| Index: src/ia32/codegen-ia32.cc
|
| diff --git a/src/ia32/codegen-ia32.cc b/src/ia32/codegen-ia32.cc
|
| index 8a47e720e10aaa6fd7cae40493730e04b5979e7d..572c36c8816aed446aa478d00ccb7cbf4b498187 100644
|
| --- a/src/ia32/codegen-ia32.cc
|
| +++ b/src/ia32/codegen-ia32.cc
|
| @@ -1,4 +1,4 @@
|
| -// Copyright 2010 the V8 project authors. All rights reserved.
|
| +// Copyright 2011 the V8 project authors. All rights reserved.
|
| // Redistribution and use in source and binary forms, with or without
|
| // modification, are permitted provided that the following conditions are
|
| // met:
|
| @@ -29,81 +29,15 @@
|
|
|
| #if defined(V8_TARGET_ARCH_IA32)
|
|
|
| -#include "codegen-inl.h"
|
| -#include "bootstrapper.h"
|
| -#include "code-stubs.h"
|
| -#include "compiler.h"
|
| -#include "debug.h"
|
| -#include "ic-inl.h"
|
| -#include "parser.h"
|
| -#include "regexp-macro-assembler.h"
|
| -#include "register-allocator-inl.h"
|
| -#include "scopes.h"
|
| -#include "virtual-frame-inl.h"
|
| +#include "codegen.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
|
|
| -#define __ ACCESS_MASM(masm)
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Platform-specific FrameRegisterState functions.
|
| -
|
| -void FrameRegisterState::Save(MacroAssembler* masm) const {
|
| - for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
|
| - int action = registers_[i];
|
| - if (action == kPush) {
|
| - __ push(RegisterAllocator::ToRegister(i));
|
| - } else if (action != kIgnore && (action & kSyncedFlag) == 0) {
|
| - __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i));
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void FrameRegisterState::Restore(MacroAssembler* masm) const {
|
| - // Restore registers in reverse order due to the stack.
|
| - for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
|
| - int action = registers_[i];
|
| - if (action == kPush) {
|
| - __ pop(RegisterAllocator::ToRegister(i));
|
| - } else if (action != kIgnore) {
|
| - action &= ~kSyncedFlag;
|
| - __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action));
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -#define __ ACCESS_MASM(masm_)
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Platform-specific DeferredCode functions.
|
| -
|
| -void DeferredCode::SaveRegisters() {
|
| - frame_state_.Save(masm_);
|
| -}
|
| -
|
| -
|
| -void DeferredCode::RestoreRegisters() {
|
| - frame_state_.Restore(masm_);
|
| -}
|
| -
|
|
|
| // -------------------------------------------------------------------------
|
| // Platform-specific RuntimeCallHelper functions.
|
|
|
| -void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
| - frame_state_->Save(masm);
|
| -}
|
| -
|
| -
|
| -void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
| - frame_state_->Restore(masm);
|
| -}
|
| -
|
| -
|
| void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
| masm->EnterInternalFrame();
|
| }
|
| @@ -114,10062 +48,8 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
| }
|
|
|
|
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenState implementation.
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner)
|
| - : owner_(owner),
|
| - destination_(NULL),
|
| - previous_(NULL) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::CodeGenState(CodeGenerator* owner,
|
| - ControlDestination* destination)
|
| - : owner_(owner),
|
| - destination_(destination),
|
| - previous_(owner->state()) {
|
| - owner_->set_state(this);
|
| -}
|
| -
|
| -
|
| -CodeGenState::~CodeGenState() {
|
| - ASSERT(owner_->state() == this);
|
| - owner_->set_state(previous_);
|
| -}
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenerator implementation.
|
| -
|
| -CodeGenerator::CodeGenerator(MacroAssembler* masm)
|
| - : deferred_(8),
|
| - masm_(masm),
|
| - info_(NULL),
|
| - frame_(NULL),
|
| - allocator_(NULL),
|
| - state_(NULL),
|
| - loop_nesting_(0),
|
| - in_safe_int32_mode_(false),
|
| - safe_int32_mode_enabled_(true),
|
| - function_return_is_shadowed_(false),
|
| - in_spilled_code_(false),
|
| - jit_cookie_((FLAG_mask_constants_with_cookie) ?
|
| - V8::RandomPrivate(Isolate::Current()) : 0) {
|
| -}
|
| -
|
| -
|
| -// Calling conventions:
|
| -// ebp: caller's frame pointer
|
| -// esp: stack pointer
|
| -// edi: called JS function
|
| -// esi: callee's context
|
| -
|
| -void CodeGenerator::Generate(CompilationInfo* info) {
|
| - // Record the position for debugging purposes.
|
| - CodeForFunctionPosition(info->function());
|
| - Comment cmnt(masm_, "[ function compiled by virtual frame code generator");
|
| -
|
| - // Initialize state.
|
| - info_ = info;
|
| - ASSERT(allocator_ == NULL);
|
| - RegisterAllocator register_allocator(this);
|
| - allocator_ = ®ister_allocator;
|
| - ASSERT(frame_ == NULL);
|
| - frame_ = new VirtualFrame();
|
| - set_in_spilled_code(false);
|
| -
|
| - // Adjust for function-level loop nesting.
|
| - ASSERT_EQ(0, loop_nesting_);
|
| - loop_nesting_ = info->is_in_loop() ? 1 : 0;
|
| -
|
| - masm()->isolate()->set_jump_target_compiling_deferred_code(false);
|
| -
|
| - {
|
| - CodeGenState state(this);
|
| -
|
| - // Entry:
|
| - // Stack: receiver, arguments, return address.
|
| - // ebp: caller's frame pointer
|
| - // esp: stack pointer
|
| - // edi: called JS function
|
| - // esi: callee's context
|
| - allocator_->Initialize();
|
| -
|
| -#ifdef DEBUG
|
| - if (strlen(FLAG_stop_at) > 0 &&
|
| - info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
| - frame_->SpillAll();
|
| - __ int3();
|
| - }
|
| -#endif
|
| -
|
| - frame_->Enter();
|
| -
|
| - // Allocate space for locals and initialize them.
|
| - frame_->AllocateStackSlots();
|
| -
|
| - // Allocate the local context if needed.
|
| - int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
|
| - if (heap_slots > 0) {
|
| - Comment cmnt(masm_, "[ allocate local context");
|
| - // Allocate local context.
|
| - // Get outer context and create a new context based on it.
|
| - frame_->PushFunction();
|
| - Result context;
|
| - if (heap_slots <= FastNewContextStub::kMaximumSlots) {
|
| - FastNewContextStub stub(heap_slots);
|
| - context = frame_->CallStub(&stub, 1);
|
| - } else {
|
| - context = frame_->CallRuntime(Runtime::kNewContext, 1);
|
| - }
|
| -
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -
|
| - // Verify that the runtime call result and esi agree.
|
| - if (FLAG_debug_code) {
|
| - __ cmp(context.reg(), Operand(esi));
|
| - __ Assert(equal, "Runtime::NewContext should end up in esi");
|
| - }
|
| - }
|
| -
|
| - // TODO(1241774): Improve this code:
|
| - // 1) only needed if we have a context
|
| - // 2) no need to recompute context ptr every single time
|
| - // 3) don't copy parameter operand code from SlotOperand!
|
| - {
|
| - Comment cmnt2(masm_, "[ copy context parameters into .context");
|
| - // Note that iteration order is relevant here! If we have the same
|
| - // parameter twice (e.g., function (x, y, x)), and that parameter
|
| - // needs to be copied into the context, it must be the last argument
|
| - // passed to the parameter that needs to be copied. This is a rare
|
| - // case so we don't check for it, instead we rely on the copying
|
| - // order: such a parameter is copied repeatedly into the same
|
| - // context location and thus the last value is what is seen inside
|
| - // the function.
|
| - for (int i = 0; i < scope()->num_parameters(); i++) {
|
| - Variable* par = scope()->parameter(i);
|
| - Slot* slot = par->AsSlot();
|
| - if (slot != NULL && slot->type() == Slot::CONTEXT) {
|
| - // The use of SlotOperand below is safe in unspilled code
|
| - // because the slot is guaranteed to be a context slot.
|
| - //
|
| - // There are no parameters in the global scope.
|
| - ASSERT(!scope()->is_global_scope());
|
| - frame_->PushParameterAt(i);
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| -
|
| - // SlotOperand loads context.reg() with the context object
|
| - // stored to, used below in RecordWrite.
|
| - Result context = allocator_->Allocate();
|
| - ASSERT(context.is_valid());
|
| - __ mov(SlotOperand(slot, context.reg()), value.reg());
|
| - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - frame_->Spill(context.reg());
|
| - frame_->Spill(value.reg());
|
| - __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Store the arguments object. This must happen after context
|
| - // initialization because the arguments object may be stored in
|
| - // the context.
|
| - if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
|
| - StoreArgumentsObject(true);
|
| - }
|
| -
|
| - // Initialize ThisFunction reference if present.
|
| - if (scope()->is_function_scope() && scope()->function() != NULL) {
|
| - frame_->Push(FACTORY->the_hole_value());
|
| - StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT);
|
| - }
|
| -
|
| -
|
| - // Initialize the function return target after the locals are set
|
| - // up, because it needs the expected frame height from the frame.
|
| - function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - function_return_is_shadowed_ = false;
|
| -
|
| - // Generate code to 'execute' declarations and initialize functions
|
| - // (source elements). In case of an illegal redeclaration we need to
|
| - // handle that instead of processing the declarations.
|
| - if (scope()->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ illegal redeclarations");
|
| - scope()->VisitIllegalRedeclaration(this);
|
| - } else {
|
| - Comment cmnt(masm_, "[ declarations");
|
| - ProcessDeclarations(scope()->declarations());
|
| - // Bail out if a stack-overflow exception occurred when processing
|
| - // declarations.
|
| - if (HasStackOverflow()) return;
|
| - }
|
| -
|
| - if (FLAG_trace) {
|
| - frame_->CallRuntime(Runtime::kTraceEnter, 0);
|
| - // Ignore the return value.
|
| - }
|
| - CheckStack();
|
| -
|
| - // Compile the body of the function in a vanilla state. Don't
|
| - // bother compiling all the code if the scope has an illegal
|
| - // redeclaration.
|
| - if (!scope()->HasIllegalRedeclaration()) {
|
| - Comment cmnt(masm_, "[ function body");
|
| -#ifdef DEBUG
|
| - bool is_builtin = info->isolate()->bootstrapper()->IsActive();
|
| - bool should_trace =
|
| - is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
|
| - if (should_trace) {
|
| - frame_->CallRuntime(Runtime::kDebugTrace, 0);
|
| - // Ignore the return value.
|
| - }
|
| -#endif
|
| - VisitStatements(info->function()->body());
|
| -
|
| - // Handle the return from the function.
|
| - if (has_valid_frame()) {
|
| - // If there is a valid frame, control flow can fall off the end of
|
| - // the body. In that case there is an implicit return statement.
|
| - ASSERT(!function_return_is_shadowed_);
|
| - CodeForReturnPosition(info->function());
|
| - frame_->PrepareForReturn();
|
| - Result undefined(FACTORY->undefined_value());
|
| - if (function_return_.is_bound()) {
|
| - function_return_.Jump(&undefined);
|
| - } else {
|
| - function_return_.Bind(&undefined);
|
| - GenerateReturnSequence(&undefined);
|
| - }
|
| - } else if (function_return_.is_linked()) {
|
| - // If the return target has dangling jumps to it, then we have not
|
| - // yet generated the return sequence. This can happen when (a)
|
| - // control does not flow off the end of the body so we did not
|
| - // compile an artificial return statement just above, and (b) there
|
| - // are return statements in the body but (c) they are all shadowed.
|
| - Result return_value;
|
| - function_return_.Bind(&return_value);
|
| - GenerateReturnSequence(&return_value);
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Adjust for function-level loop nesting.
|
| - ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0);
|
| - loop_nesting_ = 0;
|
| -
|
| - // Code generation state must be reset.
|
| - ASSERT(state_ == NULL);
|
| - ASSERT(!function_return_is_shadowed_);
|
| - function_return_.Unuse();
|
| - DeleteFrame();
|
| -
|
| - // Process any deferred code using the register allocator.
|
| - if (!HasStackOverflow()) {
|
| - info->isolate()->set_jump_target_compiling_deferred_code(true);
|
| - ProcessDeferred();
|
| - info->isolate()->set_jump_target_compiling_deferred_code(false);
|
| - }
|
| -
|
| - // There is no need to delete the register allocator, it is a
|
| - // stack-allocated local.
|
| - allocator_ = NULL;
|
| -}
|
| -
|
| -
|
| -Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
|
| - // Currently, this assertion will fail if we try to assign to
|
| - // a constant variable that is constant because it is read-only
|
| - // (such as the variable referring to a named function expression).
|
| - // We need to implement assignments to read-only variables.
|
| - // Ideally, we should do this during AST generation (by converting
|
| - // such assignments into expression statements); however, in general
|
| - // we may not be able to make the decision until past AST generation,
|
| - // that is when the entire program is known.
|
| - ASSERT(slot != NULL);
|
| - int index = slot->index();
|
| - switch (slot->type()) {
|
| - case Slot::PARAMETER:
|
| - return frame_->ParameterAt(index);
|
| -
|
| - case Slot::LOCAL:
|
| - return frame_->LocalAt(index);
|
| -
|
| - case Slot::CONTEXT: {
|
| - // Follow the context chain if necessary.
|
| - ASSERT(!tmp.is(esi)); // do not overwrite context register
|
| - Register context = esi;
|
| - int chain_length = scope()->ContextChainLength(slot->var()->scope());
|
| - for (int i = 0; i < chain_length; i++) {
|
| - // Load the closure.
|
| - // (All contexts, even 'with' contexts, have a closure,
|
| - // and it is the same for all contexts inside a function.
|
| - // There is no need to go to the function context first.)
|
| - __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
|
| - // Load the function context (which is the incoming, outer context).
|
| - __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
|
| - context = tmp;
|
| - }
|
| - // We may have a 'with' context now. Get the function context.
|
| - // (In fact this mov may never be the needed, since the scope analysis
|
| - // may not permit a direct context access in this case and thus we are
|
| - // always at a function context. However it is safe to dereference be-
|
| - // cause the function context of a function context is itself. Before
|
| - // deleting this mov we should try to create a counter-example first,
|
| - // though...)
|
| - __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp, index);
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - return Operand(eax);
|
| - }
|
| -}
|
| -
|
| -
|
| -Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
|
| - Result tmp,
|
| - JumpTarget* slow) {
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - ASSERT(tmp.is_register());
|
| - Register context = esi;
|
| -
|
| - for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
|
| - Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - }
|
| - __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - context = tmp.reg();
|
| - }
|
| - }
|
| - // Check that last extension is NULL.
|
| - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
|
| - return ContextOperand(tmp.reg(), slot->index());
|
| -}
|
| -
|
| -
|
| -// Emit code to load the value of an expression to the top of the
|
| -// frame. If the expression is boolean-valued it may be compiled (or
|
| -// partially compiled) into control flow to the control destination.
|
| -// If force_control is true, control flow is forced.
|
| -void CodeGenerator::LoadCondition(Expression* expr,
|
| - ControlDestination* dest,
|
| - bool force_control) {
|
| - ASSERT(!in_spilled_code());
|
| - int original_height = frame_->height();
|
| -
|
| - { CodeGenState new_state(this, dest);
|
| - Visit(expr);
|
| -
|
| - // If we hit a stack overflow, we may not have actually visited
|
| - // the expression. In that case, we ensure that we have a
|
| - // valid-looking frame state because we will continue to generate
|
| - // code as we unwind the C++ stack.
|
| - //
|
| - // It's possible to have both a stack overflow and a valid frame
|
| - // state (eg, a subexpression overflowed, visiting it returned
|
| - // with a dummied frame state, and visiting this expression
|
| - // returned with a normal-looking state).
|
| - if (HasStackOverflow() &&
|
| - !dest->is_used() &&
|
| - frame_->height() == original_height) {
|
| - dest->Goto(true);
|
| - }
|
| - }
|
| -
|
| - if (force_control && !dest->is_used()) {
|
| - // Convert the TOS value into flow to the control destination.
|
| - ToBoolean(dest);
|
| - }
|
| -
|
| - ASSERT(!(force_control && !dest->is_used()));
|
| - ASSERT(dest->is_used() || frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadAndSpill(Expression* expression) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Load(expression);
|
| - frame_->SpillAll();
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadInSafeInt32Mode(Expression* expr,
|
| - BreakTarget* unsafe_bailout) {
|
| - set_unsafe_bailout(unsafe_bailout);
|
| - set_in_safe_int32_mode(true);
|
| - Load(expr);
|
| - Result value = frame_->Pop();
|
| - ASSERT(frame_->HasNoUntaggedInt32Elements());
|
| - if (expr->GuaranteedSmiResult()) {
|
| - ConvertInt32ResultToSmi(&value);
|
| - } else {
|
| - ConvertInt32ResultToNumber(&value);
|
| - }
|
| - set_in_safe_int32_mode(false);
|
| - set_unsafe_bailout(NULL);
|
| - frame_->Push(&value);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) {
|
| - set_safe_int32_mode_enabled(false);
|
| - Load(expr);
|
| - set_safe_int32_mode_enabled(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::ConvertInt32ResultToSmi(Result* value) {
|
| - ASSERT(value->is_untagged_int32());
|
| - if (value->is_register()) {
|
| - __ add(value->reg(), Operand(value->reg()));
|
| - } else {
|
| - ASSERT(value->is_constant());
|
| - ASSERT(value->handle()->IsSmi());
|
| - }
|
| - value->set_untagged_int32(false);
|
| - value->set_type_info(TypeInfo::Smi());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::ConvertInt32ResultToNumber(Result* value) {
|
| - ASSERT(value->is_untagged_int32());
|
| - if (value->is_register()) {
|
| - Register val = value->reg();
|
| - JumpTarget done;
|
| - __ add(val, Operand(val));
|
| - done.Branch(no_overflow, value);
|
| - __ sar(val, 1);
|
| - // If there was an overflow, bits 30 and 31 of the original number disagree.
|
| - __ xor_(val, 0x80000000u);
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope fscope(SSE2);
|
| - __ cvtsi2sd(xmm0, Operand(val));
|
| - } else {
|
| - // Move val to ST[0] in the FPU
|
| - // Push and pop are safe with respect to the virtual frame because
|
| - // all synced elements are below the actual stack pointer.
|
| - __ push(val);
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(val);
|
| - }
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_register());
|
| - Label allocation_failed;
|
| - __ AllocateHeapNumber(val, scratch.reg(),
|
| - no_reg, &allocation_failed);
|
| - VirtualFrame* clone = new VirtualFrame(frame_);
|
| - scratch.Unuse();
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope fscope(SSE2);
|
| - __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset));
|
| - }
|
| - done.Jump(value);
|
| -
|
| - // Establish the virtual frame, cloned from where AllocateHeapNumber
|
| - // jumped to allocation_failed.
|
| - RegisterFile empty_regs;
|
| - SetFrame(clone, &empty_regs);
|
| - __ bind(&allocation_failed);
|
| - if (!CpuFeatures::IsSupported(SSE2)) {
|
| - // Pop the value from the floating point stack.
|
| - __ fstp(0);
|
| - }
|
| - unsafe_bailout_->Jump();
|
| -
|
| - done.Bind(value);
|
| - } else {
|
| - ASSERT(value->is_constant());
|
| - }
|
| - value->set_untagged_int32(false);
|
| - value->set_type_info(TypeInfo::Integer32());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Load(Expression* expr) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| -
|
| - // If the expression should be a side-effect-free 32-bit int computation,
|
| - // compile that SafeInt32 path, and a bailout path.
|
| - if (!in_safe_int32_mode() &&
|
| - safe_int32_mode_enabled() &&
|
| - expr->side_effect_free() &&
|
| - expr->num_bit_ops() > 2 &&
|
| - CpuFeatures::IsSupported(SSE2)) {
|
| - BreakTarget unsafe_bailout;
|
| - JumpTarget done;
|
| - unsafe_bailout.set_expected_height(frame_->height());
|
| - LoadInSafeInt32Mode(expr, &unsafe_bailout);
|
| - done.Jump();
|
| -
|
| - if (unsafe_bailout.is_linked()) {
|
| - unsafe_bailout.Bind();
|
| - LoadWithSafeInt32ModeDisabled(expr);
|
| - }
|
| - done.Bind();
|
| - } else {
|
| - JumpTarget true_target;
|
| - JumpTarget false_target;
|
| - ControlDestination dest(&true_target, &false_target, true);
|
| - LoadCondition(expr, &dest, false);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The false target was just bound.
|
| - JumpTarget loaded;
|
| - frame_->Push(FACTORY->false_value());
|
| - // There may be dangling jumps to the true target.
|
| - if (true_target.is_linked()) {
|
| - loaded.Jump();
|
| - true_target.Bind();
|
| - frame_->Push(FACTORY->true_value());
|
| - loaded.Bind();
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // There is true, and possibly false, control flow (with true as
|
| - // the fall through).
|
| - JumpTarget loaded;
|
| - frame_->Push(FACTORY->true_value());
|
| - if (false_target.is_linked()) {
|
| - loaded.Jump();
|
| - false_target.Bind();
|
| - frame_->Push(FACTORY->false_value());
|
| - loaded.Bind();
|
| - }
|
| -
|
| - } else {
|
| - // We have a valid value on top of the frame, but we still may
|
| - // have dangling jumps to the true and false targets from nested
|
| - // subexpressions (eg, the left subexpressions of the
|
| - // short-circuited boolean operators).
|
| - ASSERT(has_valid_frame());
|
| - if (true_target.is_linked() || false_target.is_linked()) {
|
| - JumpTarget loaded;
|
| - loaded.Jump(); // Don't lose the current TOS.
|
| - if (true_target.is_linked()) {
|
| - true_target.Bind();
|
| - frame_->Push(FACTORY->true_value());
|
| - if (false_target.is_linked()) {
|
| - loaded.Jump();
|
| - }
|
| - }
|
| - if (false_target.is_linked()) {
|
| - false_target.Bind();
|
| - frame_->Push(FACTORY->false_value());
|
| - }
|
| - loaded.Bind();
|
| - }
|
| - }
|
| - }
|
| - ASSERT(has_valid_frame());
|
| - ASSERT(frame_->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobal() {
|
| - if (in_spilled_code()) {
|
| - frame_->EmitPush(GlobalObjectOperand());
|
| - } else {
|
| - Result temp = allocator_->Allocate();
|
| - __ mov(temp.reg(), GlobalObjectOperand());
|
| - frame_->Push(&temp);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadGlobalReceiver() {
|
| - Result temp = allocator_->Allocate();
|
| - Register reg = temp.reg();
|
| - __ mov(reg, GlobalObjectOperand());
|
| - __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
|
| - frame_->Push(&temp);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadTypeofExpression(Expression* expr) {
|
| - // Special handling of identifiers as subexpressions of typeof.
|
| - Variable* variable = expr->AsVariableProxy()->AsVariable();
|
| - if (variable != NULL && !variable->is_this() && variable->is_global()) {
|
| - // For a global variable we build the property reference
|
| - // <global>.<variable> and perform a (regular non-contextual) property
|
| - // load to make sure we do not get reference errors.
|
| - Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
|
| - Literal key(variable->name());
|
| - Property property(&global, &key, RelocInfo::kNoPosition);
|
| - Reference ref(this, &property);
|
| - ref.GetValue();
|
| - } else if (variable != NULL && variable->AsSlot() != NULL) {
|
| - // For a variable that rewrites to a slot, we signal it is the immediate
|
| - // subexpression of a typeof.
|
| - LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF);
|
| - } else {
|
| - // Anything else can be handled normally.
|
| - Load(expr);
|
| - }
|
| -}
|
| -
|
| -
|
| -ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
|
| - if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
|
| -
|
| - // In strict mode there is no need for shadow arguments.
|
| - ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode());
|
| -
|
| - // We don't want to do lazy arguments allocation for functions that
|
| - // have heap-allocated contexts, because it interfers with the
|
| - // uninitialized const tracking in the context objects.
|
| - return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode())
|
| - ? EAGER_ARGUMENTS_ALLOCATION
|
| - : LAZY_ARGUMENTS_ALLOCATION;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::StoreArgumentsObject(bool initial) {
|
| - ArgumentsAllocationMode mode = ArgumentsMode();
|
| - ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
|
| -
|
| - Comment cmnt(masm_, "[ store arguments object");
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
|
| - // When using lazy arguments allocation, we store the arguments marker value
|
| - // as a sentinel indicating that the arguments object hasn't been
|
| - // allocated yet.
|
| - frame_->Push(FACTORY->arguments_marker());
|
| - } else {
|
| - ArgumentsAccessStub stub(is_strict_mode()
|
| - ? ArgumentsAccessStub::NEW_STRICT
|
| - : ArgumentsAccessStub::NEW_NON_STRICT);
|
| - frame_->PushFunction();
|
| - frame_->PushReceiverSlotAddress();
|
| - frame_->Push(Smi::FromInt(scope()->num_parameters()));
|
| - Result result = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&result);
|
| - }
|
| -
|
| - Variable* arguments = scope()->arguments();
|
| - Variable* shadow = scope()->arguments_shadow();
|
| -
|
| - ASSERT(arguments != NULL && arguments->AsSlot() != NULL);
|
| - ASSERT((shadow != NULL && shadow->AsSlot() != NULL) ||
|
| - scope()->is_strict_mode());
|
| -
|
| - JumpTarget done;
|
| - bool skip_arguments = false;
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
|
| - // We have to skip storing into the arguments slot if it has
|
| - // already been written to. This can happen if the a function
|
| - // has a local variable named 'arguments'.
|
| - LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF);
|
| - Result probe = frame_->Pop();
|
| - if (probe.is_constant()) {
|
| - // We have to skip updating the arguments object if it has
|
| - // been assigned a proper value.
|
| - skip_arguments = !probe.handle()->IsArgumentsMarker();
|
| - } else {
|
| - __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker()));
|
| - probe.Unuse();
|
| - done.Branch(not_equal);
|
| - }
|
| - }
|
| - if (!skip_arguments) {
|
| - StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT);
|
| - if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
|
| - }
|
| - if (shadow != NULL) {
|
| - StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT);
|
| - }
|
| - return frame_->Pop();
|
| -}
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// CodeGenerator implementation of variables, lookups, and stores.
|
| -
|
| -Reference::Reference(CodeGenerator* cgen,
|
| - Expression* expression,
|
| - bool persist_after_get)
|
| - : cgen_(cgen),
|
| - expression_(expression),
|
| - type_(ILLEGAL),
|
| - persist_after_get_(persist_after_get) {
|
| - cgen->LoadReference(this);
|
| -}
|
| -
|
| -
|
| -Reference::~Reference() {
|
| - ASSERT(is_unloaded() || is_illegal());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadReference(Reference* ref) {
|
| - // References are loaded from both spilled and unspilled code. Set the
|
| - // state to unspilled to allow that (and explicitly spill after
|
| - // construction at the construction sites).
|
| - bool was_in_spilled_code = in_spilled_code_;
|
| - in_spilled_code_ = false;
|
| -
|
| - Comment cmnt(masm_, "[ LoadReference");
|
| - Expression* e = ref->expression();
|
| - Property* property = e->AsProperty();
|
| - Variable* var = e->AsVariableProxy()->AsVariable();
|
| -
|
| - if (property != NULL) {
|
| - // The expression is either a property or a variable proxy that rewrites
|
| - // to a property.
|
| - Load(property->obj());
|
| - if (property->key()->IsPropertyName()) {
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - Load(property->key());
|
| - ref->set_type(Reference::KEYED);
|
| - }
|
| - } else if (var != NULL) {
|
| - // The expression is a variable proxy that does not rewrite to a
|
| - // property. Global variables are treated as named property references.
|
| - if (var->is_global()) {
|
| - // If eax is free, the register allocator prefers it. Thus the code
|
| - // generator will load the global object into eax, which is where
|
| - // LoadIC wants it. Most uses of Reference call LoadIC directly
|
| - // after the reference is created.
|
| - frame_->Spill(eax);
|
| - LoadGlobal();
|
| - ref->set_type(Reference::NAMED);
|
| - } else {
|
| - ASSERT(var->AsSlot() != NULL);
|
| - ref->set_type(Reference::SLOT);
|
| - }
|
| - } else {
|
| - // Anything else is a runtime error.
|
| - Load(e);
|
| - frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
|
| - }
|
| -
|
| - in_spilled_code_ = was_in_spilled_code;
|
| -}
|
| -
|
| -
|
| -// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
|
| -// convert it to a boolean in the condition code register or jump to
|
| -// 'false_target'/'true_target' as appropriate.
|
| -void CodeGenerator::ToBoolean(ControlDestination* dest) {
|
| - Comment cmnt(masm_, "[ ToBoolean");
|
| -
|
| - // The value to convert should be popped from the frame.
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| -
|
| - if (value.is_integer32()) { // Also takes Smi case.
|
| - Comment cmnt(masm_, "ONLY_INTEGER_32");
|
| - if (FLAG_debug_code) {
|
| - Label ok;
|
| - __ AbortIfNotNumber(value.reg());
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - __ j(zero, &ok);
|
| - __ fldz();
|
| - __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
|
| - __ FCmp();
|
| - __ j(not_zero, &ok);
|
| - __ Abort("Smi was wrapped in HeapNumber in output from bitop");
|
| - __ bind(&ok);
|
| - }
|
| - // In the integer32 case there are no Smis hidden in heap numbers, so we
|
| - // need only test for Smi zero.
|
| - __ test(value.reg(), Operand(value.reg()));
|
| - dest->false_target()->Branch(zero);
|
| - value.Unuse();
|
| - dest->Split(not_zero);
|
| - } else if (value.is_number()) {
|
| - Comment cmnt(masm_, "ONLY_NUMBER");
|
| - // Fast case if TypeInfo indicates only numbers.
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotNumber(value.reg());
|
| - }
|
| - // Smi => false iff zero.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(value.reg(), Operand(value.reg()));
|
| - dest->false_target()->Branch(zero);
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - dest->true_target()->Branch(zero);
|
| - __ fldz();
|
| - __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
|
| - __ FCmp();
|
| - value.Unuse();
|
| - dest->Split(not_zero);
|
| - } else {
|
| - // Fast case checks.
|
| - // 'false' => false.
|
| - __ cmp(value.reg(), FACTORY->false_value());
|
| - dest->false_target()->Branch(equal);
|
| -
|
| - // 'true' => true.
|
| - __ cmp(value.reg(), FACTORY->true_value());
|
| - dest->true_target()->Branch(equal);
|
| -
|
| - // 'undefined' => false.
|
| - __ cmp(value.reg(), FACTORY->undefined_value());
|
| - dest->false_target()->Branch(equal);
|
| -
|
| - // Smi => false iff zero.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ test(value.reg(), Operand(value.reg()));
|
| - dest->false_target()->Branch(zero);
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - dest->true_target()->Branch(zero);
|
| -
|
| - // Call the stub for all other cases.
|
| - frame_->Push(&value); // Undo the Pop() from above.
|
| - ToBooleanStub stub;
|
| - Result temp = frame_->CallStub(&stub, 1);
|
| - // Convert the result to a condition code.
|
| - __ test(temp.reg(), Operand(temp.reg()));
|
| - temp.Unuse();
|
| - dest->Split(not_equal);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Perform or call the specialized stub for a binary operation. Requires the
|
| -// three registers left, right and dst to be distinct and spilled. This
|
| -// deferred operation has up to three entry points: The main one calls the
|
| -// runtime system. The second is for when the result is a non-Smi. The
|
| -// third is for when at least one of the inputs is non-Smi and we have SSE2.
|
| -class DeferredInlineBinaryOperation: public DeferredCode {
|
| - public:
|
| - DeferredInlineBinaryOperation(Token::Value op,
|
| - Register dst,
|
| - Register left,
|
| - Register right,
|
| - TypeInfo left_info,
|
| - TypeInfo right_info,
|
| - OverwriteMode mode)
|
| - : op_(op), dst_(dst), left_(left), right_(right),
|
| - left_info_(left_info), right_info_(right_info), mode_(mode) {
|
| - set_comment("[ DeferredInlineBinaryOperation");
|
| - ASSERT(!left.is(right));
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and
|
| - // Exit().
|
| - virtual bool AutoSaveAndRestore() { return false; }
|
| -
|
| - void JumpToAnswerOutOfRange(Condition cond);
|
| - void JumpToConstantRhs(Condition cond, Smi* smi_value);
|
| - Label* NonSmiInputLabel();
|
| -
|
| - private:
|
| - void GenerateAnswerOutOfRange();
|
| - void GenerateNonSmiInput();
|
| -
|
| - Token::Value op_;
|
| - Register dst_;
|
| - Register left_;
|
| - Register right_;
|
| - TypeInfo left_info_;
|
| - TypeInfo right_info_;
|
| - OverwriteMode mode_;
|
| - Label answer_out_of_range_;
|
| - Label non_smi_input_;
|
| - Label constant_rhs_;
|
| - Smi* smi_value_;
|
| -};
|
| -
|
| -
|
| -Label* DeferredInlineBinaryOperation::NonSmiInputLabel() {
|
| - if (Token::IsBitOp(op_) &&
|
| - CpuFeatures::IsSupported(SSE2)) {
|
| - return &non_smi_input_;
|
| - } else {
|
| - return entry_label();
|
| - }
|
| -}
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) {
|
| - __ j(cond, &answer_out_of_range_);
|
| -}
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond,
|
| - Smi* smi_value) {
|
| - smi_value_ = smi_value;
|
| - __ j(cond, &constant_rhs_);
|
| -}
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::Generate() {
|
| - // Registers are not saved implicitly for this stub, so we should not
|
| - // tread on the registers that were not passed to us.
|
| - if (CpuFeatures::IsSupported(SSE2) &&
|
| - ((op_ == Token::ADD) ||
|
| - (op_ == Token::SUB) ||
|
| - (op_ == Token::MUL) ||
|
| - (op_ == Token::DIV))) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - Label call_runtime, after_alloc_failure;
|
| - Label left_smi, right_smi, load_right, do_op;
|
| - if (!left_info_.IsSmi()) {
|
| - __ test(left_, Immediate(kSmiTagMask));
|
| - __ j(zero, &left_smi);
|
| - if (!left_info_.IsNumber()) {
|
| - __ cmp(FieldOperand(left_, HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - __ j(not_equal, &call_runtime);
|
| - }
|
| - __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - __ mov(dst_, left_);
|
| - }
|
| - __ jmp(&load_right);
|
| -
|
| - __ bind(&left_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left_);
|
| - }
|
| - __ SmiUntag(left_);
|
| - __ cvtsi2sd(xmm0, Operand(left_));
|
| - __ SmiTag(left_);
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - Label alloc_failure;
|
| - __ push(left_);
|
| - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
|
| - __ pop(left_);
|
| - }
|
| -
|
| - __ bind(&load_right);
|
| - if (!right_info_.IsSmi()) {
|
| - __ test(right_, Immediate(kSmiTagMask));
|
| - __ j(zero, &right_smi);
|
| - if (!right_info_.IsNumber()) {
|
| - __ cmp(FieldOperand(right_, HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - __ j(not_equal, &call_runtime);
|
| - }
|
| - __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
|
| - if (mode_ == OVERWRITE_RIGHT) {
|
| - __ mov(dst_, right_);
|
| - } else if (mode_ == NO_OVERWRITE) {
|
| - Label alloc_failure;
|
| - __ push(left_);
|
| - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
|
| - __ pop(left_);
|
| - }
|
| - __ jmp(&do_op);
|
| -
|
| - __ bind(&right_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right_);
|
| - }
|
| - __ SmiUntag(right_);
|
| - __ cvtsi2sd(xmm1, Operand(right_));
|
| - __ SmiTag(right_);
|
| - if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
|
| - __ push(left_);
|
| - __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure);
|
| - __ pop(left_);
|
| - }
|
| -
|
| - __ bind(&do_op);
|
| - switch (op_) {
|
| - case Token::ADD: __ addsd(xmm0, xmm1); break;
|
| - case Token::SUB: __ subsd(xmm0, xmm1); break;
|
| - case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
| - case Token::DIV: __ divsd(xmm0, xmm1); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
|
| - Exit();
|
| -
|
| -
|
| - __ bind(&after_alloc_failure);
|
| - __ pop(left_);
|
| - __ bind(&call_runtime);
|
| - }
|
| - // Register spilling is not done implicitly for this stub.
|
| - // We can't postpone it any more now though.
|
| - SaveRegisters();
|
| -
|
| - GenericBinaryOpStub stub(op_,
|
| - mode_,
|
| - NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(left_info_, right_info_));
|
| - stub.GenerateCall(masm_, left_, right_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| - RestoreRegisters();
|
| - Exit();
|
| -
|
| - if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) {
|
| - GenerateNonSmiInput();
|
| - }
|
| - if (answer_out_of_range_.is_linked()) {
|
| - GenerateAnswerOutOfRange();
|
| - }
|
| -}
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::GenerateNonSmiInput() {
|
| - // We know at least one of the inputs was not a Smi.
|
| - // This is a third entry point into the deferred code.
|
| - // We may not overwrite left_ because we want to be able
|
| - // to call the handling code for non-smi answer and it
|
| - // might want to overwrite the heap number in left_.
|
| - ASSERT(!right_.is(dst_));
|
| - ASSERT(!left_.is(dst_));
|
| - ASSERT(!left_.is(right_));
|
| - // This entry point is used for bit ops where the right hand side
|
| - // is a constant Smi and the left hand side is a heap object. It
|
| - // is also used for bit ops where both sides are unknown, but where
|
| - // at least one of them is a heap object.
|
| - bool rhs_is_constant = constant_rhs_.is_linked();
|
| - // We can't generate code for both cases.
|
| - ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked());
|
| -
|
| - if (FLAG_debug_code) {
|
| - __ int3(); // We don't fall through into this code.
|
| - }
|
| -
|
| - __ bind(&non_smi_input_);
|
| -
|
| - if (rhs_is_constant) {
|
| - __ bind(&constant_rhs_);
|
| - // In this case the input is a heap object and it is in the dst_ register.
|
| - // The left_ and right_ registers have not been initialized yet.
|
| - __ mov(right_, Immediate(smi_value_));
|
| - __ mov(left_, Operand(dst_));
|
| - if (!CpuFeatures::IsSupported(SSE2)) {
|
| - __ jmp(entry_label());
|
| - return;
|
| - } else {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - __ JumpIfNotNumber(dst_, left_info_, entry_label());
|
| - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
|
| - __ SmiUntag(right_);
|
| - }
|
| - } else {
|
| - // We know we have SSE2 here because otherwise the label is not linked (see
|
| - // NonSmiInputLabel).
