OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
(...skipping 10 matching lines...) Expand all Loading... |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #include "v8.h" | 28 #include "v8.h" |
29 | 29 |
30 #if defined(V8_TARGET_ARCH_IA32) | 30 #if defined(V8_TARGET_ARCH_IA32) |
31 | 31 |
32 #include "codegen-inl.h" | 32 #include "codegen.h" |
33 #include "bootstrapper.h" | |
34 #include "code-stubs.h" | |
35 #include "compiler.h" | |
36 #include "debug.h" | |
37 #include "ic-inl.h" | |
38 #include "parser.h" | |
39 #include "regexp-macro-assembler.h" | |
40 #include "register-allocator-inl.h" | |
41 #include "scopes.h" | |
42 #include "virtual-frame-inl.h" | |
43 | 33 |
44 namespace v8 { | 34 namespace v8 { |
45 namespace internal { | 35 namespace internal { |
46 | 36 |
47 #define __ ACCESS_MASM(masm) | |
48 | |
49 // ------------------------------------------------------------------------- | |
50 // Platform-specific FrameRegisterState functions. | |
51 | |
52 void FrameRegisterState::Save(MacroAssembler* masm) const { | |
53 for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { | |
54 int action = registers_[i]; | |
55 if (action == kPush) { | |
56 __ push(RegisterAllocator::ToRegister(i)); | |
57 } else if (action != kIgnore && (action & kSyncedFlag) == 0) { | |
58 __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); | |
59 } | |
60 } | |
61 } | |
62 | |
63 | |
64 void FrameRegisterState::Restore(MacroAssembler* masm) const { | |
65 // Restore registers in reverse order due to the stack. | |
66 for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { | |
67 int action = registers_[i]; | |
68 if (action == kPush) { | |
69 __ pop(RegisterAllocator::ToRegister(i)); | |
70 } else if (action != kIgnore) { | |
71 action &= ~kSyncedFlag; | |
72 __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); | |
73 } | |
74 } | |
75 } | |
76 | |
77 | |
78 #undef __ | |
79 #define __ ACCESS_MASM(masm_) | |
80 | |
81 // ------------------------------------------------------------------------- | |
82 // Platform-specific DeferredCode functions. | |
83 | |
84 void DeferredCode::SaveRegisters() { | |
85 frame_state_.Save(masm_); | |
86 } | |
87 | |
88 | |
89 void DeferredCode::RestoreRegisters() { | |
90 frame_state_.Restore(masm_); | |
91 } | |
92 | |
93 | 37 |
94 // ------------------------------------------------------------------------- | 38 // ------------------------------------------------------------------------- |
95 // Platform-specific RuntimeCallHelper functions. | 39 // Platform-specific RuntimeCallHelper functions. |
96 | 40 |
97 void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { | |
98 frame_state_->Save(masm); | |
99 } | |
100 | |
101 | |
102 void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { | |
103 frame_state_->Restore(masm); | |
104 } | |
105 | |
106 | |
107 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { | 41 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
108 masm->EnterInternalFrame(); | 42 masm->EnterInternalFrame(); |
109 } | 43 } |
110 | 44 |
111 | 45 |
112 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { | 46 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
113 masm->LeaveInternalFrame(); | 47 masm->LeaveInternalFrame(); |
114 } | 48 } |
115 | 49 |
116 | 50 |
117 // ------------------------------------------------------------------------- | |
118 // CodeGenState implementation. | |
119 | |
120 CodeGenState::CodeGenState(CodeGenerator* owner) | |
121 : owner_(owner), | |
122 destination_(NULL), | |
123 previous_(NULL) { | |
124 owner_->set_state(this); | |
125 } | |
126 | |
127 | |
128 CodeGenState::CodeGenState(CodeGenerator* owner, | |
129 ControlDestination* destination) | |
130 : owner_(owner), | |
131 destination_(destination), | |
132 previous_(owner->state()) { | |
133 owner_->set_state(this); | |
134 } | |
135 | |
136 | |
137 CodeGenState::~CodeGenState() { | |
138 ASSERT(owner_->state() == this); | |
139 owner_->set_state(previous_); | |
140 } | |
141 | |
142 // ------------------------------------------------------------------------- | |
143 // CodeGenerator implementation. | |
144 | |
145 CodeGenerator::CodeGenerator(MacroAssembler* masm) | |
146 : deferred_(8), | |
147 masm_(masm), | |
148 info_(NULL), | |
149 frame_(NULL), | |
150 allocator_(NULL), | |
151 state_(NULL), | |
152 loop_nesting_(0), | |
153 in_safe_int32_mode_(false), | |
154 safe_int32_mode_enabled_(true), | |
155 function_return_is_shadowed_(false), | |
156 in_spilled_code_(false), | |
157 jit_cookie_((FLAG_mask_constants_with_cookie) ? | |
158 V8::RandomPrivate(Isolate::Current()) : 0) { | |
159 } | |
160 | |
161 | |
162 // Calling conventions: | |
163 // ebp: caller's frame pointer | |
164 // esp: stack pointer | |
165 // edi: called JS function | |
166 // esi: callee's context | |
167 | |
168 void CodeGenerator::Generate(CompilationInfo* info) { | |
169 // Record the position for debugging purposes. | |
170 CodeForFunctionPosition(info->function()); | |
171 Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); | |
172 | |
173 // Initialize state. | |
174 info_ = info; | |
175 ASSERT(allocator_ == NULL); | |
176 RegisterAllocator register_allocator(this); | |
177 allocator_ = ®ister_allocator; | |
178 ASSERT(frame_ == NULL); | |
179 frame_ = new VirtualFrame(); | |
180 set_in_spilled_code(false); | |
181 | |
182 // Adjust for function-level loop nesting. | |
183 ASSERT_EQ(0, loop_nesting_); | |
184 loop_nesting_ = info->is_in_loop() ? 1 : 0; | |
185 | |
186 masm()->isolate()->set_jump_target_compiling_deferred_code(false); | |
187 | |
188 { | |
189 CodeGenState state(this); | |
190 | |
191 // Entry: | |
192 // Stack: receiver, arguments, return address. | |
193 // ebp: caller's frame pointer | |
194 // esp: stack pointer | |
195 // edi: called JS function | |
196 // esi: callee's context | |
197 allocator_->Initialize(); | |
198 | |
199 #ifdef DEBUG | |
200 if (strlen(FLAG_stop_at) > 0 && | |
201 info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { | |
202 frame_->SpillAll(); | |
203 __ int3(); | |
204 } | |
205 #endif | |
206 | |
207 frame_->Enter(); | |
208 | |
209 // Allocate space for locals and initialize them. | |
210 frame_->AllocateStackSlots(); | |
211 | |
212 // Allocate the local context if needed. | |
213 int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | |
214 if (heap_slots > 0) { | |
215 Comment cmnt(masm_, "[ allocate local context"); | |
216 // Allocate local context. | |
217 // Get outer context and create a new context based on it. | |
218 frame_->PushFunction(); | |
219 Result context; | |
220 if (heap_slots <= FastNewContextStub::kMaximumSlots) { | |
221 FastNewContextStub stub(heap_slots); | |
222 context = frame_->CallStub(&stub, 1); | |
223 } else { | |
224 context = frame_->CallRuntime(Runtime::kNewContext, 1); | |
225 } | |
226 | |
227 // Update context local. | |
228 frame_->SaveContextRegister(); | |
229 | |
230 // Verify that the runtime call result and esi agree. | |
231 if (FLAG_debug_code) { | |
232 __ cmp(context.reg(), Operand(esi)); | |
233 __ Assert(equal, "Runtime::NewContext should end up in esi"); | |
234 } | |
235 } | |
236 | |
237 // TODO(1241774): Improve this code: | |
238 // 1) only needed if we have a context | |
239 // 2) no need to recompute context ptr every single time | |
240 // 3) don't copy parameter operand code from SlotOperand! | |
241 { | |
242 Comment cmnt2(masm_, "[ copy context parameters into .context"); | |
243 // Note that iteration order is relevant here! If we have the same | |
244 // parameter twice (e.g., function (x, y, x)), and that parameter | |
245 // needs to be copied into the context, it must be the last argument | |
246 // passed to the parameter that needs to be copied. This is a rare | |
247 // case so we don't check for it, instead we rely on the copying | |
248 // order: such a parameter is copied repeatedly into the same | |
249 // context location and thus the last value is what is seen inside | |
250 // the function. | |
251 for (int i = 0; i < scope()->num_parameters(); i++) { | |
252 Variable* par = scope()->parameter(i); | |
253 Slot* slot = par->AsSlot(); | |
254 if (slot != NULL && slot->type() == Slot::CONTEXT) { | |
255 // The use of SlotOperand below is safe in unspilled code | |
256 // because the slot is guaranteed to be a context slot. | |
257 // | |
258 // There are no parameters in the global scope. | |
259 ASSERT(!scope()->is_global_scope()); | |
260 frame_->PushParameterAt(i); | |
261 Result value = frame_->Pop(); | |
262 value.ToRegister(); | |
263 | |
264 // SlotOperand loads context.reg() with the context object | |
265 // stored to, used below in RecordWrite. | |
266 Result context = allocator_->Allocate(); | |
267 ASSERT(context.is_valid()); | |
268 __ mov(SlotOperand(slot, context.reg()), value.reg()); | |
269 int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; | |
270 Result scratch = allocator_->Allocate(); | |
271 ASSERT(scratch.is_valid()); | |
272 frame_->Spill(context.reg()); | |
273 frame_->Spill(value.reg()); | |
274 __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); | |
275 } | |
276 } | |
277 } | |
278 | |
279 // Store the arguments object. This must happen after context | |
280 // initialization because the arguments object may be stored in | |
281 // the context. | |
282 if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { | |
283 StoreArgumentsObject(true); | |
284 } | |
285 | |
286 // Initialize ThisFunction reference if present. | |
287 if (scope()->is_function_scope() && scope()->function() != NULL) { | |
288 frame_->Push(FACTORY->the_hole_value()); | |
289 StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); | |
290 } | |
291 | |
292 | |
293 // Initialize the function return target after the locals are set | |
294 // up, because it needs the expected frame height from the frame. | |
295 function_return_.set_direction(JumpTarget::BIDIRECTIONAL); | |
296 function_return_is_shadowed_ = false; | |
297 | |
298 // Generate code to 'execute' declarations and initialize functions | |
299 // (source elements). In case of an illegal redeclaration we need to | |
300 // handle that instead of processing the declarations. | |
301 if (scope()->HasIllegalRedeclaration()) { | |
302 Comment cmnt(masm_, "[ illegal redeclarations"); | |
303 scope()->VisitIllegalRedeclaration(this); | |
304 } else { | |
305 Comment cmnt(masm_, "[ declarations"); | |
306 ProcessDeclarations(scope()->declarations()); | |
307 // Bail out if a stack-overflow exception occurred when processing | |
308 // declarations. | |
309 if (HasStackOverflow()) return; | |
310 } | |
311 | |
312 if (FLAG_trace) { | |
313 frame_->CallRuntime(Runtime::kTraceEnter, 0); | |
314 // Ignore the return value. | |
315 } | |
316 CheckStack(); | |
317 | |
318 // Compile the body of the function in a vanilla state. Don't | |
319 // bother compiling all the code if the scope has an illegal | |
320 // redeclaration. | |
321 if (!scope()->HasIllegalRedeclaration()) { | |
322 Comment cmnt(masm_, "[ function body"); | |
323 #ifdef DEBUG | |
324 bool is_builtin = info->isolate()->bootstrapper()->IsActive(); | |
325 bool should_trace = | |
326 is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; | |
327 if (should_trace) { | |
328 frame_->CallRuntime(Runtime::kDebugTrace, 0); | |
329 // Ignore the return value. | |
330 } | |
331 #endif | |
332 VisitStatements(info->function()->body()); | |
333 | |
334 // Handle the return from the function. | |
335 if (has_valid_frame()) { | |
336 // If there is a valid frame, control flow can fall off the end of | |
337 // the body. In that case there is an implicit return statement. | |
338 ASSERT(!function_return_is_shadowed_); | |
339 CodeForReturnPosition(info->function()); | |
340 frame_->PrepareForReturn(); | |
341 Result undefined(FACTORY->undefined_value()); | |
342 if (function_return_.is_bound()) { | |
343 function_return_.Jump(&undefined); | |
344 } else { | |
345 function_return_.Bind(&undefined); | |
346 GenerateReturnSequence(&undefined); | |
347 } | |
348 } else if (function_return_.is_linked()) { | |
349 // If the return target has dangling jumps to it, then we have not | |
350 // yet generated the return sequence. This can happen when (a) | |
351 // control does not flow off the end of the body so we did not | |
352 // compile an artificial return statement just above, and (b) there | |
353 // are return statements in the body but (c) they are all shadowed. | |
354 Result return_value; | |
355 function_return_.Bind(&return_value); | |
356 GenerateReturnSequence(&return_value); | |
357 } | |
358 } | |
359 } | |
360 | |
361 // Adjust for function-level loop nesting. | |
362 ASSERT_EQ(loop_nesting_, info->is_in_loop() ? 1 : 0); | |
363 loop_nesting_ = 0; | |
364 | |
365 // Code generation state must be reset. | |
366 ASSERT(state_ == NULL); | |
367 ASSERT(!function_return_is_shadowed_); | |
368 function_return_.Unuse(); | |
369 DeleteFrame(); | |
370 | |
371 // Process any deferred code using the register allocator. | |
372 if (!HasStackOverflow()) { | |
373 info->isolate()->set_jump_target_compiling_deferred_code(true); | |
374 ProcessDeferred(); | |
375 info->isolate()->set_jump_target_compiling_deferred_code(false); | |
376 } | |
377 | |
378 // There is no need to delete the register allocator, it is a | |
379 // stack-allocated local. | |
380 allocator_ = NULL; | |
381 } | |
382 | |
383 | |
384 Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { | |
385 // Currently, this assertion will fail if we try to assign to | |
386 // a constant variable that is constant because it is read-only | |
387 // (such as the variable referring to a named function expression). | |
388 // We need to implement assignments to read-only variables. | |
389 // Ideally, we should do this during AST generation (by converting | |
390 // such assignments into expression statements); however, in general | |
391 // we may not be able to make the decision until past AST generation, | |
392 // that is when the entire program is known. | |
393 ASSERT(slot != NULL); | |
394 int index = slot->index(); | |
395 switch (slot->type()) { | |
396 case Slot::PARAMETER: | |
397 return frame_->ParameterAt(index); | |
398 | |
399 case Slot::LOCAL: | |
400 return frame_->LocalAt(index); | |
401 | |
402 case Slot::CONTEXT: { | |
403 // Follow the context chain if necessary. | |
404 ASSERT(!tmp.is(esi)); // do not overwrite context register | |
405 Register context = esi; | |
406 int chain_length = scope()->ContextChainLength(slot->var()->scope()); | |
407 for (int i = 0; i < chain_length; i++) { | |
408 // Load the closure. | |
409 // (All contexts, even 'with' contexts, have a closure, | |
410 // and it is the same for all contexts inside a function. | |
411 // There is no need to go to the function context first.) | |
412 __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); | |
413 // Load the function context (which is the incoming, outer context). | |
414 __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); | |
415 context = tmp; | |
416 } | |
417 // We may have a 'with' context now. Get the function context. | |
418 // (In fact this mov may never be the needed, since the scope analysis | |
419 // may not permit a direct context access in this case and thus we are | |
420 // always at a function context. However it is safe to dereference be- | |
421 // cause the function context of a function context is itself. Before | |
422 // deleting this mov we should try to create a counter-example first, | |
423 // though...) | |
424 __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); | |
425 return ContextOperand(tmp, index); | |
426 } | |
427 | |
428 default: | |
429 UNREACHABLE(); | |
430 return Operand(eax); | |
431 } | |
432 } | |
433 | |
434 | |
435 Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, | |
436 Result tmp, | |
437 JumpTarget* slow) { | |
438 ASSERT(slot->type() == Slot::CONTEXT); | |
439 ASSERT(tmp.is_register()); | |
440 Register context = esi; | |
441 | |
442 for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { | |
443 if (s->num_heap_slots() > 0) { | |
444 if (s->calls_eval()) { | |
445 // Check that extension is NULL. | |
446 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), | |
447 Immediate(0)); | |
448 slow->Branch(not_equal, not_taken); | |
449 } | |
450 __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); | |
451 __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); | |
452 context = tmp.reg(); | |
453 } | |
454 } | |
455 // Check that last extension is NULL. | |
456 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); | |
457 slow->Branch(not_equal, not_taken); | |
458 __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); | |
459 return ContextOperand(tmp.reg(), slot->index()); | |
460 } | |
461 | |
462 | |
463 // Emit code to load the value of an expression to the top of the | |
464 // frame. If the expression is boolean-valued it may be compiled (or | |
465 // partially compiled) into control flow to the control destination. | |
466 // If force_control is true, control flow is forced. | |
467 void CodeGenerator::LoadCondition(Expression* expr, | |
468 ControlDestination* dest, | |
469 bool force_control) { | |
470 ASSERT(!in_spilled_code()); | |
471 int original_height = frame_->height(); | |
472 | |
473 { CodeGenState new_state(this, dest); | |
474 Visit(expr); | |
475 | |
476 // If we hit a stack overflow, we may not have actually visited | |
477 // the expression. In that case, we ensure that we have a | |
478 // valid-looking frame state because we will continue to generate | |
479 // code as we unwind the C++ stack. | |
480 // | |
481 // It's possible to have both a stack overflow and a valid frame | |
482 // state (eg, a subexpression overflowed, visiting it returned | |
483 // with a dummied frame state, and visiting this expression | |
484 // returned with a normal-looking state). | |
485 if (HasStackOverflow() && | |
486 !dest->is_used() && | |
487 frame_->height() == original_height) { | |
488 dest->Goto(true); | |
489 } | |
490 } | |
491 | |
492 if (force_control && !dest->is_used()) { | |
493 // Convert the TOS value into flow to the control destination. | |
494 ToBoolean(dest); | |
495 } | |
496 | |
497 ASSERT(!(force_control && !dest->is_used())); | |
498 ASSERT(dest->is_used() || frame_->height() == original_height + 1); | |
499 } | |
500 | |
501 | |
502 void CodeGenerator::LoadAndSpill(Expression* expression) { | |
503 ASSERT(in_spilled_code()); | |
504 set_in_spilled_code(false); | |
505 Load(expression); | |
506 frame_->SpillAll(); | |
507 set_in_spilled_code(true); | |
508 } | |
509 | |
510 | |
511 void CodeGenerator::LoadInSafeInt32Mode(Expression* expr, | |
512 BreakTarget* unsafe_bailout) { | |
513 set_unsafe_bailout(unsafe_bailout); | |
514 set_in_safe_int32_mode(true); | |
515 Load(expr); | |
516 Result value = frame_->Pop(); | |
517 ASSERT(frame_->HasNoUntaggedInt32Elements()); | |
518 if (expr->GuaranteedSmiResult()) { | |
519 ConvertInt32ResultToSmi(&value); | |
520 } else { | |
521 ConvertInt32ResultToNumber(&value); | |
522 } | |
523 set_in_safe_int32_mode(false); | |
524 set_unsafe_bailout(NULL); | |
525 frame_->Push(&value); | |
526 } | |
527 | |
528 | |
529 void CodeGenerator::LoadWithSafeInt32ModeDisabled(Expression* expr) { | |
530 set_safe_int32_mode_enabled(false); | |
531 Load(expr); | |
532 set_safe_int32_mode_enabled(true); | |
533 } | |
534 | |
535 | |
536 void CodeGenerator::ConvertInt32ResultToSmi(Result* value) { | |
537 ASSERT(value->is_untagged_int32()); | |
538 if (value->is_register()) { | |
539 __ add(value->reg(), Operand(value->reg())); | |
540 } else { | |
541 ASSERT(value->is_constant()); | |
542 ASSERT(value->handle()->IsSmi()); | |
543 } | |
544 value->set_untagged_int32(false); | |
545 value->set_type_info(TypeInfo::Smi()); | |
546 } | |
547 | |
548 | |
549 void CodeGenerator::ConvertInt32ResultToNumber(Result* value) { | |
550 ASSERT(value->is_untagged_int32()); | |
551 if (value->is_register()) { | |
552 Register val = value->reg(); | |
553 JumpTarget done; | |
554 __ add(val, Operand(val)); | |
555 done.Branch(no_overflow, value); | |
556 __ sar(val, 1); | |
557 // If there was an overflow, bits 30 and 31 of the original number disagree. | |
558 __ xor_(val, 0x80000000u); | |
559 if (CpuFeatures::IsSupported(SSE2)) { | |
560 CpuFeatures::Scope fscope(SSE2); | |
561 __ cvtsi2sd(xmm0, Operand(val)); | |
562 } else { | |
563 // Move val to ST[0] in the FPU | |
564 // Push and pop are safe with respect to the virtual frame because | |
565 // all synced elements are below the actual stack pointer. | |
566 __ push(val); | |
567 __ fild_s(Operand(esp, 0)); | |
568 __ pop(val); | |
569 } | |
570 Result scratch = allocator_->Allocate(); | |
571 ASSERT(scratch.is_register()); | |
572 Label allocation_failed; | |
573 __ AllocateHeapNumber(val, scratch.reg(), | |
574 no_reg, &allocation_failed); | |
575 VirtualFrame* clone = new VirtualFrame(frame_); | |
576 scratch.Unuse(); | |
577 if (CpuFeatures::IsSupported(SSE2)) { | |
578 CpuFeatures::Scope fscope(SSE2); | |
579 __ movdbl(FieldOperand(val, HeapNumber::kValueOffset), xmm0); | |
580 } else { | |
581 __ fstp_d(FieldOperand(val, HeapNumber::kValueOffset)); | |
582 } | |
583 done.Jump(value); | |
584 | |
585 // Establish the virtual frame, cloned from where AllocateHeapNumber | |
586 // jumped to allocation_failed. | |
587 RegisterFile empty_regs; | |
588 SetFrame(clone, &empty_regs); | |
589 __ bind(&allocation_failed); | |
590 if (!CpuFeatures::IsSupported(SSE2)) { | |
591 // Pop the value from the floating point stack. | |
592 __ fstp(0); | |
593 } | |
594 unsafe_bailout_->Jump(); | |
595 | |
596 done.Bind(value); | |
597 } else { | |
598 ASSERT(value->is_constant()); | |
599 } | |
600 value->set_untagged_int32(false); | |
601 value->set_type_info(TypeInfo::Integer32()); | |
602 } | |
603 | |
604 | |
605 void CodeGenerator::Load(Expression* expr) { | |
606 #ifdef DEBUG | |
607 int original_height = frame_->height(); | |
608 #endif | |
609 ASSERT(!in_spilled_code()); | |
610 | |
611 // If the expression should be a side-effect-free 32-bit int computation, | |
612 // compile that SafeInt32 path, and a bailout path. | |
613 if (!in_safe_int32_mode() && | |
614 safe_int32_mode_enabled() && | |
615 expr->side_effect_free() && | |
616 expr->num_bit_ops() > 2 && | |
617 CpuFeatures::IsSupported(SSE2)) { | |
618 BreakTarget unsafe_bailout; | |
619 JumpTarget done; | |
620 unsafe_bailout.set_expected_height(frame_->height()); | |
621 LoadInSafeInt32Mode(expr, &unsafe_bailout); | |
622 done.Jump(); | |
623 | |
624 if (unsafe_bailout.is_linked()) { | |
625 unsafe_bailout.Bind(); | |
626 LoadWithSafeInt32ModeDisabled(expr); | |
627 } | |
628 done.Bind(); | |
629 } else { | |
630 JumpTarget true_target; | |
631 JumpTarget false_target; | |
632 ControlDestination dest(&true_target, &false_target, true); | |
633 LoadCondition(expr, &dest, false); | |
634 | |
635 if (dest.false_was_fall_through()) { | |
636 // The false target was just bound. | |
637 JumpTarget loaded; | |
638 frame_->Push(FACTORY->false_value()); | |
639 // There may be dangling jumps to the true target. | |
640 if (true_target.is_linked()) { | |
641 loaded.Jump(); | |
642 true_target.Bind(); | |
643 frame_->Push(FACTORY->true_value()); | |
644 loaded.Bind(); | |
645 } | |
646 | |
647 } else if (dest.is_used()) { | |
648 // There is true, and possibly false, control flow (with true as | |
649 // the fall through). | |
650 JumpTarget loaded; | |
651 frame_->Push(FACTORY->true_value()); | |
652 if (false_target.is_linked()) { | |
653 loaded.Jump(); | |
654 false_target.Bind(); | |
655 frame_->Push(FACTORY->false_value()); | |
656 loaded.Bind(); | |
657 } | |
658 | |
659 } else { | |
660 // We have a valid value on top of the frame, but we still may | |
661 // have dangling jumps to the true and false targets from nested | |
662 // subexpressions (eg, the left subexpressions of the | |
663 // short-circuited boolean operators). | |
664 ASSERT(has_valid_frame()); | |
665 if (true_target.is_linked() || false_target.is_linked()) { | |
666 JumpTarget loaded; | |
667 loaded.Jump(); // Don't lose the current TOS. | |
668 if (true_target.is_linked()) { | |
669 true_target.Bind(); | |
670 frame_->Push(FACTORY->true_value()); | |
671 if (false_target.is_linked()) { | |
672 loaded.Jump(); | |
673 } | |
674 } | |
675 if (false_target.is_linked()) { | |
676 false_target.Bind(); | |
677 frame_->Push(FACTORY->false_value()); | |
678 } | |
679 loaded.Bind(); | |
680 } | |
681 } | |
682 } | |
683 ASSERT(has_valid_frame()); | |
684 ASSERT(frame_->height() == original_height + 1); | |
685 } | |
686 | |
687 | |
688 void CodeGenerator::LoadGlobal() { | |
689 if (in_spilled_code()) { | |
690 frame_->EmitPush(GlobalObjectOperand()); | |
691 } else { | |
692 Result temp = allocator_->Allocate(); | |
693 __ mov(temp.reg(), GlobalObjectOperand()); | |
694 frame_->Push(&temp); | |
695 } | |
696 } | |
697 | |
698 | |
699 void CodeGenerator::LoadGlobalReceiver() { | |
700 Result temp = allocator_->Allocate(); | |
701 Register reg = temp.reg(); | |
702 __ mov(reg, GlobalObjectOperand()); | |
703 __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); | |
704 frame_->Push(&temp); | |
705 } | |
706 | |
707 | |
708 void CodeGenerator::LoadTypeofExpression(Expression* expr) { | |
709 // Special handling of identifiers as subexpressions of typeof. | |
710 Variable* variable = expr->AsVariableProxy()->AsVariable(); | |
711 if (variable != NULL && !variable->is_this() && variable->is_global()) { | |
712 // For a global variable we build the property reference | |
713 // <global>.<variable> and perform a (regular non-contextual) property | |
714 // load to make sure we do not get reference errors. | |
715 Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); | |
716 Literal key(variable->name()); | |
717 Property property(&global, &key, RelocInfo::kNoPosition); | |
718 Reference ref(this, &property); | |
719 ref.GetValue(); | |
720 } else if (variable != NULL && variable->AsSlot() != NULL) { | |
721 // For a variable that rewrites to a slot, we signal it is the immediate | |
722 // subexpression of a typeof. | |
723 LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); | |
724 } else { | |
725 // Anything else can be handled normally. | |
726 Load(expr); | |
727 } | |
728 } | |
729 | |
730 | |
731 ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { | |
732 if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; | |
733 | |
734 // In strict mode there is no need for shadow arguments. | |
735 ASSERT(scope()->arguments_shadow() != NULL || scope()->is_strict_mode()); | |
736 | |
737 // We don't want to do lazy arguments allocation for functions that | |
738 // have heap-allocated contexts, because it interfers with the | |
739 // uninitialized const tracking in the context objects. | |
740 return (scope()->num_heap_slots() > 0 || scope()->is_strict_mode()) | |
741 ? EAGER_ARGUMENTS_ALLOCATION | |
742 : LAZY_ARGUMENTS_ALLOCATION; | |
743 } | |
744 | |
745 | |
746 Result CodeGenerator::StoreArgumentsObject(bool initial) { | |
747 ArgumentsAllocationMode mode = ArgumentsMode(); | |
748 ASSERT(mode != NO_ARGUMENTS_ALLOCATION); | |
749 | |
750 Comment cmnt(masm_, "[ store arguments object"); | |
751 if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { | |
752 // When using lazy arguments allocation, we store the arguments marker value | |
753 // as a sentinel indicating that the arguments object hasn't been | |
754 // allocated yet. | |
755 frame_->Push(FACTORY->arguments_marker()); | |
756 } else { | |
757 ArgumentsAccessStub stub(is_strict_mode() | |
758 ? ArgumentsAccessStub::NEW_STRICT | |
759 : ArgumentsAccessStub::NEW_NON_STRICT); | |
760 frame_->PushFunction(); | |
761 frame_->PushReceiverSlotAddress(); | |
762 frame_->Push(Smi::FromInt(scope()->num_parameters())); | |
763 Result result = frame_->CallStub(&stub, 3); | |
764 frame_->Push(&result); | |
765 } | |
766 | |
767 Variable* arguments = scope()->arguments(); | |
768 Variable* shadow = scope()->arguments_shadow(); | |
769 | |
770 ASSERT(arguments != NULL && arguments->AsSlot() != NULL); | |
771 ASSERT((shadow != NULL && shadow->AsSlot() != NULL) || | |
772 scope()->is_strict_mode()); | |
773 | |
774 JumpTarget done; | |
775 bool skip_arguments = false; | |
776 if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { | |
777 // We have to skip storing into the arguments slot if it has | |
778 // already been written to. This can happen if the a function | |
779 // has a local variable named 'arguments'. | |
780 LoadFromSlot(arguments->AsSlot(), NOT_INSIDE_TYPEOF); | |
781 Result probe = frame_->Pop(); | |
782 if (probe.is_constant()) { | |
783 // We have to skip updating the arguments object if it has | |
784 // been assigned a proper value. | |
785 skip_arguments = !probe.handle()->IsArgumentsMarker(); | |
786 } else { | |
787 __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker())); | |
788 probe.Unuse(); | |
789 done.Branch(not_equal); | |
790 } | |
791 } | |
792 if (!skip_arguments) { | |
793 StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); | |
794 if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); | |
795 } | |
796 if (shadow != NULL) { | |
797 StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); | |
798 } | |
799 return frame_->Pop(); | |
800 } | |
801 | |
802 //------------------------------------------------------------------------------ | |
803 // CodeGenerator implementation of variables, lookups, and stores. | |
804 | |
805 Reference::Reference(CodeGenerator* cgen, | |
806 Expression* expression, | |
807 bool persist_after_get) | |
808 : cgen_(cgen), | |
809 expression_(expression), | |
810 type_(ILLEGAL), | |
811 persist_after_get_(persist_after_get) { | |
812 cgen->LoadReference(this); | |
813 } | |
814 | |
815 | |
816 Reference::~Reference() { | |
817 ASSERT(is_unloaded() || is_illegal()); | |
818 } | |
819 | |
820 | |
821 void CodeGenerator::LoadReference(Reference* ref) { | |
822 // References are loaded from both spilled and unspilled code. Set the | |
823 // state to unspilled to allow that (and explicitly spill after | |
824 // construction at the construction sites). | |
825 bool was_in_spilled_code = in_spilled_code_; | |
826 in_spilled_code_ = false; | |
827 | |
828 Comment cmnt(masm_, "[ LoadReference"); | |
829 Expression* e = ref->expression(); | |
830 Property* property = e->AsProperty(); | |
831 Variable* var = e->AsVariableProxy()->AsVariable(); | |
832 | |
833 if (property != NULL) { | |
834 // The expression is either a property or a variable proxy that rewrites | |
835 // to a property. | |
836 Load(property->obj()); | |
837 if (property->key()->IsPropertyName()) { | |
838 ref->set_type(Reference::NAMED); | |
839 } else { | |
840 Load(property->key()); | |
841 ref->set_type(Reference::KEYED); | |
842 } | |
843 } else if (var != NULL) { | |
844 // The expression is a variable proxy that does not rewrite to a | |
845 // property. Global variables are treated as named property references. | |
846 if (var->is_global()) { | |
847 // If eax is free, the register allocator prefers it. Thus the code | |
848 // generator will load the global object into eax, which is where | |
849 // LoadIC wants it. Most uses of Reference call LoadIC directly | |
850 // after the reference is created. | |
851 frame_->Spill(eax); | |
852 LoadGlobal(); | |
853 ref->set_type(Reference::NAMED); | |
854 } else { | |
855 ASSERT(var->AsSlot() != NULL); | |
856 ref->set_type(Reference::SLOT); | |
857 } | |
858 } else { | |
859 // Anything else is a runtime error. | |
860 Load(e); | |
861 frame_->CallRuntime(Runtime::kThrowReferenceError, 1); | |
862 } | |
863 | |
864 in_spilled_code_ = was_in_spilled_code; | |
865 } | |
866 | |
867 | |
868 // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and | |
869 // convert it to a boolean in the condition code register or jump to | |
870 // 'false_target'/'true_target' as appropriate. | |
871 void CodeGenerator::ToBoolean(ControlDestination* dest) { | |
872 Comment cmnt(masm_, "[ ToBoolean"); | |
873 | |
874 // The value to convert should be popped from the frame. | |
875 Result value = frame_->Pop(); | |
876 value.ToRegister(); | |
877 | |
878 if (value.is_integer32()) { // Also takes Smi case. | |
879 Comment cmnt(masm_, "ONLY_INTEGER_32"); | |
880 if (FLAG_debug_code) { | |
881 Label ok; | |
882 __ AbortIfNotNumber(value.reg()); | |
883 __ test(value.reg(), Immediate(kSmiTagMask)); | |
884 __ j(zero, &ok); | |
885 __ fldz(); | |
886 __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); | |
887 __ FCmp(); | |
888 __ j(not_zero, &ok); | |
889 __ Abort("Smi was wrapped in HeapNumber in output from bitop"); | |
890 __ bind(&ok); | |
891 } | |
892 // In the integer32 case there are no Smis hidden in heap numbers, so we | |
893 // need only test for Smi zero. | |
894 __ test(value.reg(), Operand(value.reg())); | |
895 dest->false_target()->Branch(zero); | |
896 value.Unuse(); | |
897 dest->Split(not_zero); | |
898 } else if (value.is_number()) { | |
899 Comment cmnt(masm_, "ONLY_NUMBER"); | |
900 // Fast case if TypeInfo indicates only numbers. | |
901 if (FLAG_debug_code) { | |
902 __ AbortIfNotNumber(value.reg()); | |
903 } | |
904 // Smi => false iff zero. | |
905 STATIC_ASSERT(kSmiTag == 0); | |
906 __ test(value.reg(), Operand(value.reg())); | |
907 dest->false_target()->Branch(zero); | |
908 __ test(value.reg(), Immediate(kSmiTagMask)); | |
909 dest->true_target()->Branch(zero); | |
910 __ fldz(); | |
911 __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); | |
912 __ FCmp(); | |
913 value.Unuse(); | |
914 dest->Split(not_zero); | |
915 } else { | |
916 // Fast case checks. | |
917 // 'false' => false. | |
918 __ cmp(value.reg(), FACTORY->false_value()); | |
919 dest->false_target()->Branch(equal); | |
920 | |
921 // 'true' => true. | |
922 __ cmp(value.reg(), FACTORY->true_value()); | |
923 dest->true_target()->Branch(equal); | |
924 | |
925 // 'undefined' => false. | |
926 __ cmp(value.reg(), FACTORY->undefined_value()); | |
927 dest->false_target()->Branch(equal); | |
928 | |
929 // Smi => false iff zero. | |
930 STATIC_ASSERT(kSmiTag == 0); | |
931 __ test(value.reg(), Operand(value.reg())); | |
932 dest->false_target()->Branch(zero); | |
933 __ test(value.reg(), Immediate(kSmiTagMask)); | |
934 dest->true_target()->Branch(zero); | |
935 | |
936 // Call the stub for all other cases. | |
937 frame_->Push(&value); // Undo the Pop() from above. | |
938 ToBooleanStub stub; | |
939 Result temp = frame_->CallStub(&stub, 1); | |
940 // Convert the result to a condition code. | |
941 __ test(temp.reg(), Operand(temp.reg())); | |
942 temp.Unuse(); | |
943 dest->Split(not_equal); | |
944 } | |
945 } | |
946 | |
947 | |
948 // Perform or call the specialized stub for a binary operation. Requires the | |
949 // three registers left, right and dst to be distinct and spilled. This | |
950 // deferred operation has up to three entry points: The main one calls the | |
951 // runtime system. The second is for when the result is a non-Smi. The | |
952 // third is for when at least one of the inputs is non-Smi and we have SSE2. | |
953 class DeferredInlineBinaryOperation: public DeferredCode { | |
954 public: | |
955 DeferredInlineBinaryOperation(Token::Value op, | |
956 Register dst, | |
957 Register left, | |
958 Register right, | |
959 TypeInfo left_info, | |
960 TypeInfo right_info, | |
961 OverwriteMode mode) | |
962 : op_(op), dst_(dst), left_(left), right_(right), | |
963 left_info_(left_info), right_info_(right_info), mode_(mode) { | |
964 set_comment("[ DeferredInlineBinaryOperation"); | |
965 ASSERT(!left.is(right)); | |
966 } | |
967 | |
968 virtual void Generate(); | |
969 | |
970 // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and | |
971 // Exit(). | |
972 virtual bool AutoSaveAndRestore() { return false; } | |
973 | |
974 void JumpToAnswerOutOfRange(Condition cond); | |
975 void JumpToConstantRhs(Condition cond, Smi* smi_value); | |
976 Label* NonSmiInputLabel(); | |
977 | |
978 private: | |
979 void GenerateAnswerOutOfRange(); | |
980 void GenerateNonSmiInput(); | |
981 | |
982 Token::Value op_; | |
983 Register dst_; | |
984 Register left_; | |
985 Register right_; | |
986 TypeInfo left_info_; | |
987 TypeInfo right_info_; | |
988 OverwriteMode mode_; | |
989 Label answer_out_of_range_; | |
990 Label non_smi_input_; | |
991 Label constant_rhs_; | |
992 Smi* smi_value_; | |
993 }; | |
994 | |
995 | |
996 Label* DeferredInlineBinaryOperation::NonSmiInputLabel() { | |
997 if (Token::IsBitOp(op_) && | |
998 CpuFeatures::IsSupported(SSE2)) { | |
999 return &non_smi_input_; | |
1000 } else { | |
1001 return entry_label(); | |
1002 } | |
1003 } | |
1004 | |
1005 | |
1006 void DeferredInlineBinaryOperation::JumpToAnswerOutOfRange(Condition cond) { | |
1007 __ j(cond, &answer_out_of_range_); | |
1008 } | |
1009 | |
1010 | |
1011 void DeferredInlineBinaryOperation::JumpToConstantRhs(Condition cond, | |
1012 Smi* smi_value) { | |
1013 smi_value_ = smi_value; | |
1014 __ j(cond, &constant_rhs_); | |
1015 } | |
1016 | |
1017 | |
1018 void DeferredInlineBinaryOperation::Generate() { | |
1019 // Registers are not saved implicitly for this stub, so we should not | |
1020 // tread on the registers that were not passed to us. | |
1021 if (CpuFeatures::IsSupported(SSE2) && | |
1022 ((op_ == Token::ADD) || | |
1023 (op_ == Token::SUB) || | |
1024 (op_ == Token::MUL) || | |
1025 (op_ == Token::DIV))) { | |
1026 CpuFeatures::Scope use_sse2(SSE2); | |
1027 Label call_runtime, after_alloc_failure; | |
1028 Label left_smi, right_smi, load_right, do_op; | |
1029 if (!left_info_.IsSmi()) { | |
1030 __ test(left_, Immediate(kSmiTagMask)); | |
1031 __ j(zero, &left_smi); | |
1032 if (!left_info_.IsNumber()) { | |
1033 __ cmp(FieldOperand(left_, HeapObject::kMapOffset), | |
1034 FACTORY->heap_number_map()); | |
1035 __ j(not_equal, &call_runtime); | |
1036 } | |
1037 __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); | |
1038 if (mode_ == OVERWRITE_LEFT) { | |
1039 __ mov(dst_, left_); | |
1040 } | |
1041 __ jmp(&load_right); | |
1042 | |
1043 __ bind(&left_smi); | |
1044 } else { | |
1045 if (FLAG_debug_code) __ AbortIfNotSmi(left_); | |
1046 } | |
1047 __ SmiUntag(left_); | |
1048 __ cvtsi2sd(xmm0, Operand(left_)); | |
1049 __ SmiTag(left_); | |
1050 if (mode_ == OVERWRITE_LEFT) { | |
1051 Label alloc_failure; | |
1052 __ push(left_); | |
1053 __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); | |
1054 __ pop(left_); | |
1055 } | |
1056 | |
1057 __ bind(&load_right); | |
1058 if (!right_info_.IsSmi()) { | |
1059 __ test(right_, Immediate(kSmiTagMask)); | |
1060 __ j(zero, &right_smi); | |
1061 if (!right_info_.IsNumber()) { | |
1062 __ cmp(FieldOperand(right_, HeapObject::kMapOffset), | |
1063 FACTORY->heap_number_map()); | |
1064 __ j(not_equal, &call_runtime); | |
1065 } | |
1066 __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); | |
1067 if (mode_ == OVERWRITE_RIGHT) { | |
1068 __ mov(dst_, right_); | |
1069 } else if (mode_ == NO_OVERWRITE) { | |
1070 Label alloc_failure; | |
1071 __ push(left_); | |
1072 __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); | |
1073 __ pop(left_); | |
1074 } | |
1075 __ jmp(&do_op); | |
1076 | |
1077 __ bind(&right_smi); | |
1078 } else { | |
1079 if (FLAG_debug_code) __ AbortIfNotSmi(right_); | |
1080 } | |
1081 __ SmiUntag(right_); | |
1082 __ cvtsi2sd(xmm1, Operand(right_)); | |
1083 __ SmiTag(right_); | |
1084 if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { | |
1085 __ push(left_); | |
1086 __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); | |
1087 __ pop(left_); | |
1088 } | |
1089 | |
1090 __ bind(&do_op); | |
1091 switch (op_) { | |
1092 case Token::ADD: __ addsd(xmm0, xmm1); break; | |
1093 case Token::SUB: __ subsd(xmm0, xmm1); break; | |
1094 case Token::MUL: __ mulsd(xmm0, xmm1); break; | |
1095 case Token::DIV: __ divsd(xmm0, xmm1); break; | |
1096 default: UNREACHABLE(); | |
1097 } | |
1098 __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); | |
1099 Exit(); | |
1100 | |
1101 | |
1102 __ bind(&after_alloc_failure); | |
1103 __ pop(left_); | |
1104 __ bind(&call_runtime); | |
1105 } | |
1106 // Register spilling is not done implicitly for this stub. | |
1107 // We can't postpone it any more now though. | |
1108 SaveRegisters(); | |
1109 | |
1110 GenericBinaryOpStub stub(op_, | |
1111 mode_, | |
1112 NO_SMI_CODE_IN_STUB, | |
1113 TypeInfo::Combine(left_info_, right_info_)); | |
1114 stub.GenerateCall(masm_, left_, right_); | |
1115 if (!dst_.is(eax)) __ mov(dst_, eax); | |
1116 RestoreRegisters(); | |
1117 Exit(); | |
1118 | |
1119 if (non_smi_input_.is_linked() || constant_rhs_.is_linked()) { | |
1120 GenerateNonSmiInput(); | |
1121 } | |
1122 if (answer_out_of_range_.is_linked()) { | |
1123 GenerateAnswerOutOfRange(); | |
1124 } | |
1125 } | |
1126 | |
1127 | |
1128 void DeferredInlineBinaryOperation::GenerateNonSmiInput() { | |
1129 // We know at least one of the inputs was not a Smi. | |
1130 // This is a third entry point into the deferred code. | |
1131 // We may not overwrite left_ because we want to be able | |
1132 // to call the handling code for non-smi answer and it | |
1133 // might want to overwrite the heap number in left_. | |
1134 ASSERT(!right_.is(dst_)); | |
1135 ASSERT(!left_.is(dst_)); | |
1136 ASSERT(!left_.is(right_)); | |
1137 // This entry point is used for bit ops where the right hand side | |
1138 // is a constant Smi and the left hand side is a heap object. It | |
1139 // is also used for bit ops where both sides are unknown, but where | |
1140 // at least one of them is a heap object. | |
1141 bool rhs_is_constant = constant_rhs_.is_linked(); | |
1142 // We can't generate code for both cases. | |
1143 ASSERT(!non_smi_input_.is_linked() || !constant_rhs_.is_linked()); | |
1144 | |
1145 if (FLAG_debug_code) { | |
1146 __ int3(); // We don't fall through into this code. | |
1147 } | |
1148 | |
1149 __ bind(&non_smi_input_); | |
1150 | |
1151 if (rhs_is_constant) { | |
1152 __ bind(&constant_rhs_); | |
1153 // In this case the input is a heap object and it is in the dst_ register. | |
1154 // The left_ and right_ registers have not been initialized yet. | |
1155 __ mov(right_, Immediate(smi_value_)); | |
1156 __ mov(left_, Operand(dst_)); | |
1157 if (!CpuFeatures::IsSupported(SSE2)) { | |
1158 __ jmp(entry_label()); | |
1159 return; | |
1160 } else { | |
1161 CpuFeatures::Scope use_sse2(SSE2); | |
1162 __ JumpIfNotNumber(dst_, left_info_, entry_label()); | |
1163 __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); | |
1164 __ SmiUntag(right_); | |
1165 } | |
1166 } else { | |
1167 // We know we have SSE2 here because otherwise the label is not linked (see | |
1168 // NonSmiInputLabel). | |
1169 CpuFeatures::Scope use_sse2(SSE2); | |
1170 // Handle the non-constant right hand side situation: | |
1171 if (left_info_.IsSmi()) { | |
1172 // Right is a heap object. | |
1173 __ JumpIfNotNumber(right_, right_info_, entry_label()); | |
1174 __ ConvertToInt32(right_, right_, dst_, right_info_, entry_label()); | |
1175 __ mov(dst_, Operand(left_)); | |
1176 __ SmiUntag(dst_); | |
1177 } else if (right_info_.IsSmi()) { | |
1178 // Left is a heap object. | |
1179 __ JumpIfNotNumber(left_, left_info_, entry_label()); | |
1180 __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); | |
1181 __ SmiUntag(right_); | |
1182 } else { | |
1183 // Here we don't know if it's one or both that is a heap object. | |
1184 Label only_right_is_heap_object, got_both; | |
1185 __ mov(dst_, Operand(left_)); | |
1186 __ SmiUntag(dst_, &only_right_is_heap_object); | |
1187 // Left was a heap object. | |
1188 __ JumpIfNotNumber(left_, left_info_, entry_label()); | |
1189 __ ConvertToInt32(dst_, left_, dst_, left_info_, entry_label()); | |
1190 __ SmiUntag(right_, &got_both); | |
1191 // Both were heap objects. | |
1192 __ rcl(right_, 1); // Put tag back. | |
1193 __ JumpIfNotNumber(right_, right_info_, entry_label()); | |
1194 __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); | |
1195 __ jmp(&got_both); | |
1196 __ bind(&only_right_is_heap_object); | |
1197 __ JumpIfNotNumber(right_, right_info_, entry_label()); | |
1198 __ ConvertToInt32(right_, right_, no_reg, right_info_, entry_label()); | |
1199 __ bind(&got_both); | |
1200 } | |
1201 } | |
1202 ASSERT(op_ == Token::BIT_AND || | |
1203 op_ == Token::BIT_OR || | |
1204 op_ == Token::BIT_XOR || | |
1205 right_.is(ecx)); | |
1206 switch (op_) { | |
1207 case Token::BIT_AND: __ and_(dst_, Operand(right_)); break; | |
1208 case Token::BIT_OR: __ or_(dst_, Operand(right_)); break; | |
1209 case Token::BIT_XOR: __ xor_(dst_, Operand(right_)); break; | |
1210 case Token::SHR: __ shr_cl(dst_); break; | |
1211 case Token::SAR: __ sar_cl(dst_); break; | |
1212 case Token::SHL: __ shl_cl(dst_); break; | |
1213 default: UNREACHABLE(); | |
1214 } | |
1215 if (op_ == Token::SHR) { | |
1216 // Check that the *unsigned* result fits in a smi. Neither of | |
1217 // the two high-order bits can be set: | |
1218 // * 0x80000000: high bit would be lost when smi tagging. | |
1219 // * 0x40000000: this number would convert to negative when smi | |
1220 // tagging. | |
1221 __ test(dst_, Immediate(0xc0000000)); | |
1222 __ j(not_zero, &answer_out_of_range_); | |
1223 } else { | |
1224 // Check that the *signed* result fits in a smi. | |
1225 __ cmp(dst_, 0xc0000000); | |
1226 __ j(negative, &answer_out_of_range_); | |
1227 } | |
1228 __ SmiTag(dst_); | |
1229 Exit(); | |
1230 } | |
1231 | |
1232 | |
1233 void DeferredInlineBinaryOperation::GenerateAnswerOutOfRange() { | |
1234 Label after_alloc_failure2; | |
1235 Label allocation_ok; | |
1236 __ bind(&after_alloc_failure2); | |
1237 // We have to allocate a number, causing a GC, while keeping hold of | |
1238 // the answer in dst_. The answer is not a Smi. We can't just call the | |
1239 // runtime shift function here because we already threw away the inputs. | |
1240 __ xor_(left_, Operand(left_)); | |
1241 __ shl(dst_, 1); // Put top bit in carry flag and Smi tag the low bits. | |
1242 __ rcr(left_, 1); // Rotate with carry. | |
1243 __ push(dst_); // Smi tagged low 31 bits. | |
1244 __ push(left_); // 0 or 0x80000000, which is Smi tagged in both cases. | |
1245 __ CallRuntime(Runtime::kNumberAlloc, 0); | |
1246 if (!left_.is(eax)) { | |
1247 __ mov(left_, eax); | |
1248 } | |
1249 __ pop(right_); // High bit. | |
1250 __ pop(dst_); // Low 31 bits. | |
1251 __ shr(dst_, 1); // Put 0 in top bit. | |
1252 __ or_(dst_, Operand(right_)); | |
1253 __ jmp(&allocation_ok); | |
1254 | |
1255 // This is the second entry point to the deferred code. It is used only by | |
1256 // the bit operations. | |
1257 // The dst_ register has the answer. It is not Smi tagged. If mode_ is | |
1258 // OVERWRITE_LEFT then left_ must contain either an overwritable heap number | |
1259 // or a Smi. | |
1260 // Put a heap number pointer in left_. | |
1261 __ bind(&answer_out_of_range_); | |
1262 SaveRegisters(); | |
1263 if (mode_ == OVERWRITE_LEFT) { | |
1264 __ test(left_, Immediate(kSmiTagMask)); | |
1265 __ j(not_zero, &allocation_ok); | |
1266 } | |
1267 // This trashes right_. | |
1268 __ AllocateHeapNumber(left_, right_, no_reg, &after_alloc_failure2); | |
1269 __ bind(&allocation_ok); | |
1270 if (CpuFeatures::IsSupported(SSE2) && | |
1271 op_ != Token::SHR) { | |
1272 CpuFeatures::Scope use_sse2(SSE2); | |
1273 ASSERT(Token::IsBitOp(op_)); | |
1274 // Signed conversion. | |
1275 __ cvtsi2sd(xmm0, Operand(dst_)); | |
1276 __ movdbl(FieldOperand(left_, HeapNumber::kValueOffset), xmm0); | |
1277 } else { | |
1278 if (op_ == Token::SHR) { | |
1279 __ push(Immediate(0)); // High word of unsigned value. | |
1280 __ push(dst_); | |
1281 __ fild_d(Operand(esp, 0)); | |
1282 __ Drop(2); | |
1283 } else { | |
1284 ASSERT(Token::IsBitOp(op_)); | |
1285 __ push(dst_); | |
1286 __ fild_s(Operand(esp, 0)); // Signed conversion. | |
1287 __ pop(dst_); | |
1288 } | |
1289 __ fstp_d(FieldOperand(left_, HeapNumber::kValueOffset)); | |
1290 } | |
1291 __ mov(dst_, left_); | |
1292 RestoreRegisters(); | |
1293 Exit(); | |
1294 } | |
1295 | |
1296 | |
1297 static TypeInfo CalculateTypeInfo(TypeInfo operands_type, | |
1298 Token::Value op, | |
1299 const Result& right, | |
1300 const Result& left) { | |
1301 // Set TypeInfo of result according to the operation performed. | |
1302 // Rely on the fact that smis have a 31 bit payload on ia32. | |
1303 STATIC_ASSERT(kSmiValueSize == 31); | |
1304 switch (op) { | |
1305 case Token::COMMA: | |
1306 return right.type_info(); | |
1307 case Token::OR: | |
1308 case Token::AND: | |
1309 // Result type can be either of the two input types. | |
1310 return operands_type; | |
1311 case Token::BIT_AND: { | |
1312 // Anding with positive Smis will give you a Smi. | |
1313 if (right.is_constant() && right.handle()->IsSmi() && | |
1314 Smi::cast(*right.handle())->value() >= 0) { | |
1315 return TypeInfo::Smi(); | |
1316 } else if (left.is_constant() && left.handle()->IsSmi() && | |
1317 Smi::cast(*left.handle())->value() >= 0) { | |
1318 return TypeInfo::Smi(); | |
1319 } | |
1320 return (operands_type.IsSmi()) | |
1321 ? TypeInfo::Smi() | |
1322 : TypeInfo::Integer32(); | |
1323 } | |
1324 case Token::BIT_OR: { | |
1325 // Oring with negative Smis will give you a Smi. | |
1326 if (right.is_constant() && right.handle()->IsSmi() && | |
1327 Smi::cast(*right.handle())->value() < 0) { | |
1328 return TypeInfo::Smi(); | |
1329 } else if (left.is_constant() && left.handle()->IsSmi() && | |
1330 Smi::cast(*left.handle())->value() < 0) { | |
1331 return TypeInfo::Smi(); | |
1332 } | |
1333 return (operands_type.IsSmi()) | |
1334 ? TypeInfo::Smi() | |
1335 : TypeInfo::Integer32(); | |
1336 } | |
1337 case Token::BIT_XOR: | |
1338 // Result is always a 32 bit integer. Smi property of inputs is preserved. | |
1339 return (operands_type.IsSmi()) | |
1340 ? TypeInfo::Smi() | |
1341 : TypeInfo::Integer32(); | |
1342 case Token::SAR: | |
1343 if (left.is_smi()) return TypeInfo::Smi(); | |
1344 // Result is a smi if we shift by a constant >= 1, otherwise an integer32. | |
1345 // Shift amount is masked with 0x1F (ECMA standard 11.7.2). | |
1346 return (right.is_constant() && right.handle()->IsSmi() | |
1347 && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) | |
1348 ? TypeInfo::Smi() | |
1349 : TypeInfo::Integer32(); | |
1350 case Token::SHR: | |
1351 // Result is a smi if we shift by a constant >= 2, an integer32 if | |
1352 // we shift by 1, and an unsigned 32-bit integer if we shift by 0. | |
1353 if (right.is_constant() && right.handle()->IsSmi()) { | |
1354 int shift_amount = Smi::cast(*right.handle())->value() & 0x1F; | |
1355 if (shift_amount > 1) { | |
1356 return TypeInfo::Smi(); | |
1357 } else if (shift_amount > 0) { | |
1358 return TypeInfo::Integer32(); | |
1359 } | |
1360 } | |
1361 return TypeInfo::Number(); | |
1362 case Token::ADD: | |
1363 if (operands_type.IsSmi()) { | |
1364 // The Integer32 range is big enough to take the sum of any two Smis. | |
1365 return TypeInfo::Integer32(); | |
1366 } else if (operands_type.IsNumber()) { | |
1367 return TypeInfo::Number(); | |
1368 } else if (left.type_info().IsString() || right.type_info().IsString()) { | |
1369 return TypeInfo::String(); | |
1370 } else { | |
1371 return TypeInfo::Unknown(); | |
1372 } | |
1373 case Token::SHL: | |
1374 return TypeInfo::Integer32(); | |
1375 case Token::SUB: | |
1376 // The Integer32 range is big enough to take the difference of any two | |
1377 // Smis. | |
1378 return (operands_type.IsSmi()) ? | |
1379 TypeInfo::Integer32() : | |
1380 TypeInfo::Number(); | |
1381 case Token::MUL: | |
1382 case Token::DIV: | |
1383 case Token::MOD: | |
1384 // Result is always a number. | |
1385 return TypeInfo::Number(); | |
1386 default: | |
1387 UNREACHABLE(); | |
1388 } | |
1389 UNREACHABLE(); | |
1390 return TypeInfo::Unknown(); | |
1391 } | |
1392 | |
1393 | |
1394 void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, | |
1395 OverwriteMode overwrite_mode) { | |
1396 Comment cmnt(masm_, "[ BinaryOperation"); | |
1397 Token::Value op = expr->op(); | |
1398 Comment cmnt_token(masm_, Token::String(op)); | |
1399 | |
1400 if (op == Token::COMMA) { | |
1401 // Simply discard left value. | |
1402 frame_->Nip(1); | |
1403 return; | |
1404 } | |
1405 | |
1406 Result right = frame_->Pop(); | |
1407 Result left = frame_->Pop(); | |
1408 | |
1409 if (op == Token::ADD) { | |
1410 const bool left_is_string = left.type_info().IsString(); | |
1411 const bool right_is_string = right.type_info().IsString(); | |
1412 // Make sure constant strings have string type info. | |
1413 ASSERT(!(left.is_constant() && left.handle()->IsString()) || | |
1414 left_is_string); | |
1415 ASSERT(!(right.is_constant() && right.handle()->IsString()) || | |
1416 right_is_string); | |
1417 if (left_is_string || right_is_string) { | |
1418 frame_->Push(&left); | |
1419 frame_->Push(&right); | |
1420 Result answer; | |
1421 if (left_is_string) { | |
1422 if (right_is_string) { | |
1423 StringAddStub stub(NO_STRING_CHECK_IN_STUB); | |
1424 answer = frame_->CallStub(&stub, 2); | |
1425 } else { | |
1426 StringAddStub stub(NO_STRING_CHECK_LEFT_IN_STUB); | |
1427 answer = frame_->CallStub(&stub, 2); | |
1428 } | |
1429 } else if (right_is_string) { | |
1430 StringAddStub stub(NO_STRING_CHECK_RIGHT_IN_STUB); | |
1431 answer = frame_->CallStub(&stub, 2); | |
1432 } | |
1433 answer.set_type_info(TypeInfo::String()); | |
1434 frame_->Push(&answer); | |
1435 return; | |
1436 } | |
1437 // Neither operand is known to be a string. | |
1438 } | |
1439 | |
1440 bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); | |
1441 bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); | |
1442 bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); | |
1443 bool right_is_non_smi_constant = | |
1444 right.is_constant() && !right.handle()->IsSmi(); | |
1445 | |
1446 if (left_is_smi_constant && right_is_smi_constant) { | |
1447 // Compute the constant result at compile time, and leave it on the frame. | |
1448 int left_int = Smi::cast(*left.handle())->value(); | |
1449 int right_int = Smi::cast(*right.handle())->value(); | |
1450 if (FoldConstantSmis(op, left_int, right_int)) return; | |
1451 } | |
1452 | |
1453 // Get number type of left and right sub-expressions. | |
1454 TypeInfo operands_type = | |
1455 TypeInfo::Combine(left.type_info(), right.type_info()); | |
1456 | |
1457 TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); | |
1458 | |
1459 Result answer; | |
1460 if (left_is_non_smi_constant || right_is_non_smi_constant) { | |
1461 // Go straight to the slow case, with no smi code. | |
1462 GenericBinaryOpStub stub(op, | |
1463 overwrite_mode, | |
1464 NO_SMI_CODE_IN_STUB, | |
1465 operands_type); | |
1466 answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); | |
1467 } else if (right_is_smi_constant) { | |
1468 answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), | |
1469 false, overwrite_mode); | |
1470 } else if (left_is_smi_constant) { | |
1471 answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), | |
1472 true, overwrite_mode); | |
1473 } else { | |
1474 // Set the flags based on the operation, type and loop nesting level. | |
1475 // Bit operations always assume they likely operate on Smis. Still only | |
1476 // generate the inline Smi check code if this operation is part of a loop. | |
1477 // For all other operations only inline the Smi check code for likely smis | |
1478 // if the operation is part of a loop. | |
1479 if (loop_nesting() > 0 && | |
1480 (Token::IsBitOp(op) || | |
1481 operands_type.IsInteger32() || | |
1482 expr->type()->IsLikelySmi())) { | |
1483 answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); | |
1484 } else { | |
1485 GenericBinaryOpStub stub(op, | |
1486 overwrite_mode, | |
1487 NO_GENERIC_BINARY_FLAGS, | |
1488 operands_type); | |
1489 answer = GenerateGenericBinaryOpStubCall(&stub, &left, &right); | |
1490 } | |
1491 } | |
1492 | |
1493 answer.set_type_info(result_type); | |
1494 frame_->Push(&answer); | |
1495 } | |
1496 | |
1497 | |
1498 Result CodeGenerator::GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub, | |
1499 Result* left, | |
1500 Result* right) { | |
1501 if (stub->ArgsInRegistersSupported()) { | |
1502 stub->SetArgsInRegisters(); | |
1503 return frame_->CallStub(stub, left, right); | |
1504 } else { | |
1505 frame_->Push(left); | |
1506 frame_->Push(right); | |
1507 return frame_->CallStub(stub, 2); | |
1508 } | |
1509 } | |
1510 | |
1511 | |
1512 bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { | |
1513 Object* answer_object = HEAP->undefined_value(); | |
1514 switch (op) { | |
1515 case Token::ADD: | |
1516 if (Smi::IsValid(left + right)) { | |
1517 answer_object = Smi::FromInt(left + right); | |
1518 } | |
1519 break; | |
1520 case Token::SUB: | |
1521 if (Smi::IsValid(left - right)) { | |
1522 answer_object = Smi::FromInt(left - right); | |
1523 } | |
1524 break; | |
1525 case Token::MUL: { | |
1526 double answer = static_cast<double>(left) * right; | |
1527 if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { | |
1528 // If the product is zero and the non-zero factor is negative, | |
1529 // the spec requires us to return floating point negative zero. | |
1530 if (answer != 0 || (left >= 0 && right >= 0)) { | |
1531 answer_object = Smi::FromInt(static_cast<int>(answer)); | |
1532 } | |
1533 } | |
1534 } | |
1535 break; | |
1536 case Token::DIV: | |
1537 case Token::MOD: | |
1538 break; | |
1539 case Token::BIT_OR: | |
1540 answer_object = Smi::FromInt(left | right); | |
1541 break; | |
1542 case Token::BIT_AND: | |
1543 answer_object = Smi::FromInt(left & right); | |
1544 break; | |
1545 case Token::BIT_XOR: | |
1546 answer_object = Smi::FromInt(left ^ right); | |
1547 break; | |
1548 | |
1549 case Token::SHL: { | |
1550 int shift_amount = right & 0x1F; | |
1551 if (Smi::IsValid(left << shift_amount)) { | |
1552 answer_object = Smi::FromInt(left << shift_amount); | |
1553 } | |
1554 break; | |
1555 } | |
1556 case Token::SHR: { | |
1557 int shift_amount = right & 0x1F; | |
1558 unsigned int unsigned_left = left; | |
1559 unsigned_left >>= shift_amount; | |
1560 if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { | |
1561 answer_object = Smi::FromInt(unsigned_left); | |
1562 } | |
1563 break; | |
1564 } | |
1565 case Token::SAR: { | |
1566 int shift_amount = right & 0x1F; | |
1567 unsigned int unsigned_left = left; | |
1568 if (left < 0) { | |
1569 // Perform arithmetic shift of a negative number by | |
1570 // complementing number, logical shifting, complementing again. | |
1571 unsigned_left = ~unsigned_left; | |
1572 unsigned_left >>= shift_amount; | |
1573 unsigned_left = ~unsigned_left; | |
1574 } else { | |
1575 unsigned_left >>= shift_amount; | |
1576 } | |
1577 ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left))); | |
1578 answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left)); | |
1579 break; | |
1580 } | |
1581 default: | |
1582 UNREACHABLE(); | |
1583 break; | |
1584 } | |
1585 if (answer_object->IsUndefined()) { | |
1586 return false; | |
1587 } | |
1588 frame_->Push(Handle<Object>(answer_object)); | |
1589 return true; | |
1590 } | |
1591 | |
1592 | |
1593 void CodeGenerator::JumpIfBothSmiUsingTypeInfo(Result* left, | |
1594 Result* right, | |
1595 JumpTarget* both_smi) { | |
1596 TypeInfo left_info = left->type_info(); | |
1597 TypeInfo right_info = right->type_info(); | |
1598 if (left_info.IsDouble() || left_info.IsString() || | |
1599 right_info.IsDouble() || right_info.IsString()) { | |
1600 // We know that left and right are not both smi. Don't do any tests. | |
1601 return; | |
1602 } | |
1603 | |
1604 if (left->reg().is(right->reg())) { | |
1605 if (!left_info.IsSmi()) { | |
1606 __ test(left->reg(), Immediate(kSmiTagMask)); | |
1607 both_smi->Branch(zero); | |
1608 } else { | |
1609 if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); | |
1610 left->Unuse(); | |
1611 right->Unuse(); | |
1612 both_smi->Jump(); | |
1613 } | |
1614 } else if (!left_info.IsSmi()) { | |
1615 if (!right_info.IsSmi()) { | |
1616 Result temp = allocator_->Allocate(); | |
1617 ASSERT(temp.is_valid()); | |
1618 __ mov(temp.reg(), left->reg()); | |
1619 __ or_(temp.reg(), Operand(right->reg())); | |
1620 __ test(temp.reg(), Immediate(kSmiTagMask)); | |
1621 temp.Unuse(); | |
1622 both_smi->Branch(zero); | |
1623 } else { | |
1624 __ test(left->reg(), Immediate(kSmiTagMask)); | |
1625 both_smi->Branch(zero); | |
1626 } | |
1627 } else { | |
1628 if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); | |
1629 if (!right_info.IsSmi()) { | |
1630 __ test(right->reg(), Immediate(kSmiTagMask)); | |
1631 both_smi->Branch(zero); | |
1632 } else { | |
1633 if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); | |
1634 left->Unuse(); | |
1635 right->Unuse(); | |
1636 both_smi->Jump(); | |
1637 } | |
1638 } | |
1639 } | |
1640 | |
1641 | |
1642 void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, | |
1643 Register right, | |
1644 Register scratch, | |
1645 TypeInfo left_info, | |
1646 TypeInfo right_info, | |
1647 DeferredCode* deferred) { | |
1648 JumpIfNotBothSmiUsingTypeInfo(left, | |
1649 right, | |
1650 scratch, | |
1651 left_info, | |
1652 right_info, | |
1653 deferred->entry_label()); | |
1654 } | |
1655 | |
1656 | |
1657 void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, | |
1658 Register right, | |
1659 Register scratch, | |
1660 TypeInfo left_info, | |
1661 TypeInfo right_info, | |
1662 Label* on_not_smi) { | |
1663 if (left.is(right)) { | |
1664 if (!left_info.IsSmi()) { | |
1665 __ test(left, Immediate(kSmiTagMask)); | |
1666 __ j(not_zero, on_not_smi); | |
1667 } else { | |
1668 if (FLAG_debug_code) __ AbortIfNotSmi(left); | |
1669 } | |
1670 } else if (!left_info.IsSmi()) { | |
1671 if (!right_info.IsSmi()) { | |
1672 __ mov(scratch, left); | |
1673 __ or_(scratch, Operand(right)); | |
1674 __ test(scratch, Immediate(kSmiTagMask)); | |
1675 __ j(not_zero, on_not_smi); | |
1676 } else { | |
1677 __ test(left, Immediate(kSmiTagMask)); | |
1678 __ j(not_zero, on_not_smi); | |
1679 if (FLAG_debug_code) __ AbortIfNotSmi(right); | |
1680 } | |
1681 } else { | |
1682 if (FLAG_debug_code) __ AbortIfNotSmi(left); | |
1683 if (!right_info.IsSmi()) { | |
1684 __ test(right, Immediate(kSmiTagMask)); | |
1685 __ j(not_zero, on_not_smi); | |
1686 } else { | |
1687 if (FLAG_debug_code) __ AbortIfNotSmi(right); | |
1688 } | |
1689 } | |
1690 } | |
1691 | |
1692 | |
1693 // Implements a binary operation using a deferred code object and some | |
1694 // inline code to operate on smis quickly. | |
1695 Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, | |
1696 Result* left, | |
1697 Result* right, | |
1698 OverwriteMode overwrite_mode) { | |
1699 // Copy the type info because left and right may be overwritten. | |
1700 TypeInfo left_type_info = left->type_info(); | |
1701 TypeInfo right_type_info = right->type_info(); | |
1702 Token::Value op = expr->op(); | |
1703 Result answer; | |
1704 // Special handling of div and mod because they use fixed registers. | |
1705 if (op == Token::DIV || op == Token::MOD) { | |
1706 // We need eax as the quotient register, edx as the remainder | |
1707 // register, neither left nor right in eax or edx, and left copied | |
1708 // to eax. | |
1709 Result quotient; | |
1710 Result remainder; | |
1711 bool left_is_in_eax = false; | |
1712 // Step 1: get eax for quotient. | |
1713 if ((left->is_register() && left->reg().is(eax)) || | |
1714 (right->is_register() && right->reg().is(eax))) { | |
1715 // One or both is in eax. Use a fresh non-edx register for | |
1716 // them. | |
1717 Result fresh = allocator_->Allocate(); | |
1718 ASSERT(fresh.is_valid()); | |
1719 if (fresh.reg().is(edx)) { | |
1720 remainder = fresh; | |
1721 fresh = allocator_->Allocate(); | |
1722 ASSERT(fresh.is_valid()); | |
1723 } | |
1724 if (left->is_register() && left->reg().is(eax)) { | |
1725 quotient = *left; | |
1726 *left = fresh; | |
1727 left_is_in_eax = true; | |
1728 } | |
1729 if (right->is_register() && right->reg().is(eax)) { | |
1730 quotient = *right; | |
1731 *right = fresh; | |
1732 } | |
1733 __ mov(fresh.reg(), eax); | |
1734 } else { | |
1735 // Neither left nor right is in eax. | |
1736 quotient = allocator_->Allocate(eax); | |
1737 } | |
1738 ASSERT(quotient.is_register() && quotient.reg().is(eax)); | |
1739 ASSERT(!(left->is_register() && left->reg().is(eax))); | |
1740 ASSERT(!(right->is_register() && right->reg().is(eax))); | |
1741 | |
1742 // Step 2: get edx for remainder if necessary. | |
1743 if (!remainder.is_valid()) { | |
1744 if ((left->is_register() && left->reg().is(edx)) || | |
1745 (right->is_register() && right->reg().is(edx))) { | |
1746 Result fresh = allocator_->Allocate(); | |
1747 ASSERT(fresh.is_valid()); | |
1748 if (left->is_register() && left->reg().is(edx)) { | |
1749 remainder = *left; | |
1750 *left = fresh; | |
1751 } | |
1752 if (right->is_register() && right->reg().is(edx)) { | |
1753 remainder = *right; | |
1754 *right = fresh; | |
1755 } | |
1756 __ mov(fresh.reg(), edx); | |
1757 } else { | |
1758 // Neither left nor right is in edx. | |
1759 remainder = allocator_->Allocate(edx); | |
1760 } | |
1761 } | |
1762 ASSERT(remainder.is_register() && remainder.reg().is(edx)); | |
1763 ASSERT(!(left->is_register() && left->reg().is(edx))); | |
1764 ASSERT(!(right->is_register() && right->reg().is(edx))); | |
1765 | |
1766 left->ToRegister(); | |
1767 right->ToRegister(); | |
1768 frame_->Spill(eax); | |
1769 frame_->Spill(edx); | |
1770 // DeferredInlineBinaryOperation requires all the registers that it is | |
1771 // told about to be spilled and distinct. | |
1772 Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); | |
1773 | |
1774 // Check that left and right are smi tagged. | |
1775 DeferredInlineBinaryOperation* deferred = | |
1776 new DeferredInlineBinaryOperation(op, | |
1777 (op == Token::DIV) ? eax : edx, | |
1778 left->reg(), | |
1779 distinct_right.reg(), | |
1780 left_type_info, | |
1781 right_type_info, | |
1782 overwrite_mode); | |
1783 JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), edx, | |
1784 left_type_info, right_type_info, deferred); | |
1785 if (!left_is_in_eax) { | |
1786 __ mov(eax, left->reg()); | |
1787 } | |
1788 // Sign extend eax into edx:eax. | |
1789 __ cdq(); | |
1790 // Check for 0 divisor. | |
1791 __ test(right->reg(), Operand(right->reg())); | |
1792 deferred->Branch(zero); | |
1793 // Divide edx:eax by the right operand. | |
1794 __ idiv(right->reg()); | |
1795 | |
1796 // Complete the operation. | |
1797 if (op == Token::DIV) { | |
1798 // Check for negative zero result. If result is zero, and divisor | |
1799 // is negative, return a floating point negative zero. The | |
1800 // virtual frame is unchanged in this block, so local control flow | |
1801 // can use a Label rather than a JumpTarget. If the context of this | |
1802 // expression will treat -0 like 0, do not do this test. | |
1803 if (!expr->no_negative_zero()) { | |
1804 Label non_zero_result; | |
1805 __ test(left->reg(), Operand(left->reg())); | |
1806 __ j(not_zero, &non_zero_result); | |
1807 __ test(right->reg(), Operand(right->reg())); | |
1808 deferred->Branch(negative); | |
1809 __ bind(&non_zero_result); | |
1810 } | |
1811 // Check for the corner case of dividing the most negative smi by | |
1812 // -1. We cannot use the overflow flag, since it is not set by | |
1813 // idiv instruction. | |
1814 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
1815 __ cmp(eax, 0x40000000); | |
1816 deferred->Branch(equal); | |
1817 // Check that the remainder is zero. | |
1818 __ test(edx, Operand(edx)); | |
1819 deferred->Branch(not_zero); | |
1820 // Tag the result and store it in the quotient register. | |
1821 __ SmiTag(eax); | |
1822 deferred->BindExit(); | |
1823 left->Unuse(); | |
1824 right->Unuse(); | |
1825 answer = quotient; | |
1826 } else { | |
1827 ASSERT(op == Token::MOD); | |
1828 // Check for a negative zero result. If the result is zero, and | |
1829 // the dividend is negative, return a floating point negative | |
1830 // zero. The frame is unchanged in this block, so local control | |
1831 // flow can use a Label rather than a JumpTarget. | |
1832 if (!expr->no_negative_zero()) { | |
1833 Label non_zero_result; | |
1834 __ test(edx, Operand(edx)); | |
1835 __ j(not_zero, &non_zero_result, taken); | |
1836 __ test(left->reg(), Operand(left->reg())); | |
1837 deferred->Branch(negative); | |
1838 __ bind(&non_zero_result); | |
1839 } | |
1840 deferred->BindExit(); | |
1841 left->Unuse(); | |
1842 right->Unuse(); | |
1843 answer = remainder; | |
1844 } | |
1845 ASSERT(answer.is_valid()); | |
1846 return answer; | |
1847 } | |
1848 | |
1849 // Special handling of shift operations because they use fixed | |
1850 // registers. | |
1851 if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { | |
1852 // Move left out of ecx if necessary. | |
1853 if (left->is_register() && left->reg().is(ecx)) { | |
1854 *left = allocator_->Allocate(); | |
1855 ASSERT(left->is_valid()); | |
1856 __ mov(left->reg(), ecx); | |
1857 } | |
1858 right->ToRegister(ecx); | |
1859 left->ToRegister(); | |
1860 ASSERT(left->is_register() && !left->reg().is(ecx)); | |
1861 ASSERT(right->is_register() && right->reg().is(ecx)); | |
1862 if (left_type_info.IsSmi()) { | |
1863 if (FLAG_debug_code) __ AbortIfNotSmi(left->reg()); | |
1864 } | |
1865 if (right_type_info.IsSmi()) { | |
1866 if (FLAG_debug_code) __ AbortIfNotSmi(right->reg()); | |
1867 } | |
1868 | |
1869 // We will modify right, it must be spilled. | |
1870 frame_->Spill(ecx); | |
1871 // DeferredInlineBinaryOperation requires all the registers that it is told | |
1872 // about to be spilled and distinct. We know that right is ecx and left is | |
1873 // not ecx. | |
1874 frame_->Spill(left->reg()); | |
1875 | |
1876 // Use a fresh answer register to avoid spilling the left operand. | |
1877 answer = allocator_->Allocate(); | |
1878 ASSERT(answer.is_valid()); | |
1879 | |
1880 DeferredInlineBinaryOperation* deferred = | |
1881 new DeferredInlineBinaryOperation(op, | |
1882 answer.reg(), | |
1883 left->reg(), | |
1884 ecx, | |
1885 left_type_info, | |
1886 right_type_info, | |
1887 overwrite_mode); | |
1888 JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), | |
1889 left_type_info, right_type_info, | |
1890 deferred->NonSmiInputLabel()); | |
1891 | |
1892 // Untag both operands. | |
1893 __ mov(answer.reg(), left->reg()); | |
1894 __ SmiUntag(answer.reg()); | |
1895 __ SmiUntag(right->reg()); // Right is ecx. | |
1896 | |
1897 // Perform the operation. | |
1898 ASSERT(right->reg().is(ecx)); | |
1899 switch (op) { | |
1900 case Token::SAR: { | |
1901 __ sar_cl(answer.reg()); | |
1902 if (!left_type_info.IsSmi()) { | |
1903 // Check that the *signed* result fits in a smi. | |
1904 __ cmp(answer.reg(), 0xc0000000); | |
1905 deferred->JumpToAnswerOutOfRange(negative); | |
1906 } | |
1907 break; | |
1908 } | |
1909 case Token::SHR: { | |
1910 __ shr_cl(answer.reg()); | |
1911 // Check that the *unsigned* result fits in a smi. Neither of | |
1912 // the two high-order bits can be set: | |
1913 // * 0x80000000: high bit would be lost when smi tagging. | |
1914 // * 0x40000000: this number would convert to negative when smi | |
1915 // tagging. | |
1916 // These two cases can only happen with shifts by 0 or 1 when | |
1917 // handed a valid smi. If the answer cannot be represented by a | |
1918 // smi, restore the left and right arguments, and jump to slow | |
1919 // case. The low bit of the left argument may be lost, but only | |
1920 // in a case where it is dropped anyway. | |
1921 __ test(answer.reg(), Immediate(0xc0000000)); | |
1922 deferred->JumpToAnswerOutOfRange(not_zero); | |
1923 break; | |
1924 } | |
1925 case Token::SHL: { | |
1926 __ shl_cl(answer.reg()); | |
1927 // Check that the *signed* result fits in a smi. | |
1928 __ cmp(answer.reg(), 0xc0000000); | |
1929 deferred->JumpToAnswerOutOfRange(negative); | |
1930 break; | |
1931 } | |
1932 default: | |
1933 UNREACHABLE(); | |
1934 } | |
1935 // Smi-tag the result in answer. | |
1936 __ SmiTag(answer.reg()); | |
1937 deferred->BindExit(); | |
1938 left->Unuse(); | |
1939 right->Unuse(); | |
1940 ASSERT(answer.is_valid()); | |
1941 return answer; | |
1942 } | |
1943 | |
1944 // Handle the other binary operations. | |
1945 left->ToRegister(); | |
1946 right->ToRegister(); | |
1947 // DeferredInlineBinaryOperation requires all the registers that it is told | |
1948 // about to be spilled. | |
1949 Result distinct_right = frame_->MakeDistinctAndSpilled(left, right); | |
1950 // A newly allocated register answer is used to hold the answer. The | |
1951 // registers containing left and right are not modified so they don't | |
1952 // need to be spilled in the fast case. | |
1953 answer = allocator_->Allocate(); | |
1954 ASSERT(answer.is_valid()); | |
1955 | |
1956 // Perform the smi tag check. | |
1957 DeferredInlineBinaryOperation* deferred = | |
1958 new DeferredInlineBinaryOperation(op, | |
1959 answer.reg(), | |
1960 left->reg(), | |
1961 distinct_right.reg(), | |
1962 left_type_info, | |
1963 right_type_info, | |
1964 overwrite_mode); | |
1965 Label non_smi_bit_op; | |
1966 if (op != Token::BIT_OR) { | |
1967 JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), answer.reg(), | |
1968 left_type_info, right_type_info, | |
1969 deferred->NonSmiInputLabel()); | |
1970 } | |
1971 | |
1972 __ mov(answer.reg(), left->reg()); | |
1973 switch (op) { | |
1974 case Token::ADD: | |
1975 __ add(answer.reg(), Operand(right->reg())); | |
1976 deferred->Branch(overflow); | |
1977 break; | |
1978 | |
1979 case Token::SUB: | |
1980 __ sub(answer.reg(), Operand(right->reg())); | |
1981 deferred->Branch(overflow); | |
1982 break; | |
1983 | |
1984 case Token::MUL: { | |
1985 // If the smi tag is 0 we can just leave the tag on one operand. | |
1986 STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. | |
1987 // Remove smi tag from the left operand (but keep sign). | |
1988 // Left-hand operand has been copied into answer. | |
1989 __ SmiUntag(answer.reg()); | |
1990 // Do multiplication of smis, leaving result in answer. | |
1991 __ imul(answer.reg(), Operand(right->reg())); | |
1992 // Go slow on overflows. | |
1993 deferred->Branch(overflow); | |
1994 // Check for negative zero result. If product is zero, and one | |
1995 // argument is negative, go to slow case. The frame is unchanged | |
1996 // in this block, so local control flow can use a Label rather | |
1997 // than a JumpTarget. | |
1998 if (!expr->no_negative_zero()) { | |
1999 Label non_zero_result; | |
2000 __ test(answer.reg(), Operand(answer.reg())); | |
2001 __ j(not_zero, &non_zero_result, taken); | |
2002 __ mov(answer.reg(), left->reg()); | |
2003 __ or_(answer.reg(), Operand(right->reg())); | |
2004 deferred->Branch(negative); | |
2005 __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. | |
2006 __ bind(&non_zero_result); | |
2007 } | |
2008 break; | |
2009 } | |
2010 | |
2011 case Token::BIT_OR: | |
2012 __ or_(answer.reg(), Operand(right->reg())); | |
2013 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
2014 __ j(not_zero, deferred->NonSmiInputLabel()); | |
2015 break; | |
2016 | |
2017 case Token::BIT_AND: | |
2018 __ and_(answer.reg(), Operand(right->reg())); | |
2019 break; | |
2020 | |
2021 case Token::BIT_XOR: | |
2022 __ xor_(answer.reg(), Operand(right->reg())); | |
2023 break; | |
2024 | |
2025 default: | |
2026 UNREACHABLE(); | |
2027 break; | |
2028 } | |
2029 | |
2030 deferred->BindExit(); | |
2031 left->Unuse(); | |
2032 right->Unuse(); | |
2033 ASSERT(answer.is_valid()); | |
2034 return answer; | |
2035 } | |
2036 | |
2037 | |
2038 // Call the appropriate binary operation stub to compute src op value | |
2039 // and leave the result in dst. | |
2040 class DeferredInlineSmiOperation: public DeferredCode { | |
2041 public: | |
2042 DeferredInlineSmiOperation(Token::Value op, | |
2043 Register dst, | |
2044 Register src, | |
2045 TypeInfo type_info, | |
2046 Smi* value, | |
2047 OverwriteMode overwrite_mode) | |
2048 : op_(op), | |
2049 dst_(dst), | |
2050 src_(src), | |
2051 type_info_(type_info), | |
2052 value_(value), | |
2053 overwrite_mode_(overwrite_mode) { | |
2054 if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; | |
2055 set_comment("[ DeferredInlineSmiOperation"); | |
2056 } | |
2057 | |
2058 virtual void Generate(); | |
2059 | |
2060 private: | |
2061 Token::Value op_; | |
2062 Register dst_; | |
2063 Register src_; | |
2064 TypeInfo type_info_; | |
2065 Smi* value_; | |
2066 OverwriteMode overwrite_mode_; | |
2067 }; | |
2068 | |
2069 | |
2070 void DeferredInlineSmiOperation::Generate() { | |
2071 // For mod we don't generate all the Smi code inline. | |
2072 GenericBinaryOpStub stub( | |
2073 op_, | |
2074 overwrite_mode_, | |
2075 (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB, | |
2076 TypeInfo::Combine(TypeInfo::Smi(), type_info_)); | |
2077 stub.GenerateCall(masm_, src_, value_); | |
2078 if (!dst_.is(eax)) __ mov(dst_, eax); | |
2079 } | |
2080 | |
2081 | |
2082 // Call the appropriate binary operation stub to compute value op src | |
2083 // and leave the result in dst. | |
2084 class DeferredInlineSmiOperationReversed: public DeferredCode { | |
2085 public: | |
2086 DeferredInlineSmiOperationReversed(Token::Value op, | |
2087 Register dst, | |
2088 Smi* value, | |
2089 Register src, | |
2090 TypeInfo type_info, | |
2091 OverwriteMode overwrite_mode) | |
2092 : op_(op), | |
2093 dst_(dst), | |
2094 type_info_(type_info), | |
2095 value_(value), | |
2096 src_(src), | |
2097 overwrite_mode_(overwrite_mode) { | |
2098 set_comment("[ DeferredInlineSmiOperationReversed"); | |
2099 } | |
2100 | |
2101 virtual void Generate(); | |
2102 | |
2103 private: | |
2104 Token::Value op_; | |
2105 Register dst_; | |
2106 TypeInfo type_info_; | |
2107 Smi* value_; | |
2108 Register src_; | |
2109 OverwriteMode overwrite_mode_; | |
2110 }; | |
2111 | |
2112 | |
2113 void DeferredInlineSmiOperationReversed::Generate() { | |
2114 GenericBinaryOpStub stub( | |
2115 op_, | |
2116 overwrite_mode_, | |
2117 NO_SMI_CODE_IN_STUB, | |
2118 TypeInfo::Combine(TypeInfo::Smi(), type_info_)); | |
2119 stub.GenerateCall(masm_, value_, src_); | |
2120 if (!dst_.is(eax)) __ mov(dst_, eax); | |
2121 } | |
2122 | |
2123 | |
2124 // The result of src + value is in dst. It either overflowed or was not | |
2125 // smi tagged. Undo the speculative addition and call the appropriate | |
2126 // specialized stub for add. The result is left in dst. | |
2127 class DeferredInlineSmiAdd: public DeferredCode { | |
2128 public: | |
2129 DeferredInlineSmiAdd(Register dst, | |
2130 TypeInfo type_info, | |
2131 Smi* value, | |
2132 OverwriteMode overwrite_mode) | |
2133 : dst_(dst), | |
2134 type_info_(type_info), | |
2135 value_(value), | |
2136 overwrite_mode_(overwrite_mode) { | |
2137 if (type_info_.IsSmi()) overwrite_mode_ = NO_OVERWRITE; | |
2138 set_comment("[ DeferredInlineSmiAdd"); | |
2139 } | |
2140 | |
2141 virtual void Generate(); | |
2142 | |
2143 private: | |
2144 Register dst_; | |
2145 TypeInfo type_info_; | |
2146 Smi* value_; | |
2147 OverwriteMode overwrite_mode_; | |
2148 }; | |
2149 | |
2150 | |
2151 void DeferredInlineSmiAdd::Generate() { | |
2152 // Undo the optimistic add operation and call the shared stub. | |
2153 __ sub(Operand(dst_), Immediate(value_)); | |
2154 GenericBinaryOpStub igostub( | |
2155 Token::ADD, | |
2156 overwrite_mode_, | |
2157 NO_SMI_CODE_IN_STUB, | |
2158 TypeInfo::Combine(TypeInfo::Smi(), type_info_)); | |
2159 igostub.GenerateCall(masm_, dst_, value_); | |
2160 if (!dst_.is(eax)) __ mov(dst_, eax); | |
2161 } | |
2162 | |
2163 | |
2164 // The result of value + src is in dst. It either overflowed or was not | |
2165 // smi tagged. Undo the speculative addition and call the appropriate | |
2166 // specialized stub for add. The result is left in dst. | |
2167 class DeferredInlineSmiAddReversed: public DeferredCode { | |
2168 public: | |
2169 DeferredInlineSmiAddReversed(Register dst, | |
2170 TypeInfo type_info, | |
2171 Smi* value, | |
2172 OverwriteMode overwrite_mode) | |
2173 : dst_(dst), | |
2174 type_info_(type_info), | |
2175 value_(value), | |
2176 overwrite_mode_(overwrite_mode) { | |
2177 set_comment("[ DeferredInlineSmiAddReversed"); | |
2178 } | |
2179 | |
2180 virtual void Generate(); | |
2181 | |
2182 private: | |
2183 Register dst_; | |
2184 TypeInfo type_info_; | |
2185 Smi* value_; | |
2186 OverwriteMode overwrite_mode_; | |
2187 }; | |
2188 | |
2189 | |
2190 void DeferredInlineSmiAddReversed::Generate() { | |
2191 // Undo the optimistic add operation and call the shared stub. | |
2192 __ sub(Operand(dst_), Immediate(value_)); | |
2193 GenericBinaryOpStub igostub( | |
2194 Token::ADD, | |
2195 overwrite_mode_, | |
2196 NO_SMI_CODE_IN_STUB, | |
2197 TypeInfo::Combine(TypeInfo::Smi(), type_info_)); | |
2198 igostub.GenerateCall(masm_, value_, dst_); | |
2199 if (!dst_.is(eax)) __ mov(dst_, eax); | |
2200 } | |
2201 | |
2202 | |
2203 // The result of src - value is in dst. It either overflowed or was not | |
2204 // smi tagged. Undo the speculative subtraction and call the | |
2205 // appropriate specialized stub for subtract. The result is left in | |
2206 // dst. | |
2207 class DeferredInlineSmiSub: public DeferredCode { | |
2208 public: | |
2209 DeferredInlineSmiSub(Register dst, | |
2210 TypeInfo type_info, | |
2211 Smi* value, | |
2212 OverwriteMode overwrite_mode) | |
2213 : dst_(dst), | |
2214 type_info_(type_info), | |
2215 value_(value), | |
2216 overwrite_mode_(overwrite_mode) { | |
2217 if (type_info.IsSmi()) overwrite_mode_ = NO_OVERWRITE; | |
2218 set_comment("[ DeferredInlineSmiSub"); | |
2219 } | |
2220 | |
2221 virtual void Generate(); | |
2222 | |
2223 private: | |
2224 Register dst_; | |
2225 TypeInfo type_info_; | |
2226 Smi* value_; | |
2227 OverwriteMode overwrite_mode_; | |
2228 }; | |
2229 | |
2230 | |
2231 void DeferredInlineSmiSub::Generate() { | |
2232 // Undo the optimistic sub operation and call the shared stub. | |
2233 __ add(Operand(dst_), Immediate(value_)); | |
2234 GenericBinaryOpStub igostub( | |
2235 Token::SUB, | |
2236 overwrite_mode_, | |
2237 NO_SMI_CODE_IN_STUB, | |
2238 TypeInfo::Combine(TypeInfo::Smi(), type_info_)); | |
2239 igostub.GenerateCall(masm_, dst_, value_); | |
2240 if (!dst_.is(eax)) __ mov(dst_, eax); | |
2241 } | |
2242 | |
2243 | |
2244 Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, | |
2245 Result* operand, | |
2246 Handle<Object> value, | |
2247 bool reversed, | |
2248 OverwriteMode overwrite_mode) { | |
2249 // Generate inline code for a binary operation when one of the | |
2250 // operands is a constant smi. Consumes the argument "operand". | |
2251 if (IsUnsafeSmi(value)) { | |
2252 Result unsafe_operand(value); | |
2253 if (reversed) { | |
2254 return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, | |
2255 overwrite_mode); | |
2256 } else { | |
2257 return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, | |
2258 overwrite_mode); | |
2259 } | |
2260 } | |
2261 | |
2262 // Get the literal value. | |
2263 Smi* smi_value = Smi::cast(*value); | |
2264 int int_value = smi_value->value(); | |
2265 | |
2266 Token::Value op = expr->op(); | |
2267 Result answer; | |
2268 switch (op) { | |
2269 case Token::ADD: { | |
2270 operand->ToRegister(); | |
2271 frame_->Spill(operand->reg()); | |
2272 | |
2273 // Optimistically add. Call the specialized add stub if the | |
2274 // result is not a smi or overflows. | |
2275 DeferredCode* deferred = NULL; | |
2276 if (reversed) { | |
2277 deferred = new DeferredInlineSmiAddReversed(operand->reg(), | |
2278 operand->type_info(), | |
2279 smi_value, | |
2280 overwrite_mode); | |
2281 } else { | |
2282 deferred = new DeferredInlineSmiAdd(operand->reg(), | |
2283 operand->type_info(), | |
2284 smi_value, | |
2285 overwrite_mode); | |
2286 } | |
2287 __ add(Operand(operand->reg()), Immediate(value)); | |
2288 deferred->Branch(overflow); | |
2289 if (!operand->type_info().IsSmi()) { | |
2290 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2291 deferred->Branch(not_zero); | |
2292 } else if (FLAG_debug_code) { | |
2293 __ AbortIfNotSmi(operand->reg()); | |
2294 } | |
2295 deferred->BindExit(); | |
2296 answer = *operand; | |
2297 break; | |
2298 } | |
2299 | |
2300 case Token::SUB: { | |
2301 DeferredCode* deferred = NULL; | |
2302 if (reversed) { | |
2303 // The reversed case is only hit when the right operand is not a | |
2304 // constant. | |
2305 ASSERT(operand->is_register()); | |
2306 answer = allocator()->Allocate(); | |
2307 ASSERT(answer.is_valid()); | |
2308 __ Set(answer.reg(), Immediate(value)); | |
2309 deferred = | |
2310 new DeferredInlineSmiOperationReversed(op, | |
2311 answer.reg(), | |
2312 smi_value, | |
2313 operand->reg(), | |
2314 operand->type_info(), | |
2315 overwrite_mode); | |
2316 __ sub(answer.reg(), Operand(operand->reg())); | |
2317 } else { | |
2318 operand->ToRegister(); | |
2319 frame_->Spill(operand->reg()); | |
2320 answer = *operand; | |
2321 deferred = new DeferredInlineSmiSub(operand->reg(), | |
2322 operand->type_info(), | |
2323 smi_value, | |
2324 overwrite_mode); | |
2325 __ sub(Operand(operand->reg()), Immediate(value)); | |
2326 } | |
2327 deferred->Branch(overflow); | |
2328 if (!operand->type_info().IsSmi()) { | |
2329 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
2330 deferred->Branch(not_zero); | |
2331 } else if (FLAG_debug_code) { | |
2332 __ AbortIfNotSmi(operand->reg()); | |
2333 } | |
2334 deferred->BindExit(); | |
2335 operand->Unuse(); | |
2336 break; | |
2337 } | |
2338 | |
2339 case Token::SAR: | |
2340 if (reversed) { | |
2341 Result constant_operand(value); | |
2342 answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, | |
2343 overwrite_mode); | |
2344 } else { | |
2345 // Only the least significant 5 bits of the shift value are used. | |
2346 // In the slow case, this masking is done inside the runtime call. | |
2347 int shift_value = int_value & 0x1f; | |
2348 operand->ToRegister(); | |
2349 frame_->Spill(operand->reg()); | |
2350 if (!operand->type_info().IsSmi()) { | |
2351 DeferredInlineSmiOperation* deferred = | |
2352 new DeferredInlineSmiOperation(op, | |
2353 operand->reg(), | |
2354 operand->reg(), | |
2355 operand->type_info(), | |
2356 smi_value, | |
2357 overwrite_mode); | |
2358 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2359 deferred->Branch(not_zero); | |
2360 if (shift_value > 0) { | |
2361 __ sar(operand->reg(), shift_value); | |
2362 __ and_(operand->reg(), ~kSmiTagMask); | |
2363 } | |
2364 deferred->BindExit(); | |
2365 } else { | |
2366 if (FLAG_debug_code) { | |
2367 __ AbortIfNotSmi(operand->reg()); | |
2368 } | |
2369 if (shift_value > 0) { | |
2370 __ sar(operand->reg(), shift_value); | |
2371 __ and_(operand->reg(), ~kSmiTagMask); | |
2372 } | |
2373 } | |
2374 answer = *operand; | |
2375 } | |
2376 break; | |
2377 | |
2378 case Token::SHR: | |
2379 if (reversed) { | |
2380 Result constant_operand(value); | |
2381 answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, | |
2382 overwrite_mode); | |
2383 } else { | |
2384 // Only the least significant 5 bits of the shift value are used. | |
2385 // In the slow case, this masking is done inside the runtime call. | |
2386 int shift_value = int_value & 0x1f; | |
2387 operand->ToRegister(); | |
2388 answer = allocator()->Allocate(); | |
2389 ASSERT(answer.is_valid()); | |
2390 DeferredInlineSmiOperation* deferred = | |
2391 new DeferredInlineSmiOperation(op, | |
2392 answer.reg(), | |
2393 operand->reg(), | |
2394 operand->type_info(), | |
2395 smi_value, | |
2396 overwrite_mode); | |
2397 if (!operand->type_info().IsSmi()) { | |
2398 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2399 deferred->Branch(not_zero); | |
2400 } else if (FLAG_debug_code) { | |
2401 __ AbortIfNotSmi(operand->reg()); | |
2402 } | |
2403 __ mov(answer.reg(), operand->reg()); | |
2404 __ SmiUntag(answer.reg()); | |
2405 __ shr(answer.reg(), shift_value); | |
2406 // A negative Smi shifted right two is in the positive Smi range. | |
2407 if (shift_value < 2) { | |
2408 __ test(answer.reg(), Immediate(0xc0000000)); | |
2409 deferred->Branch(not_zero); | |
2410 } | |
2411 operand->Unuse(); | |
2412 __ SmiTag(answer.reg()); | |
2413 deferred->BindExit(); | |
2414 } | |
2415 break; | |
2416 | |
2417 case Token::SHL: | |
2418 if (reversed) { | |
2419 // Move operand into ecx and also into a second register. | |
2420 // If operand is already in a register, take advantage of that. | |
2421 // This lets us modify ecx, but still bail out to deferred code. | |
2422 Result right; | |
2423 Result right_copy_in_ecx; | |
2424 TypeInfo right_type_info = operand->type_info(); | |
2425 operand->ToRegister(); | |
2426 if (operand->reg().is(ecx)) { | |
2427 right = allocator()->Allocate(); | |
2428 __ mov(right.reg(), ecx); | |
2429 frame_->Spill(ecx); | |
2430 right_copy_in_ecx = *operand; | |
2431 } else { | |
2432 right_copy_in_ecx = allocator()->Allocate(ecx); | |
2433 __ mov(ecx, operand->reg()); | |
2434 right = *operand; | |
2435 } | |
2436 operand->Unuse(); | |
2437 | |
2438 answer = allocator()->Allocate(); | |
2439 DeferredInlineSmiOperationReversed* deferred = | |
2440 new DeferredInlineSmiOperationReversed(op, | |
2441 answer.reg(), | |
2442 smi_value, | |
2443 right.reg(), | |
2444 right_type_info, | |
2445 overwrite_mode); | |
2446 __ mov(answer.reg(), Immediate(int_value)); | |
2447 __ sar(ecx, kSmiTagSize); | |
2448 if (!right_type_info.IsSmi()) { | |
2449 deferred->Branch(carry); | |
2450 } else if (FLAG_debug_code) { | |
2451 __ AbortIfNotSmi(right.reg()); | |
2452 } | |
2453 __ shl_cl(answer.reg()); | |
2454 __ cmp(answer.reg(), 0xc0000000); | |
2455 deferred->Branch(sign); | |
2456 __ SmiTag(answer.reg()); | |
2457 | |
2458 deferred->BindExit(); | |
2459 } else { | |
2460 // Only the least significant 5 bits of the shift value are used. | |
2461 // In the slow case, this masking is done inside the runtime call. | |
2462 int shift_value = int_value & 0x1f; | |
2463 operand->ToRegister(); | |
2464 if (shift_value == 0) { | |
2465 // Spill operand so it can be overwritten in the slow case. | |
2466 frame_->Spill(operand->reg()); | |
2467 DeferredInlineSmiOperation* deferred = | |
2468 new DeferredInlineSmiOperation(op, | |
2469 operand->reg(), | |
2470 operand->reg(), | |
2471 operand->type_info(), | |
2472 smi_value, | |
2473 overwrite_mode); | |
2474 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2475 deferred->Branch(not_zero); | |
2476 deferred->BindExit(); | |
2477 answer = *operand; | |
2478 } else { | |
2479 // Use a fresh temporary for nonzero shift values. | |
2480 answer = allocator()->Allocate(); | |
2481 ASSERT(answer.is_valid()); | |
2482 DeferredInlineSmiOperation* deferred = | |
2483 new DeferredInlineSmiOperation(op, | |
2484 answer.reg(), | |
2485 operand->reg(), | |
2486 operand->type_info(), | |
2487 smi_value, | |
2488 overwrite_mode); | |
2489 if (!operand->type_info().IsSmi()) { | |
2490 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2491 deferred->Branch(not_zero); | |
2492 } else if (FLAG_debug_code) { | |
2493 __ AbortIfNotSmi(operand->reg()); | |
2494 } | |
2495 __ mov(answer.reg(), operand->reg()); | |
2496 STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case | |
2497 // We do no shifts, only the Smi conversion, if shift_value is 1. | |
2498 if (shift_value > 1) { | |
2499 __ shl(answer.reg(), shift_value - 1); | |
2500 } | |
2501 // Convert int result to Smi, checking that it is in int range. | |
2502 STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case | |
2503 __ add(answer.reg(), Operand(answer.reg())); | |
2504 deferred->Branch(overflow); | |
2505 deferred->BindExit(); | |
2506 operand->Unuse(); | |
2507 } | |
2508 } | |
2509 break; | |
2510 | |
2511 case Token::BIT_OR: | |
2512 case Token::BIT_XOR: | |
2513 case Token::BIT_AND: { | |
2514 operand->ToRegister(); | |
2515 // DeferredInlineBinaryOperation requires all the registers that it is | |
2516 // told about to be spilled. | |
2517 frame_->Spill(operand->reg()); | |
2518 DeferredInlineBinaryOperation* deferred = NULL; | |
2519 if (!operand->type_info().IsSmi()) { | |
2520 Result left = allocator()->Allocate(); | |
2521 ASSERT(left.is_valid()); | |
2522 Result right = allocator()->Allocate(); | |
2523 ASSERT(right.is_valid()); | |
2524 deferred = new DeferredInlineBinaryOperation( | |
2525 op, | |
2526 operand->reg(), | |
2527 left.reg(), | |
2528 right.reg(), | |
2529 operand->type_info(), | |
2530 TypeInfo::Smi(), | |
2531 overwrite_mode == NO_OVERWRITE ? NO_OVERWRITE : OVERWRITE_LEFT); | |
2532 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
2533 deferred->JumpToConstantRhs(not_zero, smi_value); | |
2534 } else if (FLAG_debug_code) { | |
2535 __ AbortIfNotSmi(operand->reg()); | |
2536 } | |
2537 if (op == Token::BIT_AND) { | |
2538 __ and_(Operand(operand->reg()), Immediate(value)); | |
2539 } else if (op == Token::BIT_XOR) { | |
2540 if (int_value != 0) { | |
2541 __ xor_(Operand(operand->reg()), Immediate(value)); | |
2542 } | |
2543 } else { | |
2544 ASSERT(op == Token::BIT_OR); | |
2545 if (int_value != 0) { | |
2546 __ or_(Operand(operand->reg()), Immediate(value)); | |
2547 } | |
2548 } | |
2549 if (deferred != NULL) deferred->BindExit(); | |
2550 answer = *operand; | |
2551 break; | |
2552 } | |
2553 | |
2554 case Token::DIV: | |
2555 if (!reversed && int_value == 2) { | |
2556 operand->ToRegister(); | |
2557 frame_->Spill(operand->reg()); | |
2558 | |
2559 DeferredInlineSmiOperation* deferred = | |
2560 new DeferredInlineSmiOperation(op, | |
2561 operand->reg(), | |
2562 operand->reg(), | |
2563 operand->type_info(), | |
2564 smi_value, | |
2565 overwrite_mode); | |
2566 // Check that lowest log2(value) bits of operand are zero, and test | |
2567 // smi tag at the same time. | |
2568 STATIC_ASSERT(kSmiTag == 0); | |
2569 STATIC_ASSERT(kSmiTagSize == 1); | |
2570 __ test(operand->reg(), Immediate(3)); | |
2571 deferred->Branch(not_zero); // Branch if non-smi or odd smi. | |
2572 __ sar(operand->reg(), 1); | |
2573 deferred->BindExit(); | |
2574 answer = *operand; | |
2575 } else { | |
2576 // Cannot fall through MOD to default case, so we duplicate the | |
2577 // default case here. | |
2578 Result constant_operand(value); | |
2579 if (reversed) { | |
2580 answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, | |
2581 overwrite_mode); | |
2582 } else { | |
2583 answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, | |
2584 overwrite_mode); | |
2585 } | |
2586 } | |
2587 break; | |
2588 | |
2589 // Generate inline code for mod of powers of 2 and negative powers of 2. | |
2590 case Token::MOD: | |
2591 if (!reversed && | |
2592 int_value != 0 && | |
2593 (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { | |
2594 operand->ToRegister(); | |
2595 frame_->Spill(operand->reg()); | |
2596 DeferredCode* deferred = | |
2597 new DeferredInlineSmiOperation(op, | |
2598 operand->reg(), | |
2599 operand->reg(), | |
2600 operand->type_info(), | |
2601 smi_value, | |
2602 overwrite_mode); | |
2603 // Check for negative or non-Smi left hand side. | |
2604 __ test(operand->reg(), Immediate(kSmiTagMask | kSmiSignMask)); | |
2605 deferred->Branch(not_zero); | |
2606 if (int_value < 0) int_value = -int_value; | |
2607 if (int_value == 1) { | |
2608 __ mov(operand->reg(), Immediate(Smi::FromInt(0))); | |
2609 } else { | |
2610 __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); | |
2611 } | |
2612 deferred->BindExit(); | |
2613 answer = *operand; | |
2614 break; | |
2615 } | |
2616 // Fall through if we did not find a power of 2 on the right hand side! | |
2617 // The next case must be the default. | |
2618 | |
2619 default: { | |
2620 Result constant_operand(value); | |
2621 if (reversed) { | |
2622 answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, | |
2623 overwrite_mode); | |
2624 } else { | |
2625 answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, | |
2626 overwrite_mode); | |
2627 } | |
2628 break; | |
2629 } | |
2630 } | |
2631 ASSERT(answer.is_valid()); | |
2632 return answer; | |
2633 } | |
2634 | |
2635 | |
2636 static bool CouldBeNaN(const Result& result) { | |
2637 if (result.type_info().IsSmi()) return false; | |
2638 if (result.type_info().IsInteger32()) return false; | |
2639 if (!result.is_constant()) return true; | |
2640 if (!result.handle()->IsHeapNumber()) return false; | |
2641 return isnan(HeapNumber::cast(*result.handle())->value()); | |
2642 } | |
2643 | |
2644 | |
2645 // Convert from signed to unsigned comparison to match the way EFLAGS are set | |
2646 // by FPU and XMM compare instructions. | |
2647 static Condition DoubleCondition(Condition cc) { | |
2648 switch (cc) { | |
2649 case less: return below; | |
2650 case equal: return equal; | |
2651 case less_equal: return below_equal; | |
2652 case greater: return above; | |
2653 case greater_equal: return above_equal; | |
2654 default: UNREACHABLE(); | |
2655 } | |
2656 UNREACHABLE(); | |
2657 return equal; | |
2658 } | |
2659 | |
2660 | |
2661 static CompareFlags ComputeCompareFlags(NaNInformation nan_info, | |
2662 bool inline_number_compare) { | |
2663 CompareFlags flags = NO_SMI_COMPARE_IN_STUB; | |
2664 if (nan_info == kCantBothBeNaN) { | |
2665 flags = static_cast<CompareFlags>(flags | CANT_BOTH_BE_NAN); | |
2666 } | |
2667 if (inline_number_compare) { | |
2668 flags = static_cast<CompareFlags>(flags | NO_NUMBER_COMPARE_IN_STUB); | |
2669 } | |
2670 return flags; | |
2671 } | |
2672 | |
2673 | |
2674 void CodeGenerator::Comparison(AstNode* node, | |
2675 Condition cc, | |
2676 bool strict, | |
2677 ControlDestination* dest) { | |
2678 // Strict only makes sense for equality comparisons. | |
2679 ASSERT(!strict || cc == equal); | |
2680 | |
2681 Result left_side; | |
2682 Result right_side; | |
2683 // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. | |
2684 if (cc == greater || cc == less_equal) { | |
2685 cc = ReverseCondition(cc); | |
2686 left_side = frame_->Pop(); | |
2687 right_side = frame_->Pop(); | |
2688 } else { | |
2689 right_side = frame_->Pop(); | |
2690 left_side = frame_->Pop(); | |
2691 } | |
2692 ASSERT(cc == less || cc == equal || cc == greater_equal); | |
2693 | |
2694 // If either side is a constant smi, optimize the comparison. | |
2695 bool left_side_constant_smi = false; | |
2696 bool left_side_constant_null = false; | |
2697 bool left_side_constant_1_char_string = false; | |
2698 if (left_side.is_constant()) { | |
2699 left_side_constant_smi = left_side.handle()->IsSmi(); | |
2700 left_side_constant_null = left_side.handle()->IsNull(); | |
2701 left_side_constant_1_char_string = | |
2702 (left_side.handle()->IsString() && | |
2703 String::cast(*left_side.handle())->length() == 1 && | |
2704 String::cast(*left_side.handle())->IsAsciiRepresentation()); | |
2705 } | |
2706 bool right_side_constant_smi = false; | |
2707 bool right_side_constant_null = false; | |
2708 bool right_side_constant_1_char_string = false; | |
2709 if (right_side.is_constant()) { | |
2710 right_side_constant_smi = right_side.handle()->IsSmi(); | |
2711 right_side_constant_null = right_side.handle()->IsNull(); | |
2712 right_side_constant_1_char_string = | |
2713 (right_side.handle()->IsString() && | |
2714 String::cast(*right_side.handle())->length() == 1 && | |
2715 String::cast(*right_side.handle())->IsAsciiRepresentation()); | |
2716 } | |
2717 | |
2718 if (left_side_constant_smi || right_side_constant_smi) { | |
2719 bool is_loop_condition = (node->AsExpression() != NULL) && | |
2720 node->AsExpression()->is_loop_condition(); | |
2721 ConstantSmiComparison(cc, strict, dest, &left_side, &right_side, | |
2722 left_side_constant_smi, right_side_constant_smi, | |
2723 is_loop_condition); | |
2724 } else if (left_side_constant_1_char_string || | |
2725 right_side_constant_1_char_string) { | |
2726 if (left_side_constant_1_char_string && right_side_constant_1_char_string) { | |
2727 // Trivial case, comparing two constants. | |
2728 int left_value = String::cast(*left_side.handle())->Get(0); | |
2729 int right_value = String::cast(*right_side.handle())->Get(0); | |
2730 switch (cc) { | |
2731 case less: | |
2732 dest->Goto(left_value < right_value); | |
2733 break; | |
2734 case equal: | |
2735 dest->Goto(left_value == right_value); | |
2736 break; | |
2737 case greater_equal: | |
2738 dest->Goto(left_value >= right_value); | |
2739 break; | |
2740 default: | |
2741 UNREACHABLE(); | |
2742 } | |
2743 } else { | |
2744 // Only one side is a constant 1 character string. | |
2745 // If left side is a constant 1-character string, reverse the operands. | |
2746 // Since one side is a constant string, conversion order does not matter. | |
2747 if (left_side_constant_1_char_string) { | |
2748 Result temp = left_side; | |
2749 left_side = right_side; | |
2750 right_side = temp; | |
2751 cc = ReverseCondition(cc); | |
2752 // This may reintroduce greater or less_equal as the value of cc. | |
2753 // CompareStub and the inline code both support all values of cc. | |
2754 } | |
2755 // Implement comparison against a constant string, inlining the case | |
2756 // where both sides are strings. | |
2757 left_side.ToRegister(); | |
2758 | |
2759 // Here we split control flow to the stub call and inlined cases | |
2760 // before finally splitting it to the control destination. We use | |
2761 // a jump target and branching to duplicate the virtual frame at | |
2762 // the first split. We manually handle the off-frame references | |
2763 // by reconstituting them on the non-fall-through path. | |
2764 JumpTarget is_not_string, is_string; | |
2765 Register left_reg = left_side.reg(); | |
2766 Handle<Object> right_val = right_side.handle(); | |
2767 ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); | |
2768 __ test(left_side.reg(), Immediate(kSmiTagMask)); | |
2769 is_not_string.Branch(zero, &left_side); | |
2770 Result temp = allocator_->Allocate(); | |
2771 ASSERT(temp.is_valid()); | |
2772 __ mov(temp.reg(), | |
2773 FieldOperand(left_side.reg(), HeapObject::kMapOffset)); | |
2774 __ movzx_b(temp.reg(), | |
2775 FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); | |
2776 // If we are testing for equality then make use of the symbol shortcut. | |
2777 // Check if the right left hand side has the same type as the left hand | |
2778 // side (which is always a symbol). | |
2779 if (cc == equal) { | |
2780 Label not_a_symbol; | |
2781 STATIC_ASSERT(kSymbolTag != 0); | |
2782 // Ensure that no non-strings have the symbol bit set. | |
2783 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); | |
2784 __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. | |
2785 __ j(zero, ¬_a_symbol); | |
2786 // They are symbols, so do identity compare. | |
2787 __ cmp(left_side.reg(), right_side.handle()); | |
2788 dest->true_target()->Branch(equal); | |
2789 dest->false_target()->Branch(not_equal); | |
2790 __ bind(¬_a_symbol); | |
2791 } | |
2792 // Call the compare stub if the left side is not a flat ascii string. | |
2793 __ and_(temp.reg(), | |
2794 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); | |
2795 __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag); | |
2796 temp.Unuse(); | |
2797 is_string.Branch(equal, &left_side); | |
2798 | |
2799 // Setup and call the compare stub. | |
2800 is_not_string.Bind(&left_side); | |
2801 CompareFlags flags = | |
2802 static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_COMPARE_IN_STUB); | |
2803 CompareStub stub(cc, strict, flags); | |
2804 Result result = frame_->CallStub(&stub, &left_side, &right_side); | |
2805 result.ToRegister(); | |
2806 __ cmp(result.reg(), 0); | |
2807 result.Unuse(); | |
2808 dest->true_target()->Branch(cc); | |
2809 dest->false_target()->Jump(); | |
2810 | |
2811 is_string.Bind(&left_side); | |
2812 // left_side is a sequential ASCII string. | |
2813 left_side = Result(left_reg); | |
2814 right_side = Result(right_val); | |
2815 // Test string equality and comparison. | |
2816 Label comparison_done; | |
2817 if (cc == equal) { | |
2818 __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), | |
2819 Immediate(Smi::FromInt(1))); | |
2820 __ j(not_equal, &comparison_done); | |
2821 uint8_t char_value = | |
2822 static_cast<uint8_t>(String::cast(*right_val)->Get(0)); | |
2823 __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), | |
2824 char_value); | |
2825 } else { | |
2826 __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), | |
2827 Immediate(Smi::FromInt(1))); | |
2828 // If the length is 0 then the jump is taken and the flags | |
2829 // correctly represent being less than the one-character string. | |
2830 __ j(below, &comparison_done); | |
2831 // Compare the first character of the string with the | |
2832 // constant 1-character string. | |
2833 uint8_t char_value = | |
2834 static_cast<uint8_t>(String::cast(*right_val)->Get(0)); | |
2835 __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), | |
2836 char_value); | |
2837 __ j(not_equal, &comparison_done); | |
2838 // If the first character is the same then the long string sorts after | |
2839 // the short one. | |
2840 __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), | |
2841 Immediate(Smi::FromInt(1))); | |
2842 } | |
2843 __ bind(&comparison_done); | |
2844 left_side.Unuse(); | |
2845 right_side.Unuse(); | |
2846 dest->Split(cc); | |
2847 } | |
2848 } else { | |
2849 // Neither side is a constant Smi, constant 1-char string or constant null. | |
2850 // If either side is a non-smi constant, or known to be a heap number, | |
2851 // skip the smi check. | |
2852 bool known_non_smi = | |
2853 (left_side.is_constant() && !left_side.handle()->IsSmi()) || | |
2854 (right_side.is_constant() && !right_side.handle()->IsSmi()) || | |
2855 left_side.type_info().IsDouble() || | |
2856 right_side.type_info().IsDouble(); | |
2857 | |
2858 NaNInformation nan_info = | |
2859 (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? | |
2860 kBothCouldBeNaN : | |
2861 kCantBothBeNaN; | |
2862 | |
2863 // Inline number comparison handling any combination of smi's and heap | |
2864 // numbers if: | |
2865 // code is in a loop | |
2866 // the compare operation is different from equal | |
2867 // compare is not a for-loop comparison | |
2868 // The reason for excluding equal is that it will most likely be done | |
2869 // with smi's (not heap numbers) and the code to comparing smi's is inlined | |
2870 // separately. The same reason applies for for-loop comparison which will | |
2871 // also most likely be smi comparisons. | |
2872 bool is_loop_condition = (node->AsExpression() != NULL) | |
2873 && node->AsExpression()->is_loop_condition(); | |
2874 bool inline_number_compare = | |
2875 loop_nesting() > 0 && cc != equal && !is_loop_condition; | |
2876 | |
2877 // Left and right needed in registers for the following code. | |
2878 left_side.ToRegister(); | |
2879 right_side.ToRegister(); | |
2880 | |
2881 if (known_non_smi) { | |
2882 // Inlined equality check: | |
2883 // If at least one of the objects is not NaN, then if the objects | |
2884 // are identical, they are equal. | |
2885 if (nan_info == kCantBothBeNaN && cc == equal) { | |
2886 __ cmp(left_side.reg(), Operand(right_side.reg())); | |
2887 dest->true_target()->Branch(equal); | |
2888 } | |
2889 | |
2890 // Inlined number comparison: | |
2891 if (inline_number_compare) { | |
2892 GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); | |
2893 } | |
2894 | |
2895 // End of in-line compare, call out to the compare stub. Don't include | |
2896 // number comparison in the stub if it was inlined. | |
2897 CompareFlags flags = ComputeCompareFlags(nan_info, inline_number_compare); | |
2898 CompareStub stub(cc, strict, flags); | |
2899 Result answer = frame_->CallStub(&stub, &left_side, &right_side); | |
2900 __ test(answer.reg(), Operand(answer.reg())); | |
2901 answer.Unuse(); | |
2902 dest->Split(cc); | |
2903 } else { | |
2904 // Here we split control flow to the stub call and inlined cases | |
2905 // before finally splitting it to the control destination. We use | |
2906 // a jump target and branching to duplicate the virtual frame at | |
2907 // the first split. We manually handle the off-frame references | |
2908 // by reconstituting them on the non-fall-through path. | |
2909 JumpTarget is_smi; | |
2910 Register left_reg = left_side.reg(); | |
2911 Register right_reg = right_side.reg(); | |
2912 | |
2913 // In-line check for comparing two smis. | |
2914 JumpIfBothSmiUsingTypeInfo(&left_side, &right_side, &is_smi); | |
2915 | |
2916 if (has_valid_frame()) { | |
2917 // Inline the equality check if both operands can't be a NaN. If both | |
2918 // objects are the same they are equal. | |
2919 if (nan_info == kCantBothBeNaN && cc == equal) { | |
2920 __ cmp(left_side.reg(), Operand(right_side.reg())); | |
2921 dest->true_target()->Branch(equal); | |
2922 } | |
2923 | |
2924 // Inlined number comparison: | |
2925 if (inline_number_compare) { | |
2926 GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); | |
2927 } | |
2928 | |
2929 // End of in-line compare, call out to the compare stub. Don't include | |
2930 // number comparison in the stub if it was inlined. | |
2931 CompareFlags flags = | |
2932 ComputeCompareFlags(nan_info, inline_number_compare); | |
2933 CompareStub stub(cc, strict, flags); | |
2934 Result answer = frame_->CallStub(&stub, &left_side, &right_side); | |
2935 __ test(answer.reg(), Operand(answer.reg())); | |
2936 answer.Unuse(); | |
2937 if (is_smi.is_linked()) { | |
2938 dest->true_target()->Branch(cc); | |
2939 dest->false_target()->Jump(); | |
2940 } else { | |
2941 dest->Split(cc); | |
2942 } | |
2943 } | |
2944 | |
2945 if (is_smi.is_linked()) { | |
2946 is_smi.Bind(); | |
2947 left_side = Result(left_reg); | |
2948 right_side = Result(right_reg); | |
2949 __ cmp(left_side.reg(), Operand(right_side.reg())); | |
2950 right_side.Unuse(); | |
2951 left_side.Unuse(); | |
2952 dest->Split(cc); | |
2953 } | |
2954 } | |
2955 } | |
2956 } | |
2957 | |
2958 | |
2959 void CodeGenerator::ConstantSmiComparison(Condition cc, | |
2960 bool strict, | |
2961 ControlDestination* dest, | |
2962 Result* left_side, | |
2963 Result* right_side, | |
2964 bool left_side_constant_smi, | |
2965 bool right_side_constant_smi, | |
2966 bool is_loop_condition) { | |
2967 if (left_side_constant_smi && right_side_constant_smi) { | |
2968 // Trivial case, comparing two constants. | |
2969 int left_value = Smi::cast(*left_side->handle())->value(); | |
2970 int right_value = Smi::cast(*right_side->handle())->value(); | |
2971 switch (cc) { | |
2972 case less: | |
2973 dest->Goto(left_value < right_value); | |
2974 break; | |
2975 case equal: | |
2976 dest->Goto(left_value == right_value); | |
2977 break; | |
2978 case greater_equal: | |
2979 dest->Goto(left_value >= right_value); | |
2980 break; | |
2981 default: | |
2982 UNREACHABLE(); | |
2983 } | |
2984 } else { | |
2985 // Only one side is a constant Smi. | |
2986 // If left side is a constant Smi, reverse the operands. | |
2987 // Since one side is a constant Smi, conversion order does not matter. | |
2988 if (left_side_constant_smi) { | |
2989 Result* temp = left_side; | |
2990 left_side = right_side; | |
2991 right_side = temp; | |
2992 cc = ReverseCondition(cc); | |
2993 // This may re-introduce greater or less_equal as the value of cc. | |
2994 // CompareStub and the inline code both support all values of cc. | |
2995 } | |
2996 // Implement comparison against a constant Smi, inlining the case | |
2997 // where both sides are Smis. | |
2998 left_side->ToRegister(); | |
2999 Register left_reg = left_side->reg(); | |
3000 Handle<Object> right_val = right_side->handle(); | |
3001 | |
3002 if (left_side->is_smi()) { | |
3003 if (FLAG_debug_code) { | |
3004 __ AbortIfNotSmi(left_reg); | |
3005 } | |
3006 // Test smi equality and comparison by signed int comparison. | |
3007 if (IsUnsafeSmi(right_side->handle())) { | |
3008 right_side->ToRegister(); | |
3009 __ cmp(left_reg, Operand(right_side->reg())); | |
3010 } else { | |
3011 __ cmp(Operand(left_reg), Immediate(right_side->handle())); | |
3012 } | |
3013 left_side->Unuse(); | |
3014 right_side->Unuse(); | |
3015 dest->Split(cc); | |
3016 } else { | |
3017 // Only the case where the left side could possibly be a non-smi is left. | |
3018 JumpTarget is_smi; | |
3019 if (cc == equal) { | |
3020 // We can do the equality comparison before the smi check. | |
3021 __ cmp(Operand(left_reg), Immediate(right_side->handle())); | |
3022 dest->true_target()->Branch(equal); | |
3023 __ test(left_reg, Immediate(kSmiTagMask)); | |
3024 dest->false_target()->Branch(zero); | |
3025 } else { | |
3026 // Do the smi check, then the comparison. | |
3027 __ test(left_reg, Immediate(kSmiTagMask)); | |
3028 is_smi.Branch(zero, left_side, right_side); | |
3029 } | |
3030 | |
3031 // Jump or fall through to here if we are comparing a non-smi to a | |
3032 // constant smi. If the non-smi is a heap number and this is not | |
3033 // a loop condition, inline the floating point code. | |
3034 if (!is_loop_condition && | |
3035 CpuFeatures::IsSupported(SSE2)) { | |
3036 // Right side is a constant smi and left side has been checked | |
3037 // not to be a smi. | |
3038 CpuFeatures::Scope use_sse2(SSE2); | |
3039 JumpTarget not_number; | |
3040 __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset), | |
3041 Immediate(FACTORY->heap_number_map())); | |
3042 not_number.Branch(not_equal, left_side); | |
3043 __ movdbl(xmm1, | |
3044 FieldOperand(left_reg, HeapNumber::kValueOffset)); | |
3045 int value = Smi::cast(*right_val)->value(); | |
3046 if (value == 0) { | |
3047 __ xorpd(xmm0, xmm0); | |
3048 } else { | |
3049 Result temp = allocator()->Allocate(); | |
3050 __ mov(temp.reg(), Immediate(value)); | |
3051 __ cvtsi2sd(xmm0, Operand(temp.reg())); | |
3052 temp.Unuse(); | |
3053 } | |
3054 __ ucomisd(xmm1, xmm0); | |
3055 // Jump to builtin for NaN. | |
3056 not_number.Branch(parity_even, left_side); | |
3057 left_side->Unuse(); | |
3058 dest->true_target()->Branch(DoubleCondition(cc)); | |
3059 dest->false_target()->Jump(); | |
3060 not_number.Bind(left_side); | |
3061 } | |
3062 | |
3063 // Setup and call the compare stub. | |
3064 CompareFlags flags = | |
3065 static_cast<CompareFlags>(CANT_BOTH_BE_NAN | NO_SMI_CODE_IN_STUB); | |
3066 CompareStub stub(cc, strict, flags); | |
3067 Result result = frame_->CallStub(&stub, left_side, right_side); | |
3068 result.ToRegister(); | |
3069 __ test(result.reg(), Operand(result.reg())); | |
3070 result.Unuse(); | |
3071 if (cc == equal) { | |
3072 dest->Split(cc); | |
3073 } else { | |
3074 dest->true_target()->Branch(cc); | |
3075 dest->false_target()->Jump(); | |
3076 | |
3077 // It is important for performance for this case to be at the end. | |
3078 is_smi.Bind(left_side, right_side); | |
3079 if (IsUnsafeSmi(right_side->handle())) { | |
3080 right_side->ToRegister(); | |
3081 __ cmp(left_reg, Operand(right_side->reg())); | |
3082 } else { | |
3083 __ cmp(Operand(left_reg), Immediate(right_side->handle())); | |
3084 } | |
3085 left_side->Unuse(); | |
3086 right_side->Unuse(); | |
3087 dest->Split(cc); | |
3088 } | |
3089 } | |
3090 } | |
3091 } | |
3092 | |
3093 | |
3094 // Check that the comparison operand is a number. Jump to not_numbers jump | |
3095 // target passing the left and right result if the operand is not a number. | |
3096 static void CheckComparisonOperand(MacroAssembler* masm_, | |
3097 Result* operand, | |
3098 Result* left_side, | |
3099 Result* right_side, | |
3100 JumpTarget* not_numbers) { | |
3101 // Perform check if operand is not known to be a number. | |
3102 if (!operand->type_info().IsNumber()) { | |
3103 Label done; | |
3104 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
3105 __ j(zero, &done); | |
3106 __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), | |
3107 Immediate(FACTORY->heap_number_map())); | |
3108 not_numbers->Branch(not_equal, left_side, right_side, not_taken); | |
3109 __ bind(&done); | |
3110 } | |
3111 } | |
3112 | |
3113 | |
3114 // Load a comparison operand to the FPU stack. This assumes that the operand has | |
3115 // already been checked and is a number. | |
3116 static void LoadComparisonOperand(MacroAssembler* masm_, | |
3117 Result* operand) { | |
3118 Label done; | |
3119 if (operand->type_info().IsDouble()) { | |
3120 // Operand is known to be a heap number, just load it. | |
3121 __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); | |
3122 } else if (operand->type_info().IsSmi()) { | |
3123 // Operand is known to be a smi. Convert it to double and keep the original | |
3124 // smi. | |
3125 __ SmiUntag(operand->reg()); | |
3126 __ push(operand->reg()); | |
3127 __ fild_s(Operand(esp, 0)); | |
3128 __ pop(operand->reg()); | |
3129 __ SmiTag(operand->reg()); | |
3130 } else { | |
3131 // Operand type not known, check for smi otherwise assume heap number. | |
3132 Label smi; | |
3133 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
3134 __ j(zero, &smi); | |
3135 __ fld_d(FieldOperand(operand->reg(), HeapNumber::kValueOffset)); | |
3136 __ jmp(&done); | |
3137 __ bind(&smi); | |
3138 __ SmiUntag(operand->reg()); | |
3139 __ push(operand->reg()); | |
3140 __ fild_s(Operand(esp, 0)); | |
3141 __ pop(operand->reg()); | |
3142 __ SmiTag(operand->reg()); | |
3143 __ jmp(&done); | |
3144 } | |
3145 __ bind(&done); | |
3146 } | |
3147 | |
3148 | |
3149 // Load a comparison operand into into a XMM register. Jump to not_numbers jump | |
3150 // target passing the left and right result if the operand is not a number. | |
3151 static void LoadComparisonOperandSSE2(MacroAssembler* masm_, | |
3152 Result* operand, | |
3153 XMMRegister xmm_reg, | |
3154 Result* left_side, | |
3155 Result* right_side, | |
3156 JumpTarget* not_numbers) { | |
3157 Label done; | |
3158 if (operand->type_info().IsDouble()) { | |
3159 // Operand is known to be a heap number, just load it. | |
3160 __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); | |
3161 } else if (operand->type_info().IsSmi()) { | |
3162 // Operand is known to be a smi. Convert it to double and keep the original | |
3163 // smi. | |
3164 __ SmiUntag(operand->reg()); | |
3165 __ cvtsi2sd(xmm_reg, Operand(operand->reg())); | |
3166 __ SmiTag(operand->reg()); | |
3167 } else { | |
3168 // Operand type not known, check for smi or heap number. | |
3169 Label smi; | |
3170 __ test(operand->reg(), Immediate(kSmiTagMask)); | |
3171 __ j(zero, &smi); | |
3172 if (!operand->type_info().IsNumber()) { | |
3173 __ cmp(FieldOperand(operand->reg(), HeapObject::kMapOffset), | |
3174 Immediate(FACTORY->heap_number_map())); | |
3175 not_numbers->Branch(not_equal, left_side, right_side, taken); | |
3176 } | |
3177 __ movdbl(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); | |
3178 __ jmp(&done); | |
3179 | |
3180 __ bind(&smi); | |
3181 // Comvert smi to float and keep the original smi. | |
3182 __ SmiUntag(operand->reg()); | |
3183 __ cvtsi2sd(xmm_reg, Operand(operand->reg())); | |
3184 __ SmiTag(operand->reg()); | |
3185 __ jmp(&done); | |
3186 } | |
3187 __ bind(&done); | |
3188 } | |
3189 | |
3190 | |
3191 void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, | |
3192 Result* right_side, | |
3193 Condition cc, | |
3194 ControlDestination* dest) { | |
3195 ASSERT(left_side->is_register()); | |
3196 ASSERT(right_side->is_register()); | |
3197 | |
3198 JumpTarget not_numbers; | |
3199 if (CpuFeatures::IsSupported(SSE2)) { | |
3200 CpuFeatures::Scope use_sse2(SSE2); | |
3201 | |
3202 // Load left and right operand into registers xmm0 and xmm1 and compare. | |
3203 LoadComparisonOperandSSE2(masm_, left_side, xmm0, left_side, right_side, | |
3204 ¬_numbers); | |
3205 LoadComparisonOperandSSE2(masm_, right_side, xmm1, left_side, right_side, | |
3206 ¬_numbers); | |
3207 __ ucomisd(xmm0, xmm1); | |
3208 } else { | |
3209 Label check_right, compare; | |
3210 | |
3211 // Make sure that both comparison operands are numbers. | |
3212 CheckComparisonOperand(masm_, left_side, left_side, right_side, | |
3213 ¬_numbers); | |
3214 CheckComparisonOperand(masm_, right_side, left_side, right_side, | |
3215 ¬_numbers); | |
3216 | |
3217 // Load right and left operand to FPU stack and compare. | |
3218 LoadComparisonOperand(masm_, right_side); | |
3219 LoadComparisonOperand(masm_, left_side); | |
3220 __ FCmp(); | |
3221 } | |
3222 | |
3223 // Bail out if a NaN is involved. | |
3224 not_numbers.Branch(parity_even, left_side, right_side, not_taken); | |
3225 | |
3226 // Split to destination targets based on comparison. | |
3227 left_side->Unuse(); | |
3228 right_side->Unuse(); | |
3229 dest->true_target()->Branch(DoubleCondition(cc)); | |
3230 dest->false_target()->Jump(); | |
3231 | |
3232 not_numbers.Bind(left_side, right_side); | |
3233 } | |
3234 | |
3235 | |
3236 // Call the function just below TOS on the stack with the given | |
3237 // arguments. The receiver is the TOS. | |
3238 void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, | |
3239 CallFunctionFlags flags, | |
3240 int position) { | |
3241 // Push the arguments ("left-to-right") on the stack. | |
3242 int arg_count = args->length(); | |
3243 for (int i = 0; i < arg_count; i++) { | |
3244 Load(args->at(i)); | |
3245 frame_->SpillTop(); | |
3246 } | |
3247 | |
3248 // Record the position for debugging purposes. | |
3249 CodeForSourcePosition(position); | |
3250 | |
3251 // Use the shared code stub to call the function. | |
3252 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
3253 CallFunctionStub call_function(arg_count, in_loop, flags); | |
3254 Result answer = frame_->CallStub(&call_function, arg_count + 1); | |
3255 // Restore context and replace function on the stack with the | |
3256 // result of the stub invocation. | |
3257 frame_->RestoreContextRegister(); | |
3258 frame_->SetElementAt(0, &answer); | |
3259 } | |
3260 | |
3261 | |
3262 void CodeGenerator::CallApplyLazy(Expression* applicand, | |
3263 Expression* receiver, | |
3264 VariableProxy* arguments, | |
3265 int position) { | |
3266 // An optimized implementation of expressions of the form | |
3267 // x.apply(y, arguments). | |
3268 // If the arguments object of the scope has not been allocated, | |
3269 // and x.apply is Function.prototype.apply, this optimization | |
3270 // just copies y and the arguments of the current function on the | |
3271 // stack, as receiver and arguments, and calls x. | |
3272 // In the implementation comments, we call x the applicand | |
3273 // and y the receiver. | |
3274 ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); | |
3275 ASSERT(arguments->IsArguments()); | |
3276 | |
3277 // Load applicand.apply onto the stack. This will usually | |
3278 // give us a megamorphic load site. Not super, but it works. | |
3279 Load(applicand); | |
3280 frame()->Dup(); | |
3281 Handle<String> name = FACTORY->LookupAsciiSymbol("apply"); | |
3282 frame()->Push(name); | |
3283 Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); | |
3284 __ nop(); | |
3285 frame()->Push(&answer); | |
3286 | |
3287 // Load the receiver and the existing arguments object onto the | |
3288 // expression stack. Avoid allocating the arguments object here. | |
3289 Load(receiver); | |
3290 LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); | |
3291 | |
3292 // Emit the source position information after having loaded the | |
3293 // receiver and the arguments. | |
3294 CodeForSourcePosition(position); | |
3295 // Contents of frame at this point: | |
3296 // Frame[0]: arguments object of the current function or the hole. | |
3297 // Frame[1]: receiver | |
3298 // Frame[2]: applicand.apply | |
3299 // Frame[3]: applicand. | |
3300 | |
3301 // Check if the arguments object has been lazily allocated | |
3302 // already. If so, just use that instead of copying the arguments | |
3303 // from the stack. This also deals with cases where a local variable | |
3304 // named 'arguments' has been introduced. | |
3305 frame_->Dup(); | |
3306 Result probe = frame_->Pop(); | |
3307 { VirtualFrame::SpilledScope spilled_scope; | |
3308 Label slow, done; | |
3309 bool try_lazy = true; | |
3310 if (probe.is_constant()) { | |
3311 try_lazy = probe.handle()->IsArgumentsMarker(); | |
3312 } else { | |
3313 __ cmp(Operand(probe.reg()), Immediate(FACTORY->arguments_marker())); | |
3314 probe.Unuse(); | |
3315 __ j(not_equal, &slow); | |
3316 } | |
3317 | |
3318 if (try_lazy) { | |
3319 Label build_args; | |
3320 // Get rid of the arguments object probe. | |
3321 frame_->Drop(); // Can be called on a spilled frame. | |
3322 // Stack now has 3 elements on it. | |
3323 // Contents of stack at this point: | |
3324 // esp[0]: receiver | |
3325 // esp[1]: applicand.apply | |
3326 // esp[2]: applicand. | |
3327 | |
3328 // Check that the receiver really is a JavaScript object. | |
3329 __ mov(eax, Operand(esp, 0)); | |
3330 __ test(eax, Immediate(kSmiTagMask)); | |
3331 __ j(zero, &build_args); | |
3332 // We allow all JSObjects including JSFunctions. As long as | |
3333 // JS_FUNCTION_TYPE is the last instance type and it is right | |
3334 // after LAST_JS_OBJECT_TYPE, we do not have to check the upper | |
3335 // bound. | |
3336 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); | |
3337 STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); | |
3338 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); | |
3339 __ j(below, &build_args); | |
3340 | |
3341 // Check that applicand.apply is Function.prototype.apply. | |
3342 __ mov(eax, Operand(esp, kPointerSize)); | |
3343 __ test(eax, Immediate(kSmiTagMask)); | |
3344 __ j(zero, &build_args); | |
3345 __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx); | |
3346 __ j(not_equal, &build_args); | |
3347 __ mov(ecx, FieldOperand(eax, JSFunction::kCodeEntryOffset)); | |
3348 __ sub(Operand(ecx), Immediate(Code::kHeaderSize - kHeapObjectTag)); | |
3349 Handle<Code> apply_code(masm()->isolate()->builtins()->builtin( | |
3350 Builtins::kFunctionApply)); | |
3351 __ cmp(Operand(ecx), Immediate(apply_code)); | |
3352 __ j(not_equal, &build_args); | |
3353 | |
3354 // Check that applicand is a function. | |
3355 __ mov(edi, Operand(esp, 2 * kPointerSize)); | |
3356 __ test(edi, Immediate(kSmiTagMask)); | |
3357 __ j(zero, &build_args); | |
3358 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); | |
3359 __ j(not_equal, &build_args); | |
3360 | |
3361 // Copy the arguments to this function possibly from the | |
3362 // adaptor frame below it. | |
3363 Label invoke, adapted; | |
3364 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
3365 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); | |
3366 __ cmp(Operand(ecx), | |
3367 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
3368 __ j(equal, &adapted); | |
3369 | |
3370 // No arguments adaptor frame. Copy fixed number of arguments. | |
3371 __ mov(eax, Immediate(scope()->num_parameters())); | |
3372 for (int i = 0; i < scope()->num_parameters(); i++) { | |
3373 __ push(frame_->ParameterAt(i)); | |
3374 } | |
3375 __ jmp(&invoke); | |
3376 | |
3377 // Arguments adaptor frame present. Copy arguments from there, but | |
3378 // avoid copying too many arguments to avoid stack overflows. | |
3379 __ bind(&adapted); | |
3380 static const uint32_t kArgumentsLimit = 1 * KB; | |
3381 __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
3382 __ SmiUntag(eax); | |
3383 __ mov(ecx, Operand(eax)); | |
3384 __ cmp(eax, kArgumentsLimit); | |
3385 __ j(above, &build_args); | |
3386 | |
3387 // Loop through the arguments pushing them onto the execution | |
3388 // stack. We don't inform the virtual frame of the push, so we don't | |
3389 // have to worry about getting rid of the elements from the virtual | |
3390 // frame. | |
3391 Label loop; | |
3392 // ecx is a small non-negative integer, due to the test above. | |
3393 __ test(ecx, Operand(ecx)); | |
3394 __ j(zero, &invoke); | |
3395 __ bind(&loop); | |
3396 __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize)); | |
3397 __ dec(ecx); | |
3398 __ j(not_zero, &loop); | |
3399 | |
3400 // Invoke the function. | |
3401 __ bind(&invoke); | |
3402 ParameterCount actual(eax); | |
3403 __ InvokeFunction(edi, actual, CALL_FUNCTION); | |
3404 // Drop applicand.apply and applicand from the stack, and push | |
3405 // the result of the function call, but leave the spilled frame | |
3406 // unchanged, with 3 elements, so it is correct when we compile the | |
3407 // slow-case code. | |
3408 __ add(Operand(esp), Immediate(2 * kPointerSize)); | |
3409 __ push(eax); | |
3410 // Stack now has 1 element: | |
3411 // esp[0]: result | |
3412 __ jmp(&done); | |
3413 | |
3414 // Slow-case: Allocate the arguments object since we know it isn't | |
3415 // there, and fall-through to the slow-case where we call | |
3416 // applicand.apply. | |
3417 __ bind(&build_args); | |
3418 // Stack now has 3 elements, because we have jumped from where: | |
3419 // esp[0]: receiver | |
3420 // esp[1]: applicand.apply | |
3421 // esp[2]: applicand. | |
3422 | |
3423 // StoreArgumentsObject requires a correct frame, and may modify it. | |
3424 Result arguments_object = StoreArgumentsObject(false); | |
3425 frame_->SpillAll(); | |
3426 arguments_object.ToRegister(); | |
3427 frame_->EmitPush(arguments_object.reg()); | |
3428 arguments_object.Unuse(); | |
3429 // Stack and frame now have 4 elements. | |
3430 __ bind(&slow); | |
3431 } | |
3432 | |
3433 // Generic computation of x.apply(y, args) with no special optimization. | |
3434 // Flip applicand.apply and applicand on the stack, so | |
3435 // applicand looks like the receiver of the applicand.apply call. | |
3436 // Then process it as a normal function call. | |
3437 __ mov(eax, Operand(esp, 3 * kPointerSize)); | |
3438 __ mov(ebx, Operand(esp, 2 * kPointerSize)); | |
3439 __ mov(Operand(esp, 2 * kPointerSize), eax); | |
3440 __ mov(Operand(esp, 3 * kPointerSize), ebx); | |
3441 | |
3442 CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); | |
3443 Result res = frame_->CallStub(&call_function, 3); | |
3444 // The function and its two arguments have been dropped. | |
3445 frame_->Drop(1); // Drop the receiver as well. | |
3446 res.ToRegister(); | |
3447 frame_->EmitPush(res.reg()); | |
3448 // Stack now has 1 element: | |
3449 // esp[0]: result | |
3450 if (try_lazy) __ bind(&done); | |
3451 } // End of spilled scope. | |
3452 // Restore the context register after a call. | |
3453 frame_->RestoreContextRegister(); | |
3454 } | |
3455 | |
3456 | |
3457 class DeferredStackCheck: public DeferredCode { | |
3458 public: | |
3459 DeferredStackCheck() { | |
3460 set_comment("[ DeferredStackCheck"); | |
3461 } | |
3462 | |
3463 virtual void Generate(); | |
3464 }; | |
3465 | |
3466 | |
3467 void DeferredStackCheck::Generate() { | |
3468 StackCheckStub stub; | |
3469 __ CallStub(&stub); | |
3470 } | |
3471 | |
3472 | |
3473 void CodeGenerator::CheckStack() { | |
3474 DeferredStackCheck* deferred = new DeferredStackCheck; | |
3475 ExternalReference stack_limit = | |
3476 ExternalReference::address_of_stack_limit(masm()->isolate()); | |
3477 __ cmp(esp, Operand::StaticVariable(stack_limit)); | |
3478 deferred->Branch(below); | |
3479 deferred->BindExit(); | |
3480 } | |
3481 | |
3482 | |
3483 void CodeGenerator::VisitAndSpill(Statement* statement) { | |
3484 ASSERT(in_spilled_code()); | |
3485 set_in_spilled_code(false); | |
3486 Visit(statement); | |
3487 if (frame_ != NULL) { | |
3488 frame_->SpillAll(); | |
3489 } | |
3490 set_in_spilled_code(true); | |
3491 } | |
3492 | |
3493 | |
3494 void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { | |
3495 #ifdef DEBUG | |
3496 int original_height = frame_->height(); | |
3497 #endif | |
3498 ASSERT(in_spilled_code()); | |
3499 set_in_spilled_code(false); | |
3500 VisitStatements(statements); | |
3501 if (frame_ != NULL) { | |
3502 frame_->SpillAll(); | |
3503 } | |
3504 set_in_spilled_code(true); | |
3505 | |
3506 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
3507 } | |
3508 | |
3509 | |
3510 void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { | |
3511 #ifdef DEBUG | |
3512 int original_height = frame_->height(); | |
3513 #endif | |
3514 ASSERT(!in_spilled_code()); | |
3515 for (int i = 0; has_valid_frame() && i < statements->length(); i++) { | |
3516 Visit(statements->at(i)); | |
3517 } | |
3518 ASSERT(!has_valid_frame() || frame_->height() == original_height); | |
3519 } | |
3520 | |
3521 | |
3522 void CodeGenerator::VisitBlock(Block* node) { | |
3523 ASSERT(!in_spilled_code()); | |
3524 Comment cmnt(masm_, "[ Block"); | |
3525 CodeForStatementPosition(node); | |
3526 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
3527 VisitStatements(node->statements()); | |
3528 if (node->break_target()->is_linked()) { | |
3529 node->break_target()->Bind(); | |
3530 } | |
3531 node->break_target()->Unuse(); | |
3532 } | |
3533 | |
3534 | |
3535 void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { | |
3536 // Call the runtime to declare the globals. The inevitable call | |
3537 // will sync frame elements to memory anyway, so we do it eagerly to | |
3538 // allow us to push the arguments directly into place. | |
3539 frame_->SyncRange(0, frame_->element_count() - 1); | |
3540 | |
3541 frame_->EmitPush(esi); // The context is the first argument. | |
3542 frame_->EmitPush(Immediate(pairs)); | |
3543 frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); | |
3544 frame_->EmitPush(Immediate(Smi::FromInt(strict_mode_flag()))); | |
3545 Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 4); | |
3546 // Return value is ignored. | |
3547 } | |
3548 | |
3549 | |
3550 void CodeGenerator::VisitDeclaration(Declaration* node) { | |
3551 Comment cmnt(masm_, "[ Declaration"); | |
3552 Variable* var = node->proxy()->var(); | |
3553 ASSERT(var != NULL); // must have been resolved | |
3554 Slot* slot = var->AsSlot(); | |
3555 | |
3556 // If it was not possible to allocate the variable at compile time, | |
3557 // we need to "declare" it at runtime to make sure it actually | |
3558 // exists in the local context. | |
3559 if (slot != NULL && slot->type() == Slot::LOOKUP) { | |
3560 // Variables with a "LOOKUP" slot were introduced as non-locals | |
3561 // during variable resolution and must have mode DYNAMIC. | |
3562 ASSERT(var->is_dynamic()); | |
3563 // For now, just do a runtime call. Sync the virtual frame eagerly | |
3564 // so we can simply push the arguments into place. | |
3565 frame_->SyncRange(0, frame_->element_count() - 1); | |
3566 frame_->EmitPush(esi); | |
3567 frame_->EmitPush(Immediate(var->name())); | |
3568 // Declaration nodes are always introduced in one of two modes. | |
3569 ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); | |
3570 PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; | |
3571 frame_->EmitPush(Immediate(Smi::FromInt(attr))); | |
3572 // Push initial value, if any. | |
3573 // Note: For variables we must not push an initial value (such as | |
3574 // 'undefined') because we may have a (legal) redeclaration and we | |
3575 // must not destroy the current value. | |
3576 if (node->mode() == Variable::CONST) { | |
3577 frame_->EmitPush(Immediate(FACTORY->the_hole_value())); | |
3578 } else if (node->fun() != NULL) { | |
3579 Load(node->fun()); | |
3580 } else { | |
3581 frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! | |
3582 } | |
3583 Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); | |
3584 // Ignore the return value (declarations are statements). | |
3585 return; | |
3586 } | |
3587 | |
3588 ASSERT(!var->is_global()); | |
3589 | |
3590 // If we have a function or a constant, we need to initialize the variable. | |
3591 Expression* val = NULL; | |
3592 if (node->mode() == Variable::CONST) { | |
3593 val = new Literal(FACTORY->the_hole_value()); | |
3594 } else { | |
3595 val = node->fun(); // NULL if we don't have a function | |
3596 } | |
3597 | |
3598 if (val != NULL) { | |
3599 { | |
3600 // Set the initial value. | |
3601 Reference target(this, node->proxy()); | |
3602 Load(val); | |
3603 target.SetValue(NOT_CONST_INIT); | |
3604 // The reference is removed from the stack (preserving TOS) when | |
3605 // it goes out of scope. | |
3606 } | |
3607 // Get rid of the assigned value (declarations are statements). | |
3608 frame_->Drop(); | |
3609 } | |
3610 } | |
3611 | |
3612 | |
3613 void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { | |
3614 ASSERT(!in_spilled_code()); | |
3615 Comment cmnt(masm_, "[ ExpressionStatement"); | |
3616 CodeForStatementPosition(node); | |
3617 Expression* expression = node->expression(); | |
3618 expression->MarkAsStatement(); | |
3619 Load(expression); | |
3620 // Remove the lingering expression result from the top of stack. | |
3621 frame_->Drop(); | |
3622 } | |
3623 | |
3624 | |
3625 void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { | |
3626 ASSERT(!in_spilled_code()); | |
3627 Comment cmnt(masm_, "// EmptyStatement"); | |
3628 CodeForStatementPosition(node); | |
3629 // nothing to do | |
3630 } | |
3631 | |
3632 | |
3633 void CodeGenerator::VisitIfStatement(IfStatement* node) { | |
3634 ASSERT(!in_spilled_code()); | |
3635 Comment cmnt(masm_, "[ IfStatement"); | |
3636 // Generate different code depending on which parts of the if statement | |
3637 // are present or not. | |
3638 bool has_then_stm = node->HasThenStatement(); | |
3639 bool has_else_stm = node->HasElseStatement(); | |
3640 | |
3641 CodeForStatementPosition(node); | |
3642 JumpTarget exit; | |
3643 if (has_then_stm && has_else_stm) { | |
3644 JumpTarget then; | |
3645 JumpTarget else_; | |
3646 ControlDestination dest(&then, &else_, true); | |
3647 LoadCondition(node->condition(), &dest, true); | |
3648 | |
3649 if (dest.false_was_fall_through()) { | |
3650 // The else target was bound, so we compile the else part first. | |
3651 Visit(node->else_statement()); | |
3652 | |
3653 // We may have dangling jumps to the then part. | |
3654 if (then.is_linked()) { | |
3655 if (has_valid_frame()) exit.Jump(); | |
3656 then.Bind(); | |
3657 Visit(node->then_statement()); | |
3658 } | |
3659 } else { | |
3660 // The then target was bound, so we compile the then part first. | |
3661 Visit(node->then_statement()); | |
3662 | |
3663 if (else_.is_linked()) { | |
3664 if (has_valid_frame()) exit.Jump(); | |
3665 else_.Bind(); | |
3666 Visit(node->else_statement()); | |
3667 } | |
3668 } | |
3669 | |
3670 } else if (has_then_stm) { | |
3671 ASSERT(!has_else_stm); | |
3672 JumpTarget then; | |
3673 ControlDestination dest(&then, &exit, true); | |
3674 LoadCondition(node->condition(), &dest, true); | |
3675 | |
3676 if (dest.false_was_fall_through()) { | |
3677 // The exit label was bound. We may have dangling jumps to the | |
3678 // then part. | |
3679 if (then.is_linked()) { | |
3680 exit.Unuse(); | |
3681 exit.Jump(); | |
3682 then.Bind(); | |
3683 Visit(node->then_statement()); | |
3684 } | |
3685 } else { | |
3686 // The then label was bound. | |
3687 Visit(node->then_statement()); | |
3688 } | |
3689 | |
3690 } else if (has_else_stm) { | |
3691 ASSERT(!has_then_stm); | |
3692 JumpTarget else_; | |
3693 ControlDestination dest(&exit, &else_, false); | |
3694 LoadCondition(node->condition(), &dest, true); | |
3695 | |
3696 if (dest.true_was_fall_through()) { | |
3697 // The exit label was bound. We may have dangling jumps to the | |
3698 // else part. | |
3699 if (else_.is_linked()) { | |
3700 exit.Unuse(); | |
3701 exit.Jump(); | |
3702 else_.Bind(); | |
3703 Visit(node->else_statement()); | |
3704 } | |
3705 } else { | |
3706 // The else label was bound. | |
3707 Visit(node->else_statement()); | |
3708 } | |
3709 | |
3710 } else { | |
3711 ASSERT(!has_then_stm && !has_else_stm); | |
3712 // We only care about the condition's side effects (not its value | |
3713 // or control flow effect). LoadCondition is called without | |
3714 // forcing control flow. | |
3715 ControlDestination dest(&exit, &exit, true); | |
3716 LoadCondition(node->condition(), &dest, false); | |
3717 if (!dest.is_used()) { | |
3718 // We got a value on the frame rather than (or in addition to) | |
3719 // control flow. | |
3720 frame_->Drop(); | |
3721 } | |
3722 } | |
3723 | |
3724 if (exit.is_linked()) { | |
3725 exit.Bind(); | |
3726 } | |
3727 } | |
3728 | |
3729 | |
3730 void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { | |
3731 ASSERT(!in_spilled_code()); | |
3732 Comment cmnt(masm_, "[ ContinueStatement"); | |
3733 CodeForStatementPosition(node); | |
3734 node->target()->continue_target()->Jump(); | |
3735 } | |
3736 | |
3737 | |
3738 void CodeGenerator::VisitBreakStatement(BreakStatement* node) { | |
3739 ASSERT(!in_spilled_code()); | |
3740 Comment cmnt(masm_, "[ BreakStatement"); | |
3741 CodeForStatementPosition(node); | |
3742 node->target()->break_target()->Jump(); | |
3743 } | |
3744 | |
3745 | |
3746 void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { | |
3747 ASSERT(!in_spilled_code()); | |
3748 Comment cmnt(masm_, "[ ReturnStatement"); | |
3749 | |
3750 CodeForStatementPosition(node); | |
3751 Load(node->expression()); | |
3752 Result return_value = frame_->Pop(); | |
3753 masm()->positions_recorder()->WriteRecordedPositions(); | |
3754 if (function_return_is_shadowed_) { | |
3755 function_return_.Jump(&return_value); | |
3756 } else { | |
3757 frame_->PrepareForReturn(); | |
3758 if (function_return_.is_bound()) { | |
3759 // If the function return label is already bound we reuse the | |
3760 // code by jumping to the return site. | |
3761 function_return_.Jump(&return_value); | |
3762 } else { | |
3763 function_return_.Bind(&return_value); | |
3764 GenerateReturnSequence(&return_value); | |
3765 } | |
3766 } | |
3767 } | |
3768 | |
3769 | |
3770 void CodeGenerator::GenerateReturnSequence(Result* return_value) { | |
3771 // The return value is a live (but not currently reference counted) | |
3772 // reference to eax. This is safe because the current frame does not | |
3773 // contain a reference to eax (it is prepared for the return by spilling | |
3774 // all registers). | |
3775 if (FLAG_trace) { | |
3776 frame_->Push(return_value); | |
3777 *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); | |
3778 } | |
3779 return_value->ToRegister(eax); | |
3780 | |
3781 // Add a label for checking the size of the code used for returning. | |
3782 #ifdef DEBUG | |
3783 Label check_exit_codesize; | |
3784 masm_->bind(&check_exit_codesize); | |
3785 #endif | |
3786 | |
3787 // Leave the frame and return popping the arguments and the | |
3788 // receiver. | |
3789 frame_->Exit(); | |
3790 int arguments_bytes = (scope()->num_parameters() + 1) * kPointerSize; | |
3791 __ Ret(arguments_bytes, ecx); | |
3792 DeleteFrame(); | |
3793 | |
3794 #ifdef ENABLE_DEBUGGER_SUPPORT | |
3795 // Check that the size of the code used for returning is large enough | |
3796 // for the debugger's requirements. | |
3797 ASSERT(Assembler::kJSReturnSequenceLength <= | |
3798 masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); | |
3799 #endif | |
3800 } | |
3801 | |
3802 | |
3803 void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { | |
3804 ASSERT(!in_spilled_code()); | |
3805 Comment cmnt(masm_, "[ WithEnterStatement"); | |
3806 CodeForStatementPosition(node); | |
3807 Load(node->expression()); | |
3808 Result context; | |
3809 if (node->is_catch_block()) { | |
3810 context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); | |
3811 } else { | |
3812 context = frame_->CallRuntime(Runtime::kPushContext, 1); | |
3813 } | |
3814 | |
3815 // Update context local. | |
3816 frame_->SaveContextRegister(); | |
3817 | |
3818 // Verify that the runtime call result and esi agree. | |
3819 if (FLAG_debug_code) { | |
3820 __ cmp(context.reg(), Operand(esi)); | |
3821 __ Assert(equal, "Runtime::NewContext should end up in esi"); | |
3822 } | |
3823 } | |
3824 | |
3825 | |
3826 void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { | |
3827 ASSERT(!in_spilled_code()); | |
3828 Comment cmnt(masm_, "[ WithExitStatement"); | |
3829 CodeForStatementPosition(node); | |
3830 // Pop context. | |
3831 __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); | |
3832 // Update context local. | |
3833 frame_->SaveContextRegister(); | |
3834 } | |
3835 | |
3836 | |
3837 void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { | |
3838 ASSERT(!in_spilled_code()); | |
3839 Comment cmnt(masm_, "[ SwitchStatement"); | |
3840 CodeForStatementPosition(node); | |
3841 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
3842 | |
3843 // Compile the switch value. | |
3844 Load(node->tag()); | |
3845 | |
3846 ZoneList<CaseClause*>* cases = node->cases(); | |
3847 int length = cases->length(); | |
3848 CaseClause* default_clause = NULL; | |
3849 | |
3850 JumpTarget next_test; | |
3851 // Compile the case label expressions and comparisons. Exit early | |
3852 // if a comparison is unconditionally true. The target next_test is | |
3853 // bound before the loop in order to indicate control flow to the | |
3854 // first comparison. | |
3855 next_test.Bind(); | |
3856 for (int i = 0; i < length && !next_test.is_unused(); i++) { | |
3857 CaseClause* clause = cases->at(i); | |
3858 // The default is not a test, but remember it for later. | |
3859 if (clause->is_default()) { | |
3860 default_clause = clause; | |
3861 continue; | |
3862 } | |
3863 | |
3864 Comment cmnt(masm_, "[ Case comparison"); | |
3865 // We recycle the same target next_test for each test. Bind it if | |
3866 // the previous test has not done so and then unuse it for the | |
3867 // loop. | |
3868 if (next_test.is_linked()) { | |
3869 next_test.Bind(); | |
3870 } | |
3871 next_test.Unuse(); | |
3872 | |
3873 // Duplicate the switch value. | |
3874 frame_->Dup(); | |
3875 | |
3876 // Compile the label expression. | |
3877 Load(clause->label()); | |
3878 | |
3879 // Compare and branch to the body if true or the next test if | |
3880 // false. Prefer the next test as a fall through. | |
3881 ControlDestination dest(clause->body_target(), &next_test, false); | |
3882 Comparison(node, equal, true, &dest); | |
3883 | |
3884 // If the comparison fell through to the true target, jump to the | |
3885 // actual body. | |
3886 if (dest.true_was_fall_through()) { | |
3887 clause->body_target()->Unuse(); | |
3888 clause->body_target()->Jump(); | |
3889 } | |
3890 } | |
3891 | |
3892 // If there was control flow to a next test from the last one | |
3893 // compiled, compile a jump to the default or break target. | |
3894 if (!next_test.is_unused()) { | |
3895 if (next_test.is_linked()) { | |
3896 next_test.Bind(); | |
3897 } | |
3898 // Drop the switch value. | |
3899 frame_->Drop(); | |
3900 if (default_clause != NULL) { | |
3901 default_clause->body_target()->Jump(); | |
3902 } else { | |
3903 node->break_target()->Jump(); | |
3904 } | |
3905 } | |
3906 | |
3907 // The last instruction emitted was a jump, either to the default | |
3908 // clause or the break target, or else to a case body from the loop | |
3909 // that compiles the tests. | |
3910 ASSERT(!has_valid_frame()); | |
3911 // Compile case bodies as needed. | |
3912 for (int i = 0; i < length; i++) { | |
3913 CaseClause* clause = cases->at(i); | |
3914 | |
3915 // There are two ways to reach the body: from the corresponding | |
3916 // test or as the fall through of the previous body. | |
3917 if (clause->body_target()->is_linked() || has_valid_frame()) { | |
3918 if (clause->body_target()->is_linked()) { | |
3919 if (has_valid_frame()) { | |
3920 // If we have both a jump to the test and a fall through, put | |
3921 // a jump on the fall through path to avoid the dropping of | |
3922 // the switch value on the test path. The exception is the | |
3923 // default which has already had the switch value dropped. | |
3924 if (clause->is_default()) { | |
3925 clause->body_target()->Bind(); | |
3926 } else { | |
3927 JumpTarget body; | |
3928 body.Jump(); | |
3929 clause->body_target()->Bind(); | |
3930 frame_->Drop(); | |
3931 body.Bind(); | |
3932 } | |
3933 } else { | |
3934 // No fall through to worry about. | |
3935 clause->body_target()->Bind(); | |
3936 if (!clause->is_default()) { | |
3937 frame_->Drop(); | |
3938 } | |
3939 } | |
3940 } else { | |
3941 // Otherwise, we have only fall through. | |
3942 ASSERT(has_valid_frame()); | |
3943 } | |
3944 | |
3945 // We are now prepared to compile the body. | |
3946 Comment cmnt(masm_, "[ Case body"); | |
3947 VisitStatements(clause->statements()); | |
3948 } | |
3949 clause->body_target()->Unuse(); | |
3950 } | |
3951 | |
3952 // We may not have a valid frame here so bind the break target only | |
3953 // if needed. | |
3954 if (node->break_target()->is_linked()) { | |
3955 node->break_target()->Bind(); | |
3956 } | |
3957 node->break_target()->Unuse(); | |
3958 } | |
3959 | |
3960 | |
3961 void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { | |
3962 ASSERT(!in_spilled_code()); | |
3963 Comment cmnt(masm_, "[ DoWhileStatement"); | |
3964 CodeForStatementPosition(node); | |
3965 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
3966 JumpTarget body(JumpTarget::BIDIRECTIONAL); | |
3967 IncrementLoopNesting(); | |
3968 | |
3969 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
3970 // Label the top of the loop for the backward jump if necessary. | |
3971 switch (info) { | |
3972 case ALWAYS_TRUE: | |
3973 // Use the continue target. | |
3974 node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); | |
3975 node->continue_target()->Bind(); | |
3976 break; | |
3977 case ALWAYS_FALSE: | |
3978 // No need to label it. | |
3979 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
3980 break; | |
3981 case DONT_KNOW: | |
3982 // Continue is the test, so use the backward body target. | |
3983 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
3984 body.Bind(); | |
3985 break; | |
3986 } | |
3987 | |
3988 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
3989 Visit(node->body()); | |
3990 | |
3991 // Compile the test. | |
3992 switch (info) { | |
3993 case ALWAYS_TRUE: | |
3994 // If control flow can fall off the end of the body, jump back | |
3995 // to the top and bind the break target at the exit. | |
3996 if (has_valid_frame()) { | |
3997 node->continue_target()->Jump(); | |
3998 } | |
3999 if (node->break_target()->is_linked()) { | |
4000 node->break_target()->Bind(); | |
4001 } | |
4002 break; | |
4003 case ALWAYS_FALSE: | |
4004 // We may have had continues or breaks in the body. | |
4005 if (node->continue_target()->is_linked()) { | |
4006 node->continue_target()->Bind(); | |
4007 } | |
4008 if (node->break_target()->is_linked()) { | |
4009 node->break_target()->Bind(); | |
4010 } | |
4011 break; | |
4012 case DONT_KNOW: | |
4013 // We have to compile the test expression if it can be reached by | |
4014 // control flow falling out of the body or via continue. | |
4015 if (node->continue_target()->is_linked()) { | |
4016 node->continue_target()->Bind(); | |
4017 } | |
4018 if (has_valid_frame()) { | |
4019 Comment cmnt(masm_, "[ DoWhileCondition"); | |
4020 CodeForDoWhileConditionPosition(node); | |
4021 ControlDestination dest(&body, node->break_target(), false); | |
4022 LoadCondition(node->cond(), &dest, true); | |
4023 } | |
4024 if (node->break_target()->is_linked()) { | |
4025 node->break_target()->Bind(); | |
4026 } | |
4027 break; | |
4028 } | |
4029 | |
4030 DecrementLoopNesting(); | |
4031 node->continue_target()->Unuse(); | |
4032 node->break_target()->Unuse(); | |
4033 } | |
4034 | |
4035 | |
4036 void CodeGenerator::VisitWhileStatement(WhileStatement* node) { | |
4037 ASSERT(!in_spilled_code()); | |
4038 Comment cmnt(masm_, "[ WhileStatement"); | |
4039 CodeForStatementPosition(node); | |
4040 | |
4041 // If the condition is always false and has no side effects, we do not | |
4042 // need to compile anything. | |
4043 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
4044 if (info == ALWAYS_FALSE) return; | |
4045 | |
4046 // Do not duplicate conditions that may have function literal | |
4047 // subexpressions. This can cause us to compile the function literal | |
4048 // twice. | |
4049 bool test_at_bottom = !node->may_have_function_literal(); | |
4050 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4051 IncrementLoopNesting(); | |
4052 JumpTarget body; | |
4053 if (test_at_bottom) { | |
4054 body.set_direction(JumpTarget::BIDIRECTIONAL); | |
4055 } | |
4056 | |
4057 // Based on the condition analysis, compile the test as necessary. | |
4058 switch (info) { | |
4059 case ALWAYS_TRUE: | |
4060 // We will not compile the test expression. Label the top of the | |
4061 // loop with the continue target. | |
4062 node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); | |
4063 node->continue_target()->Bind(); | |
4064 break; | |
4065 case DONT_KNOW: { | |
4066 if (test_at_bottom) { | |
4067 // Continue is the test at the bottom, no need to label the test | |
4068 // at the top. The body is a backward target. | |
4069 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4070 } else { | |
4071 // Label the test at the top as the continue target. The body | |
4072 // is a forward-only target. | |
4073 node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); | |
4074 node->continue_target()->Bind(); | |
4075 } | |
4076 // Compile the test with the body as the true target and preferred | |
4077 // fall-through and with the break target as the false target. | |
4078 ControlDestination dest(&body, node->break_target(), true); | |
4079 LoadCondition(node->cond(), &dest, true); | |
4080 | |
4081 if (dest.false_was_fall_through()) { | |
4082 // If we got the break target as fall-through, the test may have | |
4083 // been unconditionally false (if there are no jumps to the | |
4084 // body). | |
4085 if (!body.is_linked()) { | |
4086 DecrementLoopNesting(); | |
4087 return; | |
4088 } | |
4089 | |
4090 // Otherwise, jump around the body on the fall through and then | |
4091 // bind the body target. | |
4092 node->break_target()->Unuse(); | |
4093 node->break_target()->Jump(); | |
4094 body.Bind(); | |
4095 } | |
4096 break; | |
4097 } | |
4098 case ALWAYS_FALSE: | |
4099 UNREACHABLE(); | |
4100 break; | |
4101 } | |
4102 | |
4103 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
4104 Visit(node->body()); | |
4105 | |
4106 // Based on the condition analysis, compile the backward jump as | |
4107 // necessary. | |
4108 switch (info) { | |
4109 case ALWAYS_TRUE: | |
4110 // The loop body has been labeled with the continue target. | |
4111 if (has_valid_frame()) { | |
4112 node->continue_target()->Jump(); | |
4113 } | |
4114 break; | |
4115 case DONT_KNOW: | |
4116 if (test_at_bottom) { | |
4117 // If we have chosen to recompile the test at the bottom, | |
4118 // then it is the continue target. | |
4119 if (node->continue_target()->is_linked()) { | |
4120 node->continue_target()->Bind(); | |
4121 } | |
4122 if (has_valid_frame()) { | |
4123 // The break target is the fall-through (body is a backward | |
4124 // jump from here and thus an invalid fall-through). | |
4125 ControlDestination dest(&body, node->break_target(), false); | |
4126 LoadCondition(node->cond(), &dest, true); | |
4127 } | |
4128 } else { | |
4129 // If we have chosen not to recompile the test at the bottom, | |
4130 // jump back to the one at the top. | |
4131 if (has_valid_frame()) { | |
4132 node->continue_target()->Jump(); | |
4133 } | |
4134 } | |
4135 break; | |
4136 case ALWAYS_FALSE: | |
4137 UNREACHABLE(); | |
4138 break; | |
4139 } | |
4140 | |
4141 // The break target may be already bound (by the condition), or there | |
4142 // may not be a valid frame. Bind it only if needed. | |
4143 if (node->break_target()->is_linked()) { | |
4144 node->break_target()->Bind(); | |
4145 } | |
4146 DecrementLoopNesting(); | |
4147 } | |
4148 | |
4149 | |
4150 void CodeGenerator::SetTypeForStackSlot(Slot* slot, TypeInfo info) { | |
4151 ASSERT(slot->type() == Slot::LOCAL || slot->type() == Slot::PARAMETER); | |
4152 if (slot->type() == Slot::LOCAL) { | |
4153 frame_->SetTypeForLocalAt(slot->index(), info); | |
4154 } else { | |
4155 frame_->SetTypeForParamAt(slot->index(), info); | |
4156 } | |
4157 if (FLAG_debug_code && info.IsSmi()) { | |
4158 if (slot->type() == Slot::LOCAL) { | |
4159 frame_->PushLocalAt(slot->index()); | |
4160 } else { | |
4161 frame_->PushParameterAt(slot->index()); | |
4162 } | |
4163 Result var = frame_->Pop(); | |
4164 var.ToRegister(); | |
4165 __ AbortIfNotSmi(var.reg()); | |
4166 } | |
4167 } | |
4168 | |
4169 | |
4170 void CodeGenerator::VisitForStatement(ForStatement* node) { | |
4171 ASSERT(!in_spilled_code()); | |
4172 Comment cmnt(masm_, "[ ForStatement"); | |
4173 CodeForStatementPosition(node); | |
4174 | |
4175 // Compile the init expression if present. | |
4176 if (node->init() != NULL) { | |
4177 Visit(node->init()); | |
4178 } | |
4179 | |
4180 // If the condition is always false and has no side effects, we do not | |
4181 // need to compile anything else. | |
4182 ConditionAnalysis info = AnalyzeCondition(node->cond()); | |
4183 if (info == ALWAYS_FALSE) return; | |
4184 | |
4185 // Do not duplicate conditions that may have function literal | |
4186 // subexpressions. This can cause us to compile the function literal | |
4187 // twice. | |
4188 bool test_at_bottom = !node->may_have_function_literal(); | |
4189 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4190 IncrementLoopNesting(); | |
4191 | |
4192 // Target for backward edge if no test at the bottom, otherwise | |
4193 // unused. | |
4194 JumpTarget loop(JumpTarget::BIDIRECTIONAL); | |
4195 | |
4196 // Target for backward edge if there is a test at the bottom, | |
4197 // otherwise used as target for test at the top. | |
4198 JumpTarget body; | |
4199 if (test_at_bottom) { | |
4200 body.set_direction(JumpTarget::BIDIRECTIONAL); | |
4201 } | |
4202 | |
4203 // Based on the condition analysis, compile the test as necessary. | |
4204 switch (info) { | |
4205 case ALWAYS_TRUE: | |
4206 // We will not compile the test expression. Label the top of the | |
4207 // loop. | |
4208 if (node->next() == NULL) { | |
4209 // Use the continue target if there is no update expression. | |
4210 node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); | |
4211 node->continue_target()->Bind(); | |
4212 } else { | |
4213 // Otherwise use the backward loop target. | |
4214 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4215 loop.Bind(); | |
4216 } | |
4217 break; | |
4218 case DONT_KNOW: { | |
4219 if (test_at_bottom) { | |
4220 // Continue is either the update expression or the test at the | |
4221 // bottom, no need to label the test at the top. | |
4222 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4223 } else if (node->next() == NULL) { | |
4224 // We are not recompiling the test at the bottom and there is no | |
4225 // update expression. | |
4226 node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); | |
4227 node->continue_target()->Bind(); | |
4228 } else { | |
4229 // We are not recompiling the test at the bottom and there is an | |
4230 // update expression. | |
4231 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4232 loop.Bind(); | |
4233 } | |
4234 | |
4235 // Compile the test with the body as the true target and preferred | |
4236 // fall-through and with the break target as the false target. | |
4237 ControlDestination dest(&body, node->break_target(), true); | |
4238 LoadCondition(node->cond(), &dest, true); | |
4239 | |
4240 if (dest.false_was_fall_through()) { | |
4241 // If we got the break target as fall-through, the test may have | |
4242 // been unconditionally false (if there are no jumps to the | |
4243 // body). | |
4244 if (!body.is_linked()) { | |
4245 DecrementLoopNesting(); | |
4246 return; | |
4247 } | |
4248 | |
4249 // Otherwise, jump around the body on the fall through and then | |
4250 // bind the body target. | |
4251 node->break_target()->Unuse(); | |
4252 node->break_target()->Jump(); | |
4253 body.Bind(); | |
4254 } | |
4255 break; | |
4256 } | |
4257 case ALWAYS_FALSE: | |
4258 UNREACHABLE(); | |
4259 break; | |
4260 } | |
4261 | |
4262 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
4263 | |
4264 // We know that the loop index is a smi if it is not modified in the | |
4265 // loop body and it is checked against a constant limit in the loop | |
4266 // condition. In this case, we reset the static type information of the | |
4267 // loop index to smi before compiling the body, the update expression, and | |
4268 // the bottom check of the loop condition. | |
4269 if (node->is_fast_smi_loop()) { | |
4270 // Set number type of the loop variable to smi. | |
4271 SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); | |
4272 } | |
4273 | |
4274 Visit(node->body()); | |
4275 | |
4276 // If there is an update expression, compile it if necessary. | |
4277 if (node->next() != NULL) { | |
4278 if (node->continue_target()->is_linked()) { | |
4279 node->continue_target()->Bind(); | |
4280 } | |
4281 | |
4282 // Control can reach the update by falling out of the body or by a | |
4283 // continue. | |
4284 if (has_valid_frame()) { | |
4285 // Record the source position of the statement as this code which | |
4286 // is after the code for the body actually belongs to the loop | |
4287 // statement and not the body. | |
4288 CodeForStatementPosition(node); | |
4289 Visit(node->next()); | |
4290 } | |
4291 } | |
4292 | |
4293 // Set the type of the loop variable to smi before compiling the test | |
4294 // expression if we are in a fast smi loop condition. | |
4295 if (node->is_fast_smi_loop() && has_valid_frame()) { | |
4296 // Set number type of the loop variable to smi. | |
4297 SetTypeForStackSlot(node->loop_variable()->AsSlot(), TypeInfo::Smi()); | |
4298 } | |
4299 | |
4300 // Based on the condition analysis, compile the backward jump as | |
4301 // necessary. | |
4302 switch (info) { | |
4303 case ALWAYS_TRUE: | |
4304 if (has_valid_frame()) { | |
4305 if (node->next() == NULL) { | |
4306 node->continue_target()->Jump(); | |
4307 } else { | |
4308 loop.Jump(); | |
4309 } | |
4310 } | |
4311 break; | |
4312 case DONT_KNOW: | |
4313 if (test_at_bottom) { | |
4314 if (node->continue_target()->is_linked()) { | |
4315 // We can have dangling jumps to the continue target if there | |
4316 // was no update expression. | |
4317 node->continue_target()->Bind(); | |
4318 } | |
4319 // Control can reach the test at the bottom by falling out of | |
4320 // the body, by a continue in the body, or from the update | |
4321 // expression. | |
4322 if (has_valid_frame()) { | |
4323 // The break target is the fall-through (body is a backward | |
4324 // jump from here). | |
4325 ControlDestination dest(&body, node->break_target(), false); | |
4326 LoadCondition(node->cond(), &dest, true); | |
4327 } | |
4328 } else { | |
4329 // Otherwise, jump back to the test at the top. | |
4330 if (has_valid_frame()) { | |
4331 if (node->next() == NULL) { | |
4332 node->continue_target()->Jump(); | |
4333 } else { | |
4334 loop.Jump(); | |
4335 } | |
4336 } | |
4337 } | |
4338 break; | |
4339 case ALWAYS_FALSE: | |
4340 UNREACHABLE(); | |
4341 break; | |
4342 } | |
4343 | |
4344 // The break target may be already bound (by the condition), or there | |
4345 // may not be a valid frame. Bind it only if needed. | |
4346 if (node->break_target()->is_linked()) { | |
4347 node->break_target()->Bind(); | |
4348 } | |
4349 DecrementLoopNesting(); | |
4350 } | |
4351 | |
4352 | |
4353 void CodeGenerator::VisitForInStatement(ForInStatement* node) { | |
4354 ASSERT(!in_spilled_code()); | |
4355 VirtualFrame::SpilledScope spilled_scope; | |
4356 Comment cmnt(masm_, "[ ForInStatement"); | |
4357 CodeForStatementPosition(node); | |
4358 | |
4359 JumpTarget primitive; | |
4360 JumpTarget jsobject; | |
4361 JumpTarget fixed_array; | |
4362 JumpTarget entry(JumpTarget::BIDIRECTIONAL); | |
4363 JumpTarget end_del_check; | |
4364 JumpTarget exit; | |
4365 | |
4366 // Get the object to enumerate over (converted to JSObject). | |
4367 LoadAndSpill(node->enumerable()); | |
4368 | |
4369 // Both SpiderMonkey and kjs ignore null and undefined in contrast | |
4370 // to the specification. 12.6.4 mandates a call to ToObject. | |
4371 frame_->EmitPop(eax); | |
4372 | |
4373 // eax: value to be iterated over | |
4374 __ cmp(eax, FACTORY->undefined_value()); | |
4375 exit.Branch(equal); | |
4376 __ cmp(eax, FACTORY->null_value()); | |
4377 exit.Branch(equal); | |
4378 | |
4379 // Stack layout in body: | |
4380 // [iteration counter (smi)] <- slot 0 | |
4381 // [length of array] <- slot 1 | |
4382 // [FixedArray] <- slot 2 | |
4383 // [Map or 0] <- slot 3 | |
4384 // [Object] <- slot 4 | |
4385 | |
4386 // Check if enumerable is already a JSObject | |
4387 // eax: value to be iterated over | |
4388 __ test(eax, Immediate(kSmiTagMask)); | |
4389 primitive.Branch(zero); | |
4390 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); | |
4391 jsobject.Branch(above_equal); | |
4392 | |
4393 primitive.Bind(); | |
4394 frame_->EmitPush(eax); | |
4395 frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); | |
4396 // function call returns the value in eax, which is where we want it below | |
4397 | |
4398 jsobject.Bind(); | |
4399 // Get the set of properties (as a FixedArray or Map). | |
4400 // eax: value to be iterated over | |
4401 frame_->EmitPush(eax); // Push the object being iterated over. | |
4402 | |
4403 // Check cache validity in generated code. This is a fast case for | |
4404 // the JSObject::IsSimpleEnum cache validity checks. If we cannot | |
4405 // guarantee cache validity, call the runtime system to check cache | |
4406 // validity or get the property names in a fixed array. | |
4407 JumpTarget call_runtime; | |
4408 JumpTarget loop(JumpTarget::BIDIRECTIONAL); | |
4409 JumpTarget check_prototype; | |
4410 JumpTarget use_cache; | |
4411 __ mov(ecx, eax); | |
4412 loop.Bind(); | |
4413 // Check that there are no elements. | |
4414 __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset)); | |
4415 __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array())); | |
4416 call_runtime.Branch(not_equal); | |
4417 // Check that instance descriptors are not empty so that we can | |
4418 // check for an enum cache. Leave the map in ebx for the subsequent | |
4419 // prototype load. | |
4420 __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); | |
4421 __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); | |
4422 __ cmp(Operand(edx), Immediate(FACTORY->empty_descriptor_array())); | |
4423 call_runtime.Branch(equal); | |
4424 // Check that there in an enum cache in the non-empty instance | |
4425 // descriptors. This is the case if the next enumeration index | |
4426 // field does not contain a smi. | |
4427 __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); | |
4428 __ test(edx, Immediate(kSmiTagMask)); | |
4429 call_runtime.Branch(zero); | |
4430 // For all objects but the receiver, check that the cache is empty. | |
4431 __ cmp(ecx, Operand(eax)); | |
4432 check_prototype.Branch(equal); | |
4433 __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); | |
4434 __ cmp(Operand(edx), Immediate(FACTORY->empty_fixed_array())); | |
4435 call_runtime.Branch(not_equal); | |
4436 check_prototype.Bind(); | |
4437 // Load the prototype from the map and loop if non-null. | |
4438 __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); | |
4439 __ cmp(Operand(ecx), Immediate(FACTORY->null_value())); | |
4440 loop.Branch(not_equal); | |
4441 // The enum cache is valid. Load the map of the object being | |
4442 // iterated over and use the cache for the iteration. | |
4443 __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); | |
4444 use_cache.Jump(); | |
4445 | |
4446 call_runtime.Bind(); | |
4447 // Call the runtime to get the property names for the object. | |
4448 frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call | |
4449 frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); | |
4450 | |
4451 // If we got a map from the runtime call, we can do a fast | |
4452 // modification check. Otherwise, we got a fixed array, and we have | |
4453 // to do a slow check. | |
4454 // eax: map or fixed array (result from call to | |
4455 // Runtime::kGetPropertyNamesFast) | |
4456 __ mov(edx, Operand(eax)); | |
4457 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); | |
4458 __ cmp(ecx, FACTORY->meta_map()); | |
4459 fixed_array.Branch(not_equal); | |
4460 | |
4461 use_cache.Bind(); | |
4462 // Get enum cache | |
4463 // eax: map (either the result from a call to | |
4464 // Runtime::kGetPropertyNamesFast or has been fetched directly from | |
4465 // the object) | |
4466 __ mov(ecx, Operand(eax)); | |
4467 | |
4468 __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); | |
4469 // Get the bridge array held in the enumeration index field. | |
4470 __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); | |
4471 // Get the cache from the bridge array. | |
4472 __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); | |
4473 | |
4474 frame_->EmitPush(eax); // <- slot 3 | |
4475 frame_->EmitPush(edx); // <- slot 2 | |
4476 __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); | |
4477 frame_->EmitPush(eax); // <- slot 1 | |
4478 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 | |
4479 entry.Jump(); | |
4480 | |
4481 fixed_array.Bind(); | |
4482 // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) | |
4483 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 | |
4484 frame_->EmitPush(eax); // <- slot 2 | |
4485 | |
4486 // Push the length of the array and the initial index onto the stack. | |
4487 __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); | |
4488 frame_->EmitPush(eax); // <- slot 1 | |
4489 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 | |
4490 | |
4491 // Condition. | |
4492 entry.Bind(); | |
4493 // Grab the current frame's height for the break and continue | |
4494 // targets only after all the state is pushed on the frame. | |
4495 node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4496 node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); | |
4497 | |
4498 __ mov(eax, frame_->ElementAt(0)); // load the current count | |
4499 __ cmp(eax, frame_->ElementAt(1)); // compare to the array length | |
4500 node->break_target()->Branch(above_equal); | |
4501 | |
4502 // Get the i'th entry of the array. | |
4503 __ mov(edx, frame_->ElementAt(2)); | |
4504 __ mov(ebx, FixedArrayElementOperand(edx, eax)); | |
4505 | |
4506 // Get the expected map from the stack or a zero map in the | |
4507 // permanent slow case eax: current iteration count ebx: i'th entry | |
4508 // of the enum cache | |
4509 __ mov(edx, frame_->ElementAt(3)); | |
4510 // Check if the expected map still matches that of the enumerable. | |
4511 // If not, we have to filter the key. | |
4512 // eax: current iteration count | |
4513 // ebx: i'th entry of the enum cache | |
4514 // edx: expected map value | |
4515 __ mov(ecx, frame_->ElementAt(4)); | |
4516 __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); | |
4517 __ cmp(ecx, Operand(edx)); | |
4518 end_del_check.Branch(equal); | |
4519 | |
4520 // Convert the entry to a string (or null if it isn't a property anymore). | |
4521 frame_->EmitPush(frame_->ElementAt(4)); // push enumerable | |
4522 frame_->EmitPush(ebx); // push entry | |
4523 frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); | |
4524 __ mov(ebx, Operand(eax)); | |
4525 | |
4526 // If the property has been removed while iterating, we just skip it. | |
4527 __ test(ebx, Operand(ebx)); | |
4528 node->continue_target()->Branch(equal); | |
4529 | |
4530 end_del_check.Bind(); | |
4531 // Store the entry in the 'each' expression and take another spin in the | |
4532 // loop. edx: i'th entry of the enum cache (or string there of) | |
4533 frame_->EmitPush(ebx); | |
4534 { Reference each(this, node->each()); | |
4535 if (!each.is_illegal()) { | |
4536 if (each.size() > 0) { | |
4537 // Loading a reference may leave the frame in an unspilled state. | |
4538 frame_->SpillAll(); | |
4539 // Get the value (under the reference on the stack) from memory. | |
4540 frame_->EmitPush(frame_->ElementAt(each.size())); | |
4541 each.SetValue(NOT_CONST_INIT); | |
4542 frame_->Drop(2); | |
4543 } else { | |
4544 // If the reference was to a slot we rely on the convenient property | |
4545 // that it doesn't matter whether a value (eg, ebx pushed above) is | |
4546 // right on top of or right underneath a zero-sized reference. | |
4547 each.SetValue(NOT_CONST_INIT); | |
4548 frame_->Drop(); | |
4549 } | |
4550 } | |
4551 } | |
4552 // Unloading a reference may leave the frame in an unspilled state. | |
4553 frame_->SpillAll(); | |
4554 | |
4555 // Body. | |
4556 CheckStack(); // TODO(1222600): ignore if body contains calls. | |
4557 VisitAndSpill(node->body()); | |
4558 | |
4559 // Next. Reestablish a spilled frame in case we are coming here via | |
4560 // a continue in the body. | |
4561 node->continue_target()->Bind(); | |
4562 frame_->SpillAll(); | |
4563 frame_->EmitPop(eax); | |
4564 __ add(Operand(eax), Immediate(Smi::FromInt(1))); | |
4565 frame_->EmitPush(eax); