height. |
- frame()->Push(&result); |
- } |
- |
- ASSERT(frame()->height() == original_height + 1); |
-} |
- |
- |
-void CodeGenerator::VisitThrow(Throw* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ Throw"); |
- Load(node->exception()); |
- Result result = frame_->CallRuntime(Runtime::kThrow, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::VisitProperty(Property* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ Property"); |
- Reference property(this, node); |
- property.GetValue(); |
-} |
- |
- |
-void CodeGenerator::VisitCall(Call* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ Call"); |
- |
- Expression* function = node->expression(); |
- ZoneList<Expression*>* args = node->arguments(); |
- |
- // Check if the function is a variable or a property. |
- Variable* var = function->AsVariableProxy()->AsVariable(); |
- Property* property = function->AsProperty(); |
- |
- // ------------------------------------------------------------------------ |
- // Fast-case: Use inline caching. |
- // --- |
- // According to ECMA-262, section 11.2.3, page 44, the function to call |
- // must be resolved after the arguments have been evaluated. The IC code |
- // automatically handles this by loading the arguments before the function |
- // is resolved in cache misses (this also holds for megamorphic calls). |
- // ------------------------------------------------------------------------ |
- |
- if (var != NULL && var->is_possibly_eval()) { |
- // ---------------------------------- |
- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed |
- // ---------------------------------- |
- |
- // In a call to eval, we first call %ResolvePossiblyDirectEval to |
- // resolve the function we need to call and the receiver of the |
- // call. Then we call the resolved function using the given |
- // arguments. |
- |
- // Prepare the stack for the call to the resolved function. |
- Load(function); |
- |
- // Allocate a frame slot for the receiver. |
- frame_->Push(FACTORY->undefined_value()); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
- |
- // Result to hold the result of the function resolution and the |
- // final result of the eval call. |
- Result result; |
- |
- // If we know that eval can only be shadowed by eval-introduced |
- // variables we attempt to load the global eval function directly |
- // in generated code. If we succeed, there is no need to perform a |
- // context lookup in the runtime system. |
- JumpTarget done; |
- if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { |
- ASSERT(var->AsSlot()->type() == Slot::LOOKUP); |
- JumpTarget slow; |
- // Prepare the stack for the call to |
- // ResolvePossiblyDirectEvalNoLookup by pushing the loaded |
- // function, the first argument to the eval call and the |
- // receiver. |
- Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(), |
- NOT_INSIDE_TYPEOF, |
- &slow); |
- frame_->Push(&fun); |
- if (arg_count > 0) { |
- frame_->PushElementAt(arg_count); |
- } else { |
- frame_->Push(FACTORY->undefined_value()); |
- } |
- frame_->PushParameterAt(-1); |
- |
- // Push the strict mode flag. |
- frame_->Push(Smi::FromInt(strict_mode_flag())); |
- |
- // Resolve the call. |
- result = |
- frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); |
- |
- done.Jump(&result); |
- slow.Bind(); |
- } |
- |
- // Prepare the stack for the call to ResolvePossiblyDirectEval by |
- // pushing the loaded function, the first argument to the eval |
- // call and the receiver. |
- frame_->PushElementAt(arg_count + 1); |
- if (arg_count > 0) { |
- frame_->PushElementAt(arg_count); |
- } else { |
- frame_->Push(FACTORY->undefined_value()); |
- } |
- frame_->PushParameterAt(-1); |
- |
- // Push the strict mode flag. |
- frame_->Push(Smi::FromInt(strict_mode_flag())); |
- |
- // Resolve the call. |
- result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); |
- |
- // If we generated fast-case code bind the jump-target where fast |
- // and slow case merge. |
- if (done.is_linked()) done.Bind(&result); |
- |
- // The runtime call returns a pair of values in eax (function) and |
- // edx (receiver). Touch up the stack with the right values. |
- Result receiver = allocator_->Allocate(edx); |
- frame_->SetElementAt(arg_count + 1, &result); |
- frame_->SetElementAt(arg_count, &receiver); |
- receiver.Unuse(); |
- |
- // Call the function. |
- CodeForSourcePosition(node->position()); |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); |
- result = frame_->CallStub(&call_function, arg_count + 1); |
- |
- // Restore the context and overwrite the function on the stack with |
- // the result. |
- frame_->RestoreContextRegister(); |
- frame_->SetElementAt(0, &result); |
- |
- } else if (var != NULL && !var->is_this() && var->is_global()) { |
- // ---------------------------------- |
- // JavaScript example: 'foo(1, 2, 3)' // foo is global |
- // ---------------------------------- |
- |
- // Pass the global object as the receiver and let the IC stub |
- // patch the stack to use the global proxy as 'this' in the |
- // invoked function. |
- LoadGlobal(); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
- |
- // Push the name of the function onto the frame. |
- frame_->Push(var->name()); |
- |
- // Call the IC initialization code. |
- CodeForSourcePosition(node->position()); |
- Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, |
- arg_count, |
- loop_nesting()); |
- frame_->RestoreContextRegister(); |
- frame_->Push(&result); |
- |
- } else if (var != NULL && var->AsSlot() != NULL && |
- var->AsSlot()->type() == Slot::LOOKUP) { |
- // ---------------------------------- |
- // JavaScript examples: |
- // |
- // with (obj) foo(1, 2, 3) // foo may be in obj. |
- // |
- // function f() {}; |
- // function g() { |
- // eval(...); |
- // f(); // f could be in extension object. |
- // } |
- // ---------------------------------- |
- |
- JumpTarget slow, done; |
- Result function; |
- |
- // Generate fast case for loading functions from slots that |
- // correspond to local/global variables or arguments unless they |
- // are shadowed by eval-introduced bindings. |
- EmitDynamicLoadFromSlotFastCase(var->AsSlot(), |
- NOT_INSIDE_TYPEOF, |
- &function, |
- &slow, |
- &done); |
- |
- slow.Bind(); |
- // Enter the runtime system to load the function from the context. |
- // Sync the frame so we can push the arguments directly into |
- // place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- frame_->EmitPush(esi); |
- frame_->EmitPush(Immediate(var->name())); |
- frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
- // The runtime call returns a pair of values in eax and edx. The |
- // looked-up function is in eax and the receiver is in edx. These |
- // register references are not ref counted here. We spill them |
- // eagerly since they are arguments to an inevitable call (and are |
- // not sharable by the arguments). |
- ASSERT(!allocator()->is_used(eax)); |
- frame_->EmitPush(eax); |
- |
- // Load the receiver. |
- ASSERT(!allocator()->is_used(edx)); |
- frame_->EmitPush(edx); |
- |
- // If fast case code has been generated, emit code to push the |
- // function and receiver and have the slow path jump around this |
- // code. |
- if (done.is_linked()) { |
- JumpTarget call; |
- call.Jump(); |
- done.Bind(&function); |
- frame_->Push(&function); |
- LoadGlobalReceiver(); |
- call.Bind(); |
- } |
- |
- // Call the function. |
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
- |
- } else if (property != NULL) { |
- // Check if the key is a literal string. |
- Literal* literal = property->key()->AsLiteral(); |
- |
- if (literal != NULL && literal->handle()->IsSymbol()) { |
- // ------------------------------------------------------------------ |
- // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' |
- // ------------------------------------------------------------------ |
- |
- Handle<String> name = Handle<String>::cast(literal->handle()); |
- |
- if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && |
- name->IsEqualTo(CStrVector("apply")) && |
- args->length() == 2 && |
- args->at(1)->AsVariableProxy() != NULL && |
- args->at(1)->AsVariableProxy()->IsArguments()) { |
- // Use the optimized Function.prototype.apply that avoids |
- // allocating lazily allocated arguments objects. |
- CallApplyLazy(property->obj(), |
- args->at(0), |
- args->at(1)->AsVariableProxy(), |
- node->position()); |
- |
- } else { |
- // Push the receiver onto the frame. |
- Load(property->obj()); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
- |
- // Push the name of the function onto the frame. |
- frame_->Push(name); |
- |
- // Call the IC initialization code. |
- CodeForSourcePosition(node->position()); |
- Result result = |
- frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, |
- loop_nesting()); |
- frame_->RestoreContextRegister(); |
- frame_->Push(&result); |
- } |
- |
- } else { |
- // ------------------------------------------- |
- // JavaScript example: 'array[index](1, 2, 3)' |
- // ------------------------------------------- |
- |
- // Load the function to call from the property through a reference. |
- |
- // Pass receiver to called function. |
- if (property->is_synthetic()) { |
- Reference ref(this, property); |
- ref.GetValue(); |
- // Use global object as receiver. |
- LoadGlobalReceiver(); |
- // Call the function. |
- CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); |
- } else { |
- // Push the receiver onto the frame. |
- Load(property->obj()); |
- |
- // Load the name of the function. |
- Load(property->key()); |
- |
- // Swap the name of the function and the receiver on the stack to follow |
- // the calling convention for call ICs. |
- Result key = frame_->Pop(); |
- Result receiver = frame_->Pop(); |
- frame_->Push(&key); |
- frame_->Push(&receiver); |
- key.Unuse(); |
- receiver.Unuse(); |
- |
- // Load the arguments. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
- |
- // Place the key on top of stack and call the IC initialization code. |
- frame_->PushElementAt(arg_count + 1); |
- CodeForSourcePosition(node->position()); |
- Result result = |
- frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET, |
- arg_count, |
- loop_nesting()); |
- frame_->Drop(); // Drop the key still on the stack. |
- frame_->RestoreContextRegister(); |
- frame_->Push(&result); |
- } |
- } |
- |
- } else { |
- // ---------------------------------- |
- // JavaScript example: 'foo(1, 2, 3)' // foo is not global |
- // ---------------------------------- |
- |
- // Load the function. |
- Load(function); |
- |
- // Pass the global proxy as the receiver. |
- LoadGlobalReceiver(); |
- |
- // Call the function. |
- CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitCallNew(CallNew* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ CallNew"); |
- |
- // According to ECMA-262, section 11.2.2, page 44, the function |
- // expression in new calls must be evaluated before the |
- // arguments. This is different from ordinary calls, where the |
- // actual function to call is resolved after the arguments have been |
- // evaluated. |
- |
- // Push constructor on the stack. If it's not a function it's used as |
- // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is |
- // ignored. |
- Load(node->expression()); |
- |
- // Push the arguments ("left-to-right") on the stack. |
- ZoneList<Expression*>* args = node->arguments(); |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- // Call the construct call builtin that handles allocation and |
- // constructor invocation. |
- CodeForSourcePosition(node->position()); |
- Result result = frame_->CallConstructor(arg_count); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- value.Unuse(); |
- destination()->Split(zero); |
-} |
- |
- |
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
- // Conditionally generate a log call. |
- // Args: |
- // 0 (literal string): The type of logging (corresponds to the flags). |
- // This is used to determine whether or not to generate the log call. |
- // 1 (string): Format string. Access the string at argument index 2 |
- // with '%2s' (see Logger::LogRuntime for all the formats). |
- // 2 (array): Arguments to the format string. |
- ASSERT_EQ(args->length(), 3); |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- if (ShouldGenerateLog(args->at(0))) { |
- Load(args->at(1)); |
- Load(args->at(2)); |
- frame_->CallRuntime(Runtime::kLog, 2); |
- } |
-#endif |
- // Finally, we're expected to leave a value on the top of the stack. |
- frame_->Push(FACTORY->undefined_value()); |
-} |
- |
- |
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask)); |
- value.Unuse(); |
- destination()->Split(zero); |
-} |
- |
- |
-class DeferredStringCharCodeAt : public DeferredCode { |
- public: |
- DeferredStringCharCodeAt(Register object, |
- Register index, |
- Register scratch, |
- Register result) |
- : result_(result), |
- char_code_at_generator_(object, |
- index, |
- scratch, |
- result, |
- &need_conversion_, |
- &need_conversion_, |
- &index_out_of_range_, |
- STRING_INDEX_IS_NUMBER) {} |
- |
- StringCharCodeAtGenerator* fast_case_generator() { |
- return &char_code_at_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_code_at_generator_.GenerateSlow(masm(), call_helper); |
- |
- __ bind(&need_conversion_); |
- // Move the undefined value into the result register, which will |
- // trigger conversion. |
- __ Set(result_, Immediate(FACTORY->undefined_value())); |
- __ jmp(exit_label()); |
- |
- __ bind(&index_out_of_range_); |
- // When the index is out of range, the spec requires us to return |
- // NaN. |
- __ Set(result_, Immediate(FACTORY->nan_value())); |
- __ jmp(exit_label()); |
- } |
- |
- private: |
- Register result_; |
- |
- Label need_conversion_; |
- Label index_out_of_range_; |
- |
- StringCharCodeAtGenerator char_code_at_generator_; |
-}; |
- |
- |
-// This generates code that performs a String.prototype.charCodeAt() call |
-// or returns a smi in order to trigger conversion. |
-void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharCodeAt"); |
- ASSERT(args->length() == 2); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Result index = frame_->Pop(); |
- Result object = frame_->Pop(); |
- object.ToRegister(); |
- index.ToRegister(); |
- // We might mutate the object register. |
- frame_->Spill(object.reg()); |
- |
- // We need two extra registers. |
- Result result = allocator()->Allocate(); |
- ASSERT(result.is_valid()); |
- Result scratch = allocator()->Allocate(); |
- ASSERT(scratch.is_valid()); |
- |
- DeferredStringCharCodeAt* deferred = |
- new DeferredStringCharCodeAt(object.reg(), |
- index.reg(), |
- scratch.reg(), |
- result.reg()); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->Push(&result); |
-} |
- |
- |
-class DeferredStringCharFromCode : public DeferredCode { |
- public: |
- DeferredStringCharFromCode(Register code, |
- Register result) |
- : char_from_code_generator_(code, result) {} |
- |
- StringCharFromCodeGenerator* fast_case_generator() { |
- return &char_from_code_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_from_code_generator_.GenerateSlow(masm(), call_helper); |
- } |
- |
- private: |
- StringCharFromCodeGenerator char_from_code_generator_; |
-}; |
- |
- |
-// Generates code for creating a one-char string from a char code. |
-void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharFromCode"); |
- ASSERT(args->length() == 1); |
- |
- Load(args->at(0)); |
- |
- Result code = frame_->Pop(); |
- code.ToRegister(); |
- ASSERT(code.is_valid()); |
- |
- Result result = allocator()->Allocate(); |
- ASSERT(result.is_valid()); |
- |
- DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( |
- code.reg(), result.reg()); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->Push(&result); |
-} |
- |
- |
-class DeferredStringCharAt : public DeferredCode { |
- public: |
- DeferredStringCharAt(Register object, |
- Register index, |
- Register scratch1, |
- Register scratch2, |
- Register result) |
- : result_(result), |
- char_at_generator_(object, |
- index, |
- scratch1, |
- scratch2, |
- result, |
- &need_conversion_, |
- &need_conversion_, |
- &index_out_of_range_, |
- STRING_INDEX_IS_NUMBER) {} |
- |
- StringCharAtGenerator* fast_case_generator() { |
- return &char_at_generator_; |
- } |
- |
- virtual void Generate() { |
- VirtualFrameRuntimeCallHelper call_helper(frame_state()); |
- char_at_generator_.GenerateSlow(masm(), call_helper); |
- |
- __ bind(&need_conversion_); |
- // Move smi zero into the result register, which will trigger |
- // conversion. |
- __ Set(result_, Immediate(Smi::FromInt(0))); |
- __ jmp(exit_label()); |
- |
- __ bind(&index_out_of_range_); |
- // When the index is out of range, the spec requires us to return |
- // the empty string. |
- __ Set(result_, Immediate(FACTORY->empty_string())); |
- __ jmp(exit_label()); |
- } |
- |
- private: |
- Register result_; |
- |
- Label need_conversion_; |
- Label index_out_of_range_; |
- |
- StringCharAtGenerator char_at_generator_; |
-}; |
- |
- |
-// This generates code that performs a String.prototype.charAt() call |
-// or returns a smi in order to trigger conversion. |
-void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { |
- Comment(masm_, "[ GenerateStringCharAt"); |
- ASSERT(args->length() == 2); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Result index = frame_->Pop(); |
- Result object = frame_->Pop(); |
- object.ToRegister(); |
- index.ToRegister(); |
- // We might mutate the object register. |
- frame_->Spill(object.reg()); |
- |
- // We need three extra registers. |
- Result result = allocator()->Allocate(); |
- ASSERT(result.is_valid()); |
- Result scratch1 = allocator()->Allocate(); |
- ASSERT(scratch1.is_valid()); |
- Result scratch2 = allocator()->Allocate(); |
- ASSERT(scratch2.is_valid()); |
- |
- DeferredStringCharAt* deferred = |
- new DeferredStringCharAt(object.reg(), |
- index.reg(), |
- scratch1.reg(), |
- scratch2.reg(), |
- result.reg()); |
- deferred->fast_case_generator()->GenerateFast(masm_); |
- deferred->BindExit(); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(equal); |
- // It is a heap object - get map. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- // Check if the object is a JS array or not. |
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); |
- value.Unuse(); |
- temp.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { |
- Label bailout, done, one_char_separator, long_separator, |
- non_trivial_array, not_size_one_array, loop, loop_condition, |
- loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; |
- |
- ASSERT(args->length() == 2); |
- // We will leave the separator on the stack until the end of the function. |
- Load(args->at(1)); |
- // Load this to eax (= array) |
- Load(args->at(0)); |
- Result array_result = frame_->Pop(); |
- array_result.ToRegister(eax); |
- frame_->SpillAll(); |
- |
- // All aliases of the same register have disjoint lifetimes. |
- Register array = eax; |
- Register elements = no_reg; // Will be eax. |
- |
- Register index = edx; |
- |
- Register string_length = ecx; |
- |
- Register string = esi; |
- |
- Register scratch = ebx; |
- |
- Register array_length = edi; |
- Register result_pos = no_reg; // Will be edi. |
- |
- // Separator operand is already pushed. |
- Operand separator_operand = Operand(esp, 2 * kPointerSize); |
- Operand result_operand = Operand(esp, 1 * kPointerSize); |
- Operand array_length_operand = Operand(esp, 0); |
- __ sub(Operand(esp), Immediate(2 * kPointerSize)); |
- __ cld(); |
- // Check that the array is a JSArray |
- __ test(array, Immediate(kSmiTagMask)); |
- __ j(zero, &bailout); |
- __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); |
- __ j(not_equal, &bailout); |
- |
- // Check that the array has fast elements. |
- __ test_b(FieldOperand(scratch, Map::kBitField2Offset), |
- 1 << Map::kHasFastElements); |
- __ j(zero, &bailout); |
- |
- // If the array has length zero, return the empty string. |
- __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset)); |
- __ sar(array_length, 1); |
- __ j(not_zero, &non_trivial_array); |
- __ mov(result_operand, FACTORY->empty_string()); |
- __ jmp(&done); |
- |
- // Save the array length. |
- __ bind(&non_trivial_array); |
- __ mov(array_length_operand, array_length); |
- |
- // Save the FixedArray containing array's elements. |
- // End of array's live range. |
- elements = array; |
- __ mov(elements, FieldOperand(array, JSArray::kElementsOffset)); |
- array = no_reg; |
- |
- |
- // Check that all array elements are sequential ASCII strings, and |
- // accumulate the sum of their lengths, as a smi-encoded value. |
- __ Set(index, Immediate(0)); |
- __ Set(string_length, Immediate(0)); |
- // Loop condition: while (index < length). |
- // Live loop registers: index, array_length, string, |
- // scratch, string_length, elements. |
- __ jmp(&loop_condition); |
- __ bind(&loop); |
- __ cmp(index, Operand(array_length)); |
- __ j(greater_equal, &done); |
- |
- __ mov(string, FieldOperand(elements, index, |
- times_pointer_size, |
- FixedArray::kHeaderSize)); |
- __ test(string, Immediate(kSmiTagMask)); |
- __ j(zero, &bailout); |
- __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); |
- __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
- __ and_(scratch, Immediate( |
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); |
- __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); |
- __ j(not_equal, &bailout); |
- __ add(string_length, |
- FieldOperand(string, SeqAsciiString::kLengthOffset)); |
- __ j(overflow, &bailout); |
- __ add(Operand(index), Immediate(1)); |
- __ bind(&loop_condition); |
- __ cmp(index, Operand(array_length)); |
- __ j(less, &loop); |
- |
- // If array_length is 1, return elements[0], a string. |
- __ cmp(array_length, 1); |
- __ j(not_equal, ¬_size_one_array); |
- __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize)); |
- __ mov(result_operand, scratch); |
- __ jmp(&done); |
- |
- __ bind(¬_size_one_array); |
- |
- // End of array_length live range. |
- result_pos = array_length; |
- array_length = no_reg; |
- |
- // Live registers: |
- // string_length: Sum of string lengths, as a smi. |
- // elements: FixedArray of strings. |
- |
- // Check that the separator is a flat ASCII string. |
- __ mov(string, separator_operand); |
- __ test(string, Immediate(kSmiTagMask)); |
- __ j(zero, &bailout); |
- __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); |
- __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); |
- __ and_(scratch, Immediate( |
- kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); |
- __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); |
- __ j(not_equal, &bailout); |
- |
- // Add (separator length times array_length) - separator length |
- // to string_length. |
- __ mov(scratch, separator_operand); |
- __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset)); |
- __ sub(string_length, Operand(scratch)); // May be negative, temporarily. |
- __ imul(scratch, array_length_operand); |
- __ j(overflow, &bailout); |
- __ add(string_length, Operand(scratch)); |
- __ j(overflow, &bailout); |
- |
- __ shr(string_length, 1); |
- // Live registers and stack values: |
- // string_length |
- // elements |
- __ AllocateAsciiString(result_pos, string_length, scratch, |
- index, string, &bailout); |
- __ mov(result_operand, result_pos); |
- __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize)); |
- |
- |
- __ mov(string, separator_operand); |
- __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset), |
- Immediate(Smi::FromInt(1))); |
- __ j(equal, &one_char_separator); |
- __ j(greater, &long_separator); |
- |
- |
- // Empty separator case |
- __ mov(index, Immediate(0)); |
- __ jmp(&loop_1_condition); |
- // Loop condition: while (index < length). |
- __ bind(&loop_1); |
- // Each iteration of the loop concatenates one string to the result. |
- // Live values in registers: |
- // index: which element of the elements array we are adding to the result. |
- // result_pos: the position to which we are currently copying characters. |
- // elements: the FixedArray of strings we are joining. |
- |
- // Get string = array[index]. |
- __ mov(string, FieldOperand(elements, index, |
- times_pointer_size, |
- FixedArray::kHeaderSize)); |
- __ mov(string_length, |
- FieldOperand(string, String::kLengthOffset)); |
- __ shr(string_length, 1); |
- __ lea(string, |
- FieldOperand(string, SeqAsciiString::kHeaderSize)); |
- __ CopyBytes(string, result_pos, string_length, scratch); |
- __ add(Operand(index), Immediate(1)); |
- __ bind(&loop_1_condition); |
- __ cmp(index, array_length_operand); |
- __ j(less, &loop_1); // End while (index < length). |
- __ jmp(&done); |
- |
- |
- |
- // One-character separator case |
- __ bind(&one_char_separator); |
- // Replace separator with its ascii character value. |
- __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize)); |
- __ mov_b(separator_operand, scratch); |
- |
- __ Set(index, Immediate(0)); |
- // Jump into the loop after the code that copies the separator, so the first |
- // element is not preceded by a separator |
- __ jmp(&loop_2_entry); |
- // Loop condition: while (index < length). |
- __ bind(&loop_2); |
- // Each iteration of the loop concatenates one string to the result. |
- // Live values in registers: |
- // index: which element of the elements array we are adding to the result. |
- // result_pos: the position to which we are currently copying characters. |
- |
- // Copy the separator character to the result. |
- __ mov_b(scratch, separator_operand); |
- __ mov_b(Operand(result_pos, 0), scratch); |
- __ inc(result_pos); |
- |
- __ bind(&loop_2_entry); |
- // Get string = array[index]. |
- __ mov(string, FieldOperand(elements, index, |
- times_pointer_size, |
- FixedArray::kHeaderSize)); |
- __ mov(string_length, |
- FieldOperand(string, String::kLengthOffset)); |
- __ shr(string_length, 1); |
- __ lea(string, |
- FieldOperand(string, SeqAsciiString::kHeaderSize)); |
- __ CopyBytes(string, result_pos, string_length, scratch); |
- __ add(Operand(index), Immediate(1)); |
- |
- __ cmp(index, array_length_operand); |
- __ j(less, &loop_2); // End while (index < length). |
- __ jmp(&done); |
- |
- |
- // Long separator case (separator is more than one character). |
- __ bind(&long_separator); |
- |
- __ Set(index, Immediate(0)); |
- // Jump into the loop after the code that copies the separator, so the first |
- // element is not preceded by a separator |
- __ jmp(&loop_3_entry); |
- // Loop condition: while (index < length). |
- __ bind(&loop_3); |
- // Each iteration of the loop concatenates one string to the result. |
- // Live values in registers: |
- // index: which element of the elements array we are adding to the result. |
- // result_pos: the position to which we are currently copying characters. |
- |
- // Copy the separator to the result. |
- __ mov(string, separator_operand); |
- __ mov(string_length, |
- FieldOperand(string, String::kLengthOffset)); |
- __ shr(string_length, 1); |
- __ lea(string, |
- FieldOperand(string, SeqAsciiString::kHeaderSize)); |
- __ CopyBytes(string, result_pos, string_length, scratch); |
- |
- __ bind(&loop_3_entry); |
- // Get string = array[index]. |
- __ mov(string, FieldOperand(elements, index, |
- times_pointer_size, |
- FixedArray::kHeaderSize)); |
- __ mov(string_length, |
- FieldOperand(string, String::kLengthOffset)); |
- __ shr(string_length, 1); |
- __ lea(string, |
- FieldOperand(string, SeqAsciiString::kHeaderSize)); |
- __ CopyBytes(string, result_pos, string_length, scratch); |
- __ add(Operand(index), Immediate(1)); |
- |
- __ cmp(index, array_length_operand); |
- __ j(less, &loop_3); // End while (index < length). |
- __ jmp(&done); |
- |
- |
- __ bind(&bailout); |
- __ mov(result_operand, FACTORY->undefined_value()); |
- __ bind(&done); |
- __ mov(eax, result_operand); |
- // Drop temp values from the stack, and restore context register. |
- __ add(Operand(esp), Immediate(2 * kPointerSize)); |
- |
- __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); |
- frame_->Drop(1); |
- frame_->Push(&array_result); |
-} |
- |
- |
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(equal); |
- // It is a heap object - get map. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- // Check if the object is a regexp. |
- __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg()); |
- value.Unuse(); |
- temp.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- |
- __ test(obj.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- __ cmp(obj.reg(), FACTORY->null_value()); |
- destination()->true_target()->Branch(equal); |
- |
- Result map = allocator()->Allocate(); |
- ASSERT(map.is_valid()); |
- __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
- // Undetectable objects behave like undefined when tested with typeof. |
- __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- destination()->false_target()->Branch(not_zero); |
- // Do a range test for JSObject type. We can't use |
- // MacroAssembler::IsInstanceJSObjectType, because we are using a |
- // ControlDestination, so we copy its implementation here. |
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); |
- __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); |
- __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); |
- obj.Unuse(); |
- map.Unuse(); |
- destination()->Split(below_equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || |
- // typeof(arg) == function). |
- // It includes undetectable objects (as opposed to IsObject). |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- __ test(value.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(equal); |
- |
- // Check that this is an object. |
- frame_->Spill(value.reg()); |
- __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg()); |
- value.Unuse(); |
- destination()->Split(above_equal); |
-} |
- |
- |
-// Deferred code to check whether the String JavaScript object is safe for using |
-// default value of. This code is called after the bit caching this information |
-// in the map has been checked with the map for the object in the map_result_ |
-// register. On return the register map_result_ contains 1 for true and 0 for |
-// false. |
-class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { |
- public: |
- DeferredIsStringWrapperSafeForDefaultValueOf(Register object, |
- Register map_result, |
- Register scratch1, |
- Register scratch2) |
- : object_(object), |
- map_result_(map_result), |
- scratch1_(scratch1), |
- scratch2_(scratch2) { } |
- |
- virtual void Generate() { |
- Label false_result; |
- |
- // Check that map is loaded as expected. |
- if (FLAG_debug_code) { |
- __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); |
- __ Assert(equal, "Map not in expected register"); |
- } |
- |
- // Check for fast case object. Generate false result for slow case object. |
- __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset)); |
- __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); |
- __ cmp(scratch1_, FACTORY->hash_table_map()); |
- __ j(equal, &false_result); |
- |
- // Look for valueOf symbol in the descriptor array, and indicate false if |
- // found. The type is not checked, so if it is a transition it is a false |
- // negative. |
- __ mov(map_result_, |
- FieldOperand(map_result_, Map::kInstanceDescriptorsOffset)); |
- __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset)); |
- // map_result_: descriptor array |
- // scratch1_: length of descriptor array |
- // Calculate the end of the descriptor array. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- STATIC_ASSERT(kPointerSize == 4); |
- __ lea(scratch1_, |
- Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize)); |
- // Calculate location of the first key name. |
- __ add(Operand(map_result_), |
- Immediate(FixedArray::kHeaderSize + |
- DescriptorArray::kFirstIndex * kPointerSize)); |
- // Loop through all the keys in the descriptor array. If one of these is the |
- // symbol valueOf the result is false. |
- Label entry, loop; |
- __ jmp(&entry); |
- __ bind(&loop); |
- __ mov(scratch2_, FieldOperand(map_result_, 0)); |
- __ cmp(scratch2_, FACTORY->value_of_symbol()); |
- __ j(equal, &false_result); |
- __ add(Operand(map_result_), Immediate(kPointerSize)); |
- __ bind(&entry); |
- __ cmp(map_result_, Operand(scratch1_)); |
- __ j(not_equal, &loop); |
- |
- // Reload map as register map_result_ was used as temporary above. |
- __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); |
- |
- // If a valueOf property is not found on the object check that it's |
- // prototype is the un-modified String prototype. If not result is false. |
- __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset)); |
- __ test(scratch1_, Immediate(kSmiTagMask)); |
- __ j(zero, &false_result); |
- __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); |
- __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ mov(scratch2_, |
- FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset)); |
- __ cmp(scratch1_, |
- ContextOperand(scratch2_, |
- Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); |
- __ j(not_equal, &false_result); |
- // Set the bit in the map to indicate that it has been checked safe for |
- // default valueOf and set true result. |
- __ or_(FieldOperand(map_result_, Map::kBitField2Offset), |
- Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); |
- __ Set(map_result_, Immediate(1)); |
- __ jmp(exit_label()); |
- __ bind(&false_result); |
- // Set false result. |
- __ Set(map_result_, Immediate(0)); |
- } |
- |
- private: |
- Register object_; |
- Register map_result_; |
- Register scratch1_; |
- Register scratch2_; |
-}; |
- |
- |
-void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( |
- ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); // Pop the string wrapper. |
- obj.ToRegister(); |
- ASSERT(obj.is_valid()); |
- if (FLAG_debug_code) { |
- __ AbortIfSmi(obj.reg()); |
- } |
- |
- // Check whether this map has already been checked to be safe for default |
- // valueOf. |
- Result map_result = allocator()->Allocate(); |
- ASSERT(map_result.is_valid()); |
- __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
- __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset), |
- 1 << Map::kStringWrapperSafeForDefaultValueOf); |
- destination()->true_target()->Branch(not_zero); |
- |
- // We need an additional two scratch registers for the deferred code. |
- Result temp1 = allocator()->Allocate(); |
- ASSERT(temp1.is_valid()); |
- Result temp2 = allocator()->Allocate(); |
- ASSERT(temp2.is_valid()); |
- |
- DeferredIsStringWrapperSafeForDefaultValueOf* deferred = |
- new DeferredIsStringWrapperSafeForDefaultValueOf( |
- obj.reg(), map_result.reg(), temp1.reg(), temp2.reg()); |
- deferred->Branch(zero); |
- deferred->BindExit(); |
- __ test(map_result.reg(), Operand(map_result.reg())); |
- obj.Unuse(); |
- map_result.Unuse(); |
- temp1.Unuse(); |
- temp2.Unuse(); |
- destination()->Split(not_equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (%_ClassOf(arg) === 'Function') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- __ test(obj.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg()); |
- obj.Unuse(); |
- temp.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- __ test(obj.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), |
- FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- obj.Unuse(); |
- temp.Unuse(); |
- destination()->Split(not_zero); |
-} |
- |
- |
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- // Get the frame pointer for the calling frame. |
- Result fp = allocator()->Allocate(); |
- __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
- |
- // Skip the arguments adaptor frame if it exists. |
- Label check_frame_marker; |
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- __ j(not_equal, &check_frame_marker); |
- __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); |
- |
- // Check the marker in the calling frame. |
- __ bind(&check_frame_marker); |
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), |
- Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); |
- fp.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- Result fp = allocator_->Allocate(); |
- Result result = allocator_->Allocate(); |
- ASSERT(fp.is_valid() && result.is_valid()); |
- |
- Label exit; |
- |
- // Get the number of formal parameters. |
- __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters()))); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
- __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
- Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
- __ j(not_equal, &exit); |
- |
- // Arguments adaptor case: Read the arguments length from the |
- // adaptor frame. |
- __ mov(result.reg(), |
- Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- |
- __ bind(&exit); |
- result.set_type_info(TypeInfo::Smi()); |
- if (FLAG_debug_code) __ AbortIfNotSmi(result.reg()); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- JumpTarget leave, null, function, non_function_constructor; |
- Load(args->at(0)); // Load the object. |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- frame_->Spill(obj.reg()); |
- |
- // If the object is a smi, we return null. |
- __ test(obj.reg(), Immediate(kSmiTagMask)); |
- null.Branch(zero); |
- |
- // Check that the object is a JS object but take special care of JS |
- // functions to make sure they have 'Function' as their class. |
- __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); |
- null.Branch(below); |
- |
- // As long as JS_FUNCTION_TYPE is the last instance type and it is |
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
- // LAST_JS_OBJECT_TYPE. |
- STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
- __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); |
- function.Branch(equal); |
- |
- // Check if the constructor in the map is a function. |
- { Result tmp = allocator()->Allocate(); |
- __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); |
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); |
- non_function_constructor.Branch(not_equal); |
- } |
- |
- // The map register now contains the constructor function. Grab the |
- // instance class name from there. |
- __ mov(obj.reg(), |
- FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); |
- __ mov(obj.reg(), |
- FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); |
- frame_->Push(&obj); |
- leave.Jump(); |
- |
- // Functions have class 'Function'. |
- function.Bind(); |
- frame_->Push(FACTORY->function_class_symbol()); |
- leave.Jump(); |
- |
- // Objects with a non-function constructor have class 'Object'. |
- non_function_constructor.Bind(); |
- frame_->Push(FACTORY->Object_symbol()); |
- leave.Jump(); |
- |
- // Non-JS objects have class null. |
- null.Bind(); |
- frame_->Push(FACTORY->null_value()); |
- |
- // All done. |
- leave.Bind(); |
-} |
- |
- |
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- JumpTarget leave; |
- Load(args->at(0)); // Load the object. |
- frame_->Dup(); |
- Result object = frame_->Pop(); |
- object.ToRegister(); |
- ASSERT(object.is_valid()); |
- // if (object->IsSmi()) return object. |
- __ test(object.reg(), Immediate(kSmiTagMask)); |
- leave.Branch(zero, taken); |
- // It is a heap object - get map. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- // if (!object->IsJSValue()) return object. |
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); |
- leave.Branch(not_equal, not_taken); |
- __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); |
- object.Unuse(); |
- frame_->SetElementAt(0, &temp); |
- leave.Bind(); |
-} |
- |
- |
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- JumpTarget leave; |
- Load(args->at(0)); // Load the object. |
- Load(args->at(1)); // Load the value. |
- Result value = frame_->Pop(); |
- Result object = frame_->Pop(); |
- value.ToRegister(); |
- object.ToRegister(); |
- |
- // if (object->IsSmi()) return value. |
- __ test(object.reg(), Immediate(kSmiTagMask)); |
- leave.Branch(zero, &value, taken); |
- |
- // It is a heap object - get its map. |
- Result scratch = allocator_->Allocate(); |
- ASSERT(scratch.is_valid()); |
- // if (!object->IsJSValue()) return value. |
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); |
- leave.Branch(not_equal, &value, not_taken); |
- |
- // Store the value. |
- __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); |
- // Update the write barrier. Save the value as it will be |
- // overwritten by the write barrier code and is needed afterward. |
- Result duplicate_value = allocator_->Allocate(); |
- ASSERT(duplicate_value.is_valid()); |
- __ mov(duplicate_value.reg(), value.reg()); |
- // The object register is also overwritten by the write barrier and |
- // possibly aliased in the frame. |
- frame_->Spill(object.reg()); |
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), |
- scratch.reg()); |
- object.Unuse(); |
- scratch.Unuse(); |
- duplicate_value.Unuse(); |
- |
- // Leave. |
- leave.Bind(&value); |
- frame_->Push(&value); |
-} |
- |
- |
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- |
- // ArgumentsAccessStub expects the key in edx and the formal |
- // parameter count in eax. |
- Load(args->at(0)); |
- Result key = frame_->Pop(); |
- // Explicitly create a constant result. |
- Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); |
- // Call the shared stub to get to arguments[key]. |
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
- Result result = frame_->CallStub(&stub, &key, &count); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- |
- // Load the two objects into registers and perform the comparison. |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Result right = frame_->Pop(); |
- Result left = frame_->Pop(); |
- right.ToRegister(); |
- left.ToRegister(); |
- __ cmp(right.reg(), Operand(left.reg())); |
- right.Unuse(); |
- left.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi. |
- Result ebp_as_smi = allocator_->Allocate(); |
- ASSERT(ebp_as_smi.is_valid()); |
- __ mov(ebp_as_smi.reg(), Operand(ebp)); |
- frame_->Push(&ebp_as_smi); |
-} |
- |
- |
-void CodeGenerator::GenerateRandomHeapNumber( |
- ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- frame_->SpillAll(); |
- |
- Label slow_allocate_heapnumber; |
- Label heapnumber_allocated; |
- |
- __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber); |
- __ jmp(&heapnumber_allocated); |
- |
- __ bind(&slow_allocate_heapnumber); |
- // Allocate a heap number. |
- __ CallRuntime(Runtime::kNumberAlloc, 0); |
- __ mov(edi, eax); |
- |
- __ bind(&heapnumber_allocated); |
- |
- __ PrepareCallCFunction(1, ebx); |
- __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address())); |
- __ CallCFunction(ExternalReference::random_uint32_function(masm()->isolate()), |
- 1); |
- |
- // Convert 32 random bits in eax to 0.(32 random bits) in a double |
- // by computing: |
- // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). |
- // This is implemented on both SSE2 and FPU. |
- if (CpuFeatures::IsSupported(SSE2)) { |
- CpuFeatures::Scope fscope(SSE2); |
- __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single. |
- __ movd(xmm1, Operand(ebx)); |
- __ movd(xmm0, Operand(eax)); |
- __ cvtss2sd(xmm1, xmm1); |
- __ pxor(xmm0, xmm1); |
- __ subsd(xmm0, xmm1); |
- __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0); |
- } else { |
- // 0x4130000000000000 is 1.0 x 2^20 as a double. |
- __ mov(FieldOperand(edi, HeapNumber::kExponentOffset), |
- Immediate(0x41300000)); |
- __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax); |
- __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); |
- __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0)); |
- __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); |
- __ fsubp(1); |
- __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset)); |
- } |
- __ mov(eax, edi); |
- |
- Result result = allocator_->Allocate(eax); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- StringAddStub stub(NO_STRING_ADD_FLAGS); |
- Result answer = frame_->CallStub(&stub, 2); |
- frame_->Push(&answer); |
-} |
- |
- |
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- |
- SubStringStub stub; |
- Result answer = frame_->CallStub(&stub, 3); |
- frame_->Push(&answer); |
-} |
- |
- |
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- |
- StringCompareStub stub; |
- Result answer = frame_->CallStub(&stub, 2); |
- frame_->Push(&answer); |
-} |
- |
- |
-void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
- ASSERT_EQ(4, args->length()); |
- |
- // Load the arguments on the stack and call the stub. |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- Load(args->at(3)); |
- |
- RegExpExecStub stub; |
- Result result = frame_->CallStub(&stub, 4); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); // Size of array, smi. |
- Load(args->at(1)); // "index" property value. |
- Load(args->at(2)); // "input" property value. |
- |
- RegExpConstructResultStub stub; |
- Result result = frame_->CallStub(&stub, 3); |
- frame_->Push(&result); |
-} |
- |
- |
-class DeferredSearchCache: public DeferredCode { |
- public: |
- DeferredSearchCache(Register dst, Register cache, Register key) |
- : dst_(dst), cache_(cache), key_(key) { |
- set_comment("[ DeferredSearchCache"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; // on invocation Smi index of finger, on exit |
- // holds value being looked up. |
- Register cache_; // instance of JSFunctionResultCache. |
- Register key_; // key being looked up. |
-}; |
- |
- |
-void DeferredSearchCache::Generate() { |
- Label first_loop, search_further, second_loop, cache_miss; |
- |
- // Smi-tagging is equivalent to multiplying by 2. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- |
- Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize); |
- Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex); |
- |
- // Check the cache from finger to start of the cache. |
- __ bind(&first_loop); |
- __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); |
- __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi)); |
- __ j(less, &search_further); |
- |
- __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); |
- __ j(not_equal, &first_loop); |
- |
- __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); |
- __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); |
- __ jmp(exit_label()); |
- |
- __ bind(&search_further); |
- |
- // Check the cache from end of cache up to finger. |
- __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset)); |
- |
- __ bind(&second_loop); |
- __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); |
- // Consider prefetching into some reg. |
- __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset)); |
- __ j(less_equal, &cache_miss); |
- |
- __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); |
- __ j(not_equal, &second_loop); |
- |
- __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); |
- __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); |
- __ jmp(exit_label()); |
- |
- __ bind(&cache_miss); |
- __ push(cache_); // store a reference to cache |
- __ push(key_); // store a key |
- __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ push(key_); |
- // On ia32 function must be in edi. |
- __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset)); |
- ParameterCount expected(1); |
- __ InvokeFunction(edi, expected, CALL_FUNCTION); |
- |
- // Find a place to put new cached value into. |
- Label add_new_entry, update_cache; |
- __ mov(ecx, Operand(esp, kPointerSize)); // restore the cache |
- // Possible optimization: cache size is constant for the given cache |
- // so technically we could use a constant here. However, if we have |
- // cache miss this optimization would hardly matter much. |
- |
- // Check if we could add new entry to cache. |
- __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); |
- __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); |
- __ j(greater, &add_new_entry); |
- |
- // Check if we could evict entry after finger. |
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); |
- __ add(Operand(edx), Immediate(kEntrySizeSmi)); |
- __ cmp(ebx, Operand(edx)); |
- __ j(greater, &update_cache); |
- |
- // Need to wrap over the cache. |
- __ mov(edx, Immediate(kEntriesIndexSmi)); |
- __ jmp(&update_cache); |
- |
- __ bind(&add_new_entry); |
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); |
- __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1)); |
- __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx); |
- |
- // Update the cache itself. |
- // edx holds the index. |
- __ bind(&update_cache); |
- __ pop(ebx); // restore the key |
- __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx); |
- // Store key. |
- __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); |
- __ RecordWrite(ecx, 0, ebx, edx); |
- |
- // Store value. |
- __ pop(ecx); // restore the cache. |
- __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); |
- __ add(Operand(edx), Immediate(Smi::FromInt(1))); |
- __ mov(ebx, eax); |
- __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); |
- __ RecordWrite(ecx, 0, ebx, edx); |
- |
- if (!dst_.is(eax)) { |
- __ mov(dst_, eax); |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- ASSERT_NE(NULL, args->at(0)->AsLiteral()); |
- int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); |
- |
- Handle<FixedArray> jsfunction_result_caches( |
- masm()->isolate()->global_context()->jsfunction_result_caches()); |
- if (jsfunction_result_caches->length() <= cache_id) { |
- __ Abort("Attempt to use undefined cache."); |
- frame_->Push(FACTORY->undefined_value()); |
- return; |
- } |
- |
- Load(args->at(1)); |
- Result key = frame_->Pop(); |
- key.ToRegister(); |
- |
- Result cache = allocator()->Allocate(); |
- ASSERT(cache.is_valid()); |
- __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX)); |
- __ mov(cache.reg(), |
- FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset)); |
- __ mov(cache.reg(), |
- ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX)); |
- __ mov(cache.reg(), |
- FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id))); |
- |
- Result tmp = allocator()->Allocate(); |
- ASSERT(tmp.is_valid()); |
- |
- DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(), |
- cache.reg(), |
- key.reg()); |
- |
- // tmp.reg() now holds finger offset as a smi. |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
- __ mov(tmp.reg(), FieldOperand(cache.reg(), |
- JSFunctionResultCache::kFingerOffset)); |
- __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg())); |
- deferred->Branch(not_equal); |
- |
- __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1)); |
- |
- deferred->BindExit(); |
- frame_->Push(&tmp); |
-} |
- |
- |
-void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- |
- // Load the argument on the stack and call the stub. |
- Load(args->at(0)); |
- NumberToStringStub stub; |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-class DeferredSwapElements: public DeferredCode { |
- public: |
- DeferredSwapElements(Register object, Register index1, Register index2) |
- : object_(object), index1_(index1), index2_(index2) { |
- set_comment("[ DeferredSwapElements"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register object_, index1_, index2_; |
-}; |
- |
- |
-void DeferredSwapElements::Generate() { |
- __ push(object_); |
- __ push(index1_); |
- __ push(index2_); |
- __ CallRuntime(Runtime::kSwapElements, 3); |
-} |
- |
- |
-void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { |
- // Note: this code assumes that indices are passed are within |
- // elements' bounds and refer to valid (not holes) values. |
- Comment cmnt(masm_, "[ GenerateSwapElements"); |
- |
- ASSERT_EQ(3, args->length()); |
- |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
- |
- Result index2 = frame_->Pop(); |
- index2.ToRegister(); |
- |
- Result index1 = frame_->Pop(); |
- index1.ToRegister(); |
- |
- Result object = frame_->Pop(); |
- object.ToRegister(); |
- |
- Result tmp1 = allocator()->Allocate(); |
- tmp1.ToRegister(); |
- Result tmp2 = allocator()->Allocate(); |
- tmp2.ToRegister(); |
- |
- frame_->Spill(object.reg()); |
- frame_->Spill(index1.reg()); |
- frame_->Spill(index2.reg()); |
- |
- DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(), |
- index1.reg(), |
- index2.reg()); |
- |
- // Fetch the map and check if array is in fast case. |
- // Check that object doesn't require security checks and |
- // has no indexed interceptor. |
- __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg()); |
- deferred->Branch(below); |
- __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset), |
- KeyedLoadIC::kSlowCaseBitFieldMask); |
- deferred->Branch(not_zero); |
- |
- // Check the object's elements are in fast case and writable. |
- __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset)); |
- __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->fixed_array_map())); |
- deferred->Branch(not_equal); |
- |
- // Smi-tagging is equivalent to multiplying by 2. |
- STATIC_ASSERT(kSmiTag == 0); |
- STATIC_ASSERT(kSmiTagSize == 1); |
- |
- // Check that both indices are smis. |
- __ mov(tmp2.reg(), index1.reg()); |
- __ or_(tmp2.reg(), Operand(index2.reg())); |
- __ test(tmp2.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- |
- // Check that both indices are valid. |
- __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset)); |
- __ cmp(tmp2.reg(), Operand(index1.reg())); |
- deferred->Branch(below_equal); |
- __ cmp(tmp2.reg(), Operand(index2.reg())); |
- deferred->Branch(below_equal); |
- |
- // Bring addresses into index1 and index2. |
- __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg())); |
- __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg())); |
- |
- // Swap elements. |
- __ mov(object.reg(), Operand(index1.reg(), 0)); |
- __ mov(tmp2.reg(), Operand(index2.reg(), 0)); |
- __ mov(Operand(index2.reg(), 0), object.reg()); |
- __ mov(Operand(index1.reg(), 0), tmp2.reg()); |
- |
- Label done; |
- __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done); |
- // Possible optimization: do a check that both values are Smis |
- // (or them and test against Smi mask.) |
- |
- __ mov(tmp2.reg(), tmp1.reg()); |
- __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg()); |
- __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg()); |
- __ bind(&done); |
- |
- deferred->BindExit(); |
- frame_->Push(FACTORY->undefined_value()); |
-} |
- |
- |
-void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { |
- Comment cmnt(masm_, "[ GenerateCallFunction"); |
- |
- ASSERT(args->length() >= 2); |
- |
- int n_args = args->length() - 2; // for receiver and function. |
- Load(args->at(0)); // receiver |
- for (int i = 0; i < n_args; i++) { |
- Load(args->at(i + 1)); |
- } |
- Load(args->at(n_args + 1)); // function |
- Result result = frame_->CallJSFunction(n_args); |
- frame_->Push(&result); |
-} |
- |
- |
-// Generates the Math.pow method. Only handles special cases and |
-// branches to the runtime system for everything else. Please note |
-// that this function assumes that the callsite has executed ToNumber |
-// on both arguments. |
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- Load(args->at(0)); |
- Load(args->at(1)); |
- if (!CpuFeatures::IsSupported(SSE2)) { |
- Result res = frame_->CallRuntime(Runtime::kMath_pow, 2); |
- frame_->Push(&res); |
- } else { |
- CpuFeatures::Scope use_sse2(SSE2); |
- Label allocate_return; |
- // Load the two operands while leaving the values on the frame. |
- frame()->Dup(); |
- Result exponent = frame()->Pop(); |
- exponent.ToRegister(); |
- frame()->Spill(exponent.reg()); |
- frame()->PushElementAt(1); |
- Result base = frame()->Pop(); |
- base.ToRegister(); |
- frame()->Spill(base.reg()); |
- |
- Result answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- ASSERT(!exponent.reg().is(base.reg())); |
- JumpTarget call_runtime; |
- |
- // Save 1 in xmm3 - we need this several times later on. |
- __ mov(answer.reg(), Immediate(1)); |
- __ cvtsi2sd(xmm3, Operand(answer.reg())); |
- |
- Label exponent_nonsmi; |
- Label base_nonsmi; |
- // If the exponent is a heap number go to that specific case. |
- __ test(exponent.reg(), Immediate(kSmiTagMask)); |
- __ j(not_zero, &exponent_nonsmi); |
- __ test(base.reg(), Immediate(kSmiTagMask)); |
- __ j(not_zero, &base_nonsmi); |
- |
- // Optimized version when y is an integer. |
- Label powi; |
- __ SmiUntag(base.reg()); |
- __ cvtsi2sd(xmm0, Operand(base.reg())); |
- __ jmp(&powi); |
- // exponent is smi and base is a heapnumber. |
- __ bind(&base_nonsmi); |
- __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- call_runtime.Branch(not_equal); |
- |
- __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
- |
- // Optimized version of pow if y is an integer. |
- __ bind(&powi); |
- __ SmiUntag(exponent.reg()); |
- |
- // Save exponent in base as we need to check if exponent is negative later. |
- // We know that base and exponent are in different registers. |
- __ mov(base.reg(), exponent.reg()); |
- |
- // Get absolute value of exponent. |
- Label no_neg; |
- __ cmp(exponent.reg(), 0); |
- __ j(greater_equal, &no_neg); |
- __ neg(exponent.reg()); |
- __ bind(&no_neg); |
- |
- // Load xmm1 with 1. |
- __ movsd(xmm1, xmm3); |
- Label while_true; |
- Label no_multiply; |
- |
- __ bind(&while_true); |
- __ shr(exponent.reg(), 1); |
- __ j(not_carry, &no_multiply); |
- __ mulsd(xmm1, xmm0); |
- __ bind(&no_multiply); |
- __ test(exponent.reg(), Operand(exponent.reg())); |
- __ mulsd(xmm0, xmm0); |
- __ j(not_zero, &while_true); |
- |
- // x has the original value of y - if y is negative return 1/result. |
- __ test(base.reg(), Operand(base.reg())); |
- __ j(positive, &allocate_return); |
- // Special case if xmm1 has reached infinity. |
- __ mov(answer.reg(), Immediate(0x7FB00000)); |
- __ movd(xmm0, Operand(answer.reg())); |
- __ cvtss2sd(xmm0, xmm0); |
- __ ucomisd(xmm0, xmm1); |
- call_runtime.Branch(equal); |
- __ divsd(xmm3, xmm1); |
- __ movsd(xmm1, xmm3); |
- __ jmp(&allocate_return); |
- |
- // exponent (or both) is a heapnumber - no matter what we should now work |
- // on doubles. |
- __ bind(&exponent_nonsmi); |
- __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- call_runtime.Branch(not_equal); |
- __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); |
- // Test if exponent is nan. |
- __ ucomisd(xmm1, xmm1); |
- call_runtime.Branch(parity_even); |
- |
- Label base_not_smi; |
- Label handle_special_cases; |
- __ test(base.reg(), Immediate(kSmiTagMask)); |
- __ j(not_zero, &base_not_smi); |
- __ SmiUntag(base.reg()); |
- __ cvtsi2sd(xmm0, Operand(base.reg())); |
- __ jmp(&handle_special_cases); |
- __ bind(&base_not_smi); |
- __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- call_runtime.Branch(not_equal); |
- __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); |
- __ and_(answer.reg(), HeapNumber::kExponentMask); |
- __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask)); |
- // base is NaN or +/-Infinity |
- call_runtime.Branch(greater_equal); |
- __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
- |
- // base is in xmm0 and exponent is in xmm1. |
- __ bind(&handle_special_cases); |
- Label not_minus_half; |
- // Test for -0.5. |
- // Load xmm2 with -0.5. |
- __ mov(answer.reg(), Immediate(0xBF000000)); |
- __ movd(xmm2, Operand(answer.reg())); |
- __ cvtss2sd(xmm2, xmm2); |
- // xmm2 now has -0.5. |
- __ ucomisd(xmm2, xmm1); |
- __ j(not_equal, ¬_minus_half); |
- |
- // Calculates reciprocal of square root. |
- // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
- __ xorpd(xmm1, xmm1); |
- __ addsd(xmm1, xmm0); |
- __ sqrtsd(xmm1, xmm1); |
- __ divsd(xmm3, xmm1); |
- __ movsd(xmm1, xmm3); |
- __ jmp(&allocate_return); |
- |
- // Test for 0.5. |
- __ bind(¬_minus_half); |
- // Load xmm2 with 0.5. |
- // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. |
- __ addsd(xmm2, xmm3); |
- // xmm2 now has 0.5. |
- __ ucomisd(xmm2, xmm1); |
- call_runtime.Branch(not_equal); |
- // Calculates square root. |
- // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
- __ xorpd(xmm1, xmm1); |
- __ addsd(xmm1, xmm0); |
- __ sqrtsd(xmm1, xmm1); |
- |
- JumpTarget done; |
- Label failure, success; |
- __ bind(&allocate_return); |
- // Make a copy of the frame to enable us to handle allocation |
- // failure after the JumpTarget jump. |
- VirtualFrame* clone = new VirtualFrame(frame()); |
- __ AllocateHeapNumber(answer.reg(), exponent.reg(), |
- base.reg(), &failure); |
- __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); |
- // Remove the two original values from the frame - we only need those |
- // in the case where we branch to runtime. |
- frame()->Drop(2); |
- exponent.Unuse(); |
- base.Unuse(); |
- done.Jump(&answer); |
- // Use the copy of the original frame as our current frame. |
- RegisterFile empty_regs; |
- SetFrame(clone, &empty_regs); |
- // If we experience an allocation failure we branch to runtime. |
- __ bind(&failure); |
- call_runtime.Bind(); |
- answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); |
- |
- done.Bind(&answer); |
- frame()->Push(&answer); |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- TranscendentalCacheStub stub(TranscendentalCache::SIN, |
- TranscendentalCacheStub::TAGGED); |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- TranscendentalCacheStub stub(TranscendentalCache::COS, |
- TranscendentalCacheStub::TAGGED); |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- TranscendentalCacheStub stub(TranscendentalCache::LOG, |
- TranscendentalCacheStub::TAGGED); |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-// Generates the Math.sqrt method. Please note - this function assumes that |
-// the callsite has executed ToNumber on the argument. |
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- |
- if (!CpuFeatures::IsSupported(SSE2)) { |
- Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); |
- frame()->Push(&result); |
- } else { |
- CpuFeatures::Scope use_sse2(SSE2); |
- // Leave original value on the frame if we need to call runtime. |
- frame()->Dup(); |
- Result result = frame()->Pop(); |
- result.ToRegister(); |
- frame()->Spill(result.reg()); |
- Label runtime; |
- Label non_smi; |
- Label load_done; |
- JumpTarget end; |
- |
- __ test(result.reg(), Immediate(kSmiTagMask)); |
- __ j(not_zero, &non_smi); |
- __ SmiUntag(result.reg()); |
- __ cvtsi2sd(xmm0, Operand(result.reg())); |
- __ jmp(&load_done); |
- __ bind(&non_smi); |
- __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), |
- FACTORY->heap_number_map()); |
- __ j(not_equal, &runtime); |
- __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); |
- |
- __ bind(&load_done); |
- __ sqrtsd(xmm0, xmm0); |
- // A copy of the virtual frame to allow us to go to runtime after the |
- // JumpTarget jump. |
- Result scratch = allocator()->Allocate(); |
- VirtualFrame* clone = new VirtualFrame(frame()); |
- __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime); |
- |
- __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); |
- frame()->Drop(1); |
- scratch.Unuse(); |
- end.Jump(&result); |
- // We only branch to runtime if we have an allocation error. |
- // Use the copy of the original frame as our current frame. |
- RegisterFile empty_regs; |
- SetFrame(clone, &empty_regs); |
- __ bind(&runtime); |
- result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); |
- |
- end.Bind(&result); |
- frame()->Push(&result); |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Result right_res = frame_->Pop(); |
- Result left_res = frame_->Pop(); |
- right_res.ToRegister(); |
- left_res.ToRegister(); |
- Result tmp_res = allocator()->Allocate(); |
- ASSERT(tmp_res.is_valid()); |
- Register right = right_res.reg(); |
- Register left = left_res.reg(); |
- Register tmp = tmp_res.reg(); |
- right_res.Unuse(); |
- left_res.Unuse(); |
- tmp_res.Unuse(); |
- __ cmp(left, Operand(right)); |
- destination()->true_target()->Branch(equal); |
- // Fail if either is a non-HeapObject. |
- __ mov(tmp, left); |
- __ and_(Operand(tmp), right); |
- __ test(Operand(tmp), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(equal); |
- __ CmpObjectType(left, JS_REGEXP_TYPE, tmp); |
- destination()->false_target()->Branch(not_equal); |
- __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset)); |
- destination()->false_target()->Branch(not_equal); |
- __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset)); |
- __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset)); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- ASSERT(value.is_valid()); |
- if (FLAG_debug_code) { |
- __ AbortIfNotString(value.reg()); |
- } |
- |
- __ test(FieldOperand(value.reg(), String::kHashFieldOffset), |
- Immediate(String::kContainsCachedArrayIndexMask)); |
- |
- value.Unuse(); |
- destination()->Split(zero); |
-} |
- |
- |
-void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result string = frame_->Pop(); |
- string.ToRegister(); |
- if (FLAG_debug_code) { |
- __ AbortIfNotString(string.reg()); |
- } |
- |
- Result number = allocator()->Allocate(); |
- ASSERT(number.is_valid()); |
- __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset)); |
- __ IndexFromHash(number.reg(), number.reg()); |
- string.Unuse(); |
- frame_->Push(&number); |
-} |
- |
- |
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
- ASSERT(!in_safe_int32_mode()); |
- if (CheckForInlineRuntimeCall(node)) { |
- return; |
- } |
- |
- ZoneList<Expression*>* args = node->arguments(); |
- Comment cmnt(masm_, "[ CallRuntime"); |
- const Runtime::Function* function = node->function(); |
- |
- if (function == NULL) { |
- // Push the builtins object found in the current global object. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), GlobalObjectOperand()); |
- __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); |
- frame_->Push(&temp); |
- } |
- |
- // Push the arguments ("left-to-right"). |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- if (function == NULL) { |
- // Call the JS runtime function. |
- frame_->Push(node->name()); |
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, |
- arg_count, |
- loop_nesting_); |
- frame_->RestoreContextRegister(); |
- frame_->Push(&answer); |
- } else { |
- // Call the C runtime function. |
- Result answer = frame_->CallRuntime(function, arg_count); |
- frame_->Push(&answer); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
- Comment cmnt(masm_, "[ UnaryOperation"); |
- |
- Token::Value op = node->op(); |
- |
- if (op == Token::NOT) { |
- // Swap the true and false targets but keep the same actual label |
- // as the fall through. |
- destination()->Invert(); |
- LoadCondition(node->expression(), destination(), true); |
- // Swap the labels back. |
- destination()->Invert(); |
- |
- } else if (op == Token::DELETE) { |
- Property* property = node->expression()->AsProperty(); |
- if (property != NULL) { |
- Load(property->obj()); |
- Load(property->key()); |
- frame_->Push(Smi::FromInt(strict_mode_flag())); |
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3); |
- frame_->Push(&answer); |
- return; |
- } |
- |
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
- if (variable != NULL) { |
- // Delete of an unqualified identifier is disallowed in strict mode |
- // but "delete this" is. |
- ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); |
- Slot* slot = variable->AsSlot(); |
- if (variable->is_global()) { |
- LoadGlobal(); |
- frame_->Push(variable->name()); |
- frame_->Push(Smi::FromInt(kNonStrictMode)); |
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
- CALL_FUNCTION, 3); |
- frame_->Push(&answer); |
- |
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
- // Call the runtime to delete from the context holding the named |
- // variable. Sync the virtual frame eagerly so we can push the |
- // arguments directly into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- frame_->EmitPush(esi); |
- frame_->EmitPush(Immediate(variable->name())); |
- Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); |
- frame_->Push(&answer); |
- } else { |
- // Default: Result of deleting non-global, not dynamically |
- // introduced variables is false. |
- frame_->Push(FACTORY->false_value()); |
- } |
- } else { |
- // Default: Result of deleting expressions is true. |
- Load(node->expression()); // may have side-effects |
- frame_->SetElementAt(0, FACTORY->true_value()); |
- } |
- |
- } else if (op == Token::TYPEOF) { |
- // Special case for loading the typeof expression; see comment on |
- // LoadTypeofExpression(). |
- LoadTypeofExpression(node->expression()); |
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); |
- frame_->Push(&answer); |
- |
- } else if (op == Token::VOID) { |
- Expression* expression = node->expression(); |
- if (expression && expression->AsLiteral() && ( |
- expression->AsLiteral()->IsTrue() || |
- expression->AsLiteral()->IsFalse() || |
- expression->AsLiteral()->handle()->IsNumber() || |
- expression->AsLiteral()->handle()->IsString() || |
- expression->AsLiteral()->handle()->IsJSRegExp() || |
- expression->AsLiteral()->IsNull())) { |
- // Omit evaluating the value of the primitive literal. |
- // It will be discarded anyway, and can have no side effect. |
- frame_->Push(FACTORY->undefined_value()); |
- } else { |
- Load(node->expression()); |
- frame_->SetElementAt(0, FACTORY->undefined_value()); |
- } |
- |
- } else { |
- if (in_safe_int32_mode()) { |
- Visit(node->expression()); |
- Result value = frame_->Pop(); |
- ASSERT(value.is_untagged_int32()); |
- // Registers containing an int32 value are not multiply used. |
- ASSERT(!value.is_register() || !frame_->is_used(value.reg())); |
- value.ToRegister(); |
- switch (op) { |
- case Token::SUB: { |
- __ neg(value.reg()); |
- frame_->Push(&value); |
- if (node->no_negative_zero()) { |
- // -MIN_INT is MIN_INT with the overflow flag set. |
- unsafe_bailout_->Branch(overflow); |
- } else { |
- // MIN_INT and 0 both have bad negations. They both have 31 zeros. |
- __ test(value.reg(), Immediate(0x7FFFFFFF)); |
- unsafe_bailout_->Branch(zero); |
- } |
- break; |
- } |
- case Token::BIT_NOT: { |
- __ not_(value.reg()); |
- frame_->Push(&value); |
- break; |
- } |
- case Token::ADD: { |
- // Unary plus has no effect on int32 values. |
- frame_->Push(&value); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- } else { |
- Load(node->expression()); |
- bool can_overwrite = node->expression()->ResultOverwriteAllowed(); |
- UnaryOverwriteMode overwrite = |
- can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
- bool no_negative_zero = node->expression()->no_negative_zero(); |
- switch (op) { |
- case Token::NOT: |
- case Token::DELETE: |
- case Token::TYPEOF: |
- UNREACHABLE(); // handled above |
- break; |
- |
- case Token::SUB: { |
- GenericUnaryOpStub stub( |
- Token::SUB, |
- overwrite, |
- NO_UNARY_FLAGS, |
- no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); |
- Result operand = frame_->Pop(); |
- Result answer = frame_->CallStub(&stub, &operand); |
- answer.set_type_info(TypeInfo::Number()); |
- frame_->Push(&answer); |
- break; |
- } |
- case Token::BIT_NOT: { |
- // Smi check. |
- JumpTarget smi_label; |
- JumpTarget continue_label; |
- Result operand = frame_->Pop(); |
- TypeInfo operand_info = operand.type_info(); |
- operand.ToRegister(); |
- if (operand_info.IsSmi()) { |
- if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg()); |
- frame_->Spill(operand.reg()); |
- // Set smi tag bit. It will be reset by the not operation. |
- __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask)); |
- __ not_(operand.reg()); |
- Result answer = operand; |
- answer.set_type_info(TypeInfo::Smi()); |
- frame_->Push(&answer); |
- } else { |
- __ test(operand.reg(), Immediate(kSmiTagMask)); |
- smi_label.Branch(zero, &operand, taken); |
- |
- GenericUnaryOpStub stub(Token::BIT_NOT, |
- overwrite, |
- NO_UNARY_SMI_CODE_IN_STUB); |
- Result answer = frame_->CallStub(&stub, &operand); |
- continue_label.Jump(&answer); |
- |
- smi_label.Bind(&answer); |
- answer.ToRegister(); |
- frame_->Spill(answer.reg()); |
- // Set smi tag bit. It will be reset by the not operation. |
- __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask)); |
- __ not_(answer.reg()); |
- |
- continue_label.Bind(&answer); |
- answer.set_type_info(TypeInfo::Integer32()); |
- frame_->Push(&answer); |
- } |
- break; |
- } |
- case Token::ADD: { |
- // Smi check. |
- JumpTarget continue_label; |
- Result operand = frame_->Pop(); |
- TypeInfo operand_info = operand.type_info(); |
- operand.ToRegister(); |
- __ test(operand.reg(), Immediate(kSmiTagMask)); |
- continue_label.Branch(zero, &operand, taken); |
- |
- frame_->Push(&operand); |
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, |
- CALL_FUNCTION, 1); |
- |
- continue_label.Bind(&answer); |
- if (operand_info.IsSmi()) { |
- answer.set_type_info(TypeInfo::Smi()); |
- } else if (operand_info.IsInteger32()) { |
- answer.set_type_info(TypeInfo::Integer32()); |
- } else { |
- answer.set_type_info(TypeInfo::Number()); |
- } |
- frame_->Push(&answer); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- } |
- } |
-} |
- |
- |
-// The value in dst was optimistically incremented or decremented. The |
-// result overflowed or was not smi tagged. Undo the operation, call |
-// into the runtime to convert the argument to a number, and call the |
-// specialized add or subtract stub. The result is left in dst. |
-class DeferredPrefixCountOperation: public DeferredCode { |
- public: |
- DeferredPrefixCountOperation(Register dst, |
- bool is_increment, |
- TypeInfo input_type) |
- : dst_(dst), is_increment_(is_increment), input_type_(input_type) { |
- set_comment("[ DeferredCountOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- bool is_increment_; |
- TypeInfo input_type_; |
-}; |
- |
- |
-void DeferredPrefixCountOperation::Generate() { |
- // Undo the optimistic smi operation. |
- if (is_increment_) { |
- __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); |
- } else { |
- __ add(Operand(dst_), Immediate(Smi::FromInt(1))); |
- } |
- Register left; |
- if (input_type_.IsNumber()) { |
- left = dst_; |
- } else { |
- __ push(dst_); |
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
- left = eax; |
- } |
- |
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
- NO_OVERWRITE, |
- NO_GENERIC_BINARY_FLAGS, |
- TypeInfo::Number()); |
- stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
- |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-// The value in dst was optimistically incremented or decremented. The |
-// result overflowed or was not smi tagged. Undo the operation and call |
-// into the runtime to convert the argument to a number. Update the |
-// original value in old. Call the specialized add or subtract stub. |
-// The result is left in dst. |
-class DeferredPostfixCountOperation: public DeferredCode { |
- public: |
- DeferredPostfixCountOperation(Register dst, |
- Register old, |
- bool is_increment, |
- TypeInfo input_type) |
- : dst_(dst), |
- old_(old), |
- is_increment_(is_increment), |
- input_type_(input_type) { |
- set_comment("[ DeferredCountOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- Register old_; |
- bool is_increment_; |
- TypeInfo input_type_; |
-}; |
- |
- |
-void DeferredPostfixCountOperation::Generate() { |
- // Undo the optimistic smi operation. |
- if (is_increment_) { |
- __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); |
- } else { |
- __ add(Operand(dst_), Immediate(Smi::FromInt(1))); |
- } |
- Register left; |
- if (input_type_.IsNumber()) { |
- __ push(dst_); // Save the input to use as the old value. |
- left = dst_; |
- } else { |
- __ push(dst_); |
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
- __ push(eax); // Save the result of ToNumber to use as the old value. |
- left = eax; |
- } |
- |
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
- NO_OVERWRITE, |
- NO_GENERIC_BINARY_FLAGS, |
- TypeInfo::Number()); |
- stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
- |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
- __ pop(old_); |
-} |
- |
- |
-void CodeGenerator::VisitCountOperation(CountOperation* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ CountOperation"); |
- |
- bool is_postfix = node->is_postfix(); |
- bool is_increment = node->op() == Token::INC; |
- |
- Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
- bool is_const = (var != NULL && var->mode() == Variable::CONST); |
- |
- // Postfix operations need a stack slot under the reference to hold |
- // the old value while the new value is being stored. This is so that |
- // in the case that storing the new value requires a call, the old |
- // value will be in the frame to be spilled. |
- if (is_postfix) frame_->Push(Smi::FromInt(0)); |
- |
- // A constant reference is not saved to, so a constant reference is not a |
- // compound assignment reference. |
- { Reference target(this, node->expression(), !is_const); |
- if (target.is_illegal()) { |
- // Spoof the virtual frame to have the expected height (one higher |
- // than on entry). |
- if (!is_postfix) frame_->Push(Smi::FromInt(0)); |
- return; |
- } |
- target.TakeValue(); |
- |
- Result new_value = frame_->Pop(); |
- new_value.ToRegister(); |
- |
- Result old_value; // Only allocated in the postfix case. |
- if (is_postfix) { |
- // Allocate a temporary to preserve the old value. |
- old_value = allocator_->Allocate(); |
- ASSERT(old_value.is_valid()); |
- __ mov(old_value.reg(), new_value.reg()); |
- |
- // The return value for postfix operations is ToNumber(input). |
- // Keep more precise type info if the input is some kind of |
- // number already. If the input is not a number we have to wait |
- // for the deferred code to convert it. |
- if (new_value.type_info().IsNumber()) { |
- old_value.set_type_info(new_value.type_info()); |
- } |
- } |
- |
- // Ensure the new value is writable. |
- frame_->Spill(new_value.reg()); |
- |
- Result tmp; |
- if (new_value.is_smi()) { |
- if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg()); |
- } else { |
- // We don't know statically if the input is a smi. |
- // In order to combine the overflow and the smi tag check, we need |
- // to be able to allocate a byte register. We attempt to do so |
- // without spilling. If we fail, we will generate separate overflow |
- // and smi tag checks. |
- // We allocate and clear a temporary byte register before performing |
- // the count operation since clearing the register using xor will clear |
- // the overflow flag. |
- tmp = allocator_->AllocateByteRegisterWithoutSpilling(); |
- if (tmp.is_valid()) { |
- __ Set(tmp.reg(), Immediate(0)); |
- } |
- } |
- |
- if (is_increment) { |
- __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); |
- } else { |
- __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); |
- } |
- |
- DeferredCode* deferred = NULL; |
- if (is_postfix) { |
- deferred = new DeferredPostfixCountOperation(new_value.reg(), |
- old_value.reg(), |
- is_increment, |
- new_value.type_info()); |
- } else { |
- deferred = new DeferredPrefixCountOperation(new_value.reg(), |
- is_increment, |
- new_value.type_info()); |
- } |
- |
- if (new_value.is_smi()) { |
- // In case we have a smi as input just check for overflow. |
- deferred->Branch(overflow); |
- } else { |
- // If the count operation didn't overflow and the result is a valid |
- // smi, we're done. Otherwise, we jump to the deferred slow-case |
- // code. |
- // We combine the overflow and the smi tag check if we could |
- // successfully allocate a temporary byte register. |
- if (tmp.is_valid()) { |
- __ setcc(overflow, tmp.reg()); |
- __ or_(Operand(tmp.reg()), new_value.reg()); |
- __ test(tmp.reg(), Immediate(kSmiTagMask)); |
- tmp.Unuse(); |
- deferred->Branch(not_zero); |
- } else { |
- // Otherwise we test separately for overflow and smi tag. |
- deferred->Branch(overflow); |
- __ test(new_value.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } |
- } |
- deferred->BindExit(); |
- |
- // Postfix count operations return their input converted to |
- // number. The case when the input is already a number is covered |
- // above in the allocation code for old_value. |
- if (is_postfix && !new_value.type_info().IsNumber()) { |
- old_value.set_type_info(TypeInfo::Number()); |
- } |
- |
- // The result of ++ or -- is an Integer32 if the |
- // input is a smi. Otherwise it is a number. |
- if (new_value.is_smi()) { |
- new_value.set_type_info(TypeInfo::Integer32()); |
- } else { |
- new_value.set_type_info(TypeInfo::Number()); |
- } |
- |
- // Postfix: store the old value in the allocated slot under the |
- // reference. |
- if (is_postfix) frame_->SetElementAt(target.size(), &old_value); |
- |
- frame_->Push(&new_value); |
- // Non-constant: update the reference. |
- if (!is_const) target.SetValue(NOT_CONST_INIT); |
- } |
- |
- // Postfix: drop the new value and use the old. |
- if (is_postfix) frame_->Drop(); |
-} |
- |
- |
-void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) { |
- Token::Value op = node->op(); |
- Comment cmnt(masm_, "[ Int32BinaryOperation"); |
- ASSERT(in_safe_int32_mode()); |
- ASSERT(safe_int32_mode_enabled()); |
- ASSERT(FLAG_safe_int32_compiler); |
- |
- if (op == Token::COMMA) { |
- // Discard left value. |
- frame_->Nip(1); |
- return; |
- } |
- |
- Result right = frame_->Pop(); |
- Result left = frame_->Pop(); |
- |
- ASSERT(right.is_untagged_int32()); |
- ASSERT(left.is_untagged_int32()); |
- // Registers containing an int32 value are not multiply used. |
- ASSERT(!left.is_register() || !frame_->is_used(left.reg())); |
- ASSERT(!right.is_register() || !frame_->is_used(right.reg())); |
- |
- switch (op) { |
- case Token::COMMA: |
- case Token::OR: |
- case Token::AND: |
- UNREACHABLE(); |
- break; |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: |
- if (left.is_constant() || right.is_constant()) { |
- int32_t value; // Put constant in value, non-constant in left. |
- // Constants are known to be int32 values, from static analysis, |
- // or else will be converted to int32 by implicit ECMA [[ToInt32]]. |
- if (left.is_constant()) { |
- ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); |
- value = NumberToInt32(*left.handle()); |
- left = right; |
- } else { |
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); |
- value = NumberToInt32(*right.handle()); |
- } |
- |
- left.ToRegister(); |
- if (op == Token::BIT_OR) { |
- __ or_(Operand(left.reg()), Immediate(value)); |
- } else if (op == Token::BIT_XOR) { |
- __ xor_(Operand(left.reg()), Immediate(value)); |
- } else { |
- ASSERT(op == Token::BIT_AND); |
- __ and_(Operand(left.reg()), Immediate(value)); |
- } |
- } else { |
- ASSERT(left.is_register()); |
- ASSERT(right.is_register()); |
- if (op == Token::BIT_OR) { |
- __ or_(left.reg(), Operand(right.reg())); |
- } else if (op == Token::BIT_XOR) { |
- __ xor_(left.reg(), Operand(right.reg())); |
- } else { |
- ASSERT(op == Token::BIT_AND); |
- __ and_(left.reg(), Operand(right.reg())); |
- } |
- } |
- frame_->Push(&left); |
- right.Unuse(); |
- break; |
- case Token::SAR: |
- case Token::SHL: |
- case Token::SHR: { |
- bool test_shr_overflow = false; |
- left.ToRegister(); |
- if (right.is_constant()) { |
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); |
- int shift_amount = NumberToInt32(*right.handle()) & 0x1F; |
- if (op == Token::SAR) { |
- __ sar(left.reg(), shift_amount); |
- } else if (op == Token::SHL) { |
- __ shl(left.reg(), shift_amount); |
- } else { |
- ASSERT(op == Token::SHR); |
- __ shr(left.reg(), shift_amount); |
- if (shift_amount == 0) test_shr_overflow = true; |
- } |
- } else { |
- // Move right to ecx |
- if (left.is_register() && left.reg().is(ecx)) { |
- right.ToRegister(); |
- __ xchg(left.reg(), right.reg()); |
- left = right; // Left is unused here, copy of right unused by Push. |
- } else { |
- right.ToRegister(ecx); |
- left.ToRegister(); |
- } |
- if (op == Token::SAR) { |
- __ sar_cl(left.reg()); |
- } else if (op == Token::SHL) { |
- __ shl_cl(left.reg()); |
- } else { |
- ASSERT(op == Token::SHR); |
- __ shr_cl(left.reg()); |
- test_shr_overflow = true; |
- } |
- } |
- { |
- Register left_reg = left.reg(); |
- frame_->Push(&left); |
- right.Unuse(); |
- if (test_shr_overflow && !node->to_int32()) { |
- // Uint32 results with top bit set are not Int32 values. |
- // If they will be forced to Int32, skip the test. |
- // Test is needed because shr with shift amount 0 does not set flags. |
- __ test(left_reg, Operand(left_reg)); |
- unsafe_bailout_->Branch(sign); |
- } |
- } |
- break; |
- } |
- case Token::ADD: |
- case Token::SUB: |
- case Token::MUL: |
- if ((left.is_constant() && op != Token::SUB) || right.is_constant()) { |
- int32_t value; // Put constant in value, non-constant in left. |
- if (right.is_constant()) { |
- ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); |
- value = NumberToInt32(*right.handle()); |
- } else { |
- ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); |
- value = NumberToInt32(*left.handle()); |
- left = right; |
- } |
- |
- left.ToRegister(); |
- if (op == Token::ADD) { |
- __ add(Operand(left.reg()), Immediate(value)); |
- } else if (op == Token::SUB) { |
- __ sub(Operand(left.reg()), Immediate(value)); |
- } else { |
- ASSERT(op == Token::MUL); |
- __ imul(left.reg(), left.reg(), value); |
- } |
- } else { |
- left.ToRegister(); |
- ASSERT(left.is_register()); |
- ASSERT(right.is_register()); |
- if (op == Token::ADD) { |
- __ add(left.reg(), Operand(right.reg())); |
- } else if (op == Token::SUB) { |
- __ sub(left.reg(), Operand(right.reg())); |
- } else { |
- ASSERT(op == Token::MUL); |
- // We have statically verified that a negative zero can be ignored. |
- __ imul(left.reg(), Operand(right.reg())); |
- } |
- } |
- right.Unuse(); |
- frame_->Push(&left); |
- if (!node->to_int32() || op == Token::MUL) { |
- // If ToInt32 is called on the result of ADD, SUB, we don't |
- // care about overflows. |
- // Result of MUL can be non-representable precisely in double so |
- // we have to check for overflow. |
- unsafe_bailout_->Branch(overflow); |
- } |
- break; |
- case Token::DIV: |
- case Token::MOD: { |
- if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) { |
- if (left.is_register() && left.reg().is(edi)) { |
- right.ToRegister(ebx); |
- } else { |
- right.ToRegister(edi); |
- } |
- } |
- left.ToRegister(eax); |
- Result edx_reg = allocator_->Allocate(edx); |
- right.ToRegister(); |
- // The results are unused here because BreakTarget::Branch cannot handle |
- // live results. |
- Register right_reg = right.reg(); |
- left.Unuse(); |
- right.Unuse(); |
- edx_reg.Unuse(); |
- __ cmp(right_reg, 0); |
- // Ensure divisor is positive: no chance of non-int32 or -0 result. |
- unsafe_bailout_->Branch(less_equal); |
- __ cdq(); // Sign-extend eax into edx:eax |
- __ idiv(right_reg); |
- if (op == Token::MOD) { |
- // Negative zero can arise as a negative divident with a zero result. |
- if (!node->no_negative_zero()) { |
- Label not_negative_zero; |
- __ test(edx, Operand(edx)); |
- __ j(not_zero, ¬_negative_zero); |
- __ test(eax, Operand(eax)); |
- unsafe_bailout_->Branch(negative); |
- __ bind(¬_negative_zero); |
- } |
- Result edx_result(edx, TypeInfo::Integer32()); |
- edx_result.set_untagged_int32(true); |
- frame_->Push(&edx_result); |
- } else { |
- ASSERT(op == Token::DIV); |
- __ test(edx, Operand(edx)); |
- unsafe_bailout_->Branch(not_equal); |
- Result eax_result(eax, TypeInfo::Integer32()); |
- eax_result.set_untagged_int32(true); |
- frame_->Push(&eax_result); |
- } |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- break; |
- } |
-} |
- |
- |
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
- // According to ECMA-262 section 11.11, page 58, the binary logical |
- // operators must yield the result of one of the two expressions |
- // before any ToBoolean() conversions. This means that the value |
- // produced by a && or || operator is not necessarily a boolean. |
- |
- // NOTE: If the left hand side produces a materialized value (not |
- // control flow), we force the right hand side to do the same. This |
- // is necessary because we assume that if we get control flow on the |
- // last path out of an expression we got it on all paths. |
- if (node->op() == Token::AND) { |
- ASSERT(!in_safe_int32_mode()); |
- JumpTarget is_true; |
- ControlDestination dest(&is_true, destination()->false_target(), true); |
- LoadCondition(node->left(), &dest, false); |
- |
- if (dest.false_was_fall_through()) { |
- // The current false target was used as the fall-through. If |
- // there are no dangling jumps to is_true then the left |
- // subexpression was unconditionally false. Otherwise we have |
- // paths where we do have to evaluate the right subexpression. |
- if (is_true.is_linked()) { |
- // We need to compile the right subexpression. If the jump to |
- // the current false target was a forward jump then we have a |
- // valid frame, we have just bound the false target, and we |
- // have to jump around the code for the right subexpression. |
- if (has_valid_frame()) { |
- destination()->false_target()->Unuse(); |
- destination()->false_target()->Jump(); |
- } |
- is_true.Bind(); |
- // The left subexpression compiled to control flow, so the |
- // right one is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- } else { |
- // We have actually just jumped to or bound the current false |
- // target but the current control destination is not marked as |
- // used. |
- destination()->Use(false); |
- } |
- |
- } else if (dest.is_used()) { |
- // The left subexpression compiled to control flow (and is_true |
- // was just bound), so the right is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- |
- } else { |
- // We have a materialized value on the frame, so we exit with |
- // one on all paths. There are possibly also jumps to is_true |
- // from nested subexpressions. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- // Avoid popping the result if it converts to 'false' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- // |
- // Duplicate the TOS value. The duplicate will be popped by |
- // ToBoolean. |
- frame_->Dup(); |
- ControlDestination dest(&pop_and_continue, &exit, true); |
- ToBoolean(&dest); |
- |
- // Pop the result of evaluating the first part. |
- frame_->Drop(); |
- |
- // Compile right side expression. |
- is_true.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } |
- |
- } else { |
- ASSERT(node->op() == Token::OR); |
- ASSERT(!in_safe_int32_mode()); |
- JumpTarget is_false; |
- ControlDestination dest(destination()->true_target(), &is_false, false); |
- LoadCondition(node->left(), &dest, false); |
- |
- if (dest.true_was_fall_through()) { |
- // The current true target was used as the fall-through. If |
- // there are no dangling jumps to is_false then the left |
- // subexpression was unconditionally true. Otherwise we have |
- // paths where we do have to evaluate the right subexpression. |
- if (is_false.is_linked()) { |
- // We need to compile the right subexpression. If the jump to |
- // the current true target was a forward jump then we have a |
- // valid frame, we have just bound the true target, and we |
- // have to jump around the code for the right subexpression. |
- if (has_valid_frame()) { |
- destination()->true_target()->Unuse(); |
- destination()->true_target()->Jump(); |
- } |
- is_false.Bind(); |
- // The left subexpression compiled to control flow, so the |
- // right one is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- } else { |
- // We have just jumped to or bound the current true target but |
- // the current control destination is not marked as used. |
- destination()->Use(true); |
- } |
- |
- } else if (dest.is_used()) { |
- // The left subexpression compiled to control flow (and is_false |
- // was just bound), so the right is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- |
- } else { |
- // We have a materialized value on the frame, so we exit with |
- // one on all paths. There are possibly also jumps to is_false |
- // from nested subexpressions. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- // Avoid popping the result if it converts to 'true' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- // |
- // Duplicate the TOS value. The duplicate will be popped by |
- // ToBoolean. |
- frame_->Dup(); |
- ControlDestination dest(&exit, &pop_and_continue, false); |
- ToBoolean(&dest); |
- |
- // Pop the result of evaluating the first part. |
- frame_->Drop(); |
- |
- // Compile right side expression. |
- is_false.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } |
- } |
-} |
- |
- |
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
- Comment cmnt(masm_, "[ BinaryOperation"); |
- |
- if (node->op() == Token::AND || node->op() == Token::OR) { |
- GenerateLogicalBooleanOperation(node); |
- } else if (in_safe_int32_mode()) { |
- Visit(node->left()); |
- Visit(node->right()); |
- Int32BinaryOperation(node); |
- } else { |
- // NOTE: The code below assumes that the slow cases (calls to runtime) |
- // never return a constant/immutable object. |
- OverwriteMode overwrite_mode = NO_OVERWRITE; |
- if (node->left()->ResultOverwriteAllowed()) { |
- overwrite_mode = OVERWRITE_LEFT; |
- } else if (node->right()->ResultOverwriteAllowed()) { |
- overwrite_mode = OVERWRITE_RIGHT; |
- } |
- |
- if (node->left()->IsTrivial()) { |
- Load(node->right()); |
- Result right = frame_->Pop(); |
- frame_->Push(node->left()); |
- frame_->Push(&right); |
- } else { |
- Load(node->left()); |
- Load(node->right()); |
- } |
- GenericBinaryOperation(node, overwrite_mode); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
- ASSERT(!in_safe_int32_mode()); |
- frame_->PushFunction(); |
-} |
- |
- |
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ CompareOperation"); |
- |
- bool left_already_loaded = false; |
- |
- // Get the expressions from the node. |
- Expression* left = node->left(); |
- Expression* right = node->right(); |
- Token::Value op = node->op(); |
- // To make typeof testing for natives implemented in JavaScript really |
- // efficient, we generate special code for expressions of the form: |
- // 'typeof <expression> == <string>'. |
- UnaryOperation* operation = left->AsUnaryOperation(); |
- if ((op == Token::EQ || op == Token::EQ_STRICT) && |
- (operation != NULL && operation->op() == Token::TYPEOF) && |
- (right->AsLiteral() != NULL && |
- right->AsLiteral()->handle()->IsString())) { |
- Handle<String> check(String::cast(*right->AsLiteral()->handle())); |
- |
- // Load the operand and move it to a register. |
- LoadTypeofExpression(operation->expression()); |
- Result answer = frame_->Pop(); |
- answer.ToRegister(); |
- |
- if (check->Equals(HEAP->number_symbol())) { |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- destination()->true_target()->Branch(zero); |
- frame_->Spill(answer.reg()); |
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ cmp(answer.reg(), FACTORY->heap_number_map()); |
- answer.Unuse(); |
- destination()->Split(equal); |
- |
- } else if (check->Equals(HEAP->string_symbol())) { |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- |
- // It can be an undetectable string object. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- destination()->false_target()->Branch(not_zero); |
- __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE); |
- temp.Unuse(); |
- answer.Unuse(); |
- destination()->Split(below); |
- |
- } else if (check->Equals(HEAP->boolean_symbol())) { |
- __ cmp(answer.reg(), FACTORY->true_value()); |
- destination()->true_target()->Branch(equal); |
- __ cmp(answer.reg(), FACTORY->false_value()); |
- answer.Unuse(); |
- destination()->Split(equal); |
- |
- } else if (check->Equals(HEAP->undefined_symbol())) { |
- __ cmp(answer.reg(), FACTORY->undefined_value()); |
- destination()->true_target()->Branch(equal); |
- |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- |
- // It can be an undetectable object. |
- frame_->Spill(answer.reg()); |
- __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- answer.Unuse(); |
- destination()->Split(not_zero); |
- |
- } else if (check->Equals(HEAP->function_symbol())) { |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- frame_->Spill(answer.reg()); |
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); |
- destination()->true_target()->Branch(equal); |
- // Regular expressions are callable so typeof == 'function'. |
- __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); |
- answer.Unuse(); |
- destination()->Split(equal); |
- } else if (check->Equals(HEAP->object_symbol())) { |
- __ test(answer.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(zero); |
- __ cmp(answer.reg(), FACTORY->null_value()); |
- destination()->true_target()->Branch(equal); |
- |
- Result map = allocator()->Allocate(); |
- ASSERT(map.is_valid()); |
- // Regular expressions are typeof == 'function', not 'object'. |
- __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg()); |
- destination()->false_target()->Branch(equal); |
- |
- // It can be an undetectable object. |
- __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- destination()->false_target()->Branch(not_zero); |
- // Do a range test for JSObject type. We can't use |
- // MacroAssembler::IsInstanceJSObjectType, because we are using a |
- // ControlDestination, so we copy its implementation here. |
- __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); |
- __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); |
- __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); |
- answer.Unuse(); |
- map.Unuse(); |
- destination()->Split(below_equal); |
- } else { |
- // Uncommon case: typeof testing against a string literal that is |
- // never returned from the typeof operator. |
- answer.Unuse(); |
- destination()->Goto(false); |
- } |
- return; |
- } else if (op == Token::LT && |
- right->AsLiteral() != NULL && |
- right->AsLiteral()->handle()->IsHeapNumber()) { |
- Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle())); |
- if (check->value() == 2147483648.0) { // 0x80000000. |
- Load(left); |
- left_already_loaded = true; |
- Result lhs = frame_->Pop(); |
- lhs.ToRegister(); |
- __ test(lhs.reg(), Immediate(kSmiTagMask)); |
- destination()->true_target()->Branch(zero); // All Smis are less. |
- Result scratch = allocator()->Allocate(); |
- ASSERT(scratch.is_valid()); |
- __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset)); |
- __ cmp(scratch.reg(), FACTORY->heap_number_map()); |
- JumpTarget not_a_number; |
- not_a_number.Branch(not_equal, &lhs); |
- __ mov(scratch.reg(), |
- FieldOperand(lhs.reg(), HeapNumber::kExponentOffset)); |
- __ cmp(Operand(scratch.reg()), Immediate(0xfff00000)); |
- not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf. |
- const uint32_t borderline_exponent = |
- (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; |
- __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent)); |
- scratch.Unuse(); |
- lhs.Unuse(); |
- destination()->true_target()->Branch(less); |
- destination()->false_target()->Jump(); |
- |
- not_a_number.Bind(&lhs); |
- frame_->Push(&lhs); |
- } |
- } |
- |
- Condition cc = no_condition; |
- bool strict = false; |
- switch (op) { |
- case Token::EQ_STRICT: |
- strict = true; |
- // Fall through |
- case Token::EQ: |
- cc = equal; |
- break; |
- case Token::LT: |
- cc = less; |
- break; |
- case Token::GT: |
- cc = greater; |
- break; |
- case Token::LTE: |
- cc = less_equal; |
- break; |
- case Token::GTE: |
- cc = greater_equal; |
- break; |
- case Token::IN: { |
- if (!left_already_loaded) Load(left); |
- Load(right); |
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); |
- frame_->Push(&answer); // push the result |
- return; |
- } |
- case Token::INSTANCEOF: { |
- if (!left_already_loaded) Load(left); |
- Load(right); |
- InstanceofStub stub(InstanceofStub::kNoFlags); |
- Result answer = frame_->CallStub(&stub, 2); |
- answer.ToRegister(); |
- __ test(answer.reg(), Operand(answer.reg())); |
- answer.Unuse(); |
- destination()->Split(zero); |
- return; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- |
- if (left->IsTrivial()) { |
- if (!left_already_loaded) { |
- Load(right); |
- Result right_result = frame_->Pop(); |
- frame_->Push(left); |
- frame_->Push(&right_result); |
- } else { |
- Load(right); |
- } |
- } else { |
- if (!left_already_loaded) Load(left); |
- Load(right); |
- } |
- Comparison(node, cc, strict, destination()); |
-} |
- |
- |
-void CodeGenerator::VisitCompareToNull(CompareToNull* node) { |
- ASSERT(!in_safe_int32_mode()); |
- Comment cmnt(masm_, "[ CompareToNull"); |
- |
- Load(node->expression()); |
- Result operand = frame_->Pop(); |
- operand.ToRegister(); |
- __ cmp(operand.reg(), FACTORY->null_value()); |
- if (node->is_strict()) { |
- operand.Unuse(); |
- destination()->Split(equal); |
- } else { |
- // The 'null' value is only equal to 'undefined' if using non-strict |
- // comparisons. |
- destination()->true_target()->Branch(equal); |
- __ cmp(operand.reg(), FACTORY->undefined_value()); |
- destination()->true_target()->Branch(equal); |
- __ test(operand.reg(), Immediate(kSmiTagMask)); |
- destination()->false_target()->Branch(equal); |
- |
- // It can be an undetectable object. |
- // Use a scratch register in preference to spilling operand.reg(). |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ mov(temp.reg(), |
- FieldOperand(operand.reg(), HeapObject::kMapOffset)); |
- __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), |
- 1 << Map::kIsUndetectable); |
- temp.Unuse(); |
- operand.Unuse(); |
- destination()->Split(not_zero); |
- } |
-} |
- |
- |
-#ifdef DEBUG |
-bool CodeGenerator::HasValidEntryRegisters() { |
- return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) |
- && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) |
- && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) |
- && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) |
- && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); |
-} |
-#endif |
- |
- |
-// Emit a LoadIC call to get the value from receiver and leave it in |
-// dst. |
-class DeferredReferenceGetNamedValue: public DeferredCode { |
- public: |
- DeferredReferenceGetNamedValue(Register dst, |
- Register receiver, |
- Handle<String> name, |
- bool is_contextual) |
- : dst_(dst), |
- receiver_(receiver), |
- name_(name), |
- is_contextual_(is_contextual), |
- is_dont_delete_(false) { |
- set_comment(is_contextual |
- ? "[ DeferredReferenceGetNamedValue (contextual)" |
- : "[ DeferredReferenceGetNamedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- Label* patch_site() { return &patch_site_; } |
- |
- void set_is_dont_delete(bool value) { |
- ASSERT(is_contextual_); |
- is_dont_delete_ = value; |
- } |
- |
- private: |
- Label patch_site_; |
- Register dst_; |
- Register receiver_; |
- Handle<String> name_; |
- bool is_contextual_; |
- bool is_dont_delete_; |
-}; |
- |
- |
-void DeferredReferenceGetNamedValue::Generate() { |
- if (!receiver_.is(eax)) { |
- __ mov(eax, receiver_); |
- } |
- __ Set(ecx, Immediate(name_)); |
- Handle<Code> ic(masm()->isolate()->builtins()->builtin( |
- Builtins::kLoadIC_Initialize)); |
- RelocInfo::Mode mode = is_contextual_ |
- ? RelocInfo::CODE_TARGET_CONTEXT |
- : RelocInfo::CODE_TARGET; |
- __ call(ic, mode); |
- // The call must be followed by: |
- // - a test eax instruction to indicate that the inobject property |
- // case was inlined. |
- // - a mov ecx or mov edx instruction to indicate that the |
- // contextual property load was inlined. |
- // |
- // Store the delta to the map check instruction here in the test |
- // instruction. Use masm_-> instead of the __ macro since the |
- // latter can't return a value. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
- // Here we use masm_-> instead of the __ macro because this is the |
- // instruction that gets patched and coverage code gets in the way. |
- Counters* counters = masm()->isolate()->counters(); |
- if (is_contextual_) { |
- masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site); |
- __ IncrementCounter(counters->named_load_global_inline_miss(), 1); |
- if (is_dont_delete_) { |
- __ IncrementCounter(counters->dont_delete_hint_miss(), 1); |
- } |
- } else { |
- masm_->test(eax, Immediate(-delta_to_patch_site)); |
- __ IncrementCounter(counters->named_load_inline_miss(), 1); |
- } |
- |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-class DeferredReferenceGetKeyedValue: public DeferredCode { |
- public: |
- explicit DeferredReferenceGetKeyedValue(Register dst, |
- Register receiver, |
- Register key) |
- : dst_(dst), receiver_(receiver), key_(key) { |
- set_comment("[ DeferredReferenceGetKeyedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- Label* patch_site() { return &patch_site_; } |
- |
- private: |
- Label patch_site_; |
- Register dst_; |
- Register receiver_; |
- Register key_; |
-}; |
- |
- |
-void DeferredReferenceGetKeyedValue::Generate() { |
- if (!receiver_.is(eax)) { |
- // Register eax is available for key. |
- if (!key_.is(eax)) { |
- __ mov(eax, key_); |
- } |
- if (!receiver_.is(edx)) { |
- __ mov(edx, receiver_); |
- } |
- } else if (!key_.is(edx)) { |
- // Register edx is available for receiver. |
- if (!receiver_.is(edx)) { |
- __ mov(edx, receiver_); |
- } |
- if (!key_.is(eax)) { |
- __ mov(eax, key_); |
- } |
- } else { |
- __ xchg(edx, eax); |
- } |
- // Calculate the delta from the IC call instruction to the map check |
- // cmp instruction in the inlined version. This delta is stored in |
- // a test(eax, delta) instruction after the call so that we can find |
- // it in the IC initialization code and patch the cmp instruction. |
- // This means that we cannot allow test instructions after calls to |
- // KeyedLoadIC stubs in other places. |
- Handle<Code> ic(masm()->isolate()->builtins()->builtin( |
- Builtins::kKeyedLoadIC_Initialize)); |
- __ call(ic, RelocInfo::CODE_TARGET); |
- // The delta from the start of the map-compare instruction to the |
- // test instruction. We use masm_-> directly here instead of the __ |
- // macro because the macro sometimes uses macro expansion to turn |
- // into something that can't return a value. This is encountered |
- // when doing generated code coverage tests. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
- // Here we use masm_-> instead of the __ macro because this is the |
- // instruction that gets patched and coverage code gets in the way. |
- masm_->test(eax, Immediate(-delta_to_patch_site)); |
- Counters* counters = masm()->isolate()->counters(); |
- __ IncrementCounter(counters->keyed_load_inline_miss(), 1); |
- |
- if (!dst_.is(eax)) __ mov(dst_, eax); |
-} |
- |
- |
-class DeferredReferenceSetKeyedValue: public DeferredCode { |
- public: |
- DeferredReferenceSetKeyedValue(Register value, |
- Register key, |
- Register receiver, |
- Register scratch, |
- StrictModeFlag strict_mode) |
- : value_(value), |
- key_(key), |
- receiver_(receiver), |
- scratch_(scratch), |
- strict_mode_(strict_mode) { |
- set_comment("[ DeferredReferenceSetKeyedValue"); |
- } |
- |
- virtual void Generate(); |
- |
- Label* patch_site() { return &patch_site_; } |
- |
- private: |
- Register value_; |
- Register key_; |
- Register receiver_; |
- Register scratch_; |
- Label patch_site_; |
- StrictModeFlag strict_mode_; |
-}; |
- |
- |
-void DeferredReferenceSetKeyedValue::Generate() { |
- Counters* counters = masm()->isolate()->counters(); |
- __ IncrementCounter(counters->keyed_store_inline_miss(), 1); |
- // Move value_ to eax, key_ to ecx, and receiver_ to edx. |
- Register old_value = value_; |
- |
- // First, move value to eax. |
- if (!value_.is(eax)) { |
- if (key_.is(eax)) { |
- // Move key_ out of eax, preferably to ecx. |
- if (!value_.is(ecx) && !receiver_.is(ecx)) { |
- __ mov(ecx, key_); |
- key_ = ecx; |
- } else { |
- __ mov(scratch_, key_); |
- key_ = scratch_; |
- } |
- } |
- if (receiver_.is(eax)) { |
- // Move receiver_ out of eax, preferably to edx. |
- if (!value_.is(edx) && !key_.is(edx)) { |
- __ mov(edx, receiver_); |
- receiver_ = edx; |
- } else { |
- // Both moves to scratch are from eax, also, no valid path hits both. |
- __ mov(scratch_, receiver_); |
- receiver_ = scratch_; |
- } |
- } |
- __ mov(eax, value_); |
- value_ = eax; |
- } |
- |
- // Now value_ is in eax. Move the other two to the right positions. |
- // We do not update the variables key_ and receiver_ to ecx and edx. |
- if (key_.is(ecx)) { |
- if (!receiver_.is(edx)) { |
- __ mov(edx, receiver_); |
- } |
- } else if (key_.is(edx)) { |
- if (receiver_.is(ecx)) { |
- __ xchg(edx, ecx); |
- } else { |
- __ mov(ecx, key_); |
- if (!receiver_.is(edx)) { |
- __ mov(edx, receiver_); |
- } |
- } |
- } else { // Key is not in edx or ecx. |
- if (!receiver_.is(edx)) { |
- __ mov(edx, receiver_); |
- } |
- __ mov(ecx, key_); |
- } |
- |
- // Call the IC stub. |
- Handle<Code> ic(masm()->isolate()->builtins()->builtin( |
- (strict_mode_ == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict |
- : Builtins::kKeyedStoreIC_Initialize)); |
- __ call(ic, RelocInfo::CODE_TARGET); |
- // The delta from the start of the map-compare instruction to the |
- // test instruction. We use masm_-> directly here instead of the |
- // __ macro because the macro sometimes uses macro expansion to turn |
- // into something that can't return a value. This is encountered |
- // when doing generated code coverage tests. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
- // Here we use masm_-> instead of the __ macro because this is the |
- // instruction that gets patched and coverage code gets in the way. |
- masm_->test(eax, Immediate(-delta_to_patch_site)); |
- // Restore value (returned from store IC) register. |
- if (!old_value.is(eax)) __ mov(old_value, eax); |
-} |
- |
- |
-Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- |
- Isolate* isolate = masm()->isolate(); |
- Factory* factory = isolate->factory(); |
- Counters* counters = isolate->counters(); |
- |
- bool contextual_load_in_builtin = |
- is_contextual && |
- (isolate->bootstrapper()->IsActive() || |
- (!info_->closure().is_null() && info_->closure()->IsBuiltin())); |
- |
- Result result; |
- // Do not inline in the global code or when not in loop. |
- if (scope()->is_global_scope() || |
- loop_nesting() == 0 || |
- contextual_load_in_builtin) { |
- Comment cmnt(masm(), "[ Load from named Property"); |
- frame()->Push(name); |
- |
- RelocInfo::Mode mode = is_contextual |
- ? RelocInfo::CODE_TARGET_CONTEXT |
- : RelocInfo::CODE_TARGET; |
- result = frame()->CallLoadIC(mode); |
- // A test eax instruction following the call signals that the inobject |
- // property case was inlined. Ensure that there is not a test eax |
- // instruction here. |
- __ nop(); |
- } else { |
- // Inline the property load. |
- Comment cmnt(masm(), is_contextual |
- ? "[ Inlined contextual property load" |
- : "[ Inlined named property load"); |
- Result receiver = frame()->Pop(); |
- receiver.ToRegister(); |
- |
- result = allocator()->Allocate(); |
- ASSERT(result.is_valid()); |
- DeferredReferenceGetNamedValue* deferred = |
- new DeferredReferenceGetNamedValue(result.reg(), |
- receiver.reg(), |
- name, |
- is_contextual); |
- |
- if (!is_contextual) { |
- // Check that the receiver is a heap object. |
- __ test(receiver.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(zero); |
- } |
- |
- __ bind(deferred->patch_site()); |
- // This is the map check instruction that will be patched (so we can't |
- // use the double underscore macro that may insert instructions). |
- // Initially use an invalid map to force a failure. |
- masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), |
- Immediate(factory->null_value())); |
- // This branch is always a forwards branch so it's always a fixed size |
- // which allows the assert below to succeed and patching to work. |
- deferred->Branch(not_equal); |
- |
- // The delta from the patch label to the actual load must be |
- // statically known. |
- ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == |
- LoadIC::kOffsetToLoadInstruction); |
- |
- if (is_contextual) { |
- // Load the (initialy invalid) cell and get its value. |
- masm()->mov(result.reg(), factory->null_value()); |
- if (FLAG_debug_code) { |
- __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), |
- factory->global_property_cell_map()); |
- __ Assert(equal, "Uninitialized inlined contextual load"); |
- } |
- __ mov(result.reg(), |
- FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset)); |
- __ cmp(result.reg(), factory->the_hole_value()); |
- deferred->Branch(equal); |
- bool is_dont_delete = false; |
- if (!info_->closure().is_null()) { |
- // When doing lazy compilation we can check if the global cell |
- // already exists and use its "don't delete" status as a hint. |
- AssertNoAllocation no_gc; |
- v8::internal::GlobalObject* global_object = |
- info_->closure()->context()->global(); |
- LookupResult lookup; |
- global_object->LocalLookupRealNamedProperty(*name, &lookup); |
- if (lookup.IsProperty() && lookup.type() == NORMAL) { |
- ASSERT(lookup.holder() == global_object); |
- ASSERT(global_object->property_dictionary()->ValueAt( |
- lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); |
- is_dont_delete = lookup.IsDontDelete(); |
- } |
- } |
- deferred->set_is_dont_delete(is_dont_delete); |
- if (!is_dont_delete) { |
- __ cmp(result.reg(), factory->the_hole_value()); |
- deferred->Branch(equal); |
- } else if (FLAG_debug_code) { |
- __ cmp(result.reg(), factory->the_hole_value()); |
- __ Check(not_equal, "DontDelete cells can't contain the hole"); |
- } |
- __ IncrementCounter(counters->named_load_global_inline(), 1); |
- if (is_dont_delete) { |
- __ IncrementCounter(counters->dont_delete_hint_hit(), 1); |
- } |
- } else { |
- // The initial (invalid) offset has to be large enough to force a 32-bit |
- // instruction encoding to allow patching with an arbitrary offset. Use |
- // kMaxInt (minus kHeapObjectTag). |
- int offset = kMaxInt; |
- masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset)); |
- __ IncrementCounter(counters->named_load_inline(), 1); |
- } |
- |
- deferred->BindExit(); |
- } |
- ASSERT(frame()->height() == original_height - 1); |
- return result; |
-} |
- |
- |
-Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { |
-#ifdef DEBUG |
- int expected_height = frame()->height() - (is_contextual ? 1 : 2); |
-#endif |
- |
- Result result; |
- if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { |
- result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); |
- // A test eax instruction following the call signals that the inobject |
- // property case was inlined. Ensure that there is not a test eax |
- // instruction here. |
- __ nop(); |
- } else { |
- // Inline the in-object property case. |
- JumpTarget slow, done; |
- Label patch_site; |
- |
- // Get the value and receiver from the stack. |
- Result value = frame()->Pop(); |
- value.ToRegister(); |
- Result receiver = frame()->Pop(); |
- receiver.ToRegister(); |
- |
- // Allocate result register. |
- result = allocator()->Allocate(); |
- ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid()); |
- |
- // Check that the receiver is a heap object. |
- __ test(receiver.reg(), Immediate(kSmiTagMask)); |
- slow.Branch(zero, &value, &receiver); |
- |
- // This is the map check instruction that will be patched (so we can't |
- // use the double underscore macro that may insert instructions). |
- // Initially use an invalid map to force a failure. |
- __ bind(&patch_site); |
- masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->null_value())); |
- // This branch is always a forwards branch so it's always a fixed size |
- // which allows the assert below to succeed and patching to work. |
- slow.Branch(not_equal, &value, &receiver); |
- |
- // The delta from the patch label to the store offset must be |
- // statically known. |
- ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) == |
- StoreIC::kOffsetToStoreInstruction); |
- |
- // The initial (invalid) offset has to be large enough to force a 32-bit |
- // instruction encoding to allow patching with an arbitrary offset. Use |
- // kMaxInt (minus kHeapObjectTag). |
- int offset = kMaxInt; |
- __ mov(FieldOperand(receiver.reg(), offset), value.reg()); |
- __ mov(result.reg(), Operand(value.reg())); |
- |
- // Allocate scratch register for write barrier. |
- Result scratch = allocator()->Allocate(); |
- ASSERT(scratch.is_valid()); |
- |
- // The write barrier clobbers all input registers, so spill the |
- // receiver and the value. |
- frame_->Spill(receiver.reg()); |
- frame_->Spill(value.reg()); |
- |
- // If the receiver and the value share a register allocate a new |
- // register for the receiver. |
- if (receiver.reg().is(value.reg())) { |
- receiver = allocator()->Allocate(); |
- ASSERT(receiver.is_valid()); |
- __ mov(receiver.reg(), Operand(value.reg())); |
- } |
- |
- // Update the write barrier. To save instructions in the inlined |
- // version we do not filter smis. |
- Label skip_write_barrier; |
- __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier); |
- int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site); |
- __ lea(scratch.reg(), Operand(receiver.reg(), offset)); |
- __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg()); |
- if (FLAG_debug_code) { |
- __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue))); |
- __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue))); |
- __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue))); |
- } |
- __ bind(&skip_write_barrier); |
- value.Unuse(); |
- scratch.Unuse(); |
- receiver.Unuse(); |
- done.Jump(&result); |
- |
- slow.Bind(&value, &receiver); |
- frame()->Push(&receiver); |
- frame()->Push(&value); |
- result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); |
- // Encode the offset to the map check instruction and the offset |
- // to the write barrier store address computation in a test eax |
- // instruction. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site); |
- __ test(eax, |
- Immediate((delta_to_record_write << 16) | delta_to_patch_site)); |
- done.Bind(&result); |
- } |
- |
- ASSERT_EQ(expected_height, frame()->height()); |
- return result; |
-} |
- |
- |
-Result CodeGenerator::EmitKeyedLoad() { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Result result; |
- // Inline array load code if inside of a loop. We do not know the |
- // receiver map yet, so we initially generate the code with a check |
- // against an invalid map. In the inline cache code, we patch the map |
- // check if appropriate. |
- if (loop_nesting() > 0) { |
- Comment cmnt(masm_, "[ Inlined load from keyed Property"); |
- |
- // Use a fresh temporary to load the elements without destroying |
- // the receiver which is needed for the deferred slow case. |
- Result elements = allocator()->Allocate(); |
- ASSERT(elements.is_valid()); |
- |
- Result key = frame_->Pop(); |
- Result receiver = frame_->Pop(); |
- key.ToRegister(); |
- receiver.ToRegister(); |
- |
- // If key and receiver are shared registers on the frame, their values will |
- // be automatically saved and restored when going to deferred code. |
- // The result is in elements, which is guaranteed non-shared. |
- DeferredReferenceGetKeyedValue* deferred = |
- new DeferredReferenceGetKeyedValue(elements.reg(), |
- receiver.reg(), |
- key.reg()); |
- |
- __ test(receiver.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(zero); |
- |
- // Check that the receiver has the expected map. |
- // Initially, use an invalid map. The map is patched in the IC |
- // initialization code. |
- __ bind(deferred->patch_site()); |
- // Use masm-> here instead of the double underscore macro since extra |
- // coverage code can interfere with the patching. |
- masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->null_value())); |
- deferred->Branch(not_equal); |
- |
- // Check that the key is a smi. |
- if (!key.is_smi()) { |
- __ test(key.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); |
- } |
- |
- // Get the elements array from the receiver. |
- __ mov(elements.reg(), |
- FieldOperand(receiver.reg(), JSObject::kElementsOffset)); |
- __ AssertFastElements(elements.reg()); |
- |
- // Check that the key is within bounds. |
- __ cmp(key.reg(), |
- FieldOperand(elements.reg(), FixedArray::kLengthOffset)); |
- deferred->Branch(above_equal); |
- |
- // Load and check that the result is not the hole. |
- // Key holds a smi. |
- STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
- __ mov(elements.reg(), |
- FieldOperand(elements.reg(), |
- key.reg(), |
- times_2, |
- FixedArray::kHeaderSize)); |
- result = elements; |
- __ cmp(Operand(result.reg()), Immediate(FACTORY->the_hole_value())); |
- deferred->Branch(equal); |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), 1); |
- |
- deferred->BindExit(); |
- } else { |
- Comment cmnt(masm_, "[ Load from keyed Property"); |
- result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); |
- // Make sure that we do not have a test instruction after the |
- // call. A test instruction after the call is used to |
- // indicate that we have generated an inline version of the |
- // keyed load. The explicit nop instruction is here because |
- // the push that follows might be peep-hole optimized away. |
- __ nop(); |
- } |
- ASSERT(frame()->height() == original_height - 2); |
- return result; |
-} |
- |
- |
-Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { |
-#ifdef DEBUG |
- int original_height = frame()->height(); |
-#endif |
- Result result; |
- // Generate inlined version of the keyed store if the code is in a loop |
- // and the key is likely to be a smi. |
- if (loop_nesting() > 0 && key_type->IsLikelySmi()) { |
- Comment cmnt(masm(), "[ Inlined store to keyed Property"); |
- |
- // Get the receiver, key and value into registers. |
- result = frame()->Pop(); |
- Result key = frame()->Pop(); |
- Result receiver = frame()->Pop(); |
- |
- Result tmp = allocator_->Allocate(); |
- ASSERT(tmp.is_valid()); |
- Result tmp2 = allocator_->Allocate(); |
- ASSERT(tmp2.is_valid()); |
- |
- // Determine whether the value is a constant before putting it in a |
- // register. |
- bool value_is_constant = result.is_constant(); |
- |
- // Make sure that value, key and receiver are in registers. |
- result.ToRegister(); |
- key.ToRegister(); |
- receiver.ToRegister(); |
- |
- DeferredReferenceSetKeyedValue* deferred = |
- new DeferredReferenceSetKeyedValue(result.reg(), |
- key.reg(), |
- receiver.reg(), |
- tmp.reg(), |
- strict_mode_flag()); |
- |
- // Check that the receiver is not a smi. |
- __ test(receiver.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(zero); |
- |
- // Check that the key is a smi. |
- if (!key.is_smi()) { |
- __ test(key.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } else { |
- if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); |
- } |
- |
- // Check that the receiver is a JSArray. |
- __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg()); |
- deferred->Branch(not_equal); |
- |
- // Get the elements array from the receiver and check that it is not a |
- // dictionary. |
- __ mov(tmp.reg(), |
- FieldOperand(receiver.reg(), JSArray::kElementsOffset)); |
- |
- // Check whether it is possible to omit the write barrier. If the elements |
- // array is in new space or the value written is a smi we can safely update |
- // the elements array without write barrier. |
- Label in_new_space; |
- __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space); |
- if (!value_is_constant) { |
- __ test(result.reg(), Immediate(kSmiTagMask)); |
- deferred->Branch(not_zero); |
- } |
- |
- __ bind(&in_new_space); |
- // Bind the deferred code patch site to be able to locate the fixed |
- // array map comparison. When debugging, we patch this comparison to |
- // always fail so that we will hit the IC call in the deferred code |
- // which will allow the debugger to break for fast case stores. |
- __ bind(deferred->patch_site()); |
- __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), |
- Immediate(FACTORY->fixed_array_map())); |
- deferred->Branch(not_equal); |
- |
- // Check that the key is within bounds. Both the key and the length of |
- // the JSArray are smis (because the fixed array check above ensures the |
- // elements are in fast case). Use unsigned comparison to handle negative |
- // keys. |
- __ cmp(key.reg(), |
- FieldOperand(receiver.reg(), JSArray::kLengthOffset)); |
- deferred->Branch(above_equal); |
- |
- // Store the value. |
- __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg()); |
- __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), 1); |
- |
- deferred->BindExit(); |
- } else { |
- result = frame()->CallKeyedStoreIC(strict_mode_flag()); |
- // Make sure that we do not have a test instruction after the |
- // call. A test instruction after the call is used to |
- // indicate that we have generated an inline version of the |
- // keyed store. |
- __ nop(); |
- } |
- ASSERT(frame()->height() == original_height - 3); |
- return result; |
-} |
- |
- |
-#undef __ |
-#define __ ACCESS_MASM(masm) |
- |
- |
-Handle<String> Reference::GetName() { |
- ASSERT(type_ == NAMED); |
- Property* property = expression_->AsProperty(); |
- if (property == NULL) { |
- // Global variable reference treated as a named property reference. |
- VariableProxy* proxy = expression_->AsVariableProxy(); |
- ASSERT(proxy->AsVariable() != NULL); |
- ASSERT(proxy->AsVariable()->is_global()); |
- return proxy->name(); |
- } else { |
- Literal* raw_name = property->key()->AsLiteral(); |
- ASSERT(raw_name != NULL); |
- return Handle<String>::cast(raw_name->handle()); |
- } |
-} |
- |
- |
-void Reference::GetValue() { |
- ASSERT(!cgen_->in_spilled_code()); |
- ASSERT(cgen_->HasValidEntryRegisters()); |
- ASSERT(!is_illegal()); |
- MacroAssembler* masm = cgen_->masm(); |
- |
- // Record the source position for the property load. |
- Property* property = expression_->AsProperty(); |
- if (property != NULL) { |
- cgen_->CodeForSourcePosition(property->position()); |
- } |
- |
- switch (type_) { |
- case SLOT: { |
- Comment cmnt(masm, "[ Load from Slot"); |
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
- ASSERT(slot != NULL); |
- cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); |
- if (!persist_after_get_) set_unloaded(); |
- break; |
- } |
- |
- case NAMED: { |
- Variable* var = expression_->AsVariableProxy()->AsVariable(); |
- bool is_global = var != NULL; |
- ASSERT(!is_global || var->is_global()); |
- if (persist_after_get_) cgen_->frame()->Dup(); |
- Result result = cgen_->EmitNamedLoad(GetName(), is_global); |
- if (!persist_after_get_) set_unloaded(); |
- cgen_->frame()->Push(&result); |
- break; |
- } |
- |
- case KEYED: { |
- if (persist_after_get_) { |
- cgen_->frame()->PushElementAt(1); |
- cgen_->frame()->PushElementAt(1); |
- } |
- Result value = cgen_->EmitKeyedLoad(); |
- cgen_->frame()->Push(&value); |
- if (!persist_after_get_) set_unloaded(); |
- break; |
- } |
- |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void Reference::TakeValue() { |
- // For non-constant frame-allocated slots, we invalidate the value in the |
- // slot. For all others, we fall back on GetValue. |
- ASSERT(!cgen_->in_spilled_code()); |
- ASSERT(!is_illegal()); |
- if (type_ != SLOT) { |
- GetValue(); |
- return; |
- } |
- |
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
- ASSERT(slot != NULL); |
- if (slot->type() == Slot::LOOKUP || |
- slot->type() == Slot::CONTEXT || |
- slot->var()->mode() == Variable::CONST || |
- slot->is_arguments()) { |
- GetValue(); |
- return; |
- } |
- |
- // Only non-constant, frame-allocated parameters and locals can |
- // reach here. Be careful not to use the optimizations for arguments |
- // object access since it may not have been initialized yet. |
- ASSERT(!slot->is_arguments()); |
- if (slot->type() == Slot::PARAMETER) { |
- cgen_->frame()->TakeParameterAt(slot->index()); |
- } else { |
- ASSERT(slot->type() == Slot::LOCAL); |
- cgen_->frame()->TakeLocalAt(slot->index()); |
- } |
- |
- ASSERT(persist_after_get_); |
- // Do not unload the reference, because it is used in SetValue. |
-} |
- |
- |
-void Reference::SetValue(InitState init_state) { |
- ASSERT(cgen_->HasValidEntryRegisters()); |
- ASSERT(!is_illegal()); |
- MacroAssembler* masm = cgen_->masm(); |
- switch (type_) { |
- case SLOT: { |
- Comment cmnt(masm, "[ Store to Slot"); |
- Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); |
- ASSERT(slot != NULL); |
- cgen_->StoreToSlot(slot, init_state); |
- set_unloaded(); |
- break; |
- } |
- |
- case NAMED: { |
- Comment cmnt(masm, "[ Store to named Property"); |
- Result answer = cgen_->EmitNamedStore(GetName(), false); |
- cgen_->frame()->Push(&answer); |
- set_unloaded(); |
- break; |
- } |
- |
- case KEYED: { |
- Comment cmnt(masm, "[ Store to keyed Property"); |
- Property* property = expression()->AsProperty(); |
- ASSERT(property != NULL); |
- |
- Result answer = cgen_->EmitKeyedStore(property->key()->type()); |
- cgen_->frame()->Push(&answer); |
- set_unloaded(); |
- break; |
- } |
- |
- case UNLOADED: |
- case ILLEGAL: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-#undef __ |
- |
#define __ masm. |
- |
static void MemCopyWrapper(void* dest, const void* src, size_t size) { |
memcpy(dest, src, size); |
} |