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - // Handle the non-constant right hand side situation:
|
| - if (left_info_.IsSmi()) {
|
| - // Right is a heap object.
|
| - __ JumpIfNotNumber(right_, right_info_, entry_label());
|
| - __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label());
|
| - __ mov(dst_, Operand(left_));
|
| - __ SmiUntag(dst_);
|
| - } else if (right_info_.IsSmi()) {
|
| - // Left is a heap object.
|
| - __ JumpIfNotNumber(left_, left_info_, entry_label());
|
| - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
|
| - __ SmiUntag(right_);
|
| - } else {
|
| - // Here we don't know if it's one or both that is a heap object.
|
| - Label only_right_is_heap_object, got_both;
|
| - __ mov(dst_, Operand(left_));
|
| - __ SmiUntag(dst_, &only_right_is_heap_object);
|
| - // Left was a heap object.
|
| - __ JumpIfNotNumber(left_, left_info_, entry_label());
|
| - __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label());
|
| - __ SmiUntag(right_, &got_both);
|
| - // Both were heap objects.
|
| - __ rcl(right_, 1); // Put tag back.
|
| - __ JumpIfNotNumber(right_, right_info_, entry_label());
|
| - __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
|
| - __ jmp(&got_both);
|
| - __ bind(&only_right_is_heap_object);
|
| - __ JumpIfNotNumber(right_, right_info_, entry_label());
|
| - __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label());
|
| - __ bind(&got_both);
|
| - }
|
| - }
|
| - ASSERT(op_ == Token::BIT_AND ||
|
| - op_ == Token::BIT_OR ||
|
| - op_ == Token::BIT_XOR ||
|
| - right_.is(ecx));
|
| - switch (op_) {
|
| - case Token::BIT_AND: __ and_(dst_, Operand(right_)); break;
|
| - case Token::BIT_OR: __ or_(dst_, Operand(right_)); break;
|
| - case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break;
|
| - case Token::SHR: __ shr_cl(dst_); break;
|
| - case Token::SAR: __ sar_cl(dst_); break;
|
| - case Token::SHL: __ shl_cl(dst_); break;
|
| - default: UNREACHABLE();
|
| - }
|
| - if (op_ == Token::SHR) {
|
| - // Check that the *unsigned* result fits in a smi. Neither of
|
| - // the two high-order bits can be set:
|
| - // * 0x80000000: high bit would be lost when smi tagging.
|
| - // * 0x40000000: this number would convert to negative when smi
|
| - // tagging.
|
| - __ test(dst_, Immediate(0xc0000000));
|
| - __ j(not_zero, &answer_out_of_range_);
|
| - } else {
|
| - // Check that the *signed* result fits in a smi.
|
| - __ cmp(dst_, 0xc0000000);
|
| - __ j(negative, &answer_out_of_range_);
|
| - }
|
| - __ SmiTag(dst_);
|
| - Exit();
|
| -}
|
| -
|
| -
|
| -void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() {
|
| - Label after_alloc_failure2;
|
| - Label allocation_ok;
|
| - __ bind(&after_alloc_failure2);
|
| - // We have to allocate a number, causing a GC, while keeping hold of
|
| - // the answer in dst_. The answer is not a Smi. We can't just call the
|
| - // runtime shift function here because we already threw away the inputs.
|
| - __ xor_(left_, Operand(left_));
|
| - __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits.
|
| - __ rcr(left_, 1); // Rotate with carry.
|
| - __ push(dst_); // Smi tagged low 31 bits.
|
| - __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases.
|
| - __ CallRuntime(Runtime::kNumberAlloc, 0);
|
| - if (!left_.is(eax)) {
|
| - __ mov(left_, eax);
|
| - }
|
| - __ pop(right_); // High bit.
|
| - __ pop(dst_); // Low 31 bits.
|
| - __ shr(dst_, 1); // Put 0 in top bit.
|
| - __ or_(dst_, Operand(right_));
|
| - __ jmp(&allocation_ok);
|
| -
|
| - // This is the second entry point to the deferred code. It is used only by
|
| - // the bit operations.
|
| - // The dst_ register has the answer. It is not Smi tagged. If mode_ is
|
| - // OVERWRITE_LEFT then left_ must contain either an overwritable heap number
|
| - // or a Smi.
|
| - // Put a heap number pointer in left_.
|
| - __ bind(&answer_out_of_range_);
|
| - SaveRegisters();
|
| - if (mode_ == OVERWRITE_LEFT) {
|
| - __ test(left_, Immediate(kSmiTagMask));
|
| - __ j(not_zero, &allocation_ok);
|
| - }
|
| - // This trashes right_.
|
| - __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2);
|
| - __ bind(&allocation_ok);
|
| - if (CpuFeatures::IsSupported(SSE2) &&
|
| - op_ != Token::SHR) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - ASSERT(Token::IsBitOp(op_));
|
| - // Signed conversion.
|
| - __ cvtsi2sd(xmm0, Operand(dst_));
|
| - __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - if (op_ == Token::SHR) {
|
| - __ push(Immediate(0)); // High word of unsigned value.
|
| - __ push(dst_);
|
| - __ fild_d(Operand(esp, 0));
|
| - __ Drop(2);
|
| - } else {
|
| - ASSERT(Token::IsBitOp(op_));
|
| - __ push(dst_);
|
| - __ fild_s(Operand(esp, 0)); // Signed conversion.
|
| - __ pop(dst_);
|
| - }
|
| - __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset));
|
| - }
|
| - __ mov(dst_, left_);
|
| - RestoreRegisters();
|
| - Exit();
|
| -}
|
| -
|
| -
|
| -static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
|
| - Token::Value op,
|
| - const Result& right,
|
| - const Result& left) {
|
| - // Set TypeInfo of result according to the operation performed.
|
| - // Rely on the fact that smis have a 31 bit payload on ia32.
|
| - STATIC_ASSERT(kSmiValueSize == 31);
|
| - switch (op) {
|
| - case Token::COMMA:
|
| - return right.type_info();
|
| - case Token::OR:
|
| - case Token::AND:
|
| - // Result type can be either of the two input types.
|
| - return operands_type;
|
| - case Token::BIT_AND: {
|
| - // Anding with positive Smis will give you a Smi.
|
| - if (right.is_constant() && right.handle()->IsSmi() &&
|
| - Smi::cast(*right.handle())->value() >= 0) {
|
| - return TypeInfo::Smi();
|
| - } else if (left.is_constant() && left.handle()->IsSmi() &&
|
| - Smi::cast(*left.handle())->value() >= 0) {
|
| - return TypeInfo::Smi();
|
| - }
|
| - return (operands_type.IsSmi())
|
| - ? TypeInfo::Smi()
|
| - : TypeInfo::Integer32();
|
| - }
|
| - case Token::BIT_OR: {
|
| - // Oring with negative Smis will give you a Smi.
|
| - if (right.is_constant() && right.handle()->IsSmi() &&
|
| - Smi::cast(*right.handle())->value() < 0) {
|
| - return TypeInfo::Smi();
|
| - } else if (left.is_constant() && left.handle()->IsSmi() &&
|
| - Smi::cast(*left.handle())->value() < 0) {
|
| - return TypeInfo::Smi();
|
| - }
|
| - return (operands_type.IsSmi())
|
| - ? TypeInfo::Smi()
|
| - : TypeInfo::Integer32();
|
| - }
|
| - case Token::BIT_XOR:
|
| - // Result is always a 32 bit integer. Smi property of inputs is preserved.
|
| - return (operands_type.IsSmi())
|
| - ? TypeInfo::Smi()
|
| - : TypeInfo::Integer32();
|
| - case Token::SAR:
|
| - if (left.is_smi()) return TypeInfo::Smi();
|
| - // Result is a smi if we shift by a constant >= 1, otherwise an integer32.
|
| - // Shift amount is masked with 0x1F (ECMA standard 11.7.2).
|
| - return (right.is_constant() && right.handle()->IsSmi()
|
| - && (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
|
| - ? TypeInfo::Smi()
|
| - : TypeInfo::Integer32();
|
| - case Token::SHR:
|
| - // Result is a smi if we shift by a constant >= 2, an integer32 if
|
| - // we shift by 1, and an unsigned 32-bit integer if we shift by 0.
|
| - if (right.is_constant() && right.handle()->IsSmi()) {
|
| - int shift_amount = Smi::cast(*right.handle())->value() & 0x1F;
|
| - if (shift_amount > 1) {
|
| - return TypeInfo::Smi();
|
| - } else if (shift_amount > 0) {
|
| - return TypeInfo::Integer32();
|
| - }
|
| - }
|
| - return TypeInfo::Number();
|
| - case Token::ADD:
|
| - if (operands_type.IsSmi()) {
|
| - // The Integer32 range is big enough to take the sum of any two Smis.
|
| - return TypeInfo::Integer32();
|
| - } else if (operands_type.IsNumber()) {
|
| - return TypeInfo::Number();
|
| - } else if (left.type_info().IsString() || right.type_info().IsString()) {
|
| - return TypeInfo::String();
|
| - } else {
|
| - return TypeInfo::Unknown();
|
| - }
|
| - case Token::SHL:
|
| - return TypeInfo::Integer32();
|
| - case Token::SUB:
|
| - // The Integer32 range is big enough to take the difference of any two
|
| - // Smis.
|
| - return (operands_type.IsSmi()) ?
|
| - TypeInfo::Integer32() :
|
| - TypeInfo::Number();
|
| - case Token::MUL:
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - // Result is always a number.
|
| - return TypeInfo::Number();
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - UNREACHABLE();
|
| - return TypeInfo::Unknown();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
|
| - OverwriteMode overwrite_mode) {
|
| - Comment cmnt(masm_, "[ BinaryOperation");
|
| - Token::Value op = expr->op();
|
| - Comment cmnt_token(masm_, Token::String(op));
|
| -
|
| - if (op == Token::COMMA) {
|
| - // Simply discard left value.
|
| - frame_->Nip(1);
|
| - return;
|
| - }
|
| -
|
| - Result right = frame_->Pop();
|
| - Result left = frame_->Pop();
|
| -
|
| - if (op == Token::ADD) {
|
| - const bool left_is_string = left.type_info().IsString();
|
| - const bool right_is_string = right.type_info().IsString();
|
| - // Make sure constant strings have string type info.
|
| - ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
|
| - left_is_string);
|
| - ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
|
| - right_is_string);
|
| - if (left_is_string || right_is_string) {
|
| - frame_->Push(&left);
|
| - frame_->Push(&right);
|
| - Result answer;
|
| - if (left_is_string) {
|
| - if (right_is_string) {
|
| - StringAddStub stub(NO_STRING_CHECK_IN_STUB);
|
| - answer = frame_->CallStub(&stub, 2);
|
| - } else {
|
| - StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB);
|
| - answer = frame_->CallStub(&stub, 2);
|
| - }
|
| - } else if (right_is_string) {
|
| - StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB);
|
| - answer = frame_->CallStub(&stub, 2);
|
| - }
|
| - answer.set_type_info(TypeInfo::String());
|
| - frame_->Push(&answer);
|
| - return;
|
| - }
|
| - // Neither operand is known to be a string.
|
| - }
|
| -
|
| - bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
|
| - bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
|
| - bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
|
| - bool right_is_non_smi_constant =
|
| - right.is_constant() && !right.handle()->IsSmi();
|
| -
|
| - if (left_is_smi_constant && right_is_smi_constant) {
|
| - // Compute the constant result at compile time, and leave it on the frame.
|
| - int left_int = Smi::cast(*left.handle())->value();
|
| - int right_int = Smi::cast(*right.handle())->value();
|
| - if (FoldConstantSmis(op, left_int, right_int)) return;
|
| - }
|
| -
|
| - // Get number type of left and right sub-expressions.
|
| - TypeInfo operands_type =
|
| - TypeInfo::Combine(left.type_info(), right.type_info());
|
| -
|
| - TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
|
| -
|
| - Result answer;
|
| - if (left_is_non_smi_constant || right_is_non_smi_constant) {
|
| - // Go straight to the slow case, with no smi code.
|
| - GenericBinaryOpStub stub(op,
|
| - overwrite_mode,
|
| - NO_SMI_CODE_IN_STUB,
|
| - operands_type);
|
| - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
|
| - } else if (right_is_smi_constant) {
|
| - answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
|
| - false, overwrite_mode);
|
| - } else if (left_is_smi_constant) {
|
| - answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
|
| - true, overwrite_mode);
|
| - } else {
|
| - // Set the flags based on the operation, type and loop nesting level.
|
| - // Bit operations always assume they likely operate on Smis. Still only
|
| - // generate the inline Smi check code if this operation is part of a loop.
|
| - // For all other operations only inline the Smi check code for likely smis
|
| - // if the operation is part of a loop.
|
| - if (loop_nesting() > 0 &&
|
| - (Token::IsBitOp(op) ||
|
| - operands_type.IsInteger32() ||
|
| - expr->type()->IsLikelySmi())) {
|
| - answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
|
| - } else {
|
| - GenericBinaryOpStub stub(op,
|
| - overwrite_mode,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - operands_type);
|
| - answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right);
|
| - }
|
| - }
|
| -
|
| - answer.set_type_info(result_type);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
|
| - Result* left,
|
| - Result* right) {
|
| - if (stub->ArgsInRegistersSupported()) {
|
| - stub->SetArgsInRegisters();
|
| - return frame_->CallStub(stub, left, right);
|
| - } else {
|
| - frame_->Push(left);
|
| - frame_->Push(right);
|
| - return frame_->CallStub(stub, 2);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
|
| - Object* answer_object = HEAP->undefined_value();
|
| - switch (op) {
|
| - case Token::ADD:
|
| - if (Smi::IsValid(left + right)) {
|
| - answer_object = Smi::FromInt(left + right);
|
| - }
|
| - break;
|
| - case Token::SUB:
|
| - if (Smi::IsValid(left - right)) {
|
| - answer_object = Smi::FromInt(left - right);
|
| - }
|
| - break;
|
| - case Token::MUL: {
|
| - double answer = static_cast<double>(left) * right;
|
| - if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
|
| - // If the product is zero and the non-zero factor is negative,
|
| - // the spec requires us to return floating point negative zero.
|
| - if (answer != 0 || (left >= 0 && right >= 0)) {
|
| - answer_object = Smi::FromInt(static_cast<int>(answer));
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - break;
|
| - case Token::BIT_OR:
|
| - answer_object = Smi::FromInt(left | right);
|
| - break;
|
| - case Token::BIT_AND:
|
| - answer_object = Smi::FromInt(left & right);
|
| - break;
|
| - case Token::BIT_XOR:
|
| - answer_object = Smi::FromInt(left ^ right);
|
| - break;
|
| -
|
| - case Token::SHL: {
|
| - int shift_amount = right & 0x1F;
|
| - if (Smi::IsValid(left << shift_amount)) {
|
| - answer_object = Smi::FromInt(left << shift_amount);
|
| - }
|
| - break;
|
| - }
|
| - case Token::SHR: {
|
| - int shift_amount = right & 0x1F;
|
| - unsigned int unsigned_left = left;
|
| - unsigned_left >>= shift_amount;
|
| - if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
|
| - answer_object = Smi::FromInt(unsigned_left);
|
| - }
|
| - break;
|
| - }
|
| - case Token::SAR: {
|
| - int shift_amount = right & 0x1F;
|
| - unsigned int unsigned_left = left;
|
| - if (left < 0) {
|
| - // Perform arithmetic shift of a negative number by
|
| - // complementing number, logical shifting, complementing again.
|
| - unsigned_left = ~unsigned_left;
|
| - unsigned_left >>= shift_amount;
|
| - unsigned_left = ~unsigned_left;
|
| - } else {
|
| - unsigned_left >>= shift_amount;
|
| - }
|
| - ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
|
| - answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - if (answer_object->IsUndefined()) {
|
| - return false;
|
| - }
|
| - frame_->Push(Handle<Object>(answer_object));
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left,
|
| - Result* right,
|
| - JumpTarget* both_smi) {
|
| - TypeInfo left_info = left->type_info();
|
| - TypeInfo right_info = right->type_info();
|
| - if (left_info.IsDouble() || left_info.IsString() ||
|
| - right_info.IsDouble() || right_info.IsString()) {
|
| - // We know that left and right are not both smi. Don't do any tests.
|
| - return;
|
| - }
|
| -
|
| - if (left->reg().is(right->reg())) {
|
| - if (!left_info.IsSmi()) {
|
| - __ test(left->reg(), Immediate(kSmiTagMask));
|
| - both_smi->Branch(zero);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
|
| - left->Unuse();
|
| - right->Unuse();
|
| - both_smi->Jump();
|
| - }
|
| - } else if (!left_info.IsSmi()) {
|
| - if (!right_info.IsSmi()) {
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(), left->reg());
|
| - __ or_(temp.reg(), Operand(right->reg()));
|
| - __ test(temp.reg(), Immediate(kSmiTagMask));
|
| - temp.Unuse();
|
| - both_smi->Branch(zero);
|
| - } else {
|
| - __ test(left->reg(), Immediate(kSmiTagMask));
|
| - both_smi->Branch(zero);
|
| - }
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
|
| - if (!right_info.IsSmi()) {
|
| - __ test(right->reg(), Immediate(kSmiTagMask));
|
| - both_smi->Branch(zero);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
|
| - left->Unuse();
|
| - right->Unuse();
|
| - both_smi->Jump();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
|
| - Register right,
|
| - Register scratch,
|
| - TypeInfo left_info,
|
| - TypeInfo right_info,
|
| - DeferredCode* deferred) {
|
| - JumpIfNotBothSmiUsingTypeInfo(left,
|
| - right,
|
| - scratch,
|
| - left_info,
|
| - right_info,
|
| - deferred->entry_label());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
|
| - Register right,
|
| - Register scratch,
|
| - TypeInfo left_info,
|
| - TypeInfo right_info,
|
| - Label* on_not_smi) {
|
| - if (left.is(right)) {
|
| - if (!left_info.IsSmi()) {
|
| - __ test(left, Immediate(kSmiTagMask));
|
| - __ j(not_zero, on_not_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left);
|
| - }
|
| - } else if (!left_info.IsSmi()) {
|
| - if (!right_info.IsSmi()) {
|
| - __ mov(scratch, left);
|
| - __ or_(scratch, Operand(right));
|
| - __ test(scratch, Immediate(kSmiTagMask));
|
| - __ j(not_zero, on_not_smi);
|
| - } else {
|
| - __ test(left, Immediate(kSmiTagMask));
|
| - __ j(not_zero, on_not_smi);
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right);
|
| - }
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left);
|
| - if (!right_info.IsSmi()) {
|
| - __ test(right, Immediate(kSmiTagMask));
|
| - __ j(not_zero, on_not_smi);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// Implements a binary operation using a deferred code object and some
|
| -// inline code to operate on smis quickly.
|
| -Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
|
| - Result* left,
|
| - Result* right,
|
| - OverwriteMode overwrite_mode) {
|
| - // Copy the type info because left and right may be overwritten.
|
| - TypeInfo left_type_info = left->type_info();
|
| - TypeInfo right_type_info = right->type_info();
|
| - Token::Value op = expr->op();
|
| - Result answer;
|
| - // Special handling of div and mod because they use fixed registers.
|
| - if (op == Token::DIV || op == Token::MOD) {
|
| - // We need eax as the quotient register, edx as the remainder
|
| - // register, neither left nor right in eax or edx, and left copied
|
| - // to eax.
|
| - Result quotient;
|
| - Result remainder;
|
| - bool left_is_in_eax = false;
|
| - // Step 1: get eax for quotient.
|
| - if ((left->is_register() && left->reg().is(eax)) ||
|
| - (right->is_register() && right->reg().is(eax))) {
|
| - // One or both is in eax. Use a fresh non-edx register for
|
| - // them.
|
| - Result fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - if (fresh.reg().is(edx)) {
|
| - remainder = fresh;
|
| - fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - }
|
| - if (left->is_register() && left->reg().is(eax)) {
|
| - quotient = *left;
|
| - *left = fresh;
|
| - left_is_in_eax = true;
|
| - }
|
| - if (right->is_register() && right->reg().is(eax)) {
|
| - quotient = *right;
|
| - *right = fresh;
|
| - }
|
| - __ mov(fresh.reg(), eax);
|
| - } else {
|
| - // Neither left nor right is in eax.
|
| - quotient = allocator_->Allocate(eax);
|
| - }
|
| - ASSERT(quotient.is_register() && quotient.reg().is(eax));
|
| - ASSERT(!(left->is_register() && left->reg().is(eax)));
|
| - ASSERT(!(right->is_register() && right->reg().is(eax)));
|
| -
|
| - // Step 2: get edx for remainder if necessary.
|
| - if (!remainder.is_valid()) {
|
| - if ((left->is_register() && left->reg().is(edx)) ||
|
| - (right->is_register() && right->reg().is(edx))) {
|
| - Result fresh = allocator_->Allocate();
|
| - ASSERT(fresh.is_valid());
|
| - if (left->is_register() && left->reg().is(edx)) {
|
| - remainder = *left;
|
| - *left = fresh;
|
| - }
|
| - if (right->is_register() && right->reg().is(edx)) {
|
| - remainder = *right;
|
| - *right = fresh;
|
| - }
|
| - __ mov(fresh.reg(), edx);
|
| - } else {
|
| - // Neither left nor right is in edx.
|
| - remainder = allocator_->Allocate(edx);
|
| - }
|
| - }
|
| - ASSERT(remainder.is_register() && remainder.reg().is(edx));
|
| - ASSERT(!(left->is_register() && left->reg().is(edx)));
|
| - ASSERT(!(right->is_register() && right->reg().is(edx)));
|
| -
|
| - left->ToRegister();
|
| - right->ToRegister();
|
| - frame_->Spill(eax);
|
| - frame_->Spill(edx);
|
| - // DeferredInlineBinaryOperation requires all the registers that it is
|
| - // told about to be spilled and distinct.
|
| - Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
|
| -
|
| - // Check that left and right are smi tagged.
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - (op == Token::DIV) ? eax : edx,
|
| - left->reg(),
|
| - distinct_right.reg(),
|
| - left_type_info,
|
| - right_type_info,
|
| - overwrite_mode);
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx,
|
| - left_type_info, right_type_info, deferred);
|
| - if (!left_is_in_eax) {
|
| - __ mov(eax, left->reg());
|
| - }
|
| - // Sign extend eax into edx:eax.
|
| - __ cdq();
|
| - // Check for 0 divisor.
|
| - __ test(right->reg(), Operand(right->reg()));
|
| - deferred->Branch(zero);
|
| - // Divide edx:eax by the right operand.
|
| - __ idiv(right->reg());
|
| -
|
| - // Complete the operation.
|
| - if (op == Token::DIV) {
|
| - // Check for negative zero result. If result is zero, and divisor
|
| - // is negative, return a floating point negative zero. The
|
| - // virtual frame is unchanged in this block, so local control flow
|
| - // can use a Label rather than a JumpTarget. If the context of this
|
| - // expression will treat -0 like 0, do not do this test.
|
| - if (!expr->no_negative_zero()) {
|
| - Label non_zero_result;
|
| - __ test(left->reg(), Operand(left->reg()));
|
| - __ j(not_zero, &non_zero_result);
|
| - __ test(right->reg(), Operand(right->reg()));
|
| - deferred->Branch(negative);
|
| - __ bind(&non_zero_result);
|
| - }
|
| - // Check for the corner case of dividing the most negative smi by
|
| - // -1. We cannot use the overflow flag, since it is not set by
|
| - // idiv instruction.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - __ cmp(eax, 0x40000000);
|
| - deferred->Branch(equal);
|
| - // Check that the remainder is zero.
|
| - __ test(edx, Operand(edx));
|
| - deferred->Branch(not_zero);
|
| - // Tag the result and store it in the quotient register.
|
| - __ SmiTag(eax);
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - answer = quotient;
|
| - } else {
|
| - ASSERT(op == Token::MOD);
|
| - // Check for a negative zero result. If the result is zero, and
|
| - // the dividend is negative, return a floating point negative
|
| - // zero. The frame is unchanged in this block, so local control
|
| - // flow can use a Label rather than a JumpTarget.
|
| - if (!expr->no_negative_zero()) {
|
| - Label non_zero_result;
|
| - __ test(edx, Operand(edx));
|
| - __ j(not_zero, &non_zero_result, taken);
|
| - __ test(left->reg(), Operand(left->reg()));
|
| - deferred->Branch(negative);
|
| - __ bind(&non_zero_result);
|
| - }
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - answer = remainder;
|
| - }
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| - }
|
| -
|
| - // Special handling of shift operations because they use fixed
|
| - // registers.
|
| - if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
|
| - // Move left out of ecx if necessary.
|
| - if (left->is_register() && left->reg().is(ecx)) {
|
| - *left = allocator_->Allocate();
|
| - ASSERT(left->is_valid());
|
| - __ mov(left->reg(), ecx);
|
| - }
|
| - right->ToRegister(ecx);
|
| - left->ToRegister();
|
| - ASSERT(left->is_register() && !left->reg().is(ecx));
|
| - ASSERT(right->is_register() && right->reg().is(ecx));
|
| - if (left_type_info.IsSmi()) {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(left->reg());
|
| - }
|
| - if (right_type_info.IsSmi()) {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(right->reg());
|
| - }
|
| -
|
| - // We will modify right, it must be spilled.
|
| - frame_->Spill(ecx);
|
| - // DeferredInlineBinaryOperation requires all the registers that it is told
|
| - // about to be spilled and distinct. We know that right is ecx and left is
|
| - // not ecx.
|
| - frame_->Spill(left->reg());
|
| -
|
| - // Use a fresh answer register to avoid spilling the left operand.
|
| - answer = allocator_->Allocate();
|
| - ASSERT(answer.is_valid());
|
| -
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - answer.reg(),
|
| - left->reg(),
|
| - ecx,
|
| - left_type_info,
|
| - right_type_info,
|
| - overwrite_mode);
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
|
| - left_type_info, right_type_info,
|
| - deferred->NonSmiInputLabel());
|
| -
|
| - // Untag both operands.
|
| - __ mov(answer.reg(), left->reg());
|
| - __ SmiUntag(answer.reg());
|
| - __ SmiUntag(right->reg()); // Right is ecx.
|
| -
|
| - // Perform the operation.
|
| - ASSERT(right->reg().is(ecx));
|
| - switch (op) {
|
| - case Token::SAR: {
|
| - __ sar_cl(answer.reg());
|
| - if (!left_type_info.IsSmi()) {
|
| - // Check that the *signed* result fits in a smi.
|
| - __ cmp(answer.reg(), 0xc0000000);
|
| - deferred->JumpToAnswerOutOfRange(negative);
|
| - }
|
| - break;
|
| - }
|
| - case Token::SHR: {
|
| - __ shr_cl(answer.reg());
|
| - // Check that the *unsigned* result fits in a smi. Neither of
|
| - // the two high-order bits can be set:
|
| - // * 0x80000000: high bit would be lost when smi tagging.
|
| - // * 0x40000000: this number would convert to negative when smi
|
| - // tagging.
|
| - // These two cases can only happen with shifts by 0 or 1 when
|
| - // handed a valid smi. If the answer cannot be represented by a
|
| - // smi, restore the left and right arguments, and jump to slow
|
| - // case. The low bit of the left argument may be lost, but only
|
| - // in a case where it is dropped anyway.
|
| - __ test(answer.reg(), Immediate(0xc0000000));
|
| - deferred->JumpToAnswerOutOfRange(not_zero);
|
| - break;
|
| - }
|
| - case Token::SHL: {
|
| - __ shl_cl(answer.reg());
|
| - // Check that the *signed* result fits in a smi.
|
| - __ cmp(answer.reg(), 0xc0000000);
|
| - deferred->JumpToAnswerOutOfRange(negative);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - // Smi-tag the result in answer.
|
| - __ SmiTag(answer.reg());
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| - }
|
| -
|
| - // Handle the other binary operations.
|
| - left->ToRegister();
|
| - right->ToRegister();
|
| - // DeferredInlineBinaryOperation requires all the registers that it is told
|
| - // about to be spilled.
|
| - Result distinct_right = frame_->MakeDistinctAndSpilled(left, right);
|
| - // A newly allocated register answer is used to hold the answer. The
|
| - // registers containing left and right are not modified so they don't
|
| - // need to be spilled in the fast case.
|
| - answer = allocator_->Allocate();
|
| - ASSERT(answer.is_valid());
|
| -
|
| - // Perform the smi tag check.
|
| - DeferredInlineBinaryOperation* deferred =
|
| - new DeferredInlineBinaryOperation(op,
|
| - answer.reg(),
|
| - left->reg(),
|
| - distinct_right.reg(),
|
| - left_type_info,
|
| - right_type_info,
|
| - overwrite_mode);
|
| - Label non_smi_bit_op;
|
| - if (op != Token::BIT_OR) {
|
| - JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(),
|
| - left_type_info, right_type_info,
|
| - deferred->NonSmiInputLabel());
|
| - }
|
| -
|
| - __ mov(answer.reg(), left->reg());
|
| - switch (op) {
|
| - case Token::ADD:
|
| - __ add(answer.reg(), Operand(right->reg()));
|
| - deferred->Branch(overflow);
|
| - break;
|
| -
|
| - case Token::SUB:
|
| - __ sub(answer.reg(), Operand(right->reg()));
|
| - deferred->Branch(overflow);
|
| - break;
|
| -
|
| - case Token::MUL: {
|
| - // If the smi tag is 0 we can just leave the tag on one operand.
|
| - STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
| - // Remove smi tag from the left operand (but keep sign).
|
| - // Left-hand operand has been copied into answer.
|
| - __ SmiUntag(answer.reg());
|
| - // Do multiplication of smis, leaving result in answer.
|
| - __ imul(answer.reg(), Operand(right->reg()));
|
| - // Go slow on overflows.
|
| - deferred->Branch(overflow);
|
| - // Check for negative zero result. If product is zero, and one
|
| - // argument is negative, go to slow case. The frame is unchanged
|
| - // in this block, so local control flow can use a Label rather
|
| - // than a JumpTarget.
|
| - if (!expr->no_negative_zero()) {
|
| - Label non_zero_result;
|
| - __ test(answer.reg(), Operand(answer.reg()));
|
| - __ j(not_zero, &non_zero_result, taken);
|
| - __ mov(answer.reg(), left->reg());
|
| - __ or_(answer.reg(), Operand(right->reg()));
|
| - deferred->Branch(negative);
|
| - __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct.
|
| - __ bind(&non_zero_result);
|
| - }
|
| - break;
|
| - }
|
| -
|
| - case Token::BIT_OR:
|
| - __ or_(answer.reg(), Operand(right->reg()));
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - __ j(not_zero, deferred->NonSmiInputLabel());
|
| - break;
|
| -
|
| - case Token::BIT_AND:
|
| - __ and_(answer.reg(), Operand(right->reg()));
|
| - break;
|
| -
|
| - case Token::BIT_XOR:
|
| - __ xor_(answer.reg(), Operand(right->reg()));
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - deferred->BindExit();
|
| - left->Unuse();
|
| - right->Unuse();
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -// Call the appropriate binary operation stub to compute src op value
|
| -// and leave the result in dst.
|
| -class DeferredInlineSmiOperation: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiOperation(Token::Value op,
|
| - Register dst,
|
| - Register src,
|
| - TypeInfo type_info,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : op_(op),
|
| - dst_(dst),
|
| - src_(src),
|
| - type_info_(type_info),
|
| - value_(value),
|
| - overwrite_mode_(overwrite_mode) {
|
| - if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
|
| - set_comment("[ DeferredInlineSmiOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - Register dst_;
|
| - Register src_;
|
| - TypeInfo type_info_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiOperation::Generate() {
|
| - // For mod we don't generate all the Smi code inline.
|
| - GenericBinaryOpStub stub(
|
| - op_,
|
| - overwrite_mode_,
|
| - (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(TypeInfo::Smi(), type_info_));
|
| - stub.GenerateCall(masm_, src_, value_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -// Call the appropriate binary operation stub to compute value op src
|
| -// and leave the result in dst.
|
| -class DeferredInlineSmiOperationReversed: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiOperationReversed(Token::Value op,
|
| - Register dst,
|
| - Smi* value,
|
| - Register src,
|
| - TypeInfo type_info,
|
| - OverwriteMode overwrite_mode)
|
| - : op_(op),
|
| - dst_(dst),
|
| - type_info_(type_info),
|
| - value_(value),
|
| - src_(src),
|
| - overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiOperationReversed");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - Register dst_;
|
| - TypeInfo type_info_;
|
| - Smi* value_;
|
| - Register src_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiOperationReversed::Generate() {
|
| - GenericBinaryOpStub stub(
|
| - op_,
|
| - overwrite_mode_,
|
| - NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(TypeInfo::Smi(), type_info_));
|
| - stub.GenerateCall(masm_, value_, src_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -// The result of src + value is in dst. It either overflowed or was not
|
| -// smi tagged. Undo the speculative addition and call the appropriate
|
| -// specialized stub for add. The result is left in dst.
|
| -class DeferredInlineSmiAdd: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiAdd(Register dst,
|
| - TypeInfo type_info,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst),
|
| - type_info_(type_info),
|
| - value_(value),
|
| - overwrite_mode_(overwrite_mode) {
|
| - if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
|
| - set_comment("[ DeferredInlineSmiAdd");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - TypeInfo type_info_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiAdd::Generate() {
|
| - // Undo the optimistic add operation and call the shared stub.
|
| - __ sub(Operand(dst_), Immediate(value_));
|
| - GenericBinaryOpStub igostub(
|
| - Token::ADD,
|
| - overwrite_mode_,
|
| - NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(TypeInfo::Smi(), type_info_));
|
| - igostub.GenerateCall(masm_, dst_, value_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -// The result of value + src is in dst. It either overflowed or was not
|
| -// smi tagged. Undo the speculative addition and call the appropriate
|
| -// specialized stub for add. The result is left in dst.
|
| -class DeferredInlineSmiAddReversed: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiAddReversed(Register dst,
|
| - TypeInfo type_info,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst),
|
| - type_info_(type_info),
|
| - value_(value),
|
| - overwrite_mode_(overwrite_mode) {
|
| - set_comment("[ DeferredInlineSmiAddReversed");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - TypeInfo type_info_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiAddReversed::Generate() {
|
| - // Undo the optimistic add operation and call the shared stub.
|
| - __ sub(Operand(dst_), Immediate(value_));
|
| - GenericBinaryOpStub igostub(
|
| - Token::ADD,
|
| - overwrite_mode_,
|
| - NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(TypeInfo::Smi(), type_info_));
|
| - igostub.GenerateCall(masm_, value_, dst_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -// The result of src - value is in dst. It either overflowed or was not
|
| -// smi tagged. Undo the speculative subtraction and call the
|
| -// appropriate specialized stub for subtract. The result is left in
|
| -// dst.
|
| -class DeferredInlineSmiSub: public DeferredCode {
|
| - public:
|
| - DeferredInlineSmiSub(Register dst,
|
| - TypeInfo type_info,
|
| - Smi* value,
|
| - OverwriteMode overwrite_mode)
|
| - : dst_(dst),
|
| - type_info_(type_info),
|
| - value_(value),
|
| - overwrite_mode_(overwrite_mode) {
|
| - if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE;
|
| - set_comment("[ DeferredInlineSmiSub");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - TypeInfo type_info_;
|
| - Smi* value_;
|
| - OverwriteMode overwrite_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredInlineSmiSub::Generate() {
|
| - // Undo the optimistic sub operation and call the shared stub.
|
| - __ add(Operand(dst_), Immediate(value_));
|
| - GenericBinaryOpStub igostub(
|
| - Token::SUB,
|
| - overwrite_mode_,
|
| - NO_SMI_CODE_IN_STUB,
|
| - TypeInfo::Combine(TypeInfo::Smi(), type_info_));
|
| - igostub.GenerateCall(masm_, dst_, value_);
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
|
| - Result* operand,
|
| - Handle<Object> value,
|
| - bool reversed,
|
| - OverwriteMode overwrite_mode) {
|
| - // Generate inline code for a binary operation when one of the
|
| - // operands is a constant smi. Consumes the argument "operand".
|
| - if (IsUnsafeSmi(value)) {
|
| - Result unsafe_operand(value);
|
| - if (reversed) {
|
| - return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
|
| - overwrite_mode);
|
| - }
|
| - }
|
| -
|
| - // Get the literal value.
|
| - Smi* smi_value = Smi::cast(*value);
|
| - int int_value = smi_value->value();
|
| -
|
| - Token::Value op = expr->op();
|
| - Result answer;
|
| - switch (op) {
|
| - case Token::ADD: {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| -
|
| - // Optimistically add. Call the specialized add stub if the
|
| - // result is not a smi or overflows.
|
| - DeferredCode* deferred = NULL;
|
| - if (reversed) {
|
| - deferred = new DeferredInlineSmiAddReversed(operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - } else {
|
| - deferred = new DeferredInlineSmiAdd(operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - }
|
| - __ add(Operand(operand->reg()), Immediate(value));
|
| - deferred->Branch(overflow);
|
| - if (!operand->type_info().IsSmi()) {
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - break;
|
| - }
|
| -
|
| - case Token::SUB: {
|
| - DeferredCode* deferred = NULL;
|
| - if (reversed) {
|
| - // The reversed case is only hit when the right operand is not a
|
| - // constant.
|
| - ASSERT(operand->is_register());
|
| - answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - __ Set(answer.reg(), Immediate(value));
|
| - deferred =
|
| - new DeferredInlineSmiOperationReversed(op,
|
| - answer.reg(),
|
| - smi_value,
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - overwrite_mode);
|
| - __ sub(answer.reg(), Operand(operand->reg()));
|
| - } else {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - answer = *operand;
|
| - deferred = new DeferredInlineSmiSub(operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - __ sub(Operand(operand->reg()), Immediate(value));
|
| - }
|
| - deferred->Branch(overflow);
|
| - if (!operand->type_info().IsSmi()) {
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - deferred->BindExit();
|
| - operand->Unuse();
|
| - break;
|
| - }
|
| -
|
| - case Token::SAR:
|
| - if (reversed) {
|
| - Result constant_operand(value);
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - if (!operand->type_info().IsSmi()) {
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - if (shift_value > 0) {
|
| - __ sar(operand->reg(), shift_value);
|
| - __ and_(operand->reg(), ~kSmiTagMask);
|
| - }
|
| - deferred->BindExit();
|
| - } else {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - if (shift_value > 0) {
|
| - __ sar(operand->reg(), shift_value);
|
| - __ and_(operand->reg(), ~kSmiTagMask);
|
| - }
|
| - }
|
| - answer = *operand;
|
| - }
|
| - break;
|
| -
|
| - case Token::SHR:
|
| - if (reversed) {
|
| - Result constant_operand(value);
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - answer.reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - if (!operand->type_info().IsSmi()) {
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - __ mov(answer.reg(), operand->reg());
|
| - __ SmiUntag(answer.reg());
|
| - __ shr(answer.reg(), shift_value);
|
| - // A negative Smi shifted right two is in the positive Smi range.
|
| - if (shift_value < 2) {
|
| - __ test(answer.reg(), Immediate(0xc0000000));
|
| - deferred->Branch(not_zero);
|
| - }
|
| - operand->Unuse();
|
| - __ SmiTag(answer.reg());
|
| - deferred->BindExit();
|
| - }
|
| - break;
|
| -
|
| - case Token::SHL:
|
| - if (reversed) {
|
| - // Move operand into ecx and also into a second register.
|
| - // If operand is already in a register, take advantage of that.
|
| - // This lets us modify ecx, but still bail out to deferred code.
|
| - Result right;
|
| - Result right_copy_in_ecx;
|
| - TypeInfo right_type_info = operand->type_info();
|
| - operand->ToRegister();
|
| - if (operand->reg().is(ecx)) {
|
| - right = allocator()->Allocate();
|
| - __ mov(right.reg(), ecx);
|
| - frame_->Spill(ecx);
|
| - right_copy_in_ecx = *operand;
|
| - } else {
|
| - right_copy_in_ecx = allocator()->Allocate(ecx);
|
| - __ mov(ecx, operand->reg());
|
| - right = *operand;
|
| - }
|
| - operand->Unuse();
|
| -
|
| - answer = allocator()->Allocate();
|
| - DeferredInlineSmiOperationReversed* deferred =
|
| - new DeferredInlineSmiOperationReversed(op,
|
| - answer.reg(),
|
| - smi_value,
|
| - right.reg(),
|
| - right_type_info,
|
| - overwrite_mode);
|
| - __ mov(answer.reg(), Immediate(int_value));
|
| - __ sar(ecx, kSmiTagSize);
|
| - if (!right_type_info.IsSmi()) {
|
| - deferred->Branch(carry);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(right.reg());
|
| - }
|
| - __ shl_cl(answer.reg());
|
| - __ cmp(answer.reg(), 0xc0000000);
|
| - deferred->Branch(sign);
|
| - __ SmiTag(answer.reg());
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - // Only the least significant 5 bits of the shift value are used.
|
| - // In the slow case, this masking is done inside the runtime call.
|
| - int shift_value = int_value & 0x1f;
|
| - operand->ToRegister();
|
| - if (shift_value == 0) {
|
| - // Spill operand so it can be overwritten in the slow case.
|
| - frame_->Spill(operand->reg());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - } else {
|
| - // Use a fresh temporary for nonzero shift values.
|
| - answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - answer.reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - if (!operand->type_info().IsSmi()) {
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - __ mov(answer.reg(), operand->reg());
|
| - STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case
|
| - // We do no shifts, only the Smi conversion, if shift_value is 1.
|
| - if (shift_value > 1) {
|
| - __ shl(answer.reg(), shift_value - 1);
|
| - }
|
| - // Convert int result to Smi, checking that it is in int range.
|
| - STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case
|
| - __ add(answer.reg(), Operand(answer.reg()));
|
| - deferred->Branch(overflow);
|
| - deferred->BindExit();
|
| - operand->Unuse();
|
| - }
|
| - }
|
| - break;
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND: {
|
| - operand->ToRegister();
|
| - // DeferredInlineBinaryOperation requires all the registers that it is
|
| - // told about to be spilled.
|
| - frame_->Spill(operand->reg());
|
| - DeferredInlineBinaryOperation* deferred = NULL;
|
| - if (!operand->type_info().IsSmi()) {
|
| - Result left = allocator()->Allocate();
|
| - ASSERT(left.is_valid());
|
| - Result right = allocator()->Allocate();
|
| - ASSERT(right.is_valid());
|
| - deferred = new DeferredInlineBinaryOperation(
|
| - op,
|
| - operand->reg(),
|
| - left.reg(),
|
| - right.reg(),
|
| - operand->type_info(),
|
| - TypeInfo::Smi(),
|
| - overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT);
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - deferred->JumpToConstantRhs(not_zero, smi_value);
|
| - } else if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(operand->reg());
|
| - }
|
| - if (op == Token::BIT_AND) {
|
| - __ and_(Operand(operand->reg()), Immediate(value));
|
| - } else if (op == Token::BIT_XOR) {
|
| - if (int_value != 0) {
|
| - __ xor_(Operand(operand->reg()), Immediate(value));
|
| - }
|
| - } else {
|
| - ASSERT(op == Token::BIT_OR);
|
| - if (int_value != 0) {
|
| - __ or_(Operand(operand->reg()), Immediate(value));
|
| - }
|
| - }
|
| - if (deferred != NULL) deferred->BindExit();
|
| - answer = *operand;
|
| - break;
|
| - }
|
| -
|
| - case Token::DIV:
|
| - if (!reversed && int_value == 2) {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| -
|
| - DeferredInlineSmiOperation* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - // Check that lowest log2(value) bits of operand are zero, and test
|
| - // smi tag at the same time.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - __ test(operand->reg(), Immediate(3));
|
| - deferred->Branch(not_zero); // Branch if non-smi or odd smi.
|
| - __ sar(operand->reg(), 1);
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - } else {
|
| - // Cannot fall through MOD to default case, so we duplicate the
|
| - // default case here.
|
| - Result constant_operand(value);
|
| - if (reversed) {
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
|
| - overwrite_mode);
|
| - }
|
| - }
|
| - break;
|
| -
|
| - // Generate inline code for mod of powers of 2 and negative powers of 2.
|
| - case Token::MOD:
|
| - if (!reversed &&
|
| - int_value != 0 &&
|
| - (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
|
| - operand->ToRegister();
|
| - frame_->Spill(operand->reg());
|
| - DeferredCode* deferred =
|
| - new DeferredInlineSmiOperation(op,
|
| - operand->reg(),
|
| - operand->reg(),
|
| - operand->type_info(),
|
| - smi_value,
|
| - overwrite_mode);
|
| - // Check for negative or non-Smi left hand side.
|
| - __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask));
|
| - deferred->Branch(not_zero);
|
| - if (int_value < 0) int_value = -int_value;
|
| - if (int_value == 1) {
|
| - __ mov(operand->reg(), Immediate(Smi::FromInt(0)));
|
| - } else {
|
| - __ and_(operand->reg(), (int_value << kSmiTagSize) - 1);
|
| - }
|
| - deferred->BindExit();
|
| - answer = *operand;
|
| - break;
|
| - }
|
| - // Fall through if we did not find a power of 2 on the right hand side!
|
| - // The next case must be the default.
|
| -
|
| - default: {
|
| - Result constant_operand(value);
|
| - if (reversed) {
|
| - answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
|
| - overwrite_mode);
|
| - } else {
|
| - answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
|
| - overwrite_mode);
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - ASSERT(answer.is_valid());
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -static bool CouldBeNaN(const Result& result) {
|
| - if (result.type_info().IsSmi()) return false;
|
| - if (result.type_info().IsInteger32()) return false;
|
| - if (!result.is_constant()) return true;
|
| - if (!result.handle()->IsHeapNumber()) return false;
|
| - return isnan(HeapNumber::cast(*result.handle())->value());
|
| -}
|
| -
|
| -
|
| -// Convert from signed to unsigned comparison to match the way EFLAGS are set
|
| -// by FPU and XMM compare instructions.
|
| -static Condition DoubleCondition(Condition cc) {
|
| - switch (cc) {
|
| - case less: return below;
|
| - case equal: return equal;
|
| - case less_equal: return below_equal;
|
| - case greater: return above;
|
| - case greater_equal: return above_equal;
|
| - default: UNREACHABLE();
|
| - }
|
| - UNREACHABLE();
|
| - return equal;
|
| -}
|
| -
|
| -
|
| -static CompareFlags ComputeCompareFlags(NaNInformation nan_info,
|
| - bool inline_number_compare) {
|
| - CompareFlags flags = NO_SMI_COMPARE_IN_STUB;
|
| - if (nan_info == kCantBothBeNaN) {
|
| - flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN);
|
| - }
|
| - if (inline_number_compare) {
|
| - flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB);
|
| - }
|
| - return flags;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Comparison(AstNode* node,
|
| - Condition cc,
|
| - bool strict,
|
| - ControlDestination* dest) {
|
| - // Strict only makes sense for equality comparisons.
|
| - ASSERT(!strict || cc == equal);
|
| -
|
| - Result left_side;
|
| - Result right_side;
|
| - // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
|
| - if (cc == greater || cc == less_equal) {
|
| - cc = ReverseCondition(cc);
|
| - left_side = frame_->Pop();
|
| - right_side = frame_->Pop();
|
| - } else {
|
| - right_side = frame_->Pop();
|
| - left_side = frame_->Pop();
|
| - }
|
| - ASSERT(cc == less || cc == equal || cc == greater_equal);
|
| -
|
| - // If either side is a constant smi, optimize the comparison.
|
| - bool left_side_constant_smi = false;
|
| - bool left_side_constant_null = false;
|
| - bool left_side_constant_1_char_string = false;
|
| - if (left_side.is_constant()) {
|
| - left_side_constant_smi = left_side.handle()->IsSmi();
|
| - left_side_constant_null = left_side.handle()->IsNull();
|
| - left_side_constant_1_char_string =
|
| - (left_side.handle()->IsString() &&
|
| - String::cast(*left_side.handle())->length() == 1 &&
|
| - String::cast(*left_side.handle())->IsAsciiRepresentation());
|
| - }
|
| - bool right_side_constant_smi = false;
|
| - bool right_side_constant_null = false;
|
| - bool right_side_constant_1_char_string = false;
|
| - if (right_side.is_constant()) {
|
| - right_side_constant_smi = right_side.handle()->IsSmi();
|
| - right_side_constant_null = right_side.handle()->IsNull();
|
| - right_side_constant_1_char_string =
|
| - (right_side.handle()->IsString() &&
|
| - String::cast(*right_side.handle())->length() == 1 &&
|
| - String::cast(*right_side.handle())->IsAsciiRepresentation());
|
| - }
|
| -
|
| - if (left_side_constant_smi || right_side_constant_smi) {
|
| - bool is_loop_condition = (node->AsExpression() != NULL) &&
|
| - node->AsExpression()->is_loop_condition();
|
| - ConstantSmiComparison(cc, strict, dest, &left_side, &right_side,
|
| - left_side_constant_smi, right_side_constant_smi,
|
| - is_loop_condition);
|
| - } else if (left_side_constant_1_char_string ||
|
| - right_side_constant_1_char_string) {
|
| - if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
|
| - // Trivial case, comparing two constants.
|
| - int left_value = String::cast(*left_side.handle())->Get(0);
|
| - int right_value = String::cast(*right_side.handle())->Get(0);
|
| - switch (cc) {
|
| - case less:
|
| - dest->Goto(left_value < right_value);
|
| - break;
|
| - case equal:
|
| - dest->Goto(left_value == right_value);
|
| - break;
|
| - case greater_equal:
|
| - dest->Goto(left_value >= right_value);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - } else {
|
| - // Only one side is a constant 1 character string.
|
| - // If left side is a constant 1-character string, reverse the operands.
|
| - // Since one side is a constant string, conversion order does not matter.
|
| - if (left_side_constant_1_char_string) {
|
| - Result temp = left_side;
|
| - left_side = right_side;
|
| - right_side = temp;
|
| - cc = ReverseCondition(cc);
|
| - // This may reintroduce greater or less_equal as the value of cc.
|
| - // CompareStub and the inline code both support all values of cc.
|
| - }
|
| - // Implement comparison against a constant string, inlining the case
|
| - // where both sides are strings.
|
| - left_side.ToRegister();
|
| -
|
| - // Here we split control flow to the stub call and inlined cases
|
| - // before finally splitting it to the control destination. We use
|
| - // a jump target and branching to duplicate the virtual frame at
|
| - // the first split. We manually handle the off-frame references
|
| - // by reconstituting them on the non-fall-through path.
|
| - JumpTarget is_not_string, is_string;
|
| - Register left_reg = left_side.reg();
|
| - Handle<Object> right_val = right_side.handle();
|
| - ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
|
| - __ test(left_side.reg(), Immediate(kSmiTagMask));
|
| - is_not_string.Branch(zero, &left_side);
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(),
|
| - FieldOperand(left_side.reg(), HeapObject::kMapOffset));
|
| - __ movzx_b(temp.reg(),
|
| - FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
|
| - // If we are testing for equality then make use of the symbol shortcut.
|
| - // Check if the right left hand side has the same type as the left hand
|
| - // side (which is always a symbol).
|
| - if (cc == equal) {
|
| - Label not_a_symbol;
|
| - STATIC_ASSERT(kSymbolTag != 0);
|
| - // Ensure that no non-strings have the symbol bit set.
|
| - STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
| - __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
|
| - __ j(zero, ¬_a_symbol);
|
| - // They are symbols, so do identity compare.
|
| - __ cmp(left_side.reg(), right_side.handle());
|
| - dest->true_target()->Branch(equal);
|
| - dest->false_target()->Branch(not_equal);
|
| - __ bind(¬_a_symbol);
|
| - }
|
| - // Call the compare stub if the left side is not a flat ascii string.
|
| - __ and_(temp.reg(),
|
| - kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
|
| - __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag);
|
| - temp.Unuse();
|
| - is_string.Branch(equal, &left_side);
|
| -
|
| - // Setup and call the compare stub.
|
| - is_not_string.Bind(&left_side);
|
| - CompareFlags flags =
|
| - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result result = frame_->CallStub(&stub, &left_side, &right_side);
|
| - result.ToRegister();
|
| - __ cmp(result.reg(), 0);
|
| - result.Unuse();
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| -
|
| - is_string.Bind(&left_side);
|
| - // left_side is a sequential ASCII string.
|
| - left_side = Result(left_reg);
|
| - right_side = Result(right_val);
|
| - // Test string equality and comparison.
|
| - Label comparison_done;
|
| - if (cc == equal) {
|
| - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
|
| - Immediate(Smi::FromInt(1)));
|
| - __ j(not_equal, &comparison_done);
|
| - uint8_t char_value =
|
| - static_cast<uint8_t>(String::cast(*right_val)->Get(0));
|
| - __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
|
| - char_value);
|
| - } else {
|
| - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
|
| - Immediate(Smi::FromInt(1)));
|
| - // If the length is 0 then the jump is taken and the flags
|
| - // correctly represent being less than the one-character string.
|
| - __ j(below, &comparison_done);
|
| - // Compare the first character of the string with the
|
| - // constant 1-character string.
|
| - uint8_t char_value =
|
| - static_cast<uint8_t>(String::cast(*right_val)->Get(0));
|
| - __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
|
| - char_value);
|
| - __ j(not_equal, &comparison_done);
|
| - // If the first character is the same then the long string sorts after
|
| - // the short one.
|
| - __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset),
|
| - Immediate(Smi::FromInt(1)));
|
| - }
|
| - __ bind(&comparison_done);
|
| - left_side.Unuse();
|
| - right_side.Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - } else {
|
| - // Neither side is a constant Smi, constant 1-char string or constant null.
|
| - // If either side is a non-smi constant, or known to be a heap number,
|
| - // skip the smi check.
|
| - bool known_non_smi =
|
| - (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
|
| - (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
|
| - left_side.type_info().IsDouble() ||
|
| - right_side.type_info().IsDouble();
|
| -
|
| - NaNInformation nan_info =
|
| - (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
|
| - kBothCouldBeNaN :
|
| - kCantBothBeNaN;
|
| -
|
| - // Inline number comparison handling any combination of smi's and heap
|
| - // numbers if:
|
| - // code is in a loop
|
| - // the compare operation is different from equal
|
| - // compare is not a for-loop comparison
|
| - // The reason for excluding equal is that it will most likely be done
|
| - // with smi's (not heap numbers) and the code to comparing smi's is inlined
|
| - // separately. The same reason applies for for-loop comparison which will
|
| - // also most likely be smi comparisons.
|
| - bool is_loop_condition = (node->AsExpression() != NULL)
|
| - && node->AsExpression()->is_loop_condition();
|
| - bool inline_number_compare =
|
| - loop_nesting() > 0 && cc != equal && !is_loop_condition;
|
| -
|
| - // Left and right needed in registers for the following code.
|
| - left_side.ToRegister();
|
| - right_side.ToRegister();
|
| -
|
| - if (known_non_smi) {
|
| - // Inlined equality check:
|
| - // If at least one of the objects is not NaN, then if the objects
|
| - // are identical, they are equal.
|
| - if (nan_info == kCantBothBeNaN && cc == equal) {
|
| - __ cmp(left_side.reg(), Operand(right_side.reg()));
|
| - dest->true_target()->Branch(equal);
|
| - }
|
| -
|
| - // Inlined number comparison:
|
| - if (inline_number_compare) {
|
| - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
|
| - }
|
| -
|
| - // End of in-line compare, call out to the compare stub. Don't include
|
| - // number comparison in the stub if it was inlined.
|
| - CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result answer = frame_->CallStub(&stub, &left_side, &right_side);
|
| - __ test(answer.reg(), Operand(answer.reg()));
|
| - answer.Unuse();
|
| - dest->Split(cc);
|
| - } else {
|
| - // Here we split control flow to the stub call and inlined cases
|
| - // before finally splitting it to the control destination. We use
|
| - // a jump target and branching to duplicate the virtual frame at
|
| - // the first split. We manually handle the off-frame references
|
| - // by reconstituting them on the non-fall-through path.
|
| - JumpTarget is_smi;
|
| - Register left_reg = left_side.reg();
|
| - Register right_reg = right_side.reg();
|
| -
|
| - // In-line check for comparing two smis.
|
| - JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi);
|
| -
|
| - if (has_valid_frame()) {
|
| - // Inline the equality check if both operands can't be a NaN. If both
|
| - // objects are the same they are equal.
|
| - if (nan_info == kCantBothBeNaN && cc == equal) {
|
| - __ cmp(left_side.reg(), Operand(right_side.reg()));
|
| - dest->true_target()->Branch(equal);
|
| - }
|
| -
|
| - // Inlined number comparison:
|
| - if (inline_number_compare) {
|
| - GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
|
| - }
|
| -
|
| - // End of in-line compare, call out to the compare stub. Don't include
|
| - // number comparison in the stub if it was inlined.
|
| - CompareFlags flags =
|
| - ComputeCompareFlags(nan_info, inline_number_compare);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result answer = frame_->CallStub(&stub, &left_side, &right_side);
|
| - __ test(answer.reg(), Operand(answer.reg()));
|
| - answer.Unuse();
|
| - if (is_smi.is_linked()) {
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| - } else {
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| -
|
| - if (is_smi.is_linked()) {
|
| - is_smi.Bind();
|
| - left_side = Result(left_reg);
|
| - right_side = Result(right_reg);
|
| - __ cmp(left_side.reg(), Operand(right_side.reg()));
|
| - right_side.Unuse();
|
| - left_side.Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::ConstantSmiComparison(Condition cc,
|
| - bool strict,
|
| - ControlDestination* dest,
|
| - Result* left_side,
|
| - Result* right_side,
|
| - bool left_side_constant_smi,
|
| - bool right_side_constant_smi,
|
| - bool is_loop_condition) {
|
| - if (left_side_constant_smi && right_side_constant_smi) {
|
| - // Trivial case, comparing two constants.
|
| - int left_value = Smi::cast(*left_side->handle())->value();
|
| - int right_value = Smi::cast(*right_side->handle())->value();
|
| - switch (cc) {
|
| - case less:
|
| - dest->Goto(left_value < right_value);
|
| - break;
|
| - case equal:
|
| - dest->Goto(left_value == right_value);
|
| - break;
|
| - case greater_equal:
|
| - dest->Goto(left_value >= right_value);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - } else {
|
| - // Only one side is a constant Smi.
|
| - // If left side is a constant Smi, reverse the operands.
|
| - // Since one side is a constant Smi, conversion order does not matter.
|
| - if (left_side_constant_smi) {
|
| - Result* temp = left_side;
|
| - left_side = right_side;
|
| - right_side = temp;
|
| - cc = ReverseCondition(cc);
|
| - // This may re-introduce greater or less_equal as the value of cc.
|
| - // CompareStub and the inline code both support all values of cc.
|
| - }
|
| - // Implement comparison against a constant Smi, inlining the case
|
| - // where both sides are Smis.
|
| - left_side->ToRegister();
|
| - Register left_reg = left_side->reg();
|
| - Handle<Object> right_val = right_side->handle();
|
| -
|
| - if (left_side->is_smi()) {
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotSmi(left_reg);
|
| - }
|
| - // Test smi equality and comparison by signed int comparison.
|
| - if (IsUnsafeSmi(right_side->handle())) {
|
| - right_side->ToRegister();
|
| - __ cmp(left_reg, Operand(right_side->reg()));
|
| - } else {
|
| - __ cmp(Operand(left_reg), Immediate(right_side->handle()));
|
| - }
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->Split(cc);
|
| - } else {
|
| - // Only the case where the left side could possibly be a non-smi is left.
|
| - JumpTarget is_smi;
|
| - if (cc == equal) {
|
| - // We can do the equality comparison before the smi check.
|
| - __ cmp(Operand(left_reg), Immediate(right_side->handle()));
|
| - dest->true_target()->Branch(equal);
|
| - __ test(left_reg, Immediate(kSmiTagMask));
|
| - dest->false_target()->Branch(zero);
|
| - } else {
|
| - // Do the smi check, then the comparison.
|
| - __ test(left_reg, Immediate(kSmiTagMask));
|
| - is_smi.Branch(zero, left_side, right_side);
|
| - }
|
| -
|
| - // Jump or fall through to here if we are comparing a non-smi to a
|
| - // constant smi. If the non-smi is a heap number and this is not
|
| - // a loop condition, inline the floating point code.
|
| - if (!is_loop_condition &&
|
| - CpuFeatures::IsSupported(SSE2)) {
|
| - // Right side is a constant smi and left side has been checked
|
| - // not to be a smi.
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - JumpTarget not_number;
|
| - __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
|
| - Immediate(FACTORY->heap_number_map()));
|
| - not_number.Branch(not_equal, left_side);
|
| - __ movdbl(xmm1,
|
| - FieldOperand(left_reg, HeapNumber::kValueOffset));
|
| - int value = Smi::cast(*right_val)->value();
|
| - if (value == 0) {
|
| - __ xorpd(xmm0, xmm0);
|
| - } else {
|
| - Result temp = allocator()->Allocate();
|
| - __ mov(temp.reg(), Immediate(value));
|
| - __ cvtsi2sd(xmm0, Operand(temp.reg()));
|
| - temp.Unuse();
|
| - }
|
| - __ ucomisd(xmm1, xmm0);
|
| - // Jump to builtin for NaN.
|
| - not_number.Branch(parity_even, left_side);
|
| - left_side->Unuse();
|
| - dest->true_target()->Branch(DoubleCondition(cc));
|
| - dest->false_target()->Jump();
|
| - not_number.Bind(left_side);
|
| - }
|
| -
|
| - // Setup and call the compare stub.
|
| - CompareFlags flags =
|
| - static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB);
|
| - CompareStub stub(cc, strict, flags);
|
| - Result result = frame_->CallStub(&stub, left_side, right_side);
|
| - result.ToRegister();
|
| - __ test(result.reg(), Operand(result.reg()));
|
| - result.Unuse();
|
| - if (cc == equal) {
|
| - dest->Split(cc);
|
| - } else {
|
| - dest->true_target()->Branch(cc);
|
| - dest->false_target()->Jump();
|
| -
|
| - // It is important for performance for this case to be at the end.
|
| - is_smi.Bind(left_side, right_side);
|
| - if (IsUnsafeSmi(right_side->handle())) {
|
| - right_side->ToRegister();
|
| - __ cmp(left_reg, Operand(right_side->reg()));
|
| - } else {
|
| - __ cmp(Operand(left_reg), Immediate(right_side->handle()));
|
| - }
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->Split(cc);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// Check that the comparison operand is a number. Jump to not_numbers jump
|
| -// target passing the left and right result if the operand is not a number.
|
| -static void CheckComparisonOperand(MacroAssembler* masm_,
|
| - Result* operand,
|
| - Result* left_side,
|
| - Result* right_side,
|
| - JumpTarget* not_numbers) {
|
| - // Perform check if operand is not known to be a number.
|
| - if (!operand->type_info().IsNumber()) {
|
| - Label done;
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - __ j(zero, &done);
|
| - __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->heap_number_map()));
|
| - not_numbers->Branch(not_equal, left_side, right_side, not_taken);
|
| - __ bind(&done);
|
| - }
|
| -}
|
| -
|
| -
|
| -// Load a comparison operand to the FPU stack. This assumes that the operand has
|
| -// already been checked and is a number.
|
| -static void LoadComparisonOperand(MacroAssembler* masm_,
|
| - Result* operand) {
|
| - Label done;
|
| - if (operand->type_info().IsDouble()) {
|
| - // Operand is known to be a heap number, just load it.
|
| - __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - } else if (operand->type_info().IsSmi()) {
|
| - // Operand is known to be a smi. Convert it to double and keep the original
|
| - // smi.
|
| - __ SmiUntag(operand->reg());
|
| - __ push(operand->reg());
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(operand->reg());
|
| - __ SmiTag(operand->reg());
|
| - } else {
|
| - // Operand type not known, check for smi otherwise assume heap number.
|
| - Label smi;
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - __ j(zero, &smi);
|
| - __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| - __ bind(&smi);
|
| - __ SmiUntag(operand->reg());
|
| - __ push(operand->reg());
|
| - __ fild_s(Operand(esp, 0));
|
| - __ pop(operand->reg());
|
| - __ SmiTag(operand->reg());
|
| - __ jmp(&done);
|
| - }
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -// Load a comparison operand into into a XMM register. Jump to not_numbers jump
|
| -// target passing the left and right result if the operand is not a number.
|
| -static void LoadComparisonOperandSSE2(MacroAssembler* masm_,
|
| - Result* operand,
|
| - XMMRegister xmm_reg,
|
| - Result* left_side,
|
| - Result* right_side,
|
| - JumpTarget* not_numbers) {
|
| - Label done;
|
| - if (operand->type_info().IsDouble()) {
|
| - // Operand is known to be a heap number, just load it.
|
| - __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - } else if (operand->type_info().IsSmi()) {
|
| - // Operand is known to be a smi. Convert it to double and keep the original
|
| - // smi.
|
| - __ SmiUntag(operand->reg());
|
| - __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
|
| - __ SmiTag(operand->reg());
|
| - } else {
|
| - // Operand type not known, check for smi or heap number.
|
| - Label smi;
|
| - __ test(operand->reg(), Immediate(kSmiTagMask));
|
| - __ j(zero, &smi);
|
| - if (!operand->type_info().IsNumber()) {
|
| - __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->heap_number_map()));
|
| - not_numbers->Branch(not_equal, left_side, right_side, taken);
|
| - }
|
| - __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
|
| - __ jmp(&done);
|
| -
|
| - __ bind(&smi);
|
| - // Comvert smi to float and keep the original smi.
|
| - __ SmiUntag(operand->reg());
|
| - __ cvtsi2sd(xmm_reg, Operand(operand->reg()));
|
| - __ SmiTag(operand->reg());
|
| - __ jmp(&done);
|
| - }
|
| - __ bind(&done);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
|
| - Result* right_side,
|
| - Condition cc,
|
| - ControlDestination* dest) {
|
| - ASSERT(left_side->is_register());
|
| - ASSERT(right_side->is_register());
|
| -
|
| - JumpTarget not_numbers;
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| -
|
| - // Load left and right operand into registers xmm0 and xmm1 and compare.
|
| - LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side,
|
| - ¬_numbers);
|
| - LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side,
|
| - ¬_numbers);
|
| - __ ucomisd(xmm0, xmm1);
|
| - } else {
|
| - Label check_right, compare;
|
| -
|
| - // Make sure that both comparison operands are numbers.
|
| - CheckComparisonOperand(masm_, left_side, left_side, right_side,
|
| - ¬_numbers);
|
| - CheckComparisonOperand(masm_, right_side, left_side, right_side,
|
| - ¬_numbers);
|
| -
|
| - // Load right and left operand to FPU stack and compare.
|
| - LoadComparisonOperand(masm_, right_side);
|
| - LoadComparisonOperand(masm_, left_side);
|
| - __ FCmp();
|
| - }
|
| -
|
| - // Bail out if a NaN is involved.
|
| - not_numbers.Branch(parity_even, left_side, right_side, not_taken);
|
| -
|
| - // Split to destination targets based on comparison.
|
| - left_side->Unuse();
|
| - right_side->Unuse();
|
| - dest->true_target()->Branch(DoubleCondition(cc));
|
| - dest->false_target()->Jump();
|
| -
|
| - not_numbers.Bind(left_side, right_side);
|
| -}
|
| -
|
| -
|
| -// Call the function just below TOS on the stack with the given
|
| -// arguments. The receiver is the TOS.
|
| -void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
|
| - CallFunctionFlags flags,
|
| - int position) {
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Record the position for debugging purposes.
|
| - CodeForSourcePosition(position);
|
| -
|
| - // Use the shared code stub to call the function.
|
| - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
| - CallFunctionStub call_function(arg_count, in_loop, flags);
|
| - Result answer = frame_->CallStub(&call_function, arg_count + 1);
|
| - // Restore context and replace function on the stack with the
|
| - // result of the stub invocation.
|
| - frame_->RestoreContextRegister();
|
| - frame_->SetElementAt(0, &answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::CallApplyLazy(Expression* applicand,
|
| - Expression* receiver,
|
| - VariableProxy* arguments,
|
| - int position) {
|
| - // An optimized implementation of expressions of the form
|
| - // x.apply(y, arguments).
|
| - // If the arguments object of the scope has not been allocated,
|
| - // and x.apply is Function.prototype.apply, this optimization
|
| - // just copies y and the arguments of the current function on the
|
| - // stack, as receiver and arguments, and calls x.
|
| - // In the implementation comments, we call x the applicand
|
| - // and y the receiver.
|
| - ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
|
| - ASSERT(arguments->IsArguments());
|
| -
|
| - // Load applicand.apply onto the stack. This will usually
|
| - // give us a megamorphic load site. Not super, but it works.
|
| - Load(applicand);
|
| - frame()->Dup();
|
| - Handle<String> name = FACTORY->LookupAsciiSymbol("apply");
|
| - frame()->Push(name);
|
| - Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
|
| - __ nop();
|
| - frame()->Push(&answer);
|
| -
|
| - // Load the receiver and the existing arguments object onto the
|
| - // expression stack. Avoid allocating the arguments object here.
|
| - Load(receiver);
|
| - LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF);
|
| -
|
| - // Emit the source position information after having loaded the
|
| - // receiver and the arguments.
|
| - CodeForSourcePosition(position);
|
| - // Contents of frame at this point:
|
| - // Frame[0]: arguments object of the current function or the hole.
|
| - // Frame[1]: receiver
|
| - // Frame[2]: applicand.apply
|
| - // Frame[3]: applicand.
|
| -
|
| - // Check if the arguments object has been lazily allocated
|
| - // already. If so, just use that instead of copying the arguments
|
| - // from the stack. This also deals with cases where a local variable
|
| - // named 'arguments' has been introduced.
|
| - frame_->Dup();
|
| - Result probe = frame_->Pop();
|
| - { VirtualFrame::SpilledScope spilled_scope;
|
| - Label slow, done;
|
| - bool try_lazy = true;
|
| - if (probe.is_constant()) {
|
| - try_lazy = probe.handle()->IsArgumentsMarker();
|
| - } else {
|
| - __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker()));
|
| - probe.Unuse();
|
| - __ j(not_equal, &slow);
|
| - }
|
| -
|
| - if (try_lazy) {
|
| - Label build_args;
|
| - // Get rid of the arguments object probe.
|
| - frame_->Drop(); // Can be called on a spilled frame.
|
| - // Stack now has 3 elements on it.
|
| - // Contents of stack at this point:
|
| - // esp[0]: receiver
|
| - // esp[1]: applicand.apply
|
| - // esp[2]: applicand.
|
| -
|
| - // Check that the receiver really is a JavaScript object.
|
| - __ mov(eax, Operand(esp, 0));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &build_args);
|
| - // We allow all JSObjects including JSFunctions. As long as
|
| - // JS_FUNCTION_TYPE is the last instance type and it is right
|
| - // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
|
| - // bound.
|
| - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
| - __ j(below, &build_args);
|
| -
|
| - // Check that applicand.apply is Function.prototype.apply.
|
| - __ mov(eax, Operand(esp, kPointerSize));
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - __ j(zero, &build_args);
|
| - __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx);
|
| - __ j(not_equal, &build_args);
|
| - __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset));
|
| - __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag));
|
| - Handle<Code> apply_code(masm()->isolate()->builtins()->builtin(
|
| - Builtins::kFunctionApply));
|
| - __ cmp(Operand(ecx), Immediate(apply_code));
|
| - __ j(not_equal, &build_args);
|
| -
|
| - // Check that applicand is a function.
|
| - __ mov(edi, Operand(esp, 2 * kPointerSize));
|
| - __ test(edi, Immediate(kSmiTagMask));
|
| - __ j(zero, &build_args);
|
| - __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
|
| - __ j(not_equal, &build_args);
|
| -
|
| - // Copy the arguments to this function possibly from the
|
| - // adaptor frame below it.
|
| - Label invoke, adapted;
|
| - __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
|
| - __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
|
| - __ cmp(Operand(ecx),
|
| - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ j(equal, &adapted);
|
| -
|
| - // No arguments adaptor frame. Copy fixed number of arguments.
|
| - __ mov(eax, Immediate(scope()->num_parameters()));
|
| - for (int i = 0; i < scope()->num_parameters(); i++) {
|
| - __ push(frame_->ParameterAt(i));
|
| - }
|
| - __ jmp(&invoke);
|
| -
|
| - // Arguments adaptor frame present. Copy arguments from there, but
|
| - // avoid copying too many arguments to avoid stack overflows.
|
| - __ bind(&adapted);
|
| - static const uint32_t kArgumentsLimit = 1 * KB;
|
| - __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| - __ SmiUntag(eax);
|
| - __ mov(ecx, Operand(eax));
|
| - __ cmp(eax, kArgumentsLimit);
|
| - __ j(above, &build_args);
|
| -
|
| - // Loop through the arguments pushing them onto the execution
|
| - // stack. We don't inform the virtual frame of the push, so we don't
|
| - // have to worry about getting rid of the elements from the virtual
|
| - // frame.
|
| - Label loop;
|
| - // ecx is a small non-negative integer, due to the test above.
|
| - __ test(ecx, Operand(ecx));
|
| - __ j(zero, &invoke);
|
| - __ bind(&loop);
|
| - __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize));
|
| - __ dec(ecx);
|
| - __ j(not_zero, &loop);
|
| -
|
| - // Invoke the function.
|
| - __ bind(&invoke);
|
| - ParameterCount actual(eax);
|
| - __ InvokeFunction(edi, actual, CALL_FUNCTION);
|
| - // Drop applicand.apply and applicand from the stack, and push
|
| - // the result of the function call, but leave the spilled frame
|
| - // unchanged, with 3 elements, so it is correct when we compile the
|
| - // slow-case code.
|
| - __ add(Operand(esp), Immediate(2 * kPointerSize));
|
| - __ push(eax);
|
| - // Stack now has 1 element:
|
| - // esp[0]: result
|
| - __ jmp(&done);
|
| -
|
| - // Slow-case: Allocate the arguments object since we know it isn't
|
| - // there, and fall-through to the slow-case where we call
|
| - // applicand.apply.
|
| - __ bind(&build_args);
|
| - // Stack now has 3 elements, because we have jumped from where:
|
| - // esp[0]: receiver
|
| - // esp[1]: applicand.apply
|
| - // esp[2]: applicand.
|
| -
|
| - // StoreArgumentsObject requires a correct frame, and may modify it.
|
| - Result arguments_object = StoreArgumentsObject(false);
|
| - frame_->SpillAll();
|
| - arguments_object.ToRegister();
|
| - frame_->EmitPush(arguments_object.reg());
|
| - arguments_object.Unuse();
|
| - // Stack and frame now have 4 elements.
|
| - __ bind(&slow);
|
| - }
|
| -
|
| - // Generic computation of x.apply(y, args) with no special optimization.
|
| - // Flip applicand.apply and applicand on the stack, so
|
| - // applicand looks like the receiver of the applicand.apply call.
|
| - // Then process it as a normal function call.
|
| - __ mov(eax, Operand(esp, 3 * kPointerSize));
|
| - __ mov(ebx, Operand(esp, 2 * kPointerSize));
|
| - __ mov(Operand(esp, 2 * kPointerSize), eax);
|
| - __ mov(Operand(esp, 3 * kPointerSize), ebx);
|
| -
|
| - CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
|
| - Result res = frame_->CallStub(&call_function, 3);
|
| - // The function and its two arguments have been dropped.
|
| - frame_->Drop(1); // Drop the receiver as well.
|
| - res.ToRegister();
|
| - frame_->EmitPush(res.reg());
|
| - // Stack now has 1 element:
|
| - // esp[0]: result
|
| - if (try_lazy) __ bind(&done);
|
| - } // End of spilled scope.
|
| - // Restore the context register after a call.
|
| - frame_->RestoreContextRegister();
|
| -}
|
| -
|
| -
|
| -class DeferredStackCheck: public DeferredCode {
|
| - public:
|
| - DeferredStackCheck() {
|
| - set_comment("[ DeferredStackCheck");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -};
|
| -
|
| -
|
| -void DeferredStackCheck::Generate() {
|
| - StackCheckStub stub;
|
| - __ CallStub(&stub);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::CheckStack() {
|
| - DeferredStackCheck* deferred = new DeferredStackCheck;
|
| - ExternalReference stack_limit =
|
| - ExternalReference::address_of_stack_limit(masm()->isolate());
|
| - __ cmp(esp, Operand::StaticVariable(stack_limit));
|
| - deferred->Branch(below);
|
| - deferred->BindExit();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAndSpill(Statement* statement) {
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - Visit(statement);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(in_spilled_code());
|
| - set_in_spilled_code(false);
|
| - VisitStatements(statements);
|
| - if (frame_ != NULL) {
|
| - frame_->SpillAll();
|
| - }
|
| - set_in_spilled_code(true);
|
| -
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
|
| -#ifdef DEBUG
|
| - int original_height = frame_->height();
|
| -#endif
|
| - ASSERT(!in_spilled_code());
|
| - for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
|
| - Visit(statements->at(i));
|
| - }
|
| - ASSERT(!has_valid_frame() || frame_->height() == original_height);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBlock(Block* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ Block");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - VisitStatements(node->statements());
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
|
| - // Call the runtime to declare the globals. The inevitable call
|
| - // will sync frame elements to memory anyway, so we do it eagerly to
|
| - // allow us to push the arguments directly into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| -
|
| - frame_->EmitPush(esi); // The context is the first argument.
|
| - frame_->EmitPush(Immediate(pairs));
|
| - frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0)));
|
| - frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag())));
|
| - Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4);
|
| - // Return value is ignored.
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDeclaration(Declaration* node) {
|
| - Comment cmnt(masm_, "[ Declaration");
|
| - Variable* var = node->proxy()->var();
|
| - ASSERT(var != NULL); // must have been resolved
|
| - Slot* slot = var->AsSlot();
|
| -
|
| - // If it was not possible to allocate the variable at compile time,
|
| - // we need to "declare" it at runtime to make sure it actually
|
| - // exists in the local context.
|
| - if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // Variables with a "LOOKUP" slot were introduced as non-locals
|
| - // during variable resolution and must have mode DYNAMIC.
|
| - ASSERT(var->is_dynamic());
|
| - // For now, just do a runtime call. Sync the virtual frame eagerly
|
| - // so we can simply push the arguments into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(esi);
|
| - frame_->EmitPush(Immediate(var->name()));
|
| - // Declaration nodes are always introduced in one of two modes.
|
| - ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
|
| - PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
|
| - frame_->EmitPush(Immediate(Smi::FromInt(attr)));
|
| - // Push initial value, if any.
|
| - // Note: For variables we must not push an initial value (such as
|
| - // 'undefined') because we may have a (legal) redeclaration and we
|
| - // must not destroy the current value.
|
| - if (node->mode() == Variable::CONST) {
|
| - frame_->EmitPush(Immediate(FACTORY->the_hole_value()));
|
| - } else if (node->fun() != NULL) {
|
| - Load(node->fun());
|
| - } else {
|
| - frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value!
|
| - }
|
| - Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
|
| - // Ignore the return value (declarations are statements).
|
| - return;
|
| - }
|
| -
|
| - ASSERT(!var->is_global());
|
| -
|
| - // If we have a function or a constant, we need to initialize the variable.
|
| - Expression* val = NULL;
|
| - if (node->mode() == Variable::CONST) {
|
| - val = new Literal(FACTORY->the_hole_value());
|
| - } else {
|
| - val = node->fun(); // NULL if we don't have a function
|
| - }
|
| -
|
| - if (val != NULL) {
|
| - {
|
| - // Set the initial value.
|
| - Reference target(this, node->proxy());
|
| - Load(val);
|
| - target.SetValue(NOT_CONST_INIT);
|
| - // The reference is removed from the stack (preserving TOS) when
|
| - // it goes out of scope.
|
| - }
|
| - // Get rid of the assigned value (declarations are statements).
|
| - frame_->Drop();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ExpressionStatement");
|
| - CodeForStatementPosition(node);
|
| - Expression* expression = node->expression();
|
| - expression->MarkAsStatement();
|
| - Load(expression);
|
| - // Remove the lingering expression result from the top of stack.
|
| - frame_->Drop();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "// EmptyStatement");
|
| - CodeForStatementPosition(node);
|
| - // nothing to do
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitIfStatement(IfStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ IfStatement");
|
| - // Generate different code depending on which parts of the if statement
|
| - // are present or not.
|
| - bool has_then_stm = node->HasThenStatement();
|
| - bool has_else_stm = node->HasElseStatement();
|
| -
|
| - CodeForStatementPosition(node);
|
| - JumpTarget exit;
|
| - if (has_then_stm && has_else_stm) {
|
| - JumpTarget then;
|
| - JumpTarget else_;
|
| - ControlDestination dest(&then, &else_, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The else target was bound, so we compile the else part first.
|
| - Visit(node->else_statement());
|
| -
|
| - // We may have dangling jumps to the then part.
|
| - if (then.is_linked()) {
|
| - if (has_valid_frame()) exit.Jump();
|
| - then.Bind();
|
| - Visit(node->then_statement());
|
| - }
|
| - } else {
|
| - // The then target was bound, so we compile the then part first.
|
| - Visit(node->then_statement());
|
| -
|
| - if (else_.is_linked()) {
|
| - if (has_valid_frame()) exit.Jump();
|
| - else_.Bind();
|
| - Visit(node->else_statement());
|
| - }
|
| - }
|
| -
|
| - } else if (has_then_stm) {
|
| - ASSERT(!has_else_stm);
|
| - JumpTarget then;
|
| - ControlDestination dest(&then, &exit, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The exit label was bound. We may have dangling jumps to the
|
| - // then part.
|
| - if (then.is_linked()) {
|
| - exit.Unuse();
|
| - exit.Jump();
|
| - then.Bind();
|
| - Visit(node->then_statement());
|
| - }
|
| - } else {
|
| - // The then label was bound.
|
| - Visit(node->then_statement());
|
| - }
|
| -
|
| - } else if (has_else_stm) {
|
| - ASSERT(!has_then_stm);
|
| - JumpTarget else_;
|
| - ControlDestination dest(&exit, &else_, false);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.true_was_fall_through()) {
|
| - // The exit label was bound. We may have dangling jumps to the
|
| - // else part.
|
| - if (else_.is_linked()) {
|
| - exit.Unuse();
|
| - exit.Jump();
|
| - else_.Bind();
|
| - Visit(node->else_statement());
|
| - }
|
| - } else {
|
| - // The else label was bound.
|
| - Visit(node->else_statement());
|
| - }
|
| -
|
| - } else {
|
| - ASSERT(!has_then_stm && !has_else_stm);
|
| - // We only care about the condition's side effects (not its value
|
| - // or control flow effect). LoadCondition is called without
|
| - // forcing control flow.
|
| - ControlDestination dest(&exit, &exit, true);
|
| - LoadCondition(node->condition(), &dest, false);
|
| - if (!dest.is_used()) {
|
| - // We got a value on the frame rather than (or in addition to)
|
| - // control flow.
|
| - frame_->Drop();
|
| - }
|
| - }
|
| -
|
| - if (exit.is_linked()) {
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ContinueStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->continue_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ BreakStatement");
|
| - CodeForStatementPosition(node);
|
| - node->target()->break_target()->Jump();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ReturnStatement");
|
| -
|
| - CodeForStatementPosition(node);
|
| - Load(node->expression());
|
| - Result return_value = frame_->Pop();
|
| - masm()->positions_recorder()->WriteRecordedPositions();
|
| - if (function_return_is_shadowed_) {
|
| - function_return_.Jump(&return_value);
|
| - } else {
|
| - frame_->PrepareForReturn();
|
| - if (function_return_.is_bound()) {
|
| - // If the function return label is already bound we reuse the
|
| - // code by jumping to the return site.
|
| - function_return_.Jump(&return_value);
|
| - } else {
|
| - function_return_.Bind(&return_value);
|
| - GenerateReturnSequence(&return_value);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateReturnSequence(Result* return_value) {
|
| - // The return value is a live (but not currently reference counted)
|
| - // reference to eax. This is safe because the current frame does not
|
| - // contain a reference to eax (it is prepared for the return by spilling
|
| - // all registers).
|
| - if (FLAG_trace) {
|
| - frame_->Push(return_value);
|
| - *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
|
| - }
|
| - return_value->ToRegister(eax);
|
| -
|
| - // Add a label for checking the size of the code used for returning.
|
| -#ifdef DEBUG
|
| - Label check_exit_codesize;
|
| - masm_->bind(&check_exit_codesize);
|
| -#endif
|
| -
|
| - // Leave the frame and return popping the arguments and the
|
| - // receiver.
|
| - frame_->Exit();
|
| - int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize;
|
| - __ Ret(arguments_bytes, ecx);
|
| - DeleteFrame();
|
| -
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - // Check that the size of the code used for returning is large enough
|
| - // for the debugger's requirements.
|
| - ASSERT(Assembler::kJSReturnSequenceLength <=
|
| - masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
|
| -#endif
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WithEnterStatement");
|
| - CodeForStatementPosition(node);
|
| - Load(node->expression());
|
| - Result context;
|
| - if (node->is_catch_block()) {
|
| - context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
|
| - } else {
|
| - context = frame_->CallRuntime(Runtime::kPushContext, 1);
|
| - }
|
| -
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -
|
| - // Verify that the runtime call result and esi agree.
|
| - if (FLAG_debug_code) {
|
| - __ cmp(context.reg(), Operand(esi));
|
| - __ Assert(equal, "Runtime::NewContext should end up in esi");
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WithExitStatement");
|
| - CodeForStatementPosition(node);
|
| - // Pop context.
|
| - __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX));
|
| - // Update context local.
|
| - frame_->SaveContextRegister();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ SwitchStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| -
|
| - // Compile the switch value.
|
| - Load(node->tag());
|
| -
|
| - ZoneList<CaseClause*>* cases = node->cases();
|
| - int length = cases->length();
|
| - CaseClause* default_clause = NULL;
|
| -
|
| - JumpTarget next_test;
|
| - // Compile the case label expressions and comparisons. Exit early
|
| - // if a comparison is unconditionally true. The target next_test is
|
| - // bound before the loop in order to indicate control flow to the
|
| - // first comparison.
|
| - next_test.Bind();
|
| - for (int i = 0; i < length && !next_test.is_unused(); i++) {
|
| - CaseClause* clause = cases->at(i);
|
| - // The default is not a test, but remember it for later.
|
| - if (clause->is_default()) {
|
| - default_clause = clause;
|
| - continue;
|
| - }
|
| -
|
| - Comment cmnt(masm_, "[ Case comparison");
|
| - // We recycle the same target next_test for each test. Bind it if
|
| - // the previous test has not done so and then unuse it for the
|
| - // loop.
|
| - if (next_test.is_linked()) {
|
| - next_test.Bind();
|
| - }
|
| - next_test.Unuse();
|
| -
|
| - // Duplicate the switch value.
|
| - frame_->Dup();
|
| -
|
| - // Compile the label expression.
|
| - Load(clause->label());
|
| -
|
| - // Compare and branch to the body if true or the next test if
|
| - // false. Prefer the next test as a fall through.
|
| - ControlDestination dest(clause->body_target(), &next_test, false);
|
| - Comparison(node, equal, true, &dest);
|
| -
|
| - // If the comparison fell through to the true target, jump to the
|
| - // actual body.
|
| - if (dest.true_was_fall_through()) {
|
| - clause->body_target()->Unuse();
|
| - clause->body_target()->Jump();
|
| - }
|
| - }
|
| -
|
| - // If there was control flow to a next test from the last one
|
| - // compiled, compile a jump to the default or break target.
|
| - if (!next_test.is_unused()) {
|
| - if (next_test.is_linked()) {
|
| - next_test.Bind();
|
| - }
|
| - // Drop the switch value.
|
| - frame_->Drop();
|
| - if (default_clause != NULL) {
|
| - default_clause->body_target()->Jump();
|
| - } else {
|
| - node->break_target()->Jump();
|
| - }
|
| - }
|
| -
|
| - // The last instruction emitted was a jump, either to the default
|
| - // clause or the break target, or else to a case body from the loop
|
| - // that compiles the tests.
|
| - ASSERT(!has_valid_frame());
|
| - // Compile case bodies as needed.
|
| - for (int i = 0; i < length; i++) {
|
| - CaseClause* clause = cases->at(i);
|
| -
|
| - // There are two ways to reach the body: from the corresponding
|
| - // test or as the fall through of the previous body.
|
| - if (clause->body_target()->is_linked() || has_valid_frame()) {
|
| - if (clause->body_target()->is_linked()) {
|
| - if (has_valid_frame()) {
|
| - // If we have both a jump to the test and a fall through, put
|
| - // a jump on the fall through path to avoid the dropping of
|
| - // the switch value on the test path. The exception is the
|
| - // default which has already had the switch value dropped.
|
| - if (clause->is_default()) {
|
| - clause->body_target()->Bind();
|
| - } else {
|
| - JumpTarget body;
|
| - body.Jump();
|
| - clause->body_target()->Bind();
|
| - frame_->Drop();
|
| - body.Bind();
|
| - }
|
| - } else {
|
| - // No fall through to worry about.
|
| - clause->body_target()->Bind();
|
| - if (!clause->is_default()) {
|
| - frame_->Drop();
|
| - }
|
| - }
|
| - } else {
|
| - // Otherwise, we have only fall through.
|
| - ASSERT(has_valid_frame());
|
| - }
|
| -
|
| - // We are now prepared to compile the body.
|
| - Comment cmnt(masm_, "[ Case body");
|
| - VisitStatements(clause->statements());
|
| - }
|
| - clause->body_target()->Unuse();
|
| - }
|
| -
|
| - // We may not have a valid frame here so bind the break target only
|
| - // if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ DoWhileStatement");
|
| - CodeForStatementPosition(node);
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - JumpTarget body(JumpTarget::BIDIRECTIONAL);
|
| - IncrementLoopNesting();
|
| -
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - // Label the top of the loop for the backward jump if necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // Use the continue target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - // No need to label it.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - break;
|
| - case DONT_KNOW:
|
| - // Continue is the test, so use the backward body target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - body.Bind();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - Visit(node->body());
|
| -
|
| - // Compile the test.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // If control flow can fall off the end of the body, jump back
|
| - // to the top and bind the break target at the exit.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - // We may have had continues or breaks in the body.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - // We have to compile the test expression if it can be reached by
|
| - // control flow falling out of the body or via continue.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - Comment cmnt(masm_, "[ DoWhileCondition");
|
| - CodeForDoWhileConditionPosition(node);
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - break;
|
| - }
|
| -
|
| - DecrementLoopNesting();
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ WhileStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // If the condition is always false and has no side effects, we do not
|
| - // need to compile anything.
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - if (info == ALWAYS_FALSE) return;
|
| -
|
| - // Do not duplicate conditions that may have function literal
|
| - // subexpressions. This can cause us to compile the function literal
|
| - // twice.
|
| - bool test_at_bottom = !node->may_have_function_literal();
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - IncrementLoopNesting();
|
| - JumpTarget body;
|
| - if (test_at_bottom) {
|
| - body.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the test as necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // We will not compile the test expression. Label the top of the
|
| - // loop with the continue target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - break;
|
| - case DONT_KNOW: {
|
| - if (test_at_bottom) {
|
| - // Continue is the test at the bottom, no need to label the test
|
| - // at the top. The body is a backward target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - } else {
|
| - // Label the test at the top as the continue target. The body
|
| - // is a forward-only target.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - }
|
| - // Compile the test with the body as the true target and preferred
|
| - // fall-through and with the break target as the false target.
|
| - ControlDestination dest(&body, node->break_target(), true);
|
| - LoadCondition(node->cond(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // If we got the break target as fall-through, the test may have
|
| - // been unconditionally false (if there are no jumps to the
|
| - // body).
|
| - if (!body.is_linked()) {
|
| - DecrementLoopNesting();
|
| - return;
|
| - }
|
| -
|
| - // Otherwise, jump around the body on the fall through and then
|
| - // bind the body target.
|
| - node->break_target()->Unuse();
|
| - node->break_target()->Jump();
|
| - body.Bind();
|
| - }
|
| - break;
|
| - }
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - Visit(node->body());
|
| -
|
| - // Based on the condition analysis, compile the backward jump as
|
| - // necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // The loop body has been labeled with the continue target.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - if (test_at_bottom) {
|
| - // If we have chosen to recompile the test at the bottom,
|
| - // then it is the continue target.
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| - if (has_valid_frame()) {
|
| - // The break target is the fall-through (body is a backward
|
| - // jump from here and thus an invalid fall-through).
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - } else {
|
| - // If we have chosen not to recompile the test at the bottom,
|
| - // jump back to the one at the top.
|
| - if (has_valid_frame()) {
|
| - node->continue_target()->Jump();
|
| - }
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - // The break target may be already bound (by the condition), or there
|
| - // may not be a valid frame. Bind it only if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - DecrementLoopNesting();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) {
|
| - ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER);
|
| - if (slot->type() == Slot::LOCAL) {
|
| - frame_->SetTypeForLocalAt(slot->index(), info);
|
| - } else {
|
| - frame_->SetTypeForParamAt(slot->index(), info);
|
| - }
|
| - if (FLAG_debug_code && info.IsSmi()) {
|
| - if (slot->type() == Slot::LOCAL) {
|
| - frame_->PushLocalAt(slot->index());
|
| - } else {
|
| - frame_->PushParameterAt(slot->index());
|
| - }
|
| - Result var = frame_->Pop();
|
| - var.ToRegister();
|
| - __ AbortIfNotSmi(var.reg());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitForStatement(ForStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ ForStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // Compile the init expression if present.
|
| - if (node->init() != NULL) {
|
| - Visit(node->init());
|
| - }
|
| -
|
| - // If the condition is always false and has no side effects, we do not
|
| - // need to compile anything else.
|
| - ConditionAnalysis info = AnalyzeCondition(node->cond());
|
| - if (info == ALWAYS_FALSE) return;
|
| -
|
| - // Do not duplicate conditions that may have function literal
|
| - // subexpressions. This can cause us to compile the function literal
|
| - // twice.
|
| - bool test_at_bottom = !node->may_have_function_literal();
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - IncrementLoopNesting();
|
| -
|
| - // Target for backward edge if no test at the bottom, otherwise
|
| - // unused.
|
| - JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
| -
|
| - // Target for backward edge if there is a test at the bottom,
|
| - // otherwise used as target for test at the top.
|
| - JumpTarget body;
|
| - if (test_at_bottom) {
|
| - body.set_direction(JumpTarget::BIDIRECTIONAL);
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the test as necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - // We will not compile the test expression. Label the top of the
|
| - // loop.
|
| - if (node->next() == NULL) {
|
| - // Use the continue target if there is no update expression.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else {
|
| - // Otherwise use the backward loop target.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - loop.Bind();
|
| - }
|
| - break;
|
| - case DONT_KNOW: {
|
| - if (test_at_bottom) {
|
| - // Continue is either the update expression or the test at the
|
| - // bottom, no need to label the test at the top.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - } else if (node->next() == NULL) {
|
| - // We are not recompiling the test at the bottom and there is no
|
| - // update expression.
|
| - node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
|
| - node->continue_target()->Bind();
|
| - } else {
|
| - // We are not recompiling the test at the bottom and there is an
|
| - // update expression.
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - loop.Bind();
|
| - }
|
| -
|
| - // Compile the test with the body as the true target and preferred
|
| - // fall-through and with the break target as the false target.
|
| - ControlDestination dest(&body, node->break_target(), true);
|
| - LoadCondition(node->cond(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // If we got the break target as fall-through, the test may have
|
| - // been unconditionally false (if there are no jumps to the
|
| - // body).
|
| - if (!body.is_linked()) {
|
| - DecrementLoopNesting();
|
| - return;
|
| - }
|
| -
|
| - // Otherwise, jump around the body on the fall through and then
|
| - // bind the body target.
|
| - node->break_target()->Unuse();
|
| - node->break_target()->Jump();
|
| - body.Bind();
|
| - }
|
| - break;
|
| - }
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| -
|
| - // We know that the loop index is a smi if it is not modified in the
|
| - // loop body and it is checked against a constant limit in the loop
|
| - // condition. In this case, we reset the static type information of the
|
| - // loop index to smi before compiling the body, the update expression, and
|
| - // the bottom check of the loop condition.
|
| - if (node->is_fast_smi_loop()) {
|
| - // Set number type of the loop variable to smi.
|
| - SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
|
| - }
|
| -
|
| - Visit(node->body());
|
| -
|
| - // If there is an update expression, compile it if necessary.
|
| - if (node->next() != NULL) {
|
| - if (node->continue_target()->is_linked()) {
|
| - node->continue_target()->Bind();
|
| - }
|
| -
|
| - // Control can reach the update by falling out of the body or by a
|
| - // continue.
|
| - if (has_valid_frame()) {
|
| - // Record the source position of the statement as this code which
|
| - // is after the code for the body actually belongs to the loop
|
| - // statement and not the body.
|
| - CodeForStatementPosition(node);
|
| - Visit(node->next());
|
| - }
|
| - }
|
| -
|
| - // Set the type of the loop variable to smi before compiling the test
|
| - // expression if we are in a fast smi loop condition.
|
| - if (node->is_fast_smi_loop() && has_valid_frame()) {
|
| - // Set number type of the loop variable to smi.
|
| - SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi());
|
| - }
|
| -
|
| - // Based on the condition analysis, compile the backward jump as
|
| - // necessary.
|
| - switch (info) {
|
| - case ALWAYS_TRUE:
|
| - if (has_valid_frame()) {
|
| - if (node->next() == NULL) {
|
| - node->continue_target()->Jump();
|
| - } else {
|
| - loop.Jump();
|
| - }
|
| - }
|
| - break;
|
| - case DONT_KNOW:
|
| - if (test_at_bottom) {
|
| - if (node->continue_target()->is_linked()) {
|
| - // We can have dangling jumps to the continue target if there
|
| - // was no update expression.
|
| - node->continue_target()->Bind();
|
| - }
|
| - // Control can reach the test at the bottom by falling out of
|
| - // the body, by a continue in the body, or from the update
|
| - // expression.
|
| - if (has_valid_frame()) {
|
| - // The break target is the fall-through (body is a backward
|
| - // jump from here).
|
| - ControlDestination dest(&body, node->break_target(), false);
|
| - LoadCondition(node->cond(), &dest, true);
|
| - }
|
| - } else {
|
| - // Otherwise, jump back to the test at the top.
|
| - if (has_valid_frame()) {
|
| - if (node->next() == NULL) {
|
| - node->continue_target()->Jump();
|
| - } else {
|
| - loop.Jump();
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case ALWAYS_FALSE:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - // The break target may be already bound (by the condition), or there
|
| - // may not be a valid frame. Bind it only if needed.
|
| - if (node->break_target()->is_linked()) {
|
| - node->break_target()->Bind();
|
| - }
|
| - DecrementLoopNesting();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitForInStatement(ForInStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ ForInStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget primitive;
|
| - JumpTarget jsobject;
|
| - JumpTarget fixed_array;
|
| - JumpTarget entry(JumpTarget::BIDIRECTIONAL);
|
| - JumpTarget end_del_check;
|
| - JumpTarget exit;
|
| -
|
| - // Get the object to enumerate over (converted to JSObject).
|
| - LoadAndSpill(node->enumerable());
|
| -
|
| - // Both SpiderMonkey and kjs ignore null and undefined in contrast
|
| - // to the specification. 12.6.4 mandates a call to ToObject.
|
| - frame_->EmitPop(eax);
|
| -
|
| - // eax: value to be iterated over
|
| - __ cmp(eax, FACTORY->undefined_value());
|
| - exit.Branch(equal);
|
| - __ cmp(eax, FACTORY->null_value());
|
| - exit.Branch(equal);
|
| -
|
| - // Stack layout in body:
|
| - // [iteration counter (smi)] <- slot 0
|
| - // [length of array] <- slot 1
|
| - // [FixedArray] <- slot 2
|
| - // [Map or 0] <- slot 3
|
| - // [Object] <- slot 4
|
| -
|
| - // Check if enumerable is already a JSObject
|
| - // eax: value to be iterated over
|
| - __ test(eax, Immediate(kSmiTagMask));
|
| - primitive.Branch(zero);
|
| - __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
| - jsobject.Branch(above_equal);
|
| -
|
| - primitive.Bind();
|
| - frame_->EmitPush(eax);
|
| - frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
|
| - // function call returns the value in eax, which is where we want it below
|
| -
|
| - jsobject.Bind();
|
| - // Get the set of properties (as a FixedArray or Map).
|
| - // eax: value to be iterated over
|
| - frame_->EmitPush(eax); // Push the object being iterated over.
|
| -
|
| - // Check cache validity in generated code. This is a fast case for
|
| - // the JSObject::IsSimpleEnum cache validity checks. If we cannot
|
| - // guarantee cache validity, call the runtime system to check cache
|
| - // validity or get the property names in a fixed array.
|
| - JumpTarget call_runtime;
|
| - JumpTarget loop(JumpTarget::BIDIRECTIONAL);
|
| - JumpTarget check_prototype;
|
| - JumpTarget use_cache;
|
| - __ mov(ecx, eax);
|
| - loop.Bind();
|
| - // Check that there are no elements.
|
| - __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset));
|
| - __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array()));
|
| - call_runtime.Branch(not_equal);
|
| - // Check that instance descriptors are not empty so that we can
|
| - // check for an enum cache. Leave the map in ebx for the subsequent
|
| - // prototype load.
|
| - __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
|
| - __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset));
|
| - __ cmp(Operand(edx), Immediate(FACTORY->empty_descriptor_array()));
|
| - call_runtime.Branch(equal);
|
| - // Check that there in an enum cache in the non-empty instance
|
| - // descriptors. This is the case if the next enumeration index
|
| - // field does not contain a smi.
|
| - __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset));
|
| - __ test(edx, Immediate(kSmiTagMask));
|
| - call_runtime.Branch(zero);
|
| - // For all objects but the receiver, check that the cache is empty.
|
| - __ cmp(ecx, Operand(eax));
|
| - check_prototype.Branch(equal);
|
| - __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
| - __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array()));
|
| - call_runtime.Branch(not_equal);
|
| - check_prototype.Bind();
|
| - // Load the prototype from the map and loop if non-null.
|
| - __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
|
| - __ cmp(Operand(ecx), Immediate(FACTORY->null_value()));
|
| - loop.Branch(not_equal);
|
| - // The enum cache is valid. Load the map of the object being
|
| - // iterated over and use the cache for the iteration.
|
| - __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
|
| - use_cache.Jump();
|
| -
|
| - call_runtime.Bind();
|
| - // Call the runtime to get the property names for the object.
|
| - frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call
|
| - frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
|
| -
|
| - // If we got a map from the runtime call, we can do a fast
|
| - // modification check. Otherwise, we got a fixed array, and we have
|
| - // to do a slow check.
|
| - // eax: map or fixed array (result from call to
|
| - // Runtime::kGetPropertyNamesFast)
|
| - __ mov(edx, Operand(eax));
|
| - __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
|
| - __ cmp(ecx, FACTORY->meta_map());
|
| - fixed_array.Branch(not_equal);
|
| -
|
| - use_cache.Bind();
|
| - // Get enum cache
|
| - // eax: map (either the result from a call to
|
| - // Runtime::kGetPropertyNamesFast or has been fetched directly from
|
| - // the object)
|
| - __ mov(ecx, Operand(eax));
|
| -
|
| - __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset));
|
| - // Get the bridge array held in the enumeration index field.
|
| - __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
|
| - // Get the cache from the bridge array.
|
| - __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
|
| -
|
| - frame_->EmitPush(eax); // <- slot 3
|
| - frame_->EmitPush(edx); // <- slot 2
|
| - __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
|
| - frame_->EmitPush(eax); // <- slot 1
|
| - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
|
| - entry.Jump();
|
| -
|
| - fixed_array.Bind();
|
| - // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
|
| - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3
|
| - frame_->EmitPush(eax); // <- slot 2
|
| -
|
| - // Push the length of the array and the initial index onto the stack.
|
| - __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
|
| - frame_->EmitPush(eax); // <- slot 1
|
| - frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0
|
| -
|
| - // Condition.
|
| - entry.Bind();
|
| - // Grab the current frame's height for the break and continue
|
| - // targets only after all the state is pushed on the frame.
|
| - node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| - node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
|
| -
|
| - __ mov(eax, frame_->ElementAt(0)); // load the current count
|
| - __ cmp(eax, frame_->ElementAt(1)); // compare to the array length
|
| - node->break_target()->Branch(above_equal);
|
| -
|
| - // Get the i'th entry of the array.
|
| - __ mov(edx, frame_->ElementAt(2));
|
| - __ mov(ebx, FixedArrayElementOperand(edx, eax));
|
| -
|
| - // Get the expected map from the stack or a zero map in the
|
| - // permanent slow case eax: current iteration count ebx: i'th entry
|
| - // of the enum cache
|
| - __ mov(edx, frame_->ElementAt(3));
|
| - // Check if the expected map still matches that of the enumerable.
|
| - // If not, we have to filter the key.
|
| - // eax: current iteration count
|
| - // ebx: i'th entry of the enum cache
|
| - // edx: expected map value
|
| - __ mov(ecx, frame_->ElementAt(4));
|
| - __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
|
| - __ cmp(ecx, Operand(edx));
|
| - end_del_check.Branch(equal);
|
| -
|
| - // Convert the entry to a string (or null if it isn't a property anymore).
|
| - frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
|
| - frame_->EmitPush(ebx); // push entry
|
| - frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
|
| - __ mov(ebx, Operand(eax));
|
| -
|
| - // If the property has been removed while iterating, we just skip it.
|
| - __ test(ebx, Operand(ebx));
|
| - node->continue_target()->Branch(equal);
|
| -
|
| - end_del_check.Bind();
|
| - // Store the entry in the 'each' expression and take another spin in the
|
| - // loop. edx: i'th entry of the enum cache (or string there of)
|
| - frame_->EmitPush(ebx);
|
| - { Reference each(this, node->each());
|
| - if (!each.is_illegal()) {
|
| - if (each.size() > 0) {
|
| - // Loading a reference may leave the frame in an unspilled state.
|
| - frame_->SpillAll();
|
| - // Get the value (under the reference on the stack) from memory.
|
| - frame_->EmitPush(frame_->ElementAt(each.size()));
|
| - each.SetValue(NOT_CONST_INIT);
|
| - frame_->Drop(2);
|
| - } else {
|
| - // If the reference was to a slot we rely on the convenient property
|
| - // that it doesn't matter whether a value (eg, ebx pushed above) is
|
| - // right on top of or right underneath a zero-sized reference.
|
| - each.SetValue(NOT_CONST_INIT);
|
| - frame_->Drop();
|
| - }
|
| - }
|
| - }
|
| - // Unloading a reference may leave the frame in an unspilled state.
|
| - frame_->SpillAll();
|
| -
|
| - // Body.
|
| - CheckStack(); // TODO(1222600): ignore if body contains calls.
|
| - VisitAndSpill(node->body());
|
| -
|
| - // Next. Reestablish a spilled frame in case we are coming here via
|
| - // a continue in the body.
|
| - node->continue_target()->Bind();
|
| - frame_->SpillAll();
|
| - frame_->EmitPop(eax);
|
| - __ add(Operand(eax), Immediate(Smi::FromInt(1)));
|
| - frame_->EmitPush(eax);
|
| - entry.Jump();
|
| -
|
| - // Cleanup. No need to spill because VirtualFrame::Drop is safe for
|
| - // any frame.
|
| - node->break_target()->Bind();
|
| - frame_->Drop(5);
|
| -
|
| - // Exit.
|
| - exit.Bind();
|
| -
|
| - node->continue_target()->Unuse();
|
| - node->break_target()->Unuse();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ TryCatchStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - JumpTarget try_block;
|
| - JumpTarget exit;
|
| -
|
| - try_block.Call();
|
| - // --- Catch block ---
|
| - frame_->EmitPush(eax);
|
| -
|
| - // Store the caught exception in the catch variable.
|
| - Variable* catch_var = node->catch_var()->var();
|
| - ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL);
|
| - StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT);
|
| -
|
| - // Remove the exception from the stack.
|
| - frame_->Drop();
|
| -
|
| - VisitStatementsAndSpill(node->catch_block()->statements());
|
| - if (has_valid_frame()) {
|
| - exit.Jump();
|
| - }
|
| -
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_CATCH_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the jump targets for all escapes from the try block, including
|
| - // returns. During shadowing, the original target is hidden as the
|
| - // ShadowTarget and operations on the original actually affect the
|
| - // shadowing target.
|
| - //
|
| - // We should probably try to unify the escaping targets and the return
|
| - // target.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original targets are unshadowed and the
|
| - // ShadowTargets represent the formerly shadowing targets.
|
| - bool has_unlinks = false;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - has_unlinks = has_unlinks || shadows[i]->is_linked();
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Isolate::k_handler_address,
|
| - masm()->isolate());
|
| -
|
| - // Make sure that there's nothing left on the stack above the
|
| - // handler structure.
|
| - if (FLAG_debug_code) {
|
| - __ mov(eax, Operand::StaticVariable(handler_address));
|
| - __ cmp(esp, Operand(eax));
|
| - __ Assert(equal, "stack pointer should point to top handler");
|
| - }
|
| -
|
| - // If we can fall off the end of the try block, unlink from try chain.
|
| - if (has_valid_frame()) {
|
| - // The next handler address is on top of the frame. Unlink from
|
| - // the handler list and drop the rest of this handler from the
|
| - // frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - frame_->EmitPop(Operand::StaticVariable(handler_address));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| - if (has_unlinks) {
|
| - exit.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate unlink code for the (formerly) shadowing targets that
|
| - // have been jumped to. Deallocate each shadow target.
|
| - Result return_value;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // Unlink from try chain; be careful not to destroy the TOS if
|
| - // there is one.
|
| - if (i == kReturnShadowIndex) {
|
| - shadows[i]->Bind(&return_value);
|
| - return_value.ToRegister(eax);
|
| - } else {
|
| - shadows[i]->Bind();
|
| - }
|
| - // Because we can be jumping here (to spilled code) from
|
| - // unspilled code, we need to reestablish a spilled frame at
|
| - // this block.
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that we
|
| - // break from (eg, for...in) may have left stuff on the stack.
|
| - __ mov(esp, Operand::StaticVariable(handler_address));
|
| - frame_->Forget(frame_->height() - handler_height);
|
| -
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - frame_->EmitPop(Operand::StaticVariable(handler_address));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - if (i == kReturnShadowIndex) {
|
| - if (!function_return_is_shadowed_) frame_->PrepareForReturn();
|
| - shadows[i]->other_target()->Jump(&return_value);
|
| - } else {
|
| - shadows[i]->other_target()->Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ TryFinallyStatement");
|
| - CodeForStatementPosition(node);
|
| -
|
| - // State: Used to keep track of reason for entering the finally
|
| - // block. Should probably be extended to hold information for
|
| - // break/continue from within the try block.
|
| - enum { FALLING, THROWING, JUMPING };
|
| -
|
| - JumpTarget try_block;
|
| - JumpTarget finally_block;
|
| -
|
| - try_block.Call();
|
| -
|
| - frame_->EmitPush(eax);
|
| - // In case of thrown exceptions, this is where we continue.
|
| - __ Set(ecx, Immediate(Smi::FromInt(THROWING)));
|
| - finally_block.Jump();
|
| -
|
| - // --- Try block ---
|
| - try_block.Bind();
|
| -
|
| - frame_->PushTryHandler(TRY_FINALLY_HANDLER);
|
| - int handler_height = frame_->height();
|
| -
|
| - // Shadow the jump targets for all escapes from the try block, including
|
| - // returns. During shadowing, the original target is hidden as the
|
| - // ShadowTarget and operations on the original actually affect the
|
| - // shadowing target.
|
| - //
|
| - // We should probably try to unify the escaping targets and the return
|
| - // target.
|
| - int nof_escapes = node->escaping_targets()->length();
|
| - List<ShadowTarget*> shadows(1 + nof_escapes);
|
| -
|
| - // Add the shadow target for the function return.
|
| - static const int kReturnShadowIndex = 0;
|
| - shadows.Add(new ShadowTarget(&function_return_));
|
| - bool function_return_was_shadowed = function_return_is_shadowed_;
|
| - function_return_is_shadowed_ = true;
|
| - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
|
| -
|
| - // Add the remaining shadow targets.
|
| - for (int i = 0; i < nof_escapes; i++) {
|
| - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
|
| - }
|
| -
|
| - // Generate code for the statements in the try block.
|
| - VisitStatementsAndSpill(node->try_block()->statements());
|
| -
|
| - // Stop the introduced shadowing and count the number of required unlinks.
|
| - // After shadowing stops, the original targets are unshadowed and the
|
| - // ShadowTargets represent the formerly shadowing targets.
|
| - int nof_unlinks = 0;
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - shadows[i]->StopShadowing();
|
| - if (shadows[i]->is_linked()) nof_unlinks++;
|
| - }
|
| - function_return_is_shadowed_ = function_return_was_shadowed;
|
| -
|
| - // Get an external reference to the handler address.
|
| - ExternalReference handler_address(Isolate::k_handler_address,
|
| - masm()->isolate());
|
| -
|
| - // If we can fall off the end of the try block, unlink from the try
|
| - // chain and set the state on the frame to FALLING.
|
| - if (has_valid_frame()) {
|
| - // The next handler address is on top of the frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - frame_->EmitPop(Operand::StaticVariable(handler_address));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - // Fake a top of stack value (unneeded when FALLING) and set the
|
| - // state in ecx, then jump around the unlink blocks if any.
|
| - frame_->EmitPush(Immediate(FACTORY->undefined_value()));
|
| - __ Set(ecx, Immediate(Smi::FromInt(FALLING)));
|
| - if (nof_unlinks > 0) {
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| -
|
| - // Generate code to unlink and set the state for the (formerly)
|
| - // shadowing targets that have been jumped to.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (shadows[i]->is_linked()) {
|
| - // If we have come from the shadowed return, the return value is
|
| - // on the virtual frame. We must preserve it until it is
|
| - // pushed.
|
| - if (i == kReturnShadowIndex) {
|
| - Result return_value;
|
| - shadows[i]->Bind(&return_value);
|
| - return_value.ToRegister(eax);
|
| - } else {
|
| - shadows[i]->Bind();
|
| - }
|
| - // Because we can be jumping here (to spilled code) from
|
| - // unspilled code, we need to reestablish a spilled frame at
|
| - // this block.
|
| - frame_->SpillAll();
|
| -
|
| - // Reload sp from the top handler, because some statements that
|
| - // we break from (eg, for...in) may have left stuff on the
|
| - // stack.
|
| - __ mov(esp, Operand::StaticVariable(handler_address));
|
| - frame_->Forget(frame_->height() - handler_height);
|
| -
|
| - // Unlink this handler and drop it from the frame.
|
| - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
| - frame_->EmitPop(Operand::StaticVariable(handler_address));
|
| - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
| -
|
| - if (i == kReturnShadowIndex) {
|
| - // If this target shadowed the function return, materialize
|
| - // the return value on the stack.
|
| - frame_->EmitPush(eax);
|
| - } else {
|
| - // Fake TOS for targets that shadowed breaks and continues.
|
| - frame_->EmitPush(Immediate(FACTORY->undefined_value()));
|
| - }
|
| - __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i)));
|
| - if (--nof_unlinks > 0) {
|
| - // If this is not the last unlink block, jump around the next.
|
| - finally_block.Jump();
|
| - }
|
| - }
|
| - }
|
| -
|
| - // --- Finally block ---
|
| - finally_block.Bind();
|
| -
|
| - // Push the state on the stack.
|
| - frame_->EmitPush(ecx);
|
| -
|
| - // We keep two elements on the stack - the (possibly faked) result
|
| - // and the state - while evaluating the finally block.
|
| - //
|
| - // Generate code for the statements in the finally block.
|
| - VisitStatementsAndSpill(node->finally_block()->statements());
|
| -
|
| - if (has_valid_frame()) {
|
| - // Restore state and return value or faked TOS.
|
| - frame_->EmitPop(ecx);
|
| - frame_->EmitPop(eax);
|
| - }
|
| -
|
| - // Generate code to jump to the right destination for all used
|
| - // formerly shadowing targets. Deallocate each shadow target.
|
| - for (int i = 0; i < shadows.length(); i++) {
|
| - if (has_valid_frame() && shadows[i]->is_bound()) {
|
| - BreakTarget* original = shadows[i]->other_target();
|
| - __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i)));
|
| - if (i == kReturnShadowIndex) {
|
| - // The return value is (already) in eax.
|
| - Result return_value = allocator_->Allocate(eax);
|
| - ASSERT(return_value.is_valid());
|
| - if (function_return_is_shadowed_) {
|
| - original->Branch(equal, &return_value);
|
| - } else {
|
| - // Branch around the preparation for return which may emit
|
| - // code.
|
| - JumpTarget skip;
|
| - skip.Branch(not_equal);
|
| - frame_->PrepareForReturn();
|
| - original->Jump(&return_value);
|
| - skip.Bind();
|
| - }
|
| - } else {
|
| - original->Branch(equal);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (has_valid_frame()) {
|
| - // Check if we need to rethrow the exception.
|
| - JumpTarget exit;
|
| - __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING)));
|
| - exit.Branch(not_equal);
|
| -
|
| - // Rethrow exception.
|
| - frame_->EmitPush(eax); // undo pop from above
|
| - frame_->CallRuntime(Runtime::kReThrow, 1);
|
| -
|
| - // Done.
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
|
| - ASSERT(!in_spilled_code());
|
| - Comment cmnt(masm_, "[ DebuggerStatement");
|
| - CodeForStatementPosition(node);
|
| -#ifdef ENABLE_DEBUGGER_SUPPORT
|
| - // Spill everything, even constants, to the frame.
|
| - frame_->SpillAll();
|
| -
|
| - frame_->DebugBreak();
|
| - // Ignore the return value.
|
| -#endif
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::InstantiateFunction(
|
| - Handle<SharedFunctionInfo> function_info,
|
| - bool pretenure) {
|
| - // The inevitable call will sync frame elements to memory anyway, so
|
| - // we do it eagerly to allow us to push the arguments directly into
|
| - // place.
|
| - frame()->SyncRange(0, frame()->element_count() - 1);
|
| -
|
| - // Use the fast case closure allocation code that allocates in new
|
| - // space for nested functions that don't need literals cloning.
|
| - if (!pretenure &&
|
| - scope()->is_function_scope() &&
|
| - function_info->num_literals() == 0) {
|
| - FastNewClosureStub stub(
|
| - function_info->strict_mode() ? kStrictMode : kNonStrictMode);
|
| - frame()->EmitPush(Immediate(function_info));
|
| - return frame()->CallStub(&stub, 1);
|
| - } else {
|
| - // Call the runtime to instantiate the function based on the
|
| - // shared function info.
|
| - frame()->EmitPush(esi);
|
| - frame()->EmitPush(Immediate(function_info));
|
| - frame()->EmitPush(Immediate(pretenure
|
| - ? FACTORY->true_value()
|
| - : FACTORY->false_value()));
|
| - return frame()->CallRuntime(Runtime::kNewClosure, 3);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
|
| - Comment cmnt(masm_, "[ FunctionLiteral");
|
| - ASSERT(!in_safe_int32_mode());
|
| - // Build the function info and instantiate it.
|
| - Handle<SharedFunctionInfo> function_info =
|
| - Compiler::BuildFunctionInfo(node, script());
|
| - // Check for stack-overflow exception.
|
| - if (function_info.is_null()) {
|
| - SetStackOverflow();
|
| - return;
|
| - }
|
| - Result result = InstantiateFunction(function_info, node->pretenure());
|
| - frame()->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSharedFunctionInfoLiteral(
|
| - SharedFunctionInfoLiteral* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
|
| - Result result = InstantiateFunction(node->shared_function_info(), false);
|
| - frame()->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitConditional(Conditional* node) {
|
| - Comment cmnt(masm_, "[ Conditional");
|
| - ASSERT(!in_safe_int32_mode());
|
| - JumpTarget then;
|
| - JumpTarget else_;
|
| - JumpTarget exit;
|
| - ControlDestination dest(&then, &else_, true);
|
| - LoadCondition(node->condition(), &dest, true);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The else target was bound, so we compile the else part first.
|
| - Load(node->else_expression());
|
| -
|
| - if (then.is_linked()) {
|
| - exit.Jump();
|
| - then.Bind();
|
| - Load(node->then_expression());
|
| - }
|
| - } else {
|
| - // The then target was bound, so we compile the then part first.
|
| - Load(node->then_expression());
|
| -
|
| - if (else_.is_linked()) {
|
| - exit.Jump();
|
| - else_.Bind();
|
| - Load(node->else_expression());
|
| - }
|
| - }
|
| -
|
| - exit.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| - JumpTarget slow;
|
| - JumpTarget done;
|
| - Result value;
|
| -
|
| - // Generate fast case for loading from slots that correspond to
|
| - // local/global variables or arguments unless they are shadowed by
|
| - // eval-introduced bindings.
|
| - EmitDynamicLoadFromSlotFastCase(slot,
|
| - typeof_state,
|
| - &value,
|
| - &slow,
|
| - &done);
|
| -
|
| - slow.Bind();
|
| - // A runtime call is inevitable. We eagerly sync frame elements
|
| - // to memory so that we can push the arguments directly into place
|
| - // on top of the frame.
|
| - frame()->SyncRange(0, frame()->element_count() - 1);
|
| - frame()->EmitPush(esi);
|
| - frame()->EmitPush(Immediate(slot->var()->name()));
|
| - if (typeof_state == INSIDE_TYPEOF) {
|
| - value =
|
| - frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
|
| - } else {
|
| - value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - }
|
| -
|
| - done.Bind(&value);
|
| - frame_->Push(&value);
|
| -
|
| - } else if (slot->var()->mode() == Variable::CONST) {
|
| - // Const slots may contain 'the hole' value (the constant hasn't been
|
| - // initialized yet) which needs to be converted into the 'undefined'
|
| - // value.
|
| - //
|
| - // We currently spill the virtual frame because constants use the
|
| - // potentially unsafe direct-frame access of SlotOperand.
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ Load const");
|
| - Label exit;
|
| - __ mov(ecx, SlotOperand(slot, ecx));
|
| - __ cmp(ecx, FACTORY->the_hole_value());
|
| - __ j(not_equal, &exit);
|
| - __ mov(ecx, FACTORY->undefined_value());
|
| - __ bind(&exit);
|
| - frame()->EmitPush(ecx);
|
| -
|
| - } else if (slot->type() == Slot::PARAMETER) {
|
| - frame()->PushParameterAt(slot->index());
|
| -
|
| - } else if (slot->type() == Slot::LOCAL) {
|
| - frame()->PushLocalAt(slot->index());
|
| -
|
| - } else {
|
| - // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
|
| - // here.
|
| - //
|
| - // The use of SlotOperand below is safe for an unspilled frame
|
| - // because it will always be a context slot.
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(), SlotOperand(slot, temp.reg()));
|
| - frame()->Push(&temp);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
|
| - TypeofState state) {
|
| - LoadFromSlot(slot, state);
|
| -
|
| - // Bail out quickly if we're not using lazy arguments allocation.
|
| - if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
|
| -
|
| - // ... or if the slot isn't a non-parameter arguments slot.
|
| - if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
|
| -
|
| - // If the loaded value is a constant, we know if the arguments
|
| - // object has been lazily loaded yet.
|
| - Result result = frame()->Pop();
|
| - if (result.is_constant()) {
|
| - if (result.handle()->IsArgumentsMarker()) {
|
| - result = StoreArgumentsObject(false);
|
| - }
|
| - frame()->Push(&result);
|
| - return;
|
| - }
|
| - ASSERT(result.is_register());
|
| - // The loaded value is in a register. If it is the sentinel that
|
| - // indicates that we haven't loaded the arguments object yet, we
|
| - // need to do it now.
|
| - JumpTarget exit;
|
| - __ cmp(Operand(result.reg()), Immediate(FACTORY->arguments_marker()));
|
| - frame()->Push(&result);
|
| - exit.Branch(not_equal);
|
| -
|
| - result = StoreArgumentsObject(false);
|
| - frame()->SetElementAt(0, &result);
|
| - result.Unuse();
|
| - exit.Bind();
|
| - return;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
|
| - Slot* slot,
|
| - TypeofState typeof_state,
|
| - JumpTarget* slow) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - // Check that no extension objects have been created by calls to
|
| - // eval from the current scope to the global scope.
|
| - Register context = esi;
|
| - Result tmp = allocator_->Allocate();
|
| - ASSERT(tmp.is_valid()); // All non-reserved registers were available.
|
| -
|
| - Scope* s = scope();
|
| - while (s != NULL) {
|
| - if (s->num_heap_slots() > 0) {
|
| - if (s->calls_eval()) {
|
| - // Check that extension is NULL.
|
| - __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
|
| - Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - }
|
| - // Load next context in chain.
|
| - __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
|
| - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - context = tmp.reg();
|
| - }
|
| - // If no outer scope calls eval, we do not need to check more
|
| - // context extensions. If we have reached an eval scope, we check
|
| - // all extensions from this point.
|
| - if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
|
| - s = s->outer_scope();
|
| - }
|
| -
|
| - if (s != NULL && s->is_eval_scope()) {
|
| - // Loop up the context chain. There is no frame effect so it is
|
| - // safe to use raw labels here.
|
| - Label next, fast;
|
| - if (!context.is(tmp.reg())) {
|
| - __ mov(tmp.reg(), context);
|
| - }
|
| - __ bind(&next);
|
| - // Terminate at global context.
|
| - __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->global_context_map()));
|
| - __ j(equal, &fast);
|
| - // Check that extension is NULL.
|
| - __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
|
| - slow->Branch(not_equal, not_taken);
|
| - // Load next context in chain.
|
| - __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
|
| - __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
|
| - __ jmp(&next);
|
| - __ bind(&fast);
|
| - }
|
| - tmp.Unuse();
|
| -
|
| - // All extension objects were empty and it is safe to use a global
|
| - // load IC call.
|
| - // The register allocator prefers eax if it is free, so the code generator
|
| - // will load the global object directly into eax, which is where the LoadIC
|
| - // expects it.
|
| - frame_->Spill(eax);
|
| - LoadGlobal();
|
| - frame_->Push(slot->var()->name());
|
| - RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
|
| - ? RelocInfo::CODE_TARGET
|
| - : RelocInfo::CODE_TARGET_CONTEXT;
|
| - Result answer = frame_->CallLoadIC(mode);
|
| - // A test eax instruction following the call signals that the inobject
|
| - // property case was inlined. Ensure that there is not a test eax
|
| - // instruction here.
|
| - __ nop();
|
| - return answer;
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
|
| - TypeofState typeof_state,
|
| - Result* result,
|
| - JumpTarget* slow,
|
| - JumpTarget* done) {
|
| - // Generate fast-case code for variables that might be shadowed by
|
| - // eval-introduced variables. Eval is used a lot without
|
| - // introducing variables. In those cases, we do not want to
|
| - // perform a runtime call for all variables in the scope
|
| - // containing the eval.
|
| - if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
|
| - *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
|
| - done->Jump(result);
|
| -
|
| - } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
|
| - Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
|
| - Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
|
| - if (potential_slot != NULL) {
|
| - // Generate fast case for locals that rewrite to slots.
|
| - // Allocate a fresh register to use as a temp in
|
| - // ContextSlotOperandCheckExtensions and to hold the result
|
| - // value.
|
| - *result = allocator()->Allocate();
|
| - ASSERT(result->is_valid());
|
| - __ mov(result->reg(),
|
| - ContextSlotOperandCheckExtensions(potential_slot, *result, slow));
|
| - if (potential_slot->var()->mode() == Variable::CONST) {
|
| - __ cmp(result->reg(), FACTORY->the_hole_value());
|
| - done->Branch(not_equal, result);
|
| - __ mov(result->reg(), FACTORY->undefined_value());
|
| - }
|
| - done->Jump(result);
|
| - } else if (rewrite != NULL) {
|
| - // Generate fast case for calls of an argument function.
|
| - Property* property = rewrite->AsProperty();
|
| - if (property != NULL) {
|
| - VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
|
| - Literal* key_literal = property->key()->AsLiteral();
|
| - if (obj_proxy != NULL &&
|
| - key_literal != NULL &&
|
| - obj_proxy->IsArguments() &&
|
| - key_literal->handle()->IsSmi()) {
|
| - // Load arguments object if there are no eval-introduced
|
| - // variables. Then load the argument from the arguments
|
| - // object using keyed load.
|
| - Result arguments = allocator()->Allocate();
|
| - ASSERT(arguments.is_valid());
|
| - __ mov(arguments.reg(),
|
| - ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
|
| - arguments,
|
| - slow));
|
| - frame_->Push(&arguments);
|
| - frame_->Push(key_literal->handle());
|
| - *result = EmitKeyedLoad();
|
| - done->Jump(result);
|
| - }
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
|
| - if (slot->type() == Slot::LOOKUP) {
|
| - ASSERT(slot->var()->is_dynamic());
|
| -
|
| - // For now, just do a runtime call. Since the call is inevitable,
|
| - // we eagerly sync the virtual frame so we can directly push the
|
| - // arguments into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| -
|
| - frame_->EmitPush(esi);
|
| - frame_->EmitPush(Immediate(slot->var()->name()));
|
| -
|
| - Result value;
|
| - if (init_state == CONST_INIT) {
|
| - // Same as the case for a normal store, but ignores attribute
|
| - // (e.g. READ_ONLY) of context slot so that we can initialize const
|
| - // properties (introduced via eval("const foo = (some expr);")). Also,
|
| - // uses the current function context instead of the top context.
|
| - //
|
| - // Note that we must declare the foo upon entry of eval(), via a
|
| - // context slot declaration, but we cannot initialize it at the same
|
| - // time, because the const declaration may be at the end of the eval
|
| - // code (sigh...) and the const variable may have been used before
|
| - // (where its value is 'undefined'). Thus, we can only do the
|
| - // initialization when we actually encounter the expression and when
|
| - // the expression operands are defined and valid, and thus we need the
|
| - // split into 2 operations: declaration of the context slot followed
|
| - // by initialization.
|
| - value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
|
| - } else {
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| - value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4);
|
| - }
|
| - // Storing a variable must keep the (new) value on the expression
|
| - // stack. This is necessary for compiling chained assignment
|
| - // expressions.
|
| - frame_->Push(&value);
|
| -
|
| - } else {
|
| - ASSERT(!slot->var()->is_dynamic());
|
| -
|
| - JumpTarget exit;
|
| - if (init_state == CONST_INIT) {
|
| - ASSERT(slot->var()->mode() == Variable::CONST);
|
| - // Only the first const initialization must be executed (the slot
|
| - // still contains 'the hole' value). When the assignment is executed,
|
| - // the code is identical to a normal store (see below).
|
| - //
|
| - // We spill the frame in the code below because the direct-frame
|
| - // access of SlotOperand is potentially unsafe with an unspilled
|
| - // frame.
|
| - VirtualFrame::SpilledScope spilled_scope;
|
| - Comment cmnt(masm_, "[ Init const");
|
| - __ mov(ecx, SlotOperand(slot, ecx));
|
| - __ cmp(ecx, FACTORY->the_hole_value());
|
| - exit.Branch(not_equal);
|
| - }
|
| -
|
| - // We must execute the store. Storing a variable must keep the (new)
|
| - // value on the stack. This is necessary for compiling assignment
|
| - // expressions.
|
| - //
|
| - // Note: We will reach here even with slot->var()->mode() ==
|
| - // Variable::CONST because of const declarations which will initialize
|
| - // consts to 'the hole' value and by doing so, end up calling this code.
|
| - if (slot->type() == Slot::PARAMETER) {
|
| - frame_->StoreToParameterAt(slot->index());
|
| - } else if (slot->type() == Slot::LOCAL) {
|
| - frame_->StoreToLocalAt(slot->index());
|
| - } else {
|
| - // The other slot types (LOOKUP and GLOBAL) cannot reach here.
|
| - //
|
| - // The use of SlotOperand below is safe for an unspilled frame
|
| - // because the slot is a context slot.
|
| - ASSERT(slot->type() == Slot::CONTEXT);
|
| - frame_->Dup();
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - Result start = allocator_->Allocate();
|
| - ASSERT(start.is_valid());
|
| - __ mov(SlotOperand(slot, start.reg()), value.reg());
|
| - // RecordWrite may destroy the value registers.
|
| - //
|
| - // TODO(204): Avoid actually spilling when the value is not
|
| - // needed (probably the common case).
|
| - frame_->Spill(value.reg());
|
| - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
|
| - // The results start, value, and temp are unused by going out of
|
| - // scope.
|
| - }
|
| -
|
| - exit.Bind();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitSlot(Slot* slot) {
|
| - Comment cmnt(masm_, "[ Slot");
|
| - if (in_safe_int32_mode()) {
|
| - if ((slot->type() == Slot::LOCAL && !slot->is_arguments())) {
|
| - frame()->UntaggedPushLocalAt(slot->index());
|
| - } else if (slot->type() == Slot::PARAMETER) {
|
| - frame()->UntaggedPushParameterAt(slot->index());
|
| - } else {
|
| - UNREACHABLE();
|
| - }
|
| - } else {
|
| - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
|
| - Comment cmnt(masm_, "[ VariableProxy");
|
| - Variable* var = node->var();
|
| - Expression* expr = var->rewrite();
|
| - if (expr != NULL) {
|
| - Visit(expr);
|
| - } else {
|
| - ASSERT(var->is_global());
|
| - ASSERT(!in_safe_int32_mode());
|
| - Reference ref(this, node);
|
| - ref.GetValue();
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitLiteral(Literal* node) {
|
| - Comment cmnt(masm_, "[ Literal");
|
| - if (frame_->ConstantPoolOverflowed()) {
|
| - Result temp = allocator_->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - if (in_safe_int32_mode()) {
|
| - temp.set_untagged_int32(true);
|
| - }
|
| - __ Set(temp.reg(), Immediate(node->handle()));
|
| - frame_->Push(&temp);
|
| - } else {
|
| - if (in_safe_int32_mode()) {
|
| - frame_->PushUntaggedElement(node->handle());
|
| - } else {
|
| - frame_->Push(node->handle());
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::PushUnsafeSmi(Handle<Object> value) {
|
| - ASSERT(value->IsSmi());
|
| - int bits = reinterpret_cast<int>(*value);
|
| - __ push(Immediate(bits ^ jit_cookie_));
|
| - __ xor_(Operand(esp, 0), Immediate(jit_cookie_));
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) {
|
| - ASSERT(value->IsSmi());
|
| - int bits = reinterpret_cast<int>(*value);
|
| - __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_));
|
| - __ xor_(Operand(ebp, offset), Immediate(jit_cookie_));
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) {
|
| - ASSERT(target.is_valid());
|
| - ASSERT(value->IsSmi());
|
| - int bits = reinterpret_cast<int>(*value);
|
| - __ Set(target, Immediate(bits ^ jit_cookie_));
|
| - __ xor_(target, jit_cookie_);
|
| -}
|
| -
|
| -
|
| -bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
|
| - if (!value->IsSmi()) return false;
|
| - int int_value = Smi::cast(*value)->value();
|
| - return !is_intn(int_value, kMaxSmiInlinedBits);
|
| -}
|
| -
|
| -
|
| -// Materialize the regexp literal 'node' in the literals array
|
| -// 'literals' of the function. Leave the regexp boilerplate in
|
| -// 'boilerplate'.
|
| -class DeferredRegExpLiteral: public DeferredCode {
|
| - public:
|
| - DeferredRegExpLiteral(Register boilerplate,
|
| - Register literals,
|
| - RegExpLiteral* node)
|
| - : boilerplate_(boilerplate), literals_(literals), node_(node) {
|
| - set_comment("[ DeferredRegExpLiteral");
|
| - }
|
| -
|
| - void Generate();
|
| -
|
| - private:
|
| - Register boilerplate_;
|
| - Register literals_;
|
| - RegExpLiteral* node_;
|
| -};
|
| -
|
| -
|
| -void DeferredRegExpLiteral::Generate() {
|
| - // Since the entry is undefined we call the runtime system to
|
| - // compute the literal.
|
| - // Literal array (0).
|
| - __ push(literals_);
|
| - // Literal index (1).
|
| - __ push(Immediate(Smi::FromInt(node_->literal_index())));
|
| - // RegExp pattern (2).
|
| - __ push(Immediate(node_->pattern()));
|
| - // RegExp flags (3).
|
| - __ push(Immediate(node_->flags()));
|
| - __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
|
| - if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax);
|
| -}
|
| -
|
| -
|
| -class DeferredAllocateInNewSpace: public DeferredCode {
|
| - public:
|
| - DeferredAllocateInNewSpace(int size,
|
| - Register target,
|
| - int registers_to_save = 0)
|
| - : size_(size), target_(target), registers_to_save_(registers_to_save) {
|
| - ASSERT(size >= kPointerSize && size <= HEAP->MaxObjectSizeInNewSpace());
|
| - ASSERT_EQ(0, registers_to_save & target.bit());
|
| - set_comment("[ DeferredAllocateInNewSpace");
|
| - }
|
| - void Generate();
|
| -
|
| - private:
|
| - int size_;
|
| - Register target_;
|
| - int registers_to_save_;
|
| -};
|
| -
|
| -
|
| -void DeferredAllocateInNewSpace::Generate() {
|
| - for (int i = 0; i < kNumRegs; i++) {
|
| - if (registers_to_save_ & (1 << i)) {
|
| - Register save_register = { i };
|
| - __ push(save_register);
|
| - }
|
| - }
|
| - __ push(Immediate(Smi::FromInt(size_)));
|
| - __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
|
| - if (!target_.is(eax)) {
|
| - __ mov(target_, eax);
|
| - }
|
| - for (int i = kNumRegs - 1; i >= 0; i--) {
|
| - if (registers_to_save_ & (1 << i)) {
|
| - Register save_register = { i };
|
| - __ pop(save_register);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ RegExp Literal");
|
| -
|
| - // Retrieve the literals array and check the allocated entry. Begin
|
| - // with a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ mov(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| -
|
| - // Load the literal at the ast saved index.
|
| - Result boilerplate = allocator_->Allocate();
|
| - ASSERT(boilerplate.is_valid());
|
| - int literal_offset =
|
| - FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
|
| - __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
|
| -
|
| - // Check whether we need to materialize the RegExp object. If so,
|
| - // jump to the deferred code passing the literals array.
|
| - DeferredRegExpLiteral* deferred =
|
| - new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
|
| - __ cmp(boilerplate.reg(), FACTORY->undefined_value());
|
| - deferred->Branch(equal);
|
| - deferred->BindExit();
|
| -
|
| - // Register of boilerplate contains RegExp object.
|
| -
|
| - Result tmp = allocator()->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| -
|
| - int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
|
| -
|
| - DeferredAllocateInNewSpace* allocate_fallback =
|
| - new DeferredAllocateInNewSpace(size, literals.reg());
|
| - frame_->Push(&boilerplate);
|
| - frame_->SpillTop();
|
| - __ AllocateInNewSpace(size,
|
| - literals.reg(),
|
| - tmp.reg(),
|
| - no_reg,
|
| - allocate_fallback->entry_label(),
|
| - TAG_OBJECT);
|
| - allocate_fallback->BindExit();
|
| - boilerplate = frame_->Pop();
|
| - // Copy from boilerplate to clone and return clone.
|
| -
|
| - for (int i = 0; i < size; i += kPointerSize) {
|
| - __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i));
|
| - __ mov(FieldOperand(literals.reg(), i), tmp.reg());
|
| - }
|
| - frame_->Push(&literals);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ ObjectLiteral");
|
| -
|
| - // Load a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ mov(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| - // Literal array.
|
| - frame_->Push(&literals);
|
| - // Literal index.
|
| - frame_->Push(Smi::FromInt(node->literal_index()));
|
| - // Constant properties.
|
| - frame_->Push(node->constant_properties());
|
| - // Should the object literal have fast elements?
|
| - frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0));
|
| - Result clone;
|
| - if (node->depth() > 1) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4);
|
| - } else {
|
| - clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
|
| - }
|
| - frame_->Push(&clone);
|
| -
|
| - // Mark all computed expressions that are bound to a key that
|
| - // is shadowed by a later occurrence of the same key. For the
|
| - // marked expressions, no store code is emitted.
|
| - node->CalculateEmitStore();
|
| -
|
| - for (int i = 0; i < node->properties()->length(); i++) {
|
| - ObjectLiteral::Property* property = node->properties()->at(i);
|
| - switch (property->kind()) {
|
| - case ObjectLiteral::Property::CONSTANT:
|
| - break;
|
| - case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
| - if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
|
| - // else fall through.
|
| - case ObjectLiteral::Property::COMPUTED: {
|
| - Handle<Object> key(property->key()->handle());
|
| - if (key->IsSymbol()) {
|
| - // Duplicate the object as the IC receiver.
|
| - frame_->Dup();
|
| - Load(property->value());
|
| - if (property->emit_store()) {
|
| - Result ignored =
|
| - frame_->CallStoreIC(Handle<String>::cast(key), false,
|
| - strict_mode_flag());
|
| - // A test eax instruction following the store IC call would
|
| - // indicate the presence of an inlined version of the
|
| - // store. Add a nop to indicate that there is no such
|
| - // inlined version.
|
| - __ nop();
|
| - } else {
|
| - frame_->Drop(2);
|
| - }
|
| - break;
|
| - }
|
| - // Fall through
|
| - }
|
| - case ObjectLiteral::Property::PROTOTYPE: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - Load(property->value());
|
| - if (property->emit_store()) {
|
| - frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes
|
| - // Ignore the result.
|
| - Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4);
|
| - } else {
|
| - frame_->Drop(3);
|
| - }
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::SETTER: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(1));
|
| - Load(property->value());
|
| - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - // Ignore the result.
|
| - break;
|
| - }
|
| - case ObjectLiteral::Property::GETTER: {
|
| - // Duplicate the object as an argument to the runtime call.
|
| - frame_->Dup();
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(0));
|
| - Load(property->value());
|
| - Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
|
| - // Ignore the result.
|
| - break;
|
| - }
|
| - default: UNREACHABLE();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ ArrayLiteral");
|
| -
|
| - // Load a writable copy of the function of this activation in a
|
| - // register.
|
| - frame_->PushFunction();
|
| - Result literals = frame_->Pop();
|
| - literals.ToRegister();
|
| - frame_->Spill(literals.reg());
|
| -
|
| - // Load the literals array of the function.
|
| - __ mov(literals.reg(),
|
| - FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
|
| -
|
| - frame_->Push(&literals);
|
| - frame_->Push(Smi::FromInt(node->literal_index()));
|
| - frame_->Push(node->constant_elements());
|
| - int length = node->values()->length();
|
| - Result clone;
|
| - if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) {
|
| - FastCloneShallowArrayStub stub(
|
| - FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
|
| - clone = frame_->CallStub(&stub, 3);
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->cow_arrays_created_stub(), 1);
|
| - } else if (node->depth() > 1) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
|
| - } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
|
| - clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
|
| - } else {
|
| - FastCloneShallowArrayStub stub(
|
| - FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
|
| - clone = frame_->CallStub(&stub, 3);
|
| - }
|
| - frame_->Push(&clone);
|
| -
|
| - // Generate code to set the elements in the array that are not
|
| - // literals.
|
| - for (int i = 0; i < length; i++) {
|
| - Expression* value = node->values()->at(i);
|
| -
|
| - if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) {
|
| - continue;
|
| - }
|
| -
|
| - // The property must be set by generated code.
|
| - Load(value);
|
| -
|
| - // Get the property value off the stack.
|
| - Result prop_value = frame_->Pop();
|
| - prop_value.ToRegister();
|
| -
|
| - // Fetch the array literal while leaving a copy on the stack and
|
| - // use it to get the elements array.
|
| - frame_->Dup();
|
| - Result elements = frame_->Pop();
|
| - elements.ToRegister();
|
| - frame_->Spill(elements.reg());
|
| - // Get the elements array.
|
| - __ mov(elements.reg(),
|
| - FieldOperand(elements.reg(), JSObject::kElementsOffset));
|
| -
|
| - // Write to the indexed properties array.
|
| - int offset = i * kPointerSize + FixedArray::kHeaderSize;
|
| - __ mov(FieldOperand(elements.reg(), offset), prop_value.reg());
|
| -
|
| - // Update the write barrier for the array address.
|
| - frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - ASSERT(!in_spilled_code());
|
| - // Call runtime routine to allocate the catch extension object and
|
| - // assign the exception value to the catch variable.
|
| - Comment cmnt(masm_, "[ CatchExtensionObject");
|
| - Load(node->key());
|
| - Load(node->value());
|
| - Result result =
|
| - frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitSlotAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm(), "[ Variable Assignment");
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - ASSERT(var != NULL);
|
| - Slot* slot = var->AsSlot();
|
| - ASSERT(slot != NULL);
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
|
| - Load(node->value());
|
| -
|
| - // Perform the binary operation.
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - // Construct the implicit binary operation.
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Perform the assignment.
|
| - if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) {
|
| - CodeForSourcePosition(node->position());
|
| - StoreToSlot(slot,
|
| - node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT);
|
| - }
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm(), "[ Named Property Assignment");
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - Property* prop = node->target()->AsProperty();
|
| - ASSERT(var == NULL || (prop == NULL && var->is_global()));
|
| -
|
| - // Initialize name and evaluate the receiver sub-expression if necessary. If
|
| - // the receiver is trivial it is not placed on the stack at this point, but
|
| - // loaded whenever actually needed.
|
| - Handle<String> name;
|
| - bool is_trivial_receiver = false;
|
| - if (var != NULL) {
|
| - name = var->name();
|
| - } else {
|
| - Literal* lit = prop->key()->AsLiteral();
|
| - ASSERT_NOT_NULL(lit);
|
| - name = Handle<String>::cast(lit->handle());
|
| - // Do not materialize the receiver on the frame if it is trivial.
|
| - is_trivial_receiver = prop->obj()->IsTrivial();
|
| - if (!is_trivial_receiver) Load(prop->obj());
|
| - }
|
| -
|
| - // Change to slow case in the beginning of an initialization block to
|
| - // avoid the quadratic behavior of repeatedly adding fast properties.
|
| - if (node->starts_initialization_block()) {
|
| - // Initialization block consists of assignments of the form expr.x = ..., so
|
| - // this will never be an assignment to a variable, so there must be a
|
| - // receiver object.
|
| - ASSERT_EQ(NULL, var);
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else {
|
| - frame()->Dup();
|
| - }
|
| - Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1);
|
| - }
|
| -
|
| - // Change to fast case at the end of an initialization block. To prepare for
|
| - // that add an extra copy of the receiver to the frame, so that it can be
|
| - // converted back to fast case after the assignment.
|
| - if (node->ends_initialization_block() && !is_trivial_receiver) {
|
| - frame()->Dup();
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : receiver (only materialized if non-trivial)
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else if (var != NULL) {
|
| - // The LoadIC stub expects the object in eax.
|
| - // Freeing eax causes the code generator to load the global into it.
|
| - frame_->Spill(eax);
|
| - LoadGlobal();
|
| - } else {
|
| - frame()->Dup();
|
| - }
|
| - Result value = EmitNamedLoad(name, var != NULL);
|
| - frame()->Push(&value);
|
| - Load(node->value());
|
| -
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - // Construct the implicit binary operation.
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : value
|
| - // [tos+1] : receiver (only materialized if non-trivial)
|
| - // [tos+2] : receiver if at the end of an initialization block
|
| -
|
| - // Perform the assignment. It is safe to ignore constants here.
|
| - ASSERT(var == NULL || var->mode() != Variable::CONST);
|
| - ASSERT_NE(Token::INIT_CONST, node->op());
|
| - if (is_trivial_receiver) {
|
| - Result value = frame()->Pop();
|
| - frame()->Push(prop->obj());
|
| - frame()->Push(&value);
|
| - }
|
| - CodeForSourcePosition(node->position());
|
| - bool is_contextual = (var != NULL);
|
| - Result answer = EmitNamedStore(name, is_contextual);
|
| - frame()->Push(&answer);
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - if (node->ends_initialization_block()) {
|
| - ASSERT_EQ(NULL, var);
|
| - // The argument to the runtime call is the receiver.
|
| - if (is_trivial_receiver) {
|
| - frame()->Push(prop->obj());
|
| - } else {
|
| - // A copy of the receiver is below the value of the assignment. Swap
|
| - // the receiver and the value of the assignment expression.
|
| - Result result = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| - frame()->Push(&result);
|
| - frame()->Push(&receiver);
|
| - }
|
| - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| -
|
| - ASSERT_EQ(frame()->height(), original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Comment cmnt(masm_, "[ Keyed Property Assignment");
|
| - Property* prop = node->target()->AsProperty();
|
| - ASSERT_NOT_NULL(prop);
|
| -
|
| - // Evaluate the receiver subexpression.
|
| - Load(prop->obj());
|
| -
|
| - // Change to slow case in the beginning of an initialization block to
|
| - // avoid the quadratic behavior of repeatedly adding fast properties.
|
| - if (node->starts_initialization_block()) {
|
| - frame_->Dup();
|
| - Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
|
| - }
|
| -
|
| - // Change to fast case at the end of an initialization block. To prepare for
|
| - // that add an extra copy of the receiver to the frame, so that it can be
|
| - // converted back to fast case after the assignment.
|
| - if (node->ends_initialization_block()) {
|
| - frame_->Dup();
|
| - }
|
| -
|
| - // Evaluate the key subexpression.
|
| - Load(prop->key());
|
| -
|
| - // Stack layout:
|
| - // [tos] : key
|
| - // [tos+1] : receiver
|
| - // [tos+2] : receiver if at the end of an initialization block
|
| -
|
| - // Evaluate the right-hand side.
|
| - if (node->is_compound()) {
|
| - // For a compound assignment the right-hand side is a binary operation
|
| - // between the current property value and the actual right-hand side.
|
| - // Duplicate receiver and key for loading the current property value.
|
| - frame()->PushElementAt(1);
|
| - frame()->PushElementAt(1);
|
| - Result value = EmitKeyedLoad();
|
| - frame()->Push(&value);
|
| - Load(node->value());
|
| -
|
| - // Perform the binary operation.
|
| - bool overwrite_value = node->value()->ResultOverwriteAllowed();
|
| - BinaryOperation expr(node);
|
| - GenericBinaryOperation(&expr,
|
| - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
|
| - } else {
|
| - // For non-compound assignment just load the right-hand side.
|
| - Load(node->value());
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : value
|
| - // [tos+1] : key
|
| - // [tos+2] : receiver
|
| - // [tos+3] : receiver if at the end of an initialization block
|
| -
|
| - // Perform the assignment. It is safe to ignore constants here.
|
| - ASSERT(node->op() != Token::INIT_CONST);
|
| - CodeForSourcePosition(node->position());
|
| - Result answer = EmitKeyedStore(prop->key()->type());
|
| - frame()->Push(&answer);
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| - // [tos+1] : receiver if at the end of an initialization block
|
| -
|
| - // Change to fast case at the end of an initialization block.
|
| - if (node->ends_initialization_block()) {
|
| - // The argument to the runtime call is the extra copy of the receiver,
|
| - // which is below the value of the assignment. Swap the receiver and
|
| - // the value of the assignment expression.
|
| - Result result = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| - frame()->Push(&result);
|
| - frame()->Push(&receiver);
|
| - Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
|
| - }
|
| -
|
| - // Stack layout:
|
| - // [tos] : result
|
| -
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitAssignment(Assignment* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Variable* var = node->target()->AsVariableProxy()->AsVariable();
|
| - Property* prop = node->target()->AsProperty();
|
| -
|
| - if (var != NULL && !var->is_global()) {
|
| - EmitSlotAssignment(node);
|
| -
|
| - } else if ((prop != NULL && prop->key()->IsPropertyName()) ||
|
| - (var != NULL && var->is_global())) {
|
| - // Properties whose keys are property names and global variables are
|
| - // treated as named property references. We do not need to consider
|
| - // global 'this' because it is not a valid left-hand side.
|
| - EmitNamedPropertyAssignment(node);
|
| -
|
| - } else if (prop != NULL) {
|
| - // Other properties (including rewritten parameters for a function that
|
| - // uses arguments) are keyed property assignments.
|
| - EmitKeyedPropertyAssignment(node);
|
| -
|
| - } else {
|
| - // Invalid left-hand side.
|
| - Load(node->target());
|
| - Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1);
|
| - // The runtime call doesn't actually return but the code generator will
|
| - // still generate code and expects a certain frame height.
|
| - frame()->Push(&result);
|
| - }
|
| -
|
| - ASSERT(frame()->height() == original_height + 1);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThrow(Throw* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ Throw");
|
| - Load(node->exception());
|
| - Result result = frame_->CallRuntime(Runtime::kThrow, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitProperty(Property* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ Property");
|
| - Reference property(this, node);
|
| - property.GetValue();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCall(Call* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ Call");
|
| -
|
| - Expression* function = node->expression();
|
| - ZoneList<Expression*>* args = node->arguments();
|
| -
|
| - // Check if the function is a variable or a property.
|
| - Variable* var = function->AsVariableProxy()->AsVariable();
|
| - Property* property = function->AsProperty();
|
| -
|
| - // ------------------------------------------------------------------------
|
| - // Fast-case: Use inline caching.
|
| - // ---
|
| - // According to ECMA-262, section 11.2.3, page 44, the function to call
|
| - // must be resolved after the arguments have been evaluated. The IC code
|
| - // automatically handles this by loading the arguments before the function
|
| - // is resolved in cache misses (this also holds for megamorphic calls).
|
| - // ------------------------------------------------------------------------
|
| -
|
| - if (var != NULL && var->is_possibly_eval()) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'eval(arg)' // eval is not known to be shadowed
|
| - // ----------------------------------
|
| -
|
| - // In a call to eval, we first call %ResolvePossiblyDirectEval to
|
| - // resolve the function we need to call and the receiver of the
|
| - // call. Then we call the resolved function using the given
|
| - // arguments.
|
| -
|
| - // Prepare the stack for the call to the resolved function.
|
| - Load(function);
|
| -
|
| - // Allocate a frame slot for the receiver.
|
| - frame_->Push(FACTORY->undefined_value());
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Result to hold the result of the function resolution and the
|
| - // final result of the eval call.
|
| - Result result;
|
| -
|
| - // If we know that eval can only be shadowed by eval-introduced
|
| - // variables we attempt to load the global eval function directly
|
| - // in generated code. If we succeed, there is no need to perform a
|
| - // context lookup in the runtime system.
|
| - JumpTarget done;
|
| - if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
|
| - ASSERT(var->AsSlot()->type() == Slot::LOOKUP);
|
| - JumpTarget slow;
|
| - // Prepare the stack for the call to
|
| - // ResolvePossiblyDirectEvalNoLookup by pushing the loaded
|
| - // function, the first argument to the eval call and the
|
| - // receiver.
|
| - Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(),
|
| - NOT_INSIDE_TYPEOF,
|
| - &slow);
|
| - frame_->Push(&fun);
|
| - if (arg_count > 0) {
|
| - frame_->PushElementAt(arg_count);
|
| - } else {
|
| - frame_->Push(FACTORY->undefined_value());
|
| - }
|
| - frame_->PushParameterAt(-1);
|
| -
|
| - // Push the strict mode flag.
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| -
|
| - // Resolve the call.
|
| - result =
|
| - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4);
|
| -
|
| - done.Jump(&result);
|
| - slow.Bind();
|
| - }
|
| -
|
| - // Prepare the stack for the call to ResolvePossiblyDirectEval by
|
| - // pushing the loaded function, the first argument to the eval
|
| - // call and the receiver.
|
| - frame_->PushElementAt(arg_count + 1);
|
| - if (arg_count > 0) {
|
| - frame_->PushElementAt(arg_count);
|
| - } else {
|
| - frame_->Push(FACTORY->undefined_value());
|
| - }
|
| - frame_->PushParameterAt(-1);
|
| -
|
| - // Push the strict mode flag.
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| -
|
| - // Resolve the call.
|
| - result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4);
|
| -
|
| - // If we generated fast-case code bind the jump-target where fast
|
| - // and slow case merge.
|
| - if (done.is_linked()) done.Bind(&result);
|
| -
|
| - // The runtime call returns a pair of values in eax (function) and
|
| - // edx (receiver). Touch up the stack with the right values.
|
| - Result receiver = allocator_->Allocate(edx);
|
| - frame_->SetElementAt(arg_count + 1, &result);
|
| - frame_->SetElementAt(arg_count, &receiver);
|
| - receiver.Unuse();
|
| -
|
| - // Call the function.
|
| - CodeForSourcePosition(node->position());
|
| - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
|
| - CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
|
| - result = frame_->CallStub(&call_function, arg_count + 1);
|
| -
|
| - // Restore the context and overwrite the function on the stack with
|
| - // the result.
|
| - frame_->RestoreContextRegister();
|
| - frame_->SetElementAt(0, &result);
|
| -
|
| - } else if (var != NULL && !var->is_this() && var->is_global()) {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is global
|
| - // ----------------------------------
|
| -
|
| - // Pass the global object as the receiver and let the IC stub
|
| - // patch the stack to use the global proxy as 'this' in the
|
| - // invoked function.
|
| - LoadGlobal();
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Push the name of the function onto the frame.
|
| - frame_->Push(var->name());
|
| -
|
| - // Call the IC initialization code.
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
|
| - arg_count,
|
| - loop_nesting());
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&result);
|
| -
|
| - } else if (var != NULL && var->AsSlot() != NULL &&
|
| - var->AsSlot()->type() == Slot::LOOKUP) {
|
| - // ----------------------------------
|
| - // JavaScript examples:
|
| - //
|
| - // with (obj) foo(1, 2, 3) // foo may be in obj.
|
| - //
|
| - // function f() {};
|
| - // function g() {
|
| - // eval(...);
|
| - // f(); // f could be in extension object.
|
| - // }
|
| - // ----------------------------------
|
| -
|
| - JumpTarget slow, done;
|
| - Result function;
|
| -
|
| - // Generate fast case for loading functions from slots that
|
| - // correspond to local/global variables or arguments unless they
|
| - // are shadowed by eval-introduced bindings.
|
| - EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
|
| - NOT_INSIDE_TYPEOF,
|
| - &function,
|
| - &slow,
|
| - &done);
|
| -
|
| - slow.Bind();
|
| - // Enter the runtime system to load the function from the context.
|
| - // Sync the frame so we can push the arguments directly into
|
| - // place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(esi);
|
| - frame_->EmitPush(Immediate(var->name()));
|
| - frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
|
| - // The runtime call returns a pair of values in eax and edx. The
|
| - // looked-up function is in eax and the receiver is in edx. These
|
| - // register references are not ref counted here. We spill them
|
| - // eagerly since they are arguments to an inevitable call (and are
|
| - // not sharable by the arguments).
|
| - ASSERT(!allocator()->is_used(eax));
|
| - frame_->EmitPush(eax);
|
| -
|
| - // Load the receiver.
|
| - ASSERT(!allocator()->is_used(edx));
|
| - frame_->EmitPush(edx);
|
| -
|
| - // If fast case code has been generated, emit code to push the
|
| - // function and receiver and have the slow path jump around this
|
| - // code.
|
| - if (done.is_linked()) {
|
| - JumpTarget call;
|
| - call.Jump();
|
| - done.Bind(&function);
|
| - frame_->Push(&function);
|
| - LoadGlobalReceiver();
|
| - call.Bind();
|
| - }
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
|
| -
|
| - } else if (property != NULL) {
|
| - // Check if the key is a literal string.
|
| - Literal* literal = property->key()->AsLiteral();
|
| -
|
| - if (literal != NULL && literal->handle()->IsSymbol()) {
|
| - // ------------------------------------------------------------------
|
| - // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
|
| - // ------------------------------------------------------------------
|
| -
|
| - Handle<String> name = Handle<String>::cast(literal->handle());
|
| -
|
| - if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
|
| - name->IsEqualTo(CStrVector("apply")) &&
|
| - args->length() == 2 &&
|
| - args->at(1)->AsVariableProxy() != NULL &&
|
| - args->at(1)->AsVariableProxy()->IsArguments()) {
|
| - // Use the optimized Function.prototype.apply that avoids
|
| - // allocating lazily allocated arguments objects.
|
| - CallApplyLazy(property->obj(),
|
| - args->at(0),
|
| - args->at(1)->AsVariableProxy(),
|
| - node->position());
|
| -
|
| - } else {
|
| - // Push the receiver onto the frame.
|
| - Load(property->obj());
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Push the name of the function onto the frame.
|
| - frame_->Push(name);
|
| -
|
| - // Call the IC initialization code.
|
| - CodeForSourcePosition(node->position());
|
| - Result result =
|
| - frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count,
|
| - loop_nesting());
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&result);
|
| - }
|
| -
|
| - } else {
|
| - // -------------------------------------------
|
| - // JavaScript example: 'array[index](1, 2, 3)'
|
| - // -------------------------------------------
|
| -
|
| - // Load the function to call from the property through a reference.
|
| -
|
| - // Pass receiver to called function.
|
| - if (property->is_synthetic()) {
|
| - Reference ref(this, property);
|
| - ref.GetValue();
|
| - // Use global object as receiver.
|
| - LoadGlobalReceiver();
|
| - // Call the function.
|
| - CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
|
| - } else {
|
| - // Push the receiver onto the frame.
|
| - Load(property->obj());
|
| -
|
| - // Load the name of the function.
|
| - Load(property->key());
|
| -
|
| - // Swap the name of the function and the receiver on the stack to follow
|
| - // the calling convention for call ICs.
|
| - Result key = frame_->Pop();
|
| - Result receiver = frame_->Pop();
|
| - frame_->Push(&key);
|
| - frame_->Push(&receiver);
|
| - key.Unuse();
|
| - receiver.Unuse();
|
| -
|
| - // Load the arguments.
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - frame_->SpillTop();
|
| - }
|
| -
|
| - // Place the key on top of stack and call the IC initialization code.
|
| - frame_->PushElementAt(arg_count + 1);
|
| - CodeForSourcePosition(node->position());
|
| - Result result =
|
| - frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET,
|
| - arg_count,
|
| - loop_nesting());
|
| - frame_->Drop(); // Drop the key still on the stack.
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&result);
|
| - }
|
| - }
|
| -
|
| - } else {
|
| - // ----------------------------------
|
| - // JavaScript example: 'foo(1, 2, 3)' // foo is not global
|
| - // ----------------------------------
|
| -
|
| - // Load the function.
|
| - Load(function);
|
| -
|
| - // Pass the global proxy as the receiver.
|
| - LoadGlobalReceiver();
|
| -
|
| - // Call the function.
|
| - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallNew(CallNew* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ CallNew");
|
| -
|
| - // According to ECMA-262, section 11.2.2, page 44, the function
|
| - // expression in new calls must be evaluated before the
|
| - // arguments. This is different from ordinary calls, where the
|
| - // actual function to call is resolved after the arguments have been
|
| - // evaluated.
|
| -
|
| - // Push constructor on the stack. If it's not a function it's used as
|
| - // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
|
| - // ignored.
|
| - Load(node->expression());
|
| -
|
| - // Push the arguments ("left-to-right") on the stack.
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - }
|
| -
|
| - // Call the construct call builtin that handles allocation and
|
| - // constructor invocation.
|
| - CodeForSourcePosition(node->position());
|
| - Result result = frame_->CallConstructor(arg_count);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - value.Unuse();
|
| - destination()->Split(zero);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
|
| - // Conditionally generate a log call.
|
| - // Args:
|
| - // 0 (literal string): The type of logging (corresponds to the flags).
|
| - // This is used to determine whether or not to generate the log call.
|
| - // 1 (string): Format string. Access the string at argument index 2
|
| - // with '%2s' (see Logger::LogRuntime for all the formats).
|
| - // 2 (array): Arguments to the format string.
|
| - ASSERT_EQ(args->length(), 3);
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - if (ShouldGenerateLog(args->at(0))) {
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| - frame_->CallRuntime(Runtime::kLog, 2);
|
| - }
|
| -#endif
|
| - // Finally, we're expected to leave a value on the top of the stack.
|
| - frame_->Push(FACTORY->undefined_value());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask));
|
| - value.Unuse();
|
| - destination()->Split(zero);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharCodeAt : public DeferredCode {
|
| - public:
|
| - DeferredStringCharCodeAt(Register object,
|
| - Register index,
|
| - Register scratch,
|
| - Register result)
|
| - : result_(result),
|
| - char_code_at_generator_(object,
|
| - index,
|
| - scratch,
|
| - result,
|
| - &need_conversion_,
|
| - &need_conversion_,
|
| - &index_out_of_range_,
|
| - STRING_INDEX_IS_NUMBER) {}
|
| -
|
| - StringCharCodeAtGenerator* fast_case_generator() {
|
| - return &char_code_at_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_code_at_generator_.GenerateSlow(masm(), call_helper);
|
| -
|
| - __ bind(&need_conversion_);
|
| - // Move the undefined value into the result register, which will
|
| - // trigger conversion.
|
| - __ Set(result_, Immediate(FACTORY->undefined_value()));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&index_out_of_range_);
|
| - // When the index is out of range, the spec requires us to return
|
| - // NaN.
|
| - __ Set(result_, Immediate(FACTORY->nan_value()));
|
| - __ jmp(exit_label());
|
| - }
|
| -
|
| - private:
|
| - Register result_;
|
| -
|
| - Label need_conversion_;
|
| - Label index_out_of_range_;
|
| -
|
| - StringCharCodeAtGenerator char_code_at_generator_;
|
| -};
|
| -
|
| -
|
| -// This generates code that performs a String.prototype.charCodeAt() call
|
| -// or returns a smi in order to trigger conversion.
|
| -void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharCodeAt");
|
| - ASSERT(args->length() == 2);
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result index = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - index.ToRegister();
|
| - // We might mutate the object register.
|
| - frame_->Spill(object.reg());
|
| -
|
| - // We need two extra registers.
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| -
|
| - DeferredStringCharCodeAt* deferred =
|
| - new DeferredStringCharCodeAt(object.reg(),
|
| - index.reg(),
|
| - scratch.reg(),
|
| - result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharFromCode : public DeferredCode {
|
| - public:
|
| - DeferredStringCharFromCode(Register code,
|
| - Register result)
|
| - : char_from_code_generator_(code, result) {}
|
| -
|
| - StringCharFromCodeGenerator* fast_case_generator() {
|
| - return &char_from_code_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_from_code_generator_.GenerateSlow(masm(), call_helper);
|
| - }
|
| -
|
| - private:
|
| - StringCharFromCodeGenerator char_from_code_generator_;
|
| -};
|
| -
|
| -
|
| -// Generates code for creating a one-char string from a char code.
|
| -void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharFromCode");
|
| - ASSERT(args->length() == 1);
|
| -
|
| - Load(args->at(0));
|
| -
|
| - Result code = frame_->Pop();
|
| - code.ToRegister();
|
| - ASSERT(code.is_valid());
|
| -
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| -
|
| - DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(
|
| - code.reg(), result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredStringCharAt : public DeferredCode {
|
| - public:
|
| - DeferredStringCharAt(Register object,
|
| - Register index,
|
| - Register scratch1,
|
| - Register scratch2,
|
| - Register result)
|
| - : result_(result),
|
| - char_at_generator_(object,
|
| - index,
|
| - scratch1,
|
| - scratch2,
|
| - result,
|
| - &need_conversion_,
|
| - &need_conversion_,
|
| - &index_out_of_range_,
|
| - STRING_INDEX_IS_NUMBER) {}
|
| -
|
| - StringCharAtGenerator* fast_case_generator() {
|
| - return &char_at_generator_;
|
| - }
|
| -
|
| - virtual void Generate() {
|
| - VirtualFrameRuntimeCallHelper call_helper(frame_state());
|
| - char_at_generator_.GenerateSlow(masm(), call_helper);
|
| -
|
| - __ bind(&need_conversion_);
|
| - // Move smi zero into the result register, which will trigger
|
| - // conversion.
|
| - __ Set(result_, Immediate(Smi::FromInt(0)));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&index_out_of_range_);
|
| - // When the index is out of range, the spec requires us to return
|
| - // the empty string.
|
| - __ Set(result_, Immediate(FACTORY->empty_string()));
|
| - __ jmp(exit_label());
|
| - }
|
| -
|
| - private:
|
| - Register result_;
|
| -
|
| - Label need_conversion_;
|
| - Label index_out_of_range_;
|
| -
|
| - StringCharAtGenerator char_at_generator_;
|
| -};
|
| -
|
| -
|
| -// This generates code that performs a String.prototype.charAt() call
|
| -// or returns a smi in order to trigger conversion.
|
| -void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) {
|
| - Comment(masm_, "[ GenerateStringCharAt");
|
| - ASSERT(args->length() == 2);
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result index = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - index.ToRegister();
|
| - // We might mutate the object register.
|
| - frame_->Spill(object.reg());
|
| -
|
| - // We need three extra registers.
|
| - Result result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| - Result scratch1 = allocator()->Allocate();
|
| - ASSERT(scratch1.is_valid());
|
| - Result scratch2 = allocator()->Allocate();
|
| - ASSERT(scratch2.is_valid());
|
| -
|
| - DeferredStringCharAt* deferred =
|
| - new DeferredStringCharAt(object.reg(),
|
| - index.reg(),
|
| - scratch1.reg(),
|
| - scratch2.reg(),
|
| - result.reg());
|
| - deferred->fast_case_generator()->GenerateFast(masm_);
|
| - deferred->BindExit();
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(equal);
|
| - // It is a heap object - get map.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - // Check if the object is a JS array or not.
|
| - __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg());
|
| - value.Unuse();
|
| - temp.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) {
|
| - Label bailout, done, one_char_separator, long_separator,
|
| - non_trivial_array, not_size_one_array, loop, loop_condition,
|
| - loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
|
| -
|
| - ASSERT(args->length() == 2);
|
| - // We will leave the separator on the stack until the end of the function.
|
| - Load(args->at(1));
|
| - // Load this to eax (= array)
|
| - Load(args->at(0));
|
| - Result array_result = frame_->Pop();
|
| - array_result.ToRegister(eax);
|
| - frame_->SpillAll();
|
| -
|
| - // All aliases of the same register have disjoint lifetimes.
|
| - Register array = eax;
|
| - Register elements = no_reg; // Will be eax.
|
| -
|
| - Register index = edx;
|
| -
|
| - Register string_length = ecx;
|
| -
|
| - Register string = esi;
|
| -
|
| - Register scratch = ebx;
|
| -
|
| - Register array_length = edi;
|
| - Register result_pos = no_reg; // Will be edi.
|
| -
|
| - // Separator operand is already pushed.
|
| - Operand separator_operand = Operand(esp, 2 * kPointerSize);
|
| - Operand result_operand = Operand(esp, 1 * kPointerSize);
|
| - Operand array_length_operand = Operand(esp, 0);
|
| - __ sub(Operand(esp), Immediate(2 * kPointerSize));
|
| - __ cld();
|
| - // Check that the array is a JSArray
|
| - __ test(array, Immediate(kSmiTagMask));
|
| - __ j(zero, &bailout);
|
| - __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
|
| - __ j(not_equal, &bailout);
|
| -
|
| - // Check that the array has fast elements.
|
| - __ test_b(FieldOperand(scratch, Map::kBitField2Offset),
|
| - 1 << Map::kHasFastElements);
|
| - __ j(zero, &bailout);
|
| -
|
| - // If the array has length zero, return the empty string.
|
| - __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
|
| - __ sar(array_length, 1);
|
| - __ j(not_zero, &non_trivial_array);
|
| - __ mov(result_operand, FACTORY->empty_string());
|
| - __ jmp(&done);
|
| -
|
| - // Save the array length.
|
| - __ bind(&non_trivial_array);
|
| - __ mov(array_length_operand, array_length);
|
| -
|
| - // Save the FixedArray containing array's elements.
|
| - // End of array's live range.
|
| - elements = array;
|
| - __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
|
| - array = no_reg;
|
| -
|
| -
|
| - // Check that all array elements are sequential ASCII strings, and
|
| - // accumulate the sum of their lengths, as a smi-encoded value.
|
| - __ Set(index, Immediate(0));
|
| - __ Set(string_length, Immediate(0));
|
| - // Loop condition: while (index < length).
|
| - // Live loop registers: index, array_length, string,
|
| - // scratch, string_length, elements.
|
| - __ jmp(&loop_condition);
|
| - __ bind(&loop);
|
| - __ cmp(index, Operand(array_length));
|
| - __ j(greater_equal, &done);
|
| -
|
| - __ mov(string, FieldOperand(elements, index,
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ test(string, Immediate(kSmiTagMask));
|
| - __ j(zero, &bailout);
|
| - __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
|
| - __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
|
| - __ and_(scratch, Immediate(
|
| - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
|
| - __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
|
| - __ j(not_equal, &bailout);
|
| - __ add(string_length,
|
| - FieldOperand(string, SeqAsciiString::kLengthOffset));
|
| - __ j(overflow, &bailout);
|
| - __ add(Operand(index), Immediate(1));
|
| - __ bind(&loop_condition);
|
| - __ cmp(index, Operand(array_length));
|
| - __ j(less, &loop);
|
| -
|
| - // If array_length is 1, return elements[0], a string.
|
| - __ cmp(array_length, 1);
|
| - __ j(not_equal, ¬_size_one_array);
|
| - __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
|
| - __ mov(result_operand, scratch);
|
| - __ jmp(&done);
|
| -
|
| - __ bind(¬_size_one_array);
|
| -
|
| - // End of array_length live range.
|
| - result_pos = array_length;
|
| - array_length = no_reg;
|
| -
|
| - // Live registers:
|
| - // string_length: Sum of string lengths, as a smi.
|
| - // elements: FixedArray of strings.
|
| -
|
| - // Check that the separator is a flat ASCII string.
|
| - __ mov(string, separator_operand);
|
| - __ test(string, Immediate(kSmiTagMask));
|
| - __ j(zero, &bailout);
|
| - __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
|
| - __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
|
| - __ and_(scratch, Immediate(
|
| - kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
|
| - __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
|
| - __ j(not_equal, &bailout);
|
| -
|
| - // Add (separator length times array_length) - separator length
|
| - // to string_length.
|
| - __ mov(scratch, separator_operand);
|
| - __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset));
|
| - __ sub(string_length, Operand(scratch)); // May be negative, temporarily.
|
| - __ imul(scratch, array_length_operand);
|
| - __ j(overflow, &bailout);
|
| - __ add(string_length, Operand(scratch));
|
| - __ j(overflow, &bailout);
|
| -
|
| - __ shr(string_length, 1);
|
| - // Live registers and stack values:
|
| - // string_length
|
| - // elements
|
| - __ AllocateAsciiString(result_pos, string_length, scratch,
|
| - index, string, &bailout);
|
| - __ mov(result_operand, result_pos);
|
| - __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize));
|
| -
|
| -
|
| - __ mov(string, separator_operand);
|
| - __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset),
|
| - Immediate(Smi::FromInt(1)));
|
| - __ j(equal, &one_char_separator);
|
| - __ j(greater, &long_separator);
|
| -
|
| -
|
| - // Empty separator case
|
| - __ mov(index, Immediate(0));
|
| - __ jmp(&loop_1_condition);
|
| - // Loop condition: while (index < length).
|
| - __ bind(&loop_1);
|
| - // Each iteration of the loop concatenates one string to the result.
|
| - // Live values in registers:
|
| - // index: which element of the elements array we are adding to the result.
|
| - // result_pos: the position to which we are currently copying characters.
|
| - // elements: the FixedArray of strings we are joining.
|
| -
|
| - // Get string = array[index].
|
| - __ mov(string, FieldOperand(elements, index,
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ mov(string_length,
|
| - FieldOperand(string, String::kLengthOffset));
|
| - __ shr(string_length, 1);
|
| - __ lea(string,
|
| - FieldOperand(string, SeqAsciiString::kHeaderSize));
|
| - __ CopyBytes(string, result_pos, string_length, scratch);
|
| - __ add(Operand(index), Immediate(1));
|
| - __ bind(&loop_1_condition);
|
| - __ cmp(index, array_length_operand);
|
| - __ j(less, &loop_1); // End while (index < length).
|
| - __ jmp(&done);
|
| -
|
| -
|
| -
|
| - // One-character separator case
|
| - __ bind(&one_char_separator);
|
| - // Replace separator with its ascii character value.
|
| - __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize));
|
| - __ mov_b(separator_operand, scratch);
|
| -
|
| - __ Set(index, Immediate(0));
|
| - // Jump into the loop after the code that copies the separator, so the first
|
| - // element is not preceded by a separator
|
| - __ jmp(&loop_2_entry);
|
| - // Loop condition: while (index < length).
|
| - __ bind(&loop_2);
|
| - // Each iteration of the loop concatenates one string to the result.
|
| - // Live values in registers:
|
| - // index: which element of the elements array we are adding to the result.
|
| - // result_pos: the position to which we are currently copying characters.
|
| -
|
| - // Copy the separator character to the result.
|
| - __ mov_b(scratch, separator_operand);
|
| - __ mov_b(Operand(result_pos, 0), scratch);
|
| - __ inc(result_pos);
|
| -
|
| - __ bind(&loop_2_entry);
|
| - // Get string = array[index].
|
| - __ mov(string, FieldOperand(elements, index,
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ mov(string_length,
|
| - FieldOperand(string, String::kLengthOffset));
|
| - __ shr(string_length, 1);
|
| - __ lea(string,
|
| - FieldOperand(string, SeqAsciiString::kHeaderSize));
|
| - __ CopyBytes(string, result_pos, string_length, scratch);
|
| - __ add(Operand(index), Immediate(1));
|
| -
|
| - __ cmp(index, array_length_operand);
|
| - __ j(less, &loop_2); // End while (index < length).
|
| - __ jmp(&done);
|
| -
|
| -
|
| - // Long separator case (separator is more than one character).
|
| - __ bind(&long_separator);
|
| -
|
| - __ Set(index, Immediate(0));
|
| - // Jump into the loop after the code that copies the separator, so the first
|
| - // element is not preceded by a separator
|
| - __ jmp(&loop_3_entry);
|
| - // Loop condition: while (index < length).
|
| - __ bind(&loop_3);
|
| - // Each iteration of the loop concatenates one string to the result.
|
| - // Live values in registers:
|
| - // index: which element of the elements array we are adding to the result.
|
| - // result_pos: the position to which we are currently copying characters.
|
| -
|
| - // Copy the separator to the result.
|
| - __ mov(string, separator_operand);
|
| - __ mov(string_length,
|
| - FieldOperand(string, String::kLengthOffset));
|
| - __ shr(string_length, 1);
|
| - __ lea(string,
|
| - FieldOperand(string, SeqAsciiString::kHeaderSize));
|
| - __ CopyBytes(string, result_pos, string_length, scratch);
|
| -
|
| - __ bind(&loop_3_entry);
|
| - // Get string = array[index].
|
| - __ mov(string, FieldOperand(elements, index,
|
| - times_pointer_size,
|
| - FixedArray::kHeaderSize));
|
| - __ mov(string_length,
|
| - FieldOperand(string, String::kLengthOffset));
|
| - __ shr(string_length, 1);
|
| - __ lea(string,
|
| - FieldOperand(string, SeqAsciiString::kHeaderSize));
|
| - __ CopyBytes(string, result_pos, string_length, scratch);
|
| - __ add(Operand(index), Immediate(1));
|
| -
|
| - __ cmp(index, array_length_operand);
|
| - __ j(less, &loop_3); // End while (index < length).
|
| - __ jmp(&done);
|
| -
|
| -
|
| - __ bind(&bailout);
|
| - __ mov(result_operand, FACTORY->undefined_value());
|
| - __ bind(&done);
|
| - __ mov(eax, result_operand);
|
| - // Drop temp values from the stack, and restore context register.
|
| - __ add(Operand(esp), Immediate(2 * kPointerSize));
|
| -
|
| - __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
| - frame_->Drop(1);
|
| - frame_->Push(&array_result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(equal);
|
| - // It is a heap object - get map.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - // Check if the object is a regexp.
|
| - __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg());
|
| - value.Unuse();
|
| - temp.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| -
|
| - __ test(obj.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| - __ cmp(obj.reg(), FACTORY->null_value());
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - Result map = allocator()->Allocate();
|
| - ASSERT(map.is_valid());
|
| - __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - // Undetectable objects behave like undefined when tested with typeof.
|
| - __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - destination()->false_target()->Branch(not_zero);
|
| - // Do a range test for JSObject type. We can't use
|
| - // MacroAssembler::IsInstanceJSObjectType, because we are using a
|
| - // ControlDestination, so we copy its implementation here.
|
| - __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
|
| - __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
|
| - __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
|
| - obj.Unuse();
|
| - map.Unuse();
|
| - destination()->Split(below_equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' ||
|
| - // typeof(arg) == function).
|
| - // It includes undetectable objects (as opposed to IsObject).
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - __ test(value.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(equal);
|
| -
|
| - // Check that this is an object.
|
| - frame_->Spill(value.reg());
|
| - __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg());
|
| - value.Unuse();
|
| - destination()->Split(above_equal);
|
| -}
|
| -
|
| -
|
| -// Deferred code to check whether the String JavaScript object is safe for using
|
| -// default value of. This code is called after the bit caching this information
|
| -// in the map has been checked with the map for the object in the map_result_
|
| -// register. On return the register map_result_ contains 1 for true and 0 for
|
| -// false.
|
| -class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode {
|
| - public:
|
| - DeferredIsStringWrapperSafeForDefaultValueOf(Register object,
|
| - Register map_result,
|
| - Register scratch1,
|
| - Register scratch2)
|
| - : object_(object),
|
| - map_result_(map_result),
|
| - scratch1_(scratch1),
|
| - scratch2_(scratch2) { }
|
| -
|
| - virtual void Generate() {
|
| - Label false_result;
|
| -
|
| - // Check that map is loaded as expected.
|
| - if (FLAG_debug_code) {
|
| - __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| - __ Assert(equal, "Map not in expected register");
|
| - }
|
| -
|
| - // Check for fast case object. Generate false result for slow case object.
|
| - __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset));
|
| - __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
|
| - __ cmp(scratch1_, FACTORY->hash_table_map());
|
| - __ j(equal, &false_result);
|
| -
|
| - // Look for valueOf symbol in the descriptor array, and indicate false if
|
| - // found. The type is not checked, so if it is a transition it is a false
|
| - // negative.
|
| - __ mov(map_result_,
|
| - FieldOperand(map_result_, Map::kInstanceDescriptorsOffset));
|
| - __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset));
|
| - // map_result_: descriptor array
|
| - // scratch1_: length of descriptor array
|
| - // Calculate the end of the descriptor array.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| - STATIC_ASSERT(kPointerSize == 4);
|
| - __ lea(scratch1_,
|
| - Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize));
|
| - // Calculate location of the first key name.
|
| - __ add(Operand(map_result_),
|
| - Immediate(FixedArray::kHeaderSize +
|
| - DescriptorArray::kFirstIndex * kPointerSize));
|
| - // Loop through all the keys in the descriptor array. If one of these is the
|
| - // symbol valueOf the result is false.
|
| - Label entry, loop;
|
| - __ jmp(&entry);
|
| - __ bind(&loop);
|
| - __ mov(scratch2_, FieldOperand(map_result_, 0));
|
| - __ cmp(scratch2_, FACTORY->value_of_symbol());
|
| - __ j(equal, &false_result);
|
| - __ add(Operand(map_result_), Immediate(kPointerSize));
|
| - __ bind(&entry);
|
| - __ cmp(map_result_, Operand(scratch1_));
|
| - __ j(not_equal, &loop);
|
| -
|
| - // Reload map as register map_result_ was used as temporary above.
|
| - __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset));
|
| -
|
| - // If a valueOf property is not found on the object check that it's
|
| - // prototype is the un-modified String prototype. If not result is false.
|
| - __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset));
|
| - __ test(scratch1_, Immediate(kSmiTagMask));
|
| - __ j(zero, &false_result);
|
| - __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset));
|
| - __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ mov(scratch2_,
|
| - FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset));
|
| - __ cmp(scratch1_,
|
| - ContextOperand(scratch2_,
|
| - Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
|
| - __ j(not_equal, &false_result);
|
| - // Set the bit in the map to indicate that it has been checked safe for
|
| - // default valueOf and set true result.
|
| - __ or_(FieldOperand(map_result_, Map::kBitField2Offset),
|
| - Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
|
| - __ Set(map_result_, Immediate(1));
|
| - __ jmp(exit_label());
|
| - __ bind(&false_result);
|
| - // Set false result.
|
| - __ Set(map_result_, Immediate(0));
|
| - }
|
| -
|
| - private:
|
| - Register object_;
|
| - Register map_result_;
|
| - Register scratch1_;
|
| - Register scratch2_;
|
| -};
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf(
|
| - ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop(); // Pop the string wrapper.
|
| - obj.ToRegister();
|
| - ASSERT(obj.is_valid());
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfSmi(obj.reg());
|
| - }
|
| -
|
| - // Check whether this map has already been checked to be safe for default
|
| - // valueOf.
|
| - Result map_result = allocator()->Allocate();
|
| - ASSERT(map_result.is_valid());
|
| - __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset),
|
| - 1 << Map::kStringWrapperSafeForDefaultValueOf);
|
| - destination()->true_target()->Branch(not_zero);
|
| -
|
| - // We need an additional two scratch registers for the deferred code.
|
| - Result temp1 = allocator()->Allocate();
|
| - ASSERT(temp1.is_valid());
|
| - Result temp2 = allocator()->Allocate();
|
| - ASSERT(temp2.is_valid());
|
| -
|
| - DeferredIsStringWrapperSafeForDefaultValueOf* deferred =
|
| - new DeferredIsStringWrapperSafeForDefaultValueOf(
|
| - obj.reg(), map_result.reg(), temp1.reg(), temp2.reg());
|
| - deferred->Branch(zero);
|
| - deferred->BindExit();
|
| - __ test(map_result.reg(), Operand(map_result.reg()));
|
| - obj.Unuse();
|
| - map_result.Unuse();
|
| - temp1.Unuse();
|
| - temp2.Unuse();
|
| - destination()->Split(not_equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
|
| - // This generates a fast version of:
|
| - // (%_ClassOf(arg) === 'Function')
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - __ test(obj.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg());
|
| - obj.Unuse();
|
| - temp.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - __ test(obj.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(),
|
| - FieldOperand(obj.reg(), HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - obj.Unuse();
|
| - temp.Unuse();
|
| - destination()->Split(not_zero);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| -
|
| - // Get the frame pointer for the calling frame.
|
| - Result fp = allocator()->Allocate();
|
| - __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
|
| -
|
| - // Skip the arguments adaptor frame if it exists.
|
| - Label check_frame_marker;
|
| - __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
|
| - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ j(not_equal, &check_frame_marker);
|
| - __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
|
| -
|
| - // Check the marker in the calling frame.
|
| - __ bind(&check_frame_marker);
|
| - __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
|
| - Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
|
| - fp.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| -
|
| - Result fp = allocator_->Allocate();
|
| - Result result = allocator_->Allocate();
|
| - ASSERT(fp.is_valid() && result.is_valid());
|
| -
|
| - Label exit;
|
| -
|
| - // Get the number of formal parameters.
|
| - __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters())));
|
| -
|
| - // Check if the calling frame is an arguments adaptor frame.
|
| - __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset));
|
| - __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
|
| - Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| - __ j(not_equal, &exit);
|
| -
|
| - // Arguments adaptor case: Read the arguments length from the
|
| - // adaptor frame.
|
| - __ mov(result.reg(),
|
| - Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| -
|
| - __ bind(&exit);
|
| - result.set_type_info(TypeInfo::Smi());
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(result.reg());
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - JumpTarget leave, null, function, non_function_constructor;
|
| - Load(args->at(0)); // Load the object.
|
| - Result obj = frame_->Pop();
|
| - obj.ToRegister();
|
| - frame_->Spill(obj.reg());
|
| -
|
| - // If the object is a smi, we return null.
|
| - __ test(obj.reg(), Immediate(kSmiTagMask));
|
| - null.Branch(zero);
|
| -
|
| - // Check that the object is a JS object but take special care of JS
|
| - // functions to make sure they have 'Function' as their class.
|
| - __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
|
| - null.Branch(below);
|
| -
|
| - // As long as JS_FUNCTION_TYPE is the last instance type and it is
|
| - // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
|
| - // LAST_JS_OBJECT_TYPE.
|
| - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
| - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
| - __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
|
| - function.Branch(equal);
|
| -
|
| - // Check if the constructor in the map is a function.
|
| - { Result tmp = allocator()->Allocate();
|
| - __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
|
| - __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg());
|
| - non_function_constructor.Branch(not_equal);
|
| - }
|
| -
|
| - // The map register now contains the constructor function. Grab the
|
| - // instance class name from there.
|
| - __ mov(obj.reg(),
|
| - FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
|
| - __ mov(obj.reg(),
|
| - FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset));
|
| - frame_->Push(&obj);
|
| - leave.Jump();
|
| -
|
| - // Functions have class 'Function'.
|
| - function.Bind();
|
| - frame_->Push(FACTORY->function_class_symbol());
|
| - leave.Jump();
|
| -
|
| - // Objects with a non-function constructor have class 'Object'.
|
| - non_function_constructor.Bind();
|
| - frame_->Push(FACTORY->Object_symbol());
|
| - leave.Jump();
|
| -
|
| - // Non-JS objects have class null.
|
| - null.Bind();
|
| - frame_->Push(FACTORY->null_value());
|
| -
|
| - // All done.
|
| - leave.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - JumpTarget leave;
|
| - Load(args->at(0)); // Load the object.
|
| - frame_->Dup();
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| - ASSERT(object.is_valid());
|
| - // if (object->IsSmi()) return object.
|
| - __ test(object.reg(), Immediate(kSmiTagMask));
|
| - leave.Branch(zero, taken);
|
| - // It is a heap object - get map.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - // if (!object->IsJSValue()) return object.
|
| - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
|
| - leave.Branch(not_equal, not_taken);
|
| - __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
|
| - object.Unuse();
|
| - frame_->SetElementAt(0, &temp);
|
| - leave.Bind();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| - JumpTarget leave;
|
| - Load(args->at(0)); // Load the object.
|
| - Load(args->at(1)); // Load the value.
|
| - Result value = frame_->Pop();
|
| - Result object = frame_->Pop();
|
| - value.ToRegister();
|
| - object.ToRegister();
|
| -
|
| - // if (object->IsSmi()) return value.
|
| - __ test(object.reg(), Immediate(kSmiTagMask));
|
| - leave.Branch(zero, &value, taken);
|
| -
|
| - // It is a heap object - get its map.
|
| - Result scratch = allocator_->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - // if (!object->IsJSValue()) return value.
|
| - __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
|
| - leave.Branch(not_equal, &value, not_taken);
|
| -
|
| - // Store the value.
|
| - __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
|
| - // Update the write barrier. Save the value as it will be
|
| - // overwritten by the write barrier code and is needed afterward.
|
| - Result duplicate_value = allocator_->Allocate();
|
| - ASSERT(duplicate_value.is_valid());
|
| - __ mov(duplicate_value.reg(), value.reg());
|
| - // The object register is also overwritten by the write barrier and
|
| - // possibly aliased in the frame.
|
| - frame_->Spill(object.reg());
|
| - __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
|
| - scratch.reg());
|
| - object.Unuse();
|
| - scratch.Unuse();
|
| - duplicate_value.Unuse();
|
| -
|
| - // Leave.
|
| - leave.Bind(&value);
|
| - frame_->Push(&value);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| -
|
| - // ArgumentsAccessStub expects the key in edx and the formal
|
| - // parameter count in eax.
|
| - Load(args->at(0));
|
| - Result key = frame_->Pop();
|
| - // Explicitly create a constant result.
|
| - Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
|
| - // Call the shared stub to get to arguments[key].
|
| - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
|
| - Result result = frame_->CallStub(&stub, &key, &count);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| -
|
| - // Load the two objects into registers and perform the comparison.
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result right = frame_->Pop();
|
| - Result left = frame_->Pop();
|
| - right.ToRegister();
|
| - left.ToRegister();
|
| - __ cmp(right.reg(), Operand(left.reg()));
|
| - right.Unuse();
|
| - left.Unuse();
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| - STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi.
|
| - Result ebp_as_smi = allocator_->Allocate();
|
| - ASSERT(ebp_as_smi.is_valid());
|
| - __ mov(ebp_as_smi.reg(), Operand(ebp));
|
| - frame_->Push(&ebp_as_smi);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRandomHeapNumber(
|
| - ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 0);
|
| - frame_->SpillAll();
|
| -
|
| - Label slow_allocate_heapnumber;
|
| - Label heapnumber_allocated;
|
| -
|
| - __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber);
|
| - __ jmp(&heapnumber_allocated);
|
| -
|
| - __ bind(&slow_allocate_heapnumber);
|
| - // Allocate a heap number.
|
| - __ CallRuntime(Runtime::kNumberAlloc, 0);
|
| - __ mov(edi, eax);
|
| -
|
| - __ bind(&heapnumber_allocated);
|
| -
|
| - __ PrepareCallCFunction(1, ebx);
|
| - __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address()));
|
| - __ CallCFunction(ExternalReference::random_uint32_function(masm()->isolate()),
|
| - 1);
|
| -
|
| - // Convert 32 random bits in eax to 0.(32 random bits) in a double
|
| - // by computing:
|
| - // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
|
| - // This is implemented on both SSE2 and FPU.
|
| - if (CpuFeatures::IsSupported(SSE2)) {
|
| - CpuFeatures::Scope fscope(SSE2);
|
| - __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
|
| - __ movd(xmm1, Operand(ebx));
|
| - __ movd(xmm0, Operand(eax));
|
| - __ cvtss2sd(xmm1, xmm1);
|
| - __ pxor(xmm0, xmm1);
|
| - __ subsd(xmm0, xmm1);
|
| - __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0);
|
| - } else {
|
| - // 0x4130000000000000 is 1.0 x 2^20 as a double.
|
| - __ mov(FieldOperand(edi, HeapNumber::kExponentOffset),
|
| - Immediate(0x41300000));
|
| - __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax);
|
| - __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
|
| - __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0));
|
| - __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
|
| - __ fsubp(1);
|
| - __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset));
|
| - }
|
| - __ mov(eax, edi);
|
| -
|
| - Result result = allocator_->Allocate(eax);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| -
|
| - StringAddStub stub(NO_STRING_ADD_FLAGS);
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(3, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| -
|
| - SubStringStub stub;
|
| - Result answer = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| -
|
| - StringCompareStub stub;
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - frame_->Push(&answer);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(4, args->length());
|
| -
|
| - // Load the arguments on the stack and call the stub.
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| - Load(args->at(3));
|
| -
|
| - RegExpExecStub stub;
|
| - Result result = frame_->CallStub(&stub, 4);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(3, args->length());
|
| -
|
| - Load(args->at(0)); // Size of array, smi.
|
| - Load(args->at(1)); // "index" property value.
|
| - Load(args->at(2)); // "input" property value.
|
| -
|
| - RegExpConstructResultStub stub;
|
| - Result result = frame_->CallStub(&stub, 3);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredSearchCache: public DeferredCode {
|
| - public:
|
| - DeferredSearchCache(Register dst, Register cache, Register key)
|
| - : dst_(dst), cache_(cache), key_(key) {
|
| - set_comment("[ DeferredSearchCache");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_; // on invocation Smi index of finger, on exit
|
| - // holds value being looked up.
|
| - Register cache_; // instance of JSFunctionResultCache.
|
| - Register key_; // key being looked up.
|
| -};
|
| -
|
| -
|
| -void DeferredSearchCache::Generate() {
|
| - Label first_loop, search_further, second_loop, cache_miss;
|
| -
|
| - // Smi-tagging is equivalent to multiplying by 2.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| -
|
| - Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize);
|
| - Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex);
|
| -
|
| - // Check the cache from finger to start of the cache.
|
| - __ bind(&first_loop);
|
| - __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
|
| - __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi));
|
| - __ j(less, &search_further);
|
| -
|
| - __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
|
| - __ j(not_equal, &first_loop);
|
| -
|
| - __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
|
| - __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&search_further);
|
| -
|
| - // Check the cache from end of cache up to finger.
|
| - __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset));
|
| -
|
| - __ bind(&second_loop);
|
| - __ sub(Operand(dst_), Immediate(kEntrySizeSmi));
|
| - // Consider prefetching into some reg.
|
| - __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset));
|
| - __ j(less_equal, &cache_miss);
|
| -
|
| - __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_));
|
| - __ j(not_equal, &second_loop);
|
| -
|
| - __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_);
|
| - __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1));
|
| - __ jmp(exit_label());
|
| -
|
| - __ bind(&cache_miss);
|
| - __ push(cache_); // store a reference to cache
|
| - __ push(key_); // store a key
|
| - __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
| - __ push(key_);
|
| - // On ia32 function must be in edi.
|
| - __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset));
|
| - ParameterCount expected(1);
|
| - __ InvokeFunction(edi, expected, CALL_FUNCTION);
|
| -
|
| - // Find a place to put new cached value into.
|
| - Label add_new_entry, update_cache;
|
| - __ mov(ecx, Operand(esp, kPointerSize)); // restore the cache
|
| - // Possible optimization: cache size is constant for the given cache
|
| - // so technically we could use a constant here. However, if we have
|
| - // cache miss this optimization would hardly matter much.
|
| -
|
| - // Check if we could add new entry to cache.
|
| - __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
|
| - __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
|
| - __ j(greater, &add_new_entry);
|
| -
|
| - // Check if we could evict entry after finger.
|
| - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
|
| - __ add(Operand(edx), Immediate(kEntrySizeSmi));
|
| - __ cmp(ebx, Operand(edx));
|
| - __ j(greater, &update_cache);
|
| -
|
| - // Need to wrap over the cache.
|
| - __ mov(edx, Immediate(kEntriesIndexSmi));
|
| - __ jmp(&update_cache);
|
| -
|
| - __ bind(&add_new_entry);
|
| - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset));
|
| - __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1));
|
| - __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx);
|
| -
|
| - // Update the cache itself.
|
| - // edx holds the index.
|
| - __ bind(&update_cache);
|
| - __ pop(ebx); // restore the key
|
| - __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx);
|
| - // Store key.
|
| - __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
|
| - __ RecordWrite(ecx, 0, ebx, edx);
|
| -
|
| - // Store value.
|
| - __ pop(ecx); // restore the cache.
|
| - __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset));
|
| - __ add(Operand(edx), Immediate(Smi::FromInt(1)));
|
| - __ mov(ebx, eax);
|
| - __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx);
|
| - __ RecordWrite(ecx, 0, ebx, edx);
|
| -
|
| - if (!dst_.is(eax)) {
|
| - __ mov(dst_, eax);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| -
|
| - ASSERT_NE(NULL, args->at(0)->AsLiteral());
|
| - int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
|
| -
|
| - Handle<FixedArray> jsfunction_result_caches(
|
| - masm()->isolate()->global_context()->jsfunction_result_caches());
|
| - if (jsfunction_result_caches->length() <= cache_id) {
|
| - __ Abort("Attempt to use undefined cache.");
|
| - frame_->Push(FACTORY->undefined_value());
|
| - return;
|
| - }
|
| -
|
| - Load(args->at(1));
|
| - Result key = frame_->Pop();
|
| - key.ToRegister();
|
| -
|
| - Result cache = allocator()->Allocate();
|
| - ASSERT(cache.is_valid());
|
| - __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX));
|
| - __ mov(cache.reg(),
|
| - FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset));
|
| - __ mov(cache.reg(),
|
| - ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX));
|
| - __ mov(cache.reg(),
|
| - FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id)));
|
| -
|
| - Result tmp = allocator()->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| -
|
| - DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(),
|
| - cache.reg(),
|
| - key.reg());
|
| -
|
| - // tmp.reg() now holds finger offset as a smi.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - __ mov(tmp.reg(), FieldOperand(cache.reg(),
|
| - JSFunctionResultCache::kFingerOffset));
|
| - __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg()));
|
| - deferred->Branch(not_equal);
|
| -
|
| - __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1));
|
| -
|
| - deferred->BindExit();
|
| - frame_->Push(&tmp);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| -
|
| - // Load the argument on the stack and call the stub.
|
| - Load(args->at(0));
|
| - NumberToStringStub stub;
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -class DeferredSwapElements: public DeferredCode {
|
| - public:
|
| - DeferredSwapElements(Register object, Register index1, Register index2)
|
| - : object_(object), index1_(index1), index2_(index2) {
|
| - set_comment("[ DeferredSwapElements");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register object_, index1_, index2_;
|
| -};
|
| -
|
| -
|
| -void DeferredSwapElements::Generate() {
|
| - __ push(object_);
|
| - __ push(index1_);
|
| - __ push(index2_);
|
| - __ CallRuntime(Runtime::kSwapElements, 3);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) {
|
| - // Note: this code assumes that indices are passed are within
|
| - // elements' bounds and refer to valid (not holes) values.
|
| - Comment cmnt(masm_, "[ GenerateSwapElements");
|
| -
|
| - ASSERT_EQ(3, args->length());
|
| -
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Load(args->at(2));
|
| -
|
| - Result index2 = frame_->Pop();
|
| - index2.ToRegister();
|
| -
|
| - Result index1 = frame_->Pop();
|
| - index1.ToRegister();
|
| -
|
| - Result object = frame_->Pop();
|
| - object.ToRegister();
|
| -
|
| - Result tmp1 = allocator()->Allocate();
|
| - tmp1.ToRegister();
|
| - Result tmp2 = allocator()->Allocate();
|
| - tmp2.ToRegister();
|
| -
|
| - frame_->Spill(object.reg());
|
| - frame_->Spill(index1.reg());
|
| - frame_->Spill(index2.reg());
|
| -
|
| - DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(),
|
| - index1.reg(),
|
| - index2.reg());
|
| -
|
| - // Fetch the map and check if array is in fast case.
|
| - // Check that object doesn't require security checks and
|
| - // has no indexed interceptor.
|
| - __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg());
|
| - deferred->Branch(below);
|
| - __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset),
|
| - KeyedLoadIC::kSlowCaseBitFieldMask);
|
| - deferred->Branch(not_zero);
|
| -
|
| - // Check the object's elements are in fast case and writable.
|
| - __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset));
|
| - __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->fixed_array_map()));
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Smi-tagging is equivalent to multiplying by 2.
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - STATIC_ASSERT(kSmiTagSize == 1);
|
| -
|
| - // Check that both indices are smis.
|
| - __ mov(tmp2.reg(), index1.reg());
|
| - __ or_(tmp2.reg(), Operand(index2.reg()));
|
| - __ test(tmp2.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| -
|
| - // Check that both indices are valid.
|
| - __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset));
|
| - __ cmp(tmp2.reg(), Operand(index1.reg()));
|
| - deferred->Branch(below_equal);
|
| - __ cmp(tmp2.reg(), Operand(index2.reg()));
|
| - deferred->Branch(below_equal);
|
| -
|
| - // Bring addresses into index1 and index2.
|
| - __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg()));
|
| - __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg()));
|
| -
|
| - // Swap elements.
|
| - __ mov(object.reg(), Operand(index1.reg(), 0));
|
| - __ mov(tmp2.reg(), Operand(index2.reg(), 0));
|
| - __ mov(Operand(index2.reg(), 0), object.reg());
|
| - __ mov(Operand(index1.reg(), 0), tmp2.reg());
|
| -
|
| - Label done;
|
| - __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done);
|
| - // Possible optimization: do a check that both values are Smis
|
| - // (or them and test against Smi mask.)
|
| -
|
| - __ mov(tmp2.reg(), tmp1.reg());
|
| - __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg());
|
| - __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg());
|
| - __ bind(&done);
|
| -
|
| - deferred->BindExit();
|
| - frame_->Push(FACTORY->undefined_value());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) {
|
| - Comment cmnt(masm_, "[ GenerateCallFunction");
|
| -
|
| - ASSERT(args->length() >= 2);
|
| -
|
| - int n_args = args->length() - 2; // for receiver and function.
|
| - Load(args->at(0)); // receiver
|
| - for (int i = 0; i < n_args; i++) {
|
| - Load(args->at(i + 1));
|
| - }
|
| - Load(args->at(n_args + 1)); // function
|
| - Result result = frame_->CallJSFunction(n_args);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -// Generates the Math.pow method. Only handles special cases and
|
| -// branches to the runtime system for everything else. Please note
|
| -// that this function assumes that the callsite has executed ToNumber
|
| -// on both arguments.
|
| -void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 2);
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - if (!CpuFeatures::IsSupported(SSE2)) {
|
| - Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
|
| - frame_->Push(&res);
|
| - } else {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - Label allocate_return;
|
| - // Load the two operands while leaving the values on the frame.
|
| - frame()->Dup();
|
| - Result exponent = frame()->Pop();
|
| - exponent.ToRegister();
|
| - frame()->Spill(exponent.reg());
|
| - frame()->PushElementAt(1);
|
| - Result base = frame()->Pop();
|
| - base.ToRegister();
|
| - frame()->Spill(base.reg());
|
| -
|
| - Result answer = allocator()->Allocate();
|
| - ASSERT(answer.is_valid());
|
| - ASSERT(!exponent.reg().is(base.reg()));
|
| - JumpTarget call_runtime;
|
| -
|
| - // Save 1 in xmm3 - we need this several times later on.
|
| - __ mov(answer.reg(), Immediate(1));
|
| - __ cvtsi2sd(xmm3, Operand(answer.reg()));
|
| -
|
| - Label exponent_nonsmi;
|
| - Label base_nonsmi;
|
| - // If the exponent is a heap number go to that specific case.
|
| - __ test(exponent.reg(), Immediate(kSmiTagMask));
|
| - __ j(not_zero, &exponent_nonsmi);
|
| - __ test(base.reg(), Immediate(kSmiTagMask));
|
| - __ j(not_zero, &base_nonsmi);
|
| -
|
| - // Optimized version when y is an integer.
|
| - Label powi;
|
| - __ SmiUntag(base.reg());
|
| - __ cvtsi2sd(xmm0, Operand(base.reg()));
|
| - __ jmp(&powi);
|
| - // exponent is smi and base is a heapnumber.
|
| - __ bind(&base_nonsmi);
|
| - __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - call_runtime.Branch(not_equal);
|
| -
|
| - __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
|
| -
|
| - // Optimized version of pow if y is an integer.
|
| - __ bind(&powi);
|
| - __ SmiUntag(exponent.reg());
|
| -
|
| - // Save exponent in base as we need to check if exponent is negative later.
|
| - // We know that base and exponent are in different registers.
|
| - __ mov(base.reg(), exponent.reg());
|
| -
|
| - // Get absolute value of exponent.
|
| - Label no_neg;
|
| - __ cmp(exponent.reg(), 0);
|
| - __ j(greater_equal, &no_neg);
|
| - __ neg(exponent.reg());
|
| - __ bind(&no_neg);
|
| -
|
| - // Load xmm1 with 1.
|
| - __ movsd(xmm1, xmm3);
|
| - Label while_true;
|
| - Label no_multiply;
|
| -
|
| - __ bind(&while_true);
|
| - __ shr(exponent.reg(), 1);
|
| - __ j(not_carry, &no_multiply);
|
| - __ mulsd(xmm1, xmm0);
|
| - __ bind(&no_multiply);
|
| - __ test(exponent.reg(), Operand(exponent.reg()));
|
| - __ mulsd(xmm0, xmm0);
|
| - __ j(not_zero, &while_true);
|
| -
|
| - // x has the original value of y - if y is negative return 1/result.
|
| - __ test(base.reg(), Operand(base.reg()));
|
| - __ j(positive, &allocate_return);
|
| - // Special case if xmm1 has reached infinity.
|
| - __ mov(answer.reg(), Immediate(0x7FB00000));
|
| - __ movd(xmm0, Operand(answer.reg()));
|
| - __ cvtss2sd(xmm0, xmm0);
|
| - __ ucomisd(xmm0, xmm1);
|
| - call_runtime.Branch(equal);
|
| - __ divsd(xmm3, xmm1);
|
| - __ movsd(xmm1, xmm3);
|
| - __ jmp(&allocate_return);
|
| -
|
| - // exponent (or both) is a heapnumber - no matter what we should now work
|
| - // on doubles.
|
| - __ bind(&exponent_nonsmi);
|
| - __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - call_runtime.Branch(not_equal);
|
| - __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
|
| - // Test if exponent is nan.
|
| - __ ucomisd(xmm1, xmm1);
|
| - call_runtime.Branch(parity_even);
|
| -
|
| - Label base_not_smi;
|
| - Label handle_special_cases;
|
| - __ test(base.reg(), Immediate(kSmiTagMask));
|
| - __ j(not_zero, &base_not_smi);
|
| - __ SmiUntag(base.reg());
|
| - __ cvtsi2sd(xmm0, Operand(base.reg()));
|
| - __ jmp(&handle_special_cases);
|
| - __ bind(&base_not_smi);
|
| - __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - call_runtime.Branch(not_equal);
|
| - __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
|
| - __ and_(answer.reg(), HeapNumber::kExponentMask);
|
| - __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask));
|
| - // base is NaN or +/-Infinity
|
| - call_runtime.Branch(greater_equal);
|
| - __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
|
| -
|
| - // base is in xmm0 and exponent is in xmm1.
|
| - __ bind(&handle_special_cases);
|
| - Label not_minus_half;
|
| - // Test for -0.5.
|
| - // Load xmm2 with -0.5.
|
| - __ mov(answer.reg(), Immediate(0xBF000000));
|
| - __ movd(xmm2, Operand(answer.reg()));
|
| - __ cvtss2sd(xmm2, xmm2);
|
| - // xmm2 now has -0.5.
|
| - __ ucomisd(xmm2, xmm1);
|
| - __ j(not_equal, ¬_minus_half);
|
| -
|
| - // Calculates reciprocal of square root.
|
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
| - __ xorpd(xmm1, xmm1);
|
| - __ addsd(xmm1, xmm0);
|
| - __ sqrtsd(xmm1, xmm1);
|
| - __ divsd(xmm3, xmm1);
|
| - __ movsd(xmm1, xmm3);
|
| - __ jmp(&allocate_return);
|
| -
|
| - // Test for 0.5.
|
| - __ bind(¬_minus_half);
|
| - // Load xmm2 with 0.5.
|
| - // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
|
| - __ addsd(xmm2, xmm3);
|
| - // xmm2 now has 0.5.
|
| - __ ucomisd(xmm2, xmm1);
|
| - call_runtime.Branch(not_equal);
|
| - // Calculates square root.
|
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
|
| - __ xorpd(xmm1, xmm1);
|
| - __ addsd(xmm1, xmm0);
|
| - __ sqrtsd(xmm1, xmm1);
|
| -
|
| - JumpTarget done;
|
| - Label failure, success;
|
| - __ bind(&allocate_return);
|
| - // Make a copy of the frame to enable us to handle allocation
|
| - // failure after the JumpTarget jump.
|
| - VirtualFrame* clone = new VirtualFrame(frame());
|
| - __ AllocateHeapNumber(answer.reg(), exponent.reg(),
|
| - base.reg(), &failure);
|
| - __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
|
| - // Remove the two original values from the frame - we only need those
|
| - // in the case where we branch to runtime.
|
| - frame()->Drop(2);
|
| - exponent.Unuse();
|
| - base.Unuse();
|
| - done.Jump(&answer);
|
| - // Use the copy of the original frame as our current frame.
|
| - RegisterFile empty_regs;
|
| - SetFrame(clone, &empty_regs);
|
| - // If we experience an allocation failure we branch to runtime.
|
| - __ bind(&failure);
|
| - call_runtime.Bind();
|
| - answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
|
| -
|
| - done.Bind(&answer);
|
| - frame()->Push(&answer);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::SIN,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::COS,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| - TranscendentalCacheStub stub(TranscendentalCache::LOG,
|
| - TranscendentalCacheStub::TAGGED);
|
| - Result result = frame_->CallStub(&stub, 1);
|
| - frame_->Push(&result);
|
| -}
|
| -
|
| -
|
| -// Generates the Math.sqrt method. Please note - this function assumes that
|
| -// the callsite has executed ToNumber on the argument.
|
| -void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(args->length(), 1);
|
| - Load(args->at(0));
|
| -
|
| - if (!CpuFeatures::IsSupported(SSE2)) {
|
| - Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
|
| - frame()->Push(&result);
|
| - } else {
|
| - CpuFeatures::Scope use_sse2(SSE2);
|
| - // Leave original value on the frame if we need to call runtime.
|
| - frame()->Dup();
|
| - Result result = frame()->Pop();
|
| - result.ToRegister();
|
| - frame()->Spill(result.reg());
|
| - Label runtime;
|
| - Label non_smi;
|
| - Label load_done;
|
| - JumpTarget end;
|
| -
|
| - __ test(result.reg(), Immediate(kSmiTagMask));
|
| - __ j(not_zero, &non_smi);
|
| - __ SmiUntag(result.reg());
|
| - __ cvtsi2sd(xmm0, Operand(result.reg()));
|
| - __ jmp(&load_done);
|
| - __ bind(&non_smi);
|
| - __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
|
| - FACTORY->heap_number_map());
|
| - __ j(not_equal, &runtime);
|
| - __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
|
| -
|
| - __ bind(&load_done);
|
| - __ sqrtsd(xmm0, xmm0);
|
| - // A copy of the virtual frame to allow us to go to runtime after the
|
| - // JumpTarget jump.
|
| - Result scratch = allocator()->Allocate();
|
| - VirtualFrame* clone = new VirtualFrame(frame());
|
| - __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime);
|
| -
|
| - __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
|
| - frame()->Drop(1);
|
| - scratch.Unuse();
|
| - end.Jump(&result);
|
| - // We only branch to runtime if we have an allocation error.
|
| - // Use the copy of the original frame as our current frame.
|
| - RegisterFile empty_regs;
|
| - SetFrame(clone, &empty_regs);
|
| - __ bind(&runtime);
|
| - result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
|
| -
|
| - end.Bind(&result);
|
| - frame()->Push(&result);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) {
|
| - ASSERT_EQ(2, args->length());
|
| - Load(args->at(0));
|
| - Load(args->at(1));
|
| - Result right_res = frame_->Pop();
|
| - Result left_res = frame_->Pop();
|
| - right_res.ToRegister();
|
| - left_res.ToRegister();
|
| - Result tmp_res = allocator()->Allocate();
|
| - ASSERT(tmp_res.is_valid());
|
| - Register right = right_res.reg();
|
| - Register left = left_res.reg();
|
| - Register tmp = tmp_res.reg();
|
| - right_res.Unuse();
|
| - left_res.Unuse();
|
| - tmp_res.Unuse();
|
| - __ cmp(left, Operand(right));
|
| - destination()->true_target()->Branch(equal);
|
| - // Fail if either is a non-HeapObject.
|
| - __ mov(tmp, left);
|
| - __ and_(Operand(tmp), right);
|
| - __ test(Operand(tmp), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(equal);
|
| - __ CmpObjectType(left, JS_REGEXP_TYPE, tmp);
|
| - destination()->false_target()->Branch(not_equal);
|
| - __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset));
|
| - destination()->false_target()->Branch(not_equal);
|
| - __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset));
|
| - __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset));
|
| - destination()->Split(equal);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result value = frame_->Pop();
|
| - value.ToRegister();
|
| - ASSERT(value.is_valid());
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotString(value.reg());
|
| - }
|
| -
|
| - __ test(FieldOperand(value.reg(), String::kHashFieldOffset),
|
| - Immediate(String::kContainsCachedArrayIndexMask));
|
| -
|
| - value.Unuse();
|
| - destination()->Split(zero);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) {
|
| - ASSERT(args->length() == 1);
|
| - Load(args->at(0));
|
| - Result string = frame_->Pop();
|
| - string.ToRegister();
|
| - if (FLAG_debug_code) {
|
| - __ AbortIfNotString(string.reg());
|
| - }
|
| -
|
| - Result number = allocator()->Allocate();
|
| - ASSERT(number.is_valid());
|
| - __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset));
|
| - __ IndexFromHash(number.reg(), number.reg());
|
| - string.Unuse();
|
| - frame_->Push(&number);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - if (CheckForInlineRuntimeCall(node)) {
|
| - return;
|
| - }
|
| -
|
| - ZoneList<Expression*>* args = node->arguments();
|
| - Comment cmnt(masm_, "[ CallRuntime");
|
| - const Runtime::Function* function = node->function();
|
| -
|
| - if (function == NULL) {
|
| - // Push the builtins object found in the current global object.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(), GlobalObjectOperand());
|
| - __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
|
| - frame_->Push(&temp);
|
| - }
|
| -
|
| - // Push the arguments ("left-to-right").
|
| - int arg_count = args->length();
|
| - for (int i = 0; i < arg_count; i++) {
|
| - Load(args->at(i));
|
| - }
|
| -
|
| - if (function == NULL) {
|
| - // Call the JS runtime function.
|
| - frame_->Push(node->name());
|
| - Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
|
| - arg_count,
|
| - loop_nesting_);
|
| - frame_->RestoreContextRegister();
|
| - frame_->Push(&answer);
|
| - } else {
|
| - // Call the C runtime function.
|
| - Result answer = frame_->CallRuntime(function, arg_count);
|
| - frame_->Push(&answer);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
|
| - Comment cmnt(masm_, "[ UnaryOperation");
|
| -
|
| - Token::Value op = node->op();
|
| -
|
| - if (op == Token::NOT) {
|
| - // Swap the true and false targets but keep the same actual label
|
| - // as the fall through.
|
| - destination()->Invert();
|
| - LoadCondition(node->expression(), destination(), true);
|
| - // Swap the labels back.
|
| - destination()->Invert();
|
| -
|
| - } else if (op == Token::DELETE) {
|
| - Property* property = node->expression()->AsProperty();
|
| - if (property != NULL) {
|
| - Load(property->obj());
|
| - Load(property->key());
|
| - frame_->Push(Smi::FromInt(strict_mode_flag()));
|
| - Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3);
|
| - frame_->Push(&answer);
|
| - return;
|
| - }
|
| -
|
| - Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
|
| - if (variable != NULL) {
|
| - // Delete of an unqualified identifier is disallowed in strict mode
|
| - // but "delete this" is.
|
| - ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this());
|
| - Slot* slot = variable->AsSlot();
|
| - if (variable->is_global()) {
|
| - LoadGlobal();
|
| - frame_->Push(variable->name());
|
| - frame_->Push(Smi::FromInt(kNonStrictMode));
|
| - Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
|
| - CALL_FUNCTION, 3);
|
| - frame_->Push(&answer);
|
| -
|
| - } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
|
| - // Call the runtime to delete from the context holding the named
|
| - // variable. Sync the virtual frame eagerly so we can push the
|
| - // arguments directly into place.
|
| - frame_->SyncRange(0, frame_->element_count() - 1);
|
| - frame_->EmitPush(esi);
|
| - frame_->EmitPush(Immediate(variable->name()));
|
| - Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2);
|
| - frame_->Push(&answer);
|
| - } else {
|
| - // Default: Result of deleting non-global, not dynamically
|
| - // introduced variables is false.
|
| - frame_->Push(FACTORY->false_value());
|
| - }
|
| - } else {
|
| - // Default: Result of deleting expressions is true.
|
| - Load(node->expression()); // may have side-effects
|
| - frame_->SetElementAt(0, FACTORY->true_value());
|
| - }
|
| -
|
| - } else if (op == Token::TYPEOF) {
|
| - // Special case for loading the typeof expression; see comment on
|
| - // LoadTypeofExpression().
|
| - LoadTypeofExpression(node->expression());
|
| - Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
|
| - frame_->Push(&answer);
|
| -
|
| - } else if (op == Token::VOID) {
|
| - Expression* expression = node->expression();
|
| - if (expression && expression->AsLiteral() && (
|
| - expression->AsLiteral()->IsTrue() ||
|
| - expression->AsLiteral()->IsFalse() ||
|
| - expression->AsLiteral()->handle()->IsNumber() ||
|
| - expression->AsLiteral()->handle()->IsString() ||
|
| - expression->AsLiteral()->handle()->IsJSRegExp() ||
|
| - expression->AsLiteral()->IsNull())) {
|
| - // Omit evaluating the value of the primitive literal.
|
| - // It will be discarded anyway, and can have no side effect.
|
| - frame_->Push(FACTORY->undefined_value());
|
| - } else {
|
| - Load(node->expression());
|
| - frame_->SetElementAt(0, FACTORY->undefined_value());
|
| - }
|
| -
|
| - } else {
|
| - if (in_safe_int32_mode()) {
|
| - Visit(node->expression());
|
| - Result value = frame_->Pop();
|
| - ASSERT(value.is_untagged_int32());
|
| - // Registers containing an int32 value are not multiply used.
|
| - ASSERT(!value.is_register() || !frame_->is_used(value.reg()));
|
| - value.ToRegister();
|
| - switch (op) {
|
| - case Token::SUB: {
|
| - __ neg(value.reg());
|
| - frame_->Push(&value);
|
| - if (node->no_negative_zero()) {
|
| - // -MIN_INT is MIN_INT with the overflow flag set.
|
| - unsafe_bailout_->Branch(overflow);
|
| - } else {
|
| - // MIN_INT and 0 both have bad negations. They both have 31 zeros.
|
| - __ test(value.reg(), Immediate(0x7FFFFFFF));
|
| - unsafe_bailout_->Branch(zero);
|
| - }
|
| - break;
|
| - }
|
| - case Token::BIT_NOT: {
|
| - __ not_(value.reg());
|
| - frame_->Push(&value);
|
| - break;
|
| - }
|
| - case Token::ADD: {
|
| - // Unary plus has no effect on int32 values.
|
| - frame_->Push(&value);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - } else {
|
| - Load(node->expression());
|
| - bool can_overwrite = node->expression()->ResultOverwriteAllowed();
|
| - UnaryOverwriteMode overwrite =
|
| - can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
|
| - bool no_negative_zero = node->expression()->no_negative_zero();
|
| - switch (op) {
|
| - case Token::NOT:
|
| - case Token::DELETE:
|
| - case Token::TYPEOF:
|
| - UNREACHABLE(); // handled above
|
| - break;
|
| -
|
| - case Token::SUB: {
|
| - GenericUnaryOpStub stub(
|
| - Token::SUB,
|
| - overwrite,
|
| - NO_UNARY_FLAGS,
|
| - no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
|
| - Result operand = frame_->Pop();
|
| - Result answer = frame_->CallStub(&stub, &operand);
|
| - answer.set_type_info(TypeInfo::Number());
|
| - frame_->Push(&answer);
|
| - break;
|
| - }
|
| - case Token::BIT_NOT: {
|
| - // Smi check.
|
| - JumpTarget smi_label;
|
| - JumpTarget continue_label;
|
| - Result operand = frame_->Pop();
|
| - TypeInfo operand_info = operand.type_info();
|
| - operand.ToRegister();
|
| - if (operand_info.IsSmi()) {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg());
|
| - frame_->Spill(operand.reg());
|
| - // Set smi tag bit. It will be reset by the not operation.
|
| - __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask));
|
| - __ not_(operand.reg());
|
| - Result answer = operand;
|
| - answer.set_type_info(TypeInfo::Smi());
|
| - frame_->Push(&answer);
|
| - } else {
|
| - __ test(operand.reg(), Immediate(kSmiTagMask));
|
| - smi_label.Branch(zero, &operand, taken);
|
| -
|
| - GenericUnaryOpStub stub(Token::BIT_NOT,
|
| - overwrite,
|
| - NO_UNARY_SMI_CODE_IN_STUB);
|
| - Result answer = frame_->CallStub(&stub, &operand);
|
| - continue_label.Jump(&answer);
|
| -
|
| - smi_label.Bind(&answer);
|
| - answer.ToRegister();
|
| - frame_->Spill(answer.reg());
|
| - // Set smi tag bit. It will be reset by the not operation.
|
| - __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask));
|
| - __ not_(answer.reg());
|
| -
|
| - continue_label.Bind(&answer);
|
| - answer.set_type_info(TypeInfo::Integer32());
|
| - frame_->Push(&answer);
|
| - }
|
| - break;
|
| - }
|
| - case Token::ADD: {
|
| - // Smi check.
|
| - JumpTarget continue_label;
|
| - Result operand = frame_->Pop();
|
| - TypeInfo operand_info = operand.type_info();
|
| - operand.ToRegister();
|
| - __ test(operand.reg(), Immediate(kSmiTagMask));
|
| - continue_label.Branch(zero, &operand, taken);
|
| -
|
| - frame_->Push(&operand);
|
| - Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
|
| - CALL_FUNCTION, 1);
|
| -
|
| - continue_label.Bind(&answer);
|
| - if (operand_info.IsSmi()) {
|
| - answer.set_type_info(TypeInfo::Smi());
|
| - } else if (operand_info.IsInteger32()) {
|
| - answer.set_type_info(TypeInfo::Integer32());
|
| - } else {
|
| - answer.set_type_info(TypeInfo::Number());
|
| - }
|
| - frame_->Push(&answer);
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// The value in dst was optimistically incremented or decremented. The
|
| -// result overflowed or was not smi tagged. Undo the operation, call
|
| -// into the runtime to convert the argument to a number, and call the
|
| -// specialized add or subtract stub. The result is left in dst.
|
| -class DeferredPrefixCountOperation: public DeferredCode {
|
| - public:
|
| - DeferredPrefixCountOperation(Register dst,
|
| - bool is_increment,
|
| - TypeInfo input_type)
|
| - : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
|
| - set_comment("[ DeferredCountOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - bool is_increment_;
|
| - TypeInfo input_type_;
|
| -};
|
| -
|
| -
|
| -void DeferredPrefixCountOperation::Generate() {
|
| - // Undo the optimistic smi operation.
|
| - if (is_increment_) {
|
| - __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
|
| - } else {
|
| - __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
|
| - }
|
| - Register left;
|
| - if (input_type_.IsNumber()) {
|
| - left = dst_;
|
| - } else {
|
| - __ push(dst_);
|
| - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
|
| - left = eax;
|
| - }
|
| -
|
| - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
|
| - NO_OVERWRITE,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - TypeInfo::Number());
|
| - stub.GenerateCall(masm_, left, Smi::FromInt(1));
|
| -
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -// The value in dst was optimistically incremented or decremented. The
|
| -// result overflowed or was not smi tagged. Undo the operation and call
|
| -// into the runtime to convert the argument to a number. Update the
|
| -// original value in old. Call the specialized add or subtract stub.
|
| -// The result is left in dst.
|
| -class DeferredPostfixCountOperation: public DeferredCode {
|
| - public:
|
| - DeferredPostfixCountOperation(Register dst,
|
| - Register old,
|
| - bool is_increment,
|
| - TypeInfo input_type)
|
| - : dst_(dst),
|
| - old_(old),
|
| - is_increment_(is_increment),
|
| - input_type_(input_type) {
|
| - set_comment("[ DeferredCountOperation");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - private:
|
| - Register dst_;
|
| - Register old_;
|
| - bool is_increment_;
|
| - TypeInfo input_type_;
|
| -};
|
| -
|
| -
|
| -void DeferredPostfixCountOperation::Generate() {
|
| - // Undo the optimistic smi operation.
|
| - if (is_increment_) {
|
| - __ sub(Operand(dst_), Immediate(Smi::FromInt(1)));
|
| - } else {
|
| - __ add(Operand(dst_), Immediate(Smi::FromInt(1)));
|
| - }
|
| - Register left;
|
| - if (input_type_.IsNumber()) {
|
| - __ push(dst_); // Save the input to use as the old value.
|
| - left = dst_;
|
| - } else {
|
| - __ push(dst_);
|
| - __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
|
| - __ push(eax); // Save the result of ToNumber to use as the old value.
|
| - left = eax;
|
| - }
|
| -
|
| - GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
|
| - NO_OVERWRITE,
|
| - NO_GENERIC_BINARY_FLAGS,
|
| - TypeInfo::Number());
|
| - stub.GenerateCall(masm_, left, Smi::FromInt(1));
|
| -
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| - __ pop(old_);
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCountOperation(CountOperation* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ CountOperation");
|
| -
|
| - bool is_postfix = node->is_postfix();
|
| - bool is_increment = node->op() == Token::INC;
|
| -
|
| - Variable* var = node->expression()->AsVariableProxy()->AsVariable();
|
| - bool is_const = (var != NULL && var->mode() == Variable::CONST);
|
| -
|
| - // Postfix operations need a stack slot under the reference to hold
|
| - // the old value while the new value is being stored. This is so that
|
| - // in the case that storing the new value requires a call, the old
|
| - // value will be in the frame to be spilled.
|
| - if (is_postfix) frame_->Push(Smi::FromInt(0));
|
| -
|
| - // A constant reference is not saved to, so a constant reference is not a
|
| - // compound assignment reference.
|
| - { Reference target(this, node->expression(), !is_const);
|
| - if (target.is_illegal()) {
|
| - // Spoof the virtual frame to have the expected height (one higher
|
| - // than on entry).
|
| - if (!is_postfix) frame_->Push(Smi::FromInt(0));
|
| - return;
|
| - }
|
| - target.TakeValue();
|
| -
|
| - Result new_value = frame_->Pop();
|
| - new_value.ToRegister();
|
| -
|
| - Result old_value; // Only allocated in the postfix case.
|
| - if (is_postfix) {
|
| - // Allocate a temporary to preserve the old value.
|
| - old_value = allocator_->Allocate();
|
| - ASSERT(old_value.is_valid());
|
| - __ mov(old_value.reg(), new_value.reg());
|
| -
|
| - // The return value for postfix operations is ToNumber(input).
|
| - // Keep more precise type info if the input is some kind of
|
| - // number already. If the input is not a number we have to wait
|
| - // for the deferred code to convert it.
|
| - if (new_value.type_info().IsNumber()) {
|
| - old_value.set_type_info(new_value.type_info());
|
| - }
|
| - }
|
| -
|
| - // Ensure the new value is writable.
|
| - frame_->Spill(new_value.reg());
|
| -
|
| - Result tmp;
|
| - if (new_value.is_smi()) {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg());
|
| - } else {
|
| - // We don't know statically if the input is a smi.
|
| - // In order to combine the overflow and the smi tag check, we need
|
| - // to be able to allocate a byte register. We attempt to do so
|
| - // without spilling. If we fail, we will generate separate overflow
|
| - // and smi tag checks.
|
| - // We allocate and clear a temporary byte register before performing
|
| - // the count operation since clearing the register using xor will clear
|
| - // the overflow flag.
|
| - tmp = allocator_->AllocateByteRegisterWithoutSpilling();
|
| - if (tmp.is_valid()) {
|
| - __ Set(tmp.reg(), Immediate(0));
|
| - }
|
| - }
|
| -
|
| - if (is_increment) {
|
| - __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
|
| - } else {
|
| - __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1)));
|
| - }
|
| -
|
| - DeferredCode* deferred = NULL;
|
| - if (is_postfix) {
|
| - deferred = new DeferredPostfixCountOperation(new_value.reg(),
|
| - old_value.reg(),
|
| - is_increment,
|
| - new_value.type_info());
|
| - } else {
|
| - deferred = new DeferredPrefixCountOperation(new_value.reg(),
|
| - is_increment,
|
| - new_value.type_info());
|
| - }
|
| -
|
| - if (new_value.is_smi()) {
|
| - // In case we have a smi as input just check for overflow.
|
| - deferred->Branch(overflow);
|
| - } else {
|
| - // If the count operation didn't overflow and the result is a valid
|
| - // smi, we're done. Otherwise, we jump to the deferred slow-case
|
| - // code.
|
| - // We combine the overflow and the smi tag check if we could
|
| - // successfully allocate a temporary byte register.
|
| - if (tmp.is_valid()) {
|
| - __ setcc(overflow, tmp.reg());
|
| - __ or_(Operand(tmp.reg()), new_value.reg());
|
| - __ test(tmp.reg(), Immediate(kSmiTagMask));
|
| - tmp.Unuse();
|
| - deferred->Branch(not_zero);
|
| - } else {
|
| - // Otherwise we test separately for overflow and smi tag.
|
| - deferred->Branch(overflow);
|
| - __ test(new_value.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - }
|
| - }
|
| - deferred->BindExit();
|
| -
|
| - // Postfix count operations return their input converted to
|
| - // number. The case when the input is already a number is covered
|
| - // above in the allocation code for old_value.
|
| - if (is_postfix && !new_value.type_info().IsNumber()) {
|
| - old_value.set_type_info(TypeInfo::Number());
|
| - }
|
| -
|
| - // The result of ++ or -- is an Integer32 if the
|
| - // input is a smi. Otherwise it is a number.
|
| - if (new_value.is_smi()) {
|
| - new_value.set_type_info(TypeInfo::Integer32());
|
| - } else {
|
| - new_value.set_type_info(TypeInfo::Number());
|
| - }
|
| -
|
| - // Postfix: store the old value in the allocated slot under the
|
| - // reference.
|
| - if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
|
| -
|
| - frame_->Push(&new_value);
|
| - // Non-constant: update the reference.
|
| - if (!is_const) target.SetValue(NOT_CONST_INIT);
|
| - }
|
| -
|
| - // Postfix: drop the new value and use the old.
|
| - if (is_postfix) frame_->Drop();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) {
|
| - Token::Value op = node->op();
|
| - Comment cmnt(masm_, "[ Int32BinaryOperation");
|
| - ASSERT(in_safe_int32_mode());
|
| - ASSERT(safe_int32_mode_enabled());
|
| - ASSERT(FLAG_safe_int32_compiler);
|
| -
|
| - if (op == Token::COMMA) {
|
| - // Discard left value.
|
| - frame_->Nip(1);
|
| - return;
|
| - }
|
| -
|
| - Result right = frame_->Pop();
|
| - Result left = frame_->Pop();
|
| -
|
| - ASSERT(right.is_untagged_int32());
|
| - ASSERT(left.is_untagged_int32());
|
| - // Registers containing an int32 value are not multiply used.
|
| - ASSERT(!left.is_register() || !frame_->is_used(left.reg()));
|
| - ASSERT(!right.is_register() || !frame_->is_used(right.reg()));
|
| -
|
| - switch (op) {
|
| - case Token::COMMA:
|
| - case Token::OR:
|
| - case Token::AND:
|
| - UNREACHABLE();
|
| - break;
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND:
|
| - if (left.is_constant() || right.is_constant()) {
|
| - int32_t value; // Put constant in value, non-constant in left.
|
| - // Constants are known to be int32 values, from static analysis,
|
| - // or else will be converted to int32 by implicit ECMA [[ToInt32]].
|
| - if (left.is_constant()) {
|
| - ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
|
| - value = NumberToInt32(*left.handle());
|
| - left = right;
|
| - } else {
|
| - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
|
| - value = NumberToInt32(*right.handle());
|
| - }
|
| -
|
| - left.ToRegister();
|
| - if (op == Token::BIT_OR) {
|
| - __ or_(Operand(left.reg()), Immediate(value));
|
| - } else if (op == Token::BIT_XOR) {
|
| - __ xor_(Operand(left.reg()), Immediate(value));
|
| - } else {
|
| - ASSERT(op == Token::BIT_AND);
|
| - __ and_(Operand(left.reg()), Immediate(value));
|
| - }
|
| - } else {
|
| - ASSERT(left.is_register());
|
| - ASSERT(right.is_register());
|
| - if (op == Token::BIT_OR) {
|
| - __ or_(left.reg(), Operand(right.reg()));
|
| - } else if (op == Token::BIT_XOR) {
|
| - __ xor_(left.reg(), Operand(right.reg()));
|
| - } else {
|
| - ASSERT(op == Token::BIT_AND);
|
| - __ and_(left.reg(), Operand(right.reg()));
|
| - }
|
| - }
|
| - frame_->Push(&left);
|
| - right.Unuse();
|
| - break;
|
| - case Token::SAR:
|
| - case Token::SHL:
|
| - case Token::SHR: {
|
| - bool test_shr_overflow = false;
|
| - left.ToRegister();
|
| - if (right.is_constant()) {
|
| - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
|
| - int shift_amount = NumberToInt32(*right.handle()) & 0x1F;
|
| - if (op == Token::SAR) {
|
| - __ sar(left.reg(), shift_amount);
|
| - } else if (op == Token::SHL) {
|
| - __ shl(left.reg(), shift_amount);
|
| - } else {
|
| - ASSERT(op == Token::SHR);
|
| - __ shr(left.reg(), shift_amount);
|
| - if (shift_amount == 0) test_shr_overflow = true;
|
| - }
|
| - } else {
|
| - // Move right to ecx
|
| - if (left.is_register() && left.reg().is(ecx)) {
|
| - right.ToRegister();
|
| - __ xchg(left.reg(), right.reg());
|
| - left = right; // Left is unused here, copy of right unused by Push.
|
| - } else {
|
| - right.ToRegister(ecx);
|
| - left.ToRegister();
|
| - }
|
| - if (op == Token::SAR) {
|
| - __ sar_cl(left.reg());
|
| - } else if (op == Token::SHL) {
|
| - __ shl_cl(left.reg());
|
| - } else {
|
| - ASSERT(op == Token::SHR);
|
| - __ shr_cl(left.reg());
|
| - test_shr_overflow = true;
|
| - }
|
| - }
|
| - {
|
| - Register left_reg = left.reg();
|
| - frame_->Push(&left);
|
| - right.Unuse();
|
| - if (test_shr_overflow && !node->to_int32()) {
|
| - // Uint32 results with top bit set are not Int32 values.
|
| - // If they will be forced to Int32, skip the test.
|
| - // Test is needed because shr with shift amount 0 does not set flags.
|
| - __ test(left_reg, Operand(left_reg));
|
| - unsafe_bailout_->Branch(sign);
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - if ((left.is_constant() && op != Token::SUB) || right.is_constant()) {
|
| - int32_t value; // Put constant in value, non-constant in left.
|
| - if (right.is_constant()) {
|
| - ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber());
|
| - value = NumberToInt32(*right.handle());
|
| - } else {
|
| - ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber());
|
| - value = NumberToInt32(*left.handle());
|
| - left = right;
|
| - }
|
| -
|
| - left.ToRegister();
|
| - if (op == Token::ADD) {
|
| - __ add(Operand(left.reg()), Immediate(value));
|
| - } else if (op == Token::SUB) {
|
| - __ sub(Operand(left.reg()), Immediate(value));
|
| - } else {
|
| - ASSERT(op == Token::MUL);
|
| - __ imul(left.reg(), left.reg(), value);
|
| - }
|
| - } else {
|
| - left.ToRegister();
|
| - ASSERT(left.is_register());
|
| - ASSERT(right.is_register());
|
| - if (op == Token::ADD) {
|
| - __ add(left.reg(), Operand(right.reg()));
|
| - } else if (op == Token::SUB) {
|
| - __ sub(left.reg(), Operand(right.reg()));
|
| - } else {
|
| - ASSERT(op == Token::MUL);
|
| - // We have statically verified that a negative zero can be ignored.
|
| - __ imul(left.reg(), Operand(right.reg()));
|
| - }
|
| - }
|
| - right.Unuse();
|
| - frame_->Push(&left);
|
| - if (!node->to_int32() || op == Token::MUL) {
|
| - // If ToInt32 is called on the result of ADD, SUB, we don't
|
| - // care about overflows.
|
| - // Result of MUL can be non-representable precisely in double so
|
| - // we have to check for overflow.
|
| - unsafe_bailout_->Branch(overflow);
|
| - }
|
| - break;
|
| - case Token::DIV:
|
| - case Token::MOD: {
|
| - if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) {
|
| - if (left.is_register() && left.reg().is(edi)) {
|
| - right.ToRegister(ebx);
|
| - } else {
|
| - right.ToRegister(edi);
|
| - }
|
| - }
|
| - left.ToRegister(eax);
|
| - Result edx_reg = allocator_->Allocate(edx);
|
| - right.ToRegister();
|
| - // The results are unused here because BreakTarget::Branch cannot handle
|
| - // live results.
|
| - Register right_reg = right.reg();
|
| - left.Unuse();
|
| - right.Unuse();
|
| - edx_reg.Unuse();
|
| - __ cmp(right_reg, 0);
|
| - // Ensure divisor is positive: no chance of non-int32 or -0 result.
|
| - unsafe_bailout_->Branch(less_equal);
|
| - __ cdq(); // Sign-extend eax into edx:eax
|
| - __ idiv(right_reg);
|
| - if (op == Token::MOD) {
|
| - // Negative zero can arise as a negative divident with a zero result.
|
| - if (!node->no_negative_zero()) {
|
| - Label not_negative_zero;
|
| - __ test(edx, Operand(edx));
|
| - __ j(not_zero, ¬_negative_zero);
|
| - __ test(eax, Operand(eax));
|
| - unsafe_bailout_->Branch(negative);
|
| - __ bind(¬_negative_zero);
|
| - }
|
| - Result edx_result(edx, TypeInfo::Integer32());
|
| - edx_result.set_untagged_int32(true);
|
| - frame_->Push(&edx_result);
|
| - } else {
|
| - ASSERT(op == Token::DIV);
|
| - __ test(edx, Operand(edx));
|
| - unsafe_bailout_->Branch(not_equal);
|
| - Result eax_result(eax, TypeInfo::Integer32());
|
| - eax_result.set_untagged_int32(true);
|
| - frame_->Push(&eax_result);
|
| - }
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
|
| - // According to ECMA-262 section 11.11, page 58, the binary logical
|
| - // operators must yield the result of one of the two expressions
|
| - // before any ToBoolean() conversions. This means that the value
|
| - // produced by a && or || operator is not necessarily a boolean.
|
| -
|
| - // NOTE: If the left hand side produces a materialized value (not
|
| - // control flow), we force the right hand side to do the same. This
|
| - // is necessary because we assume that if we get control flow on the
|
| - // last path out of an expression we got it on all paths.
|
| - if (node->op() == Token::AND) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - JumpTarget is_true;
|
| - ControlDestination dest(&is_true, destination()->false_target(), true);
|
| - LoadCondition(node->left(), &dest, false);
|
| -
|
| - if (dest.false_was_fall_through()) {
|
| - // The current false target was used as the fall-through. If
|
| - // there are no dangling jumps to is_true then the left
|
| - // subexpression was unconditionally false. Otherwise we have
|
| - // paths where we do have to evaluate the right subexpression.
|
| - if (is_true.is_linked()) {
|
| - // We need to compile the right subexpression. If the jump to
|
| - // the current false target was a forward jump then we have a
|
| - // valid frame, we have just bound the false target, and we
|
| - // have to jump around the code for the right subexpression.
|
| - if (has_valid_frame()) {
|
| - destination()->false_target()->Unuse();
|
| - destination()->false_target()->Jump();
|
| - }
|
| - is_true.Bind();
|
| - // The left subexpression compiled to control flow, so the
|
| - // right one is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| - } else {
|
| - // We have actually just jumped to or bound the current false
|
| - // target but the current control destination is not marked as
|
| - // used.
|
| - destination()->Use(false);
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // The left subexpression compiled to control flow (and is_true
|
| - // was just bound), so the right is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| -
|
| - } else {
|
| - // We have a materialized value on the frame, so we exit with
|
| - // one on all paths. There are possibly also jumps to is_true
|
| - // from nested subexpressions.
|
| - JumpTarget pop_and_continue;
|
| - JumpTarget exit;
|
| -
|
| - // Avoid popping the result if it converts to 'false' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - //
|
| - // Duplicate the TOS value. The duplicate will be popped by
|
| - // ToBoolean.
|
| - frame_->Dup();
|
| - ControlDestination dest(&pop_and_continue, &exit, true);
|
| - ToBoolean(&dest);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - frame_->Drop();
|
| -
|
| - // Compile right side expression.
|
| - is_true.Bind();
|
| - Load(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| -
|
| - } else {
|
| - ASSERT(node->op() == Token::OR);
|
| - ASSERT(!in_safe_int32_mode());
|
| - JumpTarget is_false;
|
| - ControlDestination dest(destination()->true_target(), &is_false, false);
|
| - LoadCondition(node->left(), &dest, false);
|
| -
|
| - if (dest.true_was_fall_through()) {
|
| - // The current true target was used as the fall-through. If
|
| - // there are no dangling jumps to is_false then the left
|
| - // subexpression was unconditionally true. Otherwise we have
|
| - // paths where we do have to evaluate the right subexpression.
|
| - if (is_false.is_linked()) {
|
| - // We need to compile the right subexpression. If the jump to
|
| - // the current true target was a forward jump then we have a
|
| - // valid frame, we have just bound the true target, and we
|
| - // have to jump around the code for the right subexpression.
|
| - if (has_valid_frame()) {
|
| - destination()->true_target()->Unuse();
|
| - destination()->true_target()->Jump();
|
| - }
|
| - is_false.Bind();
|
| - // The left subexpression compiled to control flow, so the
|
| - // right one is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| - } else {
|
| - // We have just jumped to or bound the current true target but
|
| - // the current control destination is not marked as used.
|
| - destination()->Use(true);
|
| - }
|
| -
|
| - } else if (dest.is_used()) {
|
| - // The left subexpression compiled to control flow (and is_false
|
| - // was just bound), so the right is free to do so as well.
|
| - LoadCondition(node->right(), destination(), false);
|
| -
|
| - } else {
|
| - // We have a materialized value on the frame, so we exit with
|
| - // one on all paths. There are possibly also jumps to is_false
|
| - // from nested subexpressions.
|
| - JumpTarget pop_and_continue;
|
| - JumpTarget exit;
|
| -
|
| - // Avoid popping the result if it converts to 'true' using the
|
| - // standard ToBoolean() conversion as described in ECMA-262,
|
| - // section 9.2, page 30.
|
| - //
|
| - // Duplicate the TOS value. The duplicate will be popped by
|
| - // ToBoolean.
|
| - frame_->Dup();
|
| - ControlDestination dest(&exit, &pop_and_continue, false);
|
| - ToBoolean(&dest);
|
| -
|
| - // Pop the result of evaluating the first part.
|
| - frame_->Drop();
|
| -
|
| - // Compile right side expression.
|
| - is_false.Bind();
|
| - Load(node->right());
|
| -
|
| - // Exit (always with a materialized value).
|
| - exit.Bind();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
|
| - Comment cmnt(masm_, "[ BinaryOperation");
|
| -
|
| - if (node->op() == Token::AND || node->op() == Token::OR) {
|
| - GenerateLogicalBooleanOperation(node);
|
| - } else if (in_safe_int32_mode()) {
|
| - Visit(node->left());
|
| - Visit(node->right());
|
| - Int32BinaryOperation(node);
|
| - } else {
|
| - // NOTE: The code below assumes that the slow cases (calls to runtime)
|
| - // never return a constant/immutable object.
|
| - OverwriteMode overwrite_mode = NO_OVERWRITE;
|
| - if (node->left()->ResultOverwriteAllowed()) {
|
| - overwrite_mode = OVERWRITE_LEFT;
|
| - } else if (node->right()->ResultOverwriteAllowed()) {
|
| - overwrite_mode = OVERWRITE_RIGHT;
|
| - }
|
| -
|
| - if (node->left()->IsTrivial()) {
|
| - Load(node->right());
|
| - Result right = frame_->Pop();
|
| - frame_->Push(node->left());
|
| - frame_->Push(&right);
|
| - } else {
|
| - Load(node->left());
|
| - Load(node->right());
|
| - }
|
| - GenericBinaryOperation(node, overwrite_mode);
|
| - }
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitThisFunction(ThisFunction* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - frame_->PushFunction();
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ CompareOperation");
|
| -
|
| - bool left_already_loaded = false;
|
| -
|
| - // Get the expressions from the node.
|
| - Expression* left = node->left();
|
| - Expression* right = node->right();
|
| - Token::Value op = node->op();
|
| - // To make typeof testing for natives implemented in JavaScript really
|
| - // efficient, we generate special code for expressions of the form:
|
| - // 'typeof <expression> == <string>'.
|
| - UnaryOperation* operation = left->AsUnaryOperation();
|
| - if ((op == Token::EQ || op == Token::EQ_STRICT) &&
|
| - (operation != NULL && operation->op() == Token::TYPEOF) &&
|
| - (right->AsLiteral() != NULL &&
|
| - right->AsLiteral()->handle()->IsString())) {
|
| - Handle<String> check(String::cast(*right->AsLiteral()->handle()));
|
| -
|
| - // Load the operand and move it to a register.
|
| - LoadTypeofExpression(operation->expression());
|
| - Result answer = frame_->Pop();
|
| - answer.ToRegister();
|
| -
|
| - if (check->Equals(HEAP->number_symbol())) {
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - destination()->true_target()->Branch(zero);
|
| - frame_->Spill(answer.reg());
|
| - __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ cmp(answer.reg(), FACTORY->heap_number_map());
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| -
|
| - } else if (check->Equals(HEAP->string_symbol())) {
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| -
|
| - // It can be an undetectable string object.
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - destination()->false_target()->Branch(not_zero);
|
| - __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE);
|
| - temp.Unuse();
|
| - answer.Unuse();
|
| - destination()->Split(below);
|
| -
|
| - } else if (check->Equals(HEAP->boolean_symbol())) {
|
| - __ cmp(answer.reg(), FACTORY->true_value());
|
| - destination()->true_target()->Branch(equal);
|
| - __ cmp(answer.reg(), FACTORY->false_value());
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| -
|
| - } else if (check->Equals(HEAP->undefined_symbol())) {
|
| - __ cmp(answer.reg(), FACTORY->undefined_value());
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| -
|
| - // It can be an undetectable object.
|
| - frame_->Spill(answer.reg());
|
| - __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - answer.Unuse();
|
| - destination()->Split(not_zero);
|
| -
|
| - } else if (check->Equals(HEAP->function_symbol())) {
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| - frame_->Spill(answer.reg());
|
| - __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
|
| - destination()->true_target()->Branch(equal);
|
| - // Regular expressions are callable so typeof == 'function'.
|
| - __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
|
| - answer.Unuse();
|
| - destination()->Split(equal);
|
| - } else if (check->Equals(HEAP->object_symbol())) {
|
| - __ test(answer.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(zero);
|
| - __ cmp(answer.reg(), FACTORY->null_value());
|
| - destination()->true_target()->Branch(equal);
|
| -
|
| - Result map = allocator()->Allocate();
|
| - ASSERT(map.is_valid());
|
| - // Regular expressions are typeof == 'function', not 'object'.
|
| - __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg());
|
| - destination()->false_target()->Branch(equal);
|
| -
|
| - // It can be an undetectable object.
|
| - __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - destination()->false_target()->Branch(not_zero);
|
| - // Do a range test for JSObject type. We can't use
|
| - // MacroAssembler::IsInstanceJSObjectType, because we are using a
|
| - // ControlDestination, so we copy its implementation here.
|
| - __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
|
| - __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE));
|
| - __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
|
| - answer.Unuse();
|
| - map.Unuse();
|
| - destination()->Split(below_equal);
|
| - } else {
|
| - // Uncommon case: typeof testing against a string literal that is
|
| - // never returned from the typeof operator.
|
| - answer.Unuse();
|
| - destination()->Goto(false);
|
| - }
|
| - return;
|
| - } else if (op == Token::LT &&
|
| - right->AsLiteral() != NULL &&
|
| - right->AsLiteral()->handle()->IsHeapNumber()) {
|
| - Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle()));
|
| - if (check->value() == 2147483648.0) { // 0x80000000.
|
| - Load(left);
|
| - left_already_loaded = true;
|
| - Result lhs = frame_->Pop();
|
| - lhs.ToRegister();
|
| - __ test(lhs.reg(), Immediate(kSmiTagMask));
|
| - destination()->true_target()->Branch(zero); // All Smis are less.
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| - __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset));
|
| - __ cmp(scratch.reg(), FACTORY->heap_number_map());
|
| - JumpTarget not_a_number;
|
| - not_a_number.Branch(not_equal, &lhs);
|
| - __ mov(scratch.reg(),
|
| - FieldOperand(lhs.reg(), HeapNumber::kExponentOffset));
|
| - __ cmp(Operand(scratch.reg()), Immediate(0xfff00000));
|
| - not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf.
|
| - const uint32_t borderline_exponent =
|
| - (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
|
| - __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent));
|
| - scratch.Unuse();
|
| - lhs.Unuse();
|
| - destination()->true_target()->Branch(less);
|
| - destination()->false_target()->Jump();
|
| -
|
| - not_a_number.Bind(&lhs);
|
| - frame_->Push(&lhs);
|
| - }
|
| - }
|
| -
|
| - Condition cc = no_condition;
|
| - bool strict = false;
|
| - switch (op) {
|
| - case Token::EQ_STRICT:
|
| - strict = true;
|
| - // Fall through
|
| - case Token::EQ:
|
| - cc = equal;
|
| - break;
|
| - case Token::LT:
|
| - cc = less;
|
| - break;
|
| - case Token::GT:
|
| - cc = greater;
|
| - break;
|
| - case Token::LTE:
|
| - cc = less_equal;
|
| - break;
|
| - case Token::GTE:
|
| - cc = greater_equal;
|
| - break;
|
| - case Token::IN: {
|
| - if (!left_already_loaded) Load(left);
|
| - Load(right);
|
| - Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
|
| - frame_->Push(&answer); // push the result
|
| - return;
|
| - }
|
| - case Token::INSTANCEOF: {
|
| - if (!left_already_loaded) Load(left);
|
| - Load(right);
|
| - InstanceofStub stub(InstanceofStub::kNoFlags);
|
| - Result answer = frame_->CallStub(&stub, 2);
|
| - answer.ToRegister();
|
| - __ test(answer.reg(), Operand(answer.reg()));
|
| - answer.Unuse();
|
| - destination()->Split(zero);
|
| - return;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - if (left->IsTrivial()) {
|
| - if (!left_already_loaded) {
|
| - Load(right);
|
| - Result right_result = frame_->Pop();
|
| - frame_->Push(left);
|
| - frame_->Push(&right_result);
|
| - } else {
|
| - Load(right);
|
| - }
|
| - } else {
|
| - if (!left_already_loaded) Load(left);
|
| - Load(right);
|
| - }
|
| - Comparison(node, cc, strict, destination());
|
| -}
|
| -
|
| -
|
| -void CodeGenerator::VisitCompareToNull(CompareToNull* node) {
|
| - ASSERT(!in_safe_int32_mode());
|
| - Comment cmnt(masm_, "[ CompareToNull");
|
| -
|
| - Load(node->expression());
|
| - Result operand = frame_->Pop();
|
| - operand.ToRegister();
|
| - __ cmp(operand.reg(), FACTORY->null_value());
|
| - if (node->is_strict()) {
|
| - operand.Unuse();
|
| - destination()->Split(equal);
|
| - } else {
|
| - // The 'null' value is only equal to 'undefined' if using non-strict
|
| - // comparisons.
|
| - destination()->true_target()->Branch(equal);
|
| - __ cmp(operand.reg(), FACTORY->undefined_value());
|
| - destination()->true_target()->Branch(equal);
|
| - __ test(operand.reg(), Immediate(kSmiTagMask));
|
| - destination()->false_target()->Branch(equal);
|
| -
|
| - // It can be an undetectable object.
|
| - // Use a scratch register in preference to spilling operand.reg().
|
| - Result temp = allocator()->Allocate();
|
| - ASSERT(temp.is_valid());
|
| - __ mov(temp.reg(),
|
| - FieldOperand(operand.reg(), HeapObject::kMapOffset));
|
| - __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset),
|
| - 1 << Map::kIsUndetectable);
|
| - temp.Unuse();
|
| - operand.Unuse();
|
| - destination()->Split(not_zero);
|
| - }
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -bool CodeGenerator::HasValidEntryRegisters() {
|
| - return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0))
|
| - && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0))
|
| - && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0))
|
| - && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0))
|
| - && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0));
|
| -}
|
| -#endif
|
| -
|
| -
|
| -// Emit a LoadIC call to get the value from receiver and leave it in
|
| -// dst.
|
| -class DeferredReferenceGetNamedValue: public DeferredCode {
|
| - public:
|
| - DeferredReferenceGetNamedValue(Register dst,
|
| - Register receiver,
|
| - Handle<String> name,
|
| - bool is_contextual)
|
| - : dst_(dst),
|
| - receiver_(receiver),
|
| - name_(name),
|
| - is_contextual_(is_contextual),
|
| - is_dont_delete_(false) {
|
| - set_comment(is_contextual
|
| - ? "[ DeferredReferenceGetNamedValue (contextual)"
|
| - : "[ DeferredReferenceGetNamedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - void set_is_dont_delete(bool value) {
|
| - ASSERT(is_contextual_);
|
| - is_dont_delete_ = value;
|
| - }
|
| -
|
| - private:
|
| - Label patch_site_;
|
| - Register dst_;
|
| - Register receiver_;
|
| - Handle<String> name_;
|
| - bool is_contextual_;
|
| - bool is_dont_delete_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceGetNamedValue::Generate() {
|
| - if (!receiver_.is(eax)) {
|
| - __ mov(eax, receiver_);
|
| - }
|
| - __ Set(ecx, Immediate(name_));
|
| - Handle<Code> ic(masm()->isolate()->builtins()->builtin(
|
| - Builtins::kLoadIC_Initialize));
|
| - RelocInfo::Mode mode = is_contextual_
|
| - ? RelocInfo::CODE_TARGET_CONTEXT
|
| - : RelocInfo::CODE_TARGET;
|
| - __ call(ic, mode);
|
| - // The call must be followed by:
|
| - // - a test eax instruction to indicate that the inobject property
|
| - // case was inlined.
|
| - // - a mov ecx or mov edx instruction to indicate that the
|
| - // contextual property load was inlined.
|
| - //
|
| - // Store the delta to the map check instruction here in the test
|
| - // instruction. Use masm_-> instead of the __ macro since the
|
| - // latter can't return a value.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - Counters* counters = masm()->isolate()->counters();
|
| - if (is_contextual_) {
|
| - masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site);
|
| - __ IncrementCounter(counters->named_load_global_inline_miss(), 1);
|
| - if (is_dont_delete_) {
|
| - __ IncrementCounter(counters->dont_delete_hint_miss(), 1);
|
| - }
|
| - } else {
|
| - masm_->test(eax, Immediate(-delta_to_patch_site));
|
| - __ IncrementCounter(counters->named_load_inline_miss(), 1);
|
| - }
|
| -
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -class DeferredReferenceGetKeyedValue: public DeferredCode {
|
| - public:
|
| - explicit DeferredReferenceGetKeyedValue(Register dst,
|
| - Register receiver,
|
| - Register key)
|
| - : dst_(dst), receiver_(receiver), key_(key) {
|
| - set_comment("[ DeferredReferenceGetKeyedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - private:
|
| - Label patch_site_;
|
| - Register dst_;
|
| - Register receiver_;
|
| - Register key_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceGetKeyedValue::Generate() {
|
| - if (!receiver_.is(eax)) {
|
| - // Register eax is available for key.
|
| - if (!key_.is(eax)) {
|
| - __ mov(eax, key_);
|
| - }
|
| - if (!receiver_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - }
|
| - } else if (!key_.is(edx)) {
|
| - // Register edx is available for receiver.
|
| - if (!receiver_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - }
|
| - if (!key_.is(eax)) {
|
| - __ mov(eax, key_);
|
| - }
|
| - } else {
|
| - __ xchg(edx, eax);
|
| - }
|
| - // Calculate the delta from the IC call instruction to the map check
|
| - // cmp instruction in the inlined version. This delta is stored in
|
| - // a test(eax, delta) instruction after the call so that we can find
|
| - // it in the IC initialization code and patch the cmp instruction.
|
| - // This means that we cannot allow test instructions after calls to
|
| - // KeyedLoadIC stubs in other places.
|
| - Handle<Code> ic(masm()->isolate()->builtins()->builtin(
|
| - Builtins::kKeyedLoadIC_Initialize));
|
| - __ call(ic, RelocInfo::CODE_TARGET);
|
| - // The delta from the start of the map-compare instruction to the
|
| - // test instruction. We use masm_-> directly here instead of the __
|
| - // macro because the macro sometimes uses macro expansion to turn
|
| - // into something that can't return a value. This is encountered
|
| - // when doing generated code coverage tests.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - masm_->test(eax, Immediate(-delta_to_patch_site));
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_load_inline_miss(), 1);
|
| -
|
| - if (!dst_.is(eax)) __ mov(dst_, eax);
|
| -}
|
| -
|
| -
|
| -class DeferredReferenceSetKeyedValue: public DeferredCode {
|
| - public:
|
| - DeferredReferenceSetKeyedValue(Register value,
|
| - Register key,
|
| - Register receiver,
|
| - Register scratch,
|
| - StrictModeFlag strict_mode)
|
| - : value_(value),
|
| - key_(key),
|
| - receiver_(receiver),
|
| - scratch_(scratch),
|
| - strict_mode_(strict_mode) {
|
| - set_comment("[ DeferredReferenceSetKeyedValue");
|
| - }
|
| -
|
| - virtual void Generate();
|
| -
|
| - Label* patch_site() { return &patch_site_; }
|
| -
|
| - private:
|
| - Register value_;
|
| - Register key_;
|
| - Register receiver_;
|
| - Register scratch_;
|
| - Label patch_site_;
|
| - StrictModeFlag strict_mode_;
|
| -};
|
| -
|
| -
|
| -void DeferredReferenceSetKeyedValue::Generate() {
|
| - Counters* counters = masm()->isolate()->counters();
|
| - __ IncrementCounter(counters->keyed_store_inline_miss(), 1);
|
| - // Move value_ to eax, key_ to ecx, and receiver_ to edx.
|
| - Register old_value = value_;
|
| -
|
| - // First, move value to eax.
|
| - if (!value_.is(eax)) {
|
| - if (key_.is(eax)) {
|
| - // Move key_ out of eax, preferably to ecx.
|
| - if (!value_.is(ecx) && !receiver_.is(ecx)) {
|
| - __ mov(ecx, key_);
|
| - key_ = ecx;
|
| - } else {
|
| - __ mov(scratch_, key_);
|
| - key_ = scratch_;
|
| - }
|
| - }
|
| - if (receiver_.is(eax)) {
|
| - // Move receiver_ out of eax, preferably to edx.
|
| - if (!value_.is(edx) && !key_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - receiver_ = edx;
|
| - } else {
|
| - // Both moves to scratch are from eax, also, no valid path hits both.
|
| - __ mov(scratch_, receiver_);
|
| - receiver_ = scratch_;
|
| - }
|
| - }
|
| - __ mov(eax, value_);
|
| - value_ = eax;
|
| - }
|
| -
|
| - // Now value_ is in eax. Move the other two to the right positions.
|
| - // We do not update the variables key_ and receiver_ to ecx and edx.
|
| - if (key_.is(ecx)) {
|
| - if (!receiver_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - }
|
| - } else if (key_.is(edx)) {
|
| - if (receiver_.is(ecx)) {
|
| - __ xchg(edx, ecx);
|
| - } else {
|
| - __ mov(ecx, key_);
|
| - if (!receiver_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - }
|
| - }
|
| - } else { // Key is not in edx or ecx.
|
| - if (!receiver_.is(edx)) {
|
| - __ mov(edx, receiver_);
|
| - }
|
| - __ mov(ecx, key_);
|
| - }
|
| -
|
| - // Call the IC stub.
|
| - Handle<Code> ic(masm()->isolate()->builtins()->builtin(
|
| - (strict_mode_ == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict
|
| - : Builtins::kKeyedStoreIC_Initialize));
|
| - __ call(ic, RelocInfo::CODE_TARGET);
|
| - // The delta from the start of the map-compare instruction to the
|
| - // test instruction. We use masm_-> directly here instead of the
|
| - // __ macro because the macro sometimes uses macro expansion to turn
|
| - // into something that can't return a value. This is encountered
|
| - // when doing generated code coverage tests.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
|
| - // Here we use masm_-> instead of the __ macro because this is the
|
| - // instruction that gets patched and coverage code gets in the way.
|
| - masm_->test(eax, Immediate(-delta_to_patch_site));
|
| - // Restore value (returned from store IC) register.
|
| - if (!old_value.is(eax)) __ mov(old_value, eax);
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| -
|
| - Isolate* isolate = masm()->isolate();
|
| - Factory* factory = isolate->factory();
|
| - Counters* counters = isolate->counters();
|
| -
|
| - bool contextual_load_in_builtin =
|
| - is_contextual &&
|
| - (isolate->bootstrapper()->IsActive() ||
|
| - (!info_->closure().is_null() && info_->closure()->IsBuiltin()));
|
| -
|
| - Result result;
|
| - // Do not inline in the global code or when not in loop.
|
| - if (scope()->is_global_scope() ||
|
| - loop_nesting() == 0 ||
|
| - contextual_load_in_builtin) {
|
| - Comment cmnt(masm(), "[ Load from named Property");
|
| - frame()->Push(name);
|
| -
|
| - RelocInfo::Mode mode = is_contextual
|
| - ? RelocInfo::CODE_TARGET_CONTEXT
|
| - : RelocInfo::CODE_TARGET;
|
| - result = frame()->CallLoadIC(mode);
|
| - // A test eax instruction following the call signals that the inobject
|
| - // property case was inlined. Ensure that there is not a test eax
|
| - // instruction here.
|
| - __ nop();
|
| - } else {
|
| - // Inline the property load.
|
| - Comment cmnt(masm(), is_contextual
|
| - ? "[ Inlined contextual property load"
|
| - : "[ Inlined named property load");
|
| - Result receiver = frame()->Pop();
|
| - receiver.ToRegister();
|
| -
|
| - result = allocator()->Allocate();
|
| - ASSERT(result.is_valid());
|
| - DeferredReferenceGetNamedValue* deferred =
|
| - new DeferredReferenceGetNamedValue(result.reg(),
|
| - receiver.reg(),
|
| - name,
|
| - is_contextual);
|
| -
|
| - if (!is_contextual) {
|
| - // Check that the receiver is a heap object.
|
| - __ test(receiver.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(zero);
|
| - }
|
| -
|
| - __ bind(deferred->patch_site());
|
| - // This is the map check instruction that will be patched (so we can't
|
| - // use the double underscore macro that may insert instructions).
|
| - // Initially use an invalid map to force a failure.
|
| - masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - Immediate(factory->null_value()));
|
| - // This branch is always a forwards branch so it's always a fixed size
|
| - // which allows the assert below to succeed and patching to work.
|
| - deferred->Branch(not_equal);
|
| -
|
| - // The delta from the patch label to the actual load must be
|
| - // statically known.
|
| - ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
|
| - LoadIC::kOffsetToLoadInstruction);
|
| -
|
| - if (is_contextual) {
|
| - // Load the (initialy invalid) cell and get its value.
|
| - masm()->mov(result.reg(), factory->null_value());
|
| - if (FLAG_debug_code) {
|
| - __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
|
| - factory->global_property_cell_map());
|
| - __ Assert(equal, "Uninitialized inlined contextual load");
|
| - }
|
| - __ mov(result.reg(),
|
| - FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset));
|
| - __ cmp(result.reg(), factory->the_hole_value());
|
| - deferred->Branch(equal);
|
| - bool is_dont_delete = false;
|
| - if (!info_->closure().is_null()) {
|
| - // When doing lazy compilation we can check if the global cell
|
| - // already exists and use its "don't delete" status as a hint.
|
| - AssertNoAllocation no_gc;
|
| - v8::internal::GlobalObject* global_object =
|
| - info_->closure()->context()->global();
|
| - LookupResult lookup;
|
| - global_object->LocalLookupRealNamedProperty(*name, &lookup);
|
| - if (lookup.IsProperty() && lookup.type() == NORMAL) {
|
| - ASSERT(lookup.holder() == global_object);
|
| - ASSERT(global_object->property_dictionary()->ValueAt(
|
| - lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell());
|
| - is_dont_delete = lookup.IsDontDelete();
|
| - }
|
| - }
|
| - deferred->set_is_dont_delete(is_dont_delete);
|
| - if (!is_dont_delete) {
|
| - __ cmp(result.reg(), factory->the_hole_value());
|
| - deferred->Branch(equal);
|
| - } else if (FLAG_debug_code) {
|
| - __ cmp(result.reg(), factory->the_hole_value());
|
| - __ Check(not_equal, "DontDelete cells can't contain the hole");
|
| - }
|
| - __ IncrementCounter(counters->named_load_global_inline(), 1);
|
| - if (is_dont_delete) {
|
| - __ IncrementCounter(counters->dont_delete_hint_hit(), 1);
|
| - }
|
| - } else {
|
| - // The initial (invalid) offset has to be large enough to force a 32-bit
|
| - // instruction encoding to allow patching with an arbitrary offset. Use
|
| - // kMaxInt (minus kHeapObjectTag).
|
| - int offset = kMaxInt;
|
| - masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset));
|
| - __ IncrementCounter(counters->named_load_inline(), 1);
|
| - }
|
| -
|
| - deferred->BindExit();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 1);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) {
|
| -#ifdef DEBUG
|
| - int expected_height = frame()->height() - (is_contextual ? 1 : 2);
|
| -#endif
|
| -
|
| - Result result;
|
| - if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) {
|
| - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
|
| - // A test eax instruction following the call signals that the inobject
|
| - // property case was inlined. Ensure that there is not a test eax
|
| - // instruction here.
|
| - __ nop();
|
| - } else {
|
| - // Inline the in-object property case.
|
| - JumpTarget slow, done;
|
| - Label patch_site;
|
| -
|
| - // Get the value and receiver from the stack.
|
| - Result value = frame()->Pop();
|
| - value.ToRegister();
|
| - Result receiver = frame()->Pop();
|
| - receiver.ToRegister();
|
| -
|
| - // Allocate result register.
|
| - result = allocator()->Allocate();
|
| - ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid());
|
| -
|
| - // Check that the receiver is a heap object.
|
| - __ test(receiver.reg(), Immediate(kSmiTagMask));
|
| - slow.Branch(zero, &value, &receiver);
|
| -
|
| - // This is the map check instruction that will be patched (so we can't
|
| - // use the double underscore macro that may insert instructions).
|
| - // Initially use an invalid map to force a failure.
|
| - __ bind(&patch_site);
|
| - masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->null_value()));
|
| - // This branch is always a forwards branch so it's always a fixed size
|
| - // which allows the assert below to succeed and patching to work.
|
| - slow.Branch(not_equal, &value, &receiver);
|
| -
|
| - // The delta from the patch label to the store offset must be
|
| - // statically known.
|
| - ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) ==
|
| - StoreIC::kOffsetToStoreInstruction);
|
| -
|
| - // The initial (invalid) offset has to be large enough to force a 32-bit
|
| - // instruction encoding to allow patching with an arbitrary offset. Use
|
| - // kMaxInt (minus kHeapObjectTag).
|
| - int offset = kMaxInt;
|
| - __ mov(FieldOperand(receiver.reg(), offset), value.reg());
|
| - __ mov(result.reg(), Operand(value.reg()));
|
| -
|
| - // Allocate scratch register for write barrier.
|
| - Result scratch = allocator()->Allocate();
|
| - ASSERT(scratch.is_valid());
|
| -
|
| - // The write barrier clobbers all input registers, so spill the
|
| - // receiver and the value.
|
| - frame_->Spill(receiver.reg());
|
| - frame_->Spill(value.reg());
|
| -
|
| - // If the receiver and the value share a register allocate a new
|
| - // register for the receiver.
|
| - if (receiver.reg().is(value.reg())) {
|
| - receiver = allocator()->Allocate();
|
| - ASSERT(receiver.is_valid());
|
| - __ mov(receiver.reg(), Operand(value.reg()));
|
| - }
|
| -
|
| - // Update the write barrier. To save instructions in the inlined
|
| - // version we do not filter smis.
|
| - Label skip_write_barrier;
|
| - __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier);
|
| - int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site);
|
| - __ lea(scratch.reg(), Operand(receiver.reg(), offset));
|
| - __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg());
|
| - if (FLAG_debug_code) {
|
| - __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue)));
|
| - __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue)));
|
| - __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue)));
|
| - }
|
| - __ bind(&skip_write_barrier);
|
| - value.Unuse();
|
| - scratch.Unuse();
|
| - receiver.Unuse();
|
| - done.Jump(&result);
|
| -
|
| - slow.Bind(&value, &receiver);
|
| - frame()->Push(&receiver);
|
| - frame()->Push(&value);
|
| - result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag());
|
| - // Encode the offset to the map check instruction and the offset
|
| - // to the write barrier store address computation in a test eax
|
| - // instruction.
|
| - int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site);
|
| - __ test(eax,
|
| - Immediate((delta_to_record_write << 16) | delta_to_patch_site));
|
| - done.Bind(&result);
|
| - }
|
| -
|
| - ASSERT_EQ(expected_height, frame()->height());
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitKeyedLoad() {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Result result;
|
| - // Inline array load code if inside of a loop. We do not know the
|
| - // receiver map yet, so we initially generate the code with a check
|
| - // against an invalid map. In the inline cache code, we patch the map
|
| - // check if appropriate.
|
| - if (loop_nesting() > 0) {
|
| - Comment cmnt(masm_, "[ Inlined load from keyed Property");
|
| -
|
| - // Use a fresh temporary to load the elements without destroying
|
| - // the receiver which is needed for the deferred slow case.
|
| - Result elements = allocator()->Allocate();
|
| - ASSERT(elements.is_valid());
|
| -
|
| - Result key = frame_->Pop();
|
| - Result receiver = frame_->Pop();
|
| - key.ToRegister();
|
| - receiver.ToRegister();
|
| -
|
| - // If key and receiver are shared registers on the frame, their values will
|
| - // be automatically saved and restored when going to deferred code.
|
| - // The result is in elements, which is guaranteed non-shared.
|
| - DeferredReferenceGetKeyedValue* deferred =
|
| - new DeferredReferenceGetKeyedValue(elements.reg(),
|
| - receiver.reg(),
|
| - key.reg());
|
| -
|
| - __ test(receiver.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(zero);
|
| -
|
| - // Check that the receiver has the expected map.
|
| - // Initially, use an invalid map. The map is patched in the IC
|
| - // initialization code.
|
| - __ bind(deferred->patch_site());
|
| - // Use masm-> here instead of the double underscore macro since extra
|
| - // coverage code can interfere with the patching.
|
| - masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->null_value()));
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Check that the key is a smi.
|
| - if (!key.is_smi()) {
|
| - __ test(key.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
|
| - }
|
| -
|
| - // Get the elements array from the receiver.
|
| - __ mov(elements.reg(),
|
| - FieldOperand(receiver.reg(), JSObject::kElementsOffset));
|
| - __ AssertFastElements(elements.reg());
|
| -
|
| - // Check that the key is within bounds.
|
| - __ cmp(key.reg(),
|
| - FieldOperand(elements.reg(), FixedArray::kLengthOffset));
|
| - deferred->Branch(above_equal);
|
| -
|
| - // Load and check that the result is not the hole.
|
| - // Key holds a smi.
|
| - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
| - __ mov(elements.reg(),
|
| - FieldOperand(elements.reg(),
|
| - key.reg(),
|
| - times_2,
|
| - FixedArray::kHeaderSize));
|
| - result = elements;
|
| - __ cmp(Operand(result.reg()), Immediate(FACTORY->the_hole_value()));
|
| - deferred->Branch(equal);
|
| - __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), 1);
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - Comment cmnt(masm_, "[ Load from keyed Property");
|
| - result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET);
|
| - // Make sure that we do not have a test instruction after the
|
| - // call. A test instruction after the call is used to
|
| - // indicate that we have generated an inline version of the
|
| - // keyed load. The explicit nop instruction is here because
|
| - // the push that follows might be peep-hole optimized away.
|
| - __ nop();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 2);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Result CodeGenerator::EmitKeyedStore(StaticType* key_type) {
|
| -#ifdef DEBUG
|
| - int original_height = frame()->height();
|
| -#endif
|
| - Result result;
|
| - // Generate inlined version of the keyed store if the code is in a loop
|
| - // and the key is likely to be a smi.
|
| - if (loop_nesting() > 0 && key_type->IsLikelySmi()) {
|
| - Comment cmnt(masm(), "[ Inlined store to keyed Property");
|
| -
|
| - // Get the receiver, key and value into registers.
|
| - result = frame()->Pop();
|
| - Result key = frame()->Pop();
|
| - Result receiver = frame()->Pop();
|
| -
|
| - Result tmp = allocator_->Allocate();
|
| - ASSERT(tmp.is_valid());
|
| - Result tmp2 = allocator_->Allocate();
|
| - ASSERT(tmp2.is_valid());
|
| -
|
| - // Determine whether the value is a constant before putting it in a
|
| - // register.
|
| - bool value_is_constant = result.is_constant();
|
| -
|
| - // Make sure that value, key and receiver are in registers.
|
| - result.ToRegister();
|
| - key.ToRegister();
|
| - receiver.ToRegister();
|
| -
|
| - DeferredReferenceSetKeyedValue* deferred =
|
| - new DeferredReferenceSetKeyedValue(result.reg(),
|
| - key.reg(),
|
| - receiver.reg(),
|
| - tmp.reg(),
|
| - strict_mode_flag());
|
| -
|
| - // Check that the receiver is not a smi.
|
| - __ test(receiver.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(zero);
|
| -
|
| - // Check that the key is a smi.
|
| - if (!key.is_smi()) {
|
| - __ test(key.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - } else {
|
| - if (FLAG_debug_code) __ AbortIfNotSmi(key.reg());
|
| - }
|
| -
|
| - // Check that the receiver is a JSArray.
|
| - __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg());
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Get the elements array from the receiver and check that it is not a
|
| - // dictionary.
|
| - __ mov(tmp.reg(),
|
| - FieldOperand(receiver.reg(), JSArray::kElementsOffset));
|
| -
|
| - // Check whether it is possible to omit the write barrier. If the elements
|
| - // array is in new space or the value written is a smi we can safely update
|
| - // the elements array without write barrier.
|
| - Label in_new_space;
|
| - __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space);
|
| - if (!value_is_constant) {
|
| - __ test(result.reg(), Immediate(kSmiTagMask));
|
| - deferred->Branch(not_zero);
|
| - }
|
| -
|
| - __ bind(&in_new_space);
|
| - // Bind the deferred code patch site to be able to locate the fixed
|
| - // array map comparison. When debugging, we patch this comparison to
|
| - // always fail so that we will hit the IC call in the deferred code
|
| - // which will allow the debugger to break for fast case stores.
|
| - __ bind(deferred->patch_site());
|
| - __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
|
| - Immediate(FACTORY->fixed_array_map()));
|
| - deferred->Branch(not_equal);
|
| -
|
| - // Check that the key is within bounds. Both the key and the length of
|
| - // the JSArray are smis (because the fixed array check above ensures the
|
| - // elements are in fast case). Use unsigned comparison to handle negative
|
| - // keys.
|
| - __ cmp(key.reg(),
|
| - FieldOperand(receiver.reg(), JSArray::kLengthOffset));
|
| - deferred->Branch(above_equal);
|
| -
|
| - // Store the value.
|
| - __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg());
|
| - __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), 1);
|
| -
|
| - deferred->BindExit();
|
| - } else {
|
| - result = frame()->CallKeyedStoreIC(strict_mode_flag());
|
| - // Make sure that we do not have a test instruction after the
|
| - // call. A test instruction after the call is used to
|
| - // indicate that we have generated an inline version of the
|
| - // keyed store.
|
| - __ nop();
|
| - }
|
| - ASSERT(frame()->height() == original_height - 3);
|
| - return result;
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -#define __ ACCESS_MASM(masm)
|
| -
|
| -
|
| -Handle<String> Reference::GetName() {
|
| - ASSERT(type_ == NAMED);
|
| - Property* property = expression_->AsProperty();
|
| - if (property == NULL) {
|
| - // Global variable reference treated as a named property reference.
|
| - VariableProxy* proxy = expression_->AsVariableProxy();
|
| - ASSERT(proxy->AsVariable() != NULL);
|
| - ASSERT(proxy->AsVariable()->is_global());
|
| - return proxy->name();
|
| - } else {
|
| - Literal* raw_name = property->key()->AsLiteral();
|
| - ASSERT(raw_name != NULL);
|
| - return Handle<String>::cast(raw_name->handle());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::GetValue() {
|
| - ASSERT(!cgen_->in_spilled_code());
|
| - ASSERT(cgen_->HasValidEntryRegisters());
|
| - ASSERT(!is_illegal());
|
| - MacroAssembler* masm = cgen_->masm();
|
| -
|
| - // Record the source position for the property load.
|
| - Property* property = expression_->AsProperty();
|
| - if (property != NULL) {
|
| - cgen_->CodeForSourcePosition(property->position());
|
| - }
|
| -
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Load from Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
|
| - if (!persist_after_get_) set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - Variable* var = expression_->AsVariableProxy()->AsVariable();
|
| - bool is_global = var != NULL;
|
| - ASSERT(!is_global || var->is_global());
|
| - if (persist_after_get_) cgen_->frame()->Dup();
|
| - Result result = cgen_->EmitNamedLoad(GetName(), is_global);
|
| - if (!persist_after_get_) set_unloaded();
|
| - cgen_->frame()->Push(&result);
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - if (persist_after_get_) {
|
| - cgen_->frame()->PushElementAt(1);
|
| - cgen_->frame()->PushElementAt(1);
|
| - }
|
| - Result value = cgen_->EmitKeyedLoad();
|
| - cgen_->frame()->Push(&value);
|
| - if (!persist_after_get_) set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Reference::TakeValue() {
|
| - // For non-constant frame-allocated slots, we invalidate the value in the
|
| - // slot. For all others, we fall back on GetValue.
|
| - ASSERT(!cgen_->in_spilled_code());
|
| - ASSERT(!is_illegal());
|
| - if (type_ != SLOT) {
|
| - GetValue();
|
| - return;
|
| - }
|
| -
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - if (slot->type() == Slot::LOOKUP ||
|
| - slot->type() == Slot::CONTEXT ||
|
| - slot->var()->mode() == Variable::CONST ||
|
| - slot->is_arguments()) {
|
| - GetValue();
|
| - return;
|
| - }
|
| -
|
| - // Only non-constant, frame-allocated parameters and locals can
|
| - // reach here. Be careful not to use the optimizations for arguments
|
| - // object access since it may not have been initialized yet.
|
| - ASSERT(!slot->is_arguments());
|
| - if (slot->type() == Slot::PARAMETER) {
|
| - cgen_->frame()->TakeParameterAt(slot->index());
|
| - } else {
|
| - ASSERT(slot->type() == Slot::LOCAL);
|
| - cgen_->frame()->TakeLocalAt(slot->index());
|
| - }
|
| -
|
| - ASSERT(persist_after_get_);
|
| - // Do not unload the reference, because it is used in SetValue.
|
| -}
|
| -
|
| -
|
| -void Reference::SetValue(InitState init_state) {
|
| - ASSERT(cgen_->HasValidEntryRegisters());
|
| - ASSERT(!is_illegal());
|
| - MacroAssembler* masm = cgen_->masm();
|
| - switch (type_) {
|
| - case SLOT: {
|
| - Comment cmnt(masm, "[ Store to Slot");
|
| - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot();
|
| - ASSERT(slot != NULL);
|
| - cgen_->StoreToSlot(slot, init_state);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case NAMED: {
|
| - Comment cmnt(masm, "[ Store to named Property");
|
| - Result answer = cgen_->EmitNamedStore(GetName(), false);
|
| - cgen_->frame()->Push(&answer);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case KEYED: {
|
| - Comment cmnt(masm, "[ Store to keyed Property");
|
| - Property* property = expression()->AsProperty();
|
| - ASSERT(property != NULL);
|
| -
|
| - Result answer = cgen_->EmitKeyedStore(property->key()->type());
|
| - cgen_->frame()->Push(&answer);
|
| - set_unloaded();
|
| - break;
|
| - }
|
| -
|
| - case UNLOADED:
|
| - case ILLEGAL:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -#undef __
|
| -
|
| #define __ masm.
|
|
|
| -
|
| static void MemCopyWrapper(void* dest, const void* src, size_t size) {
|
| memcpy(dest, src, size);
|
| }
|
|
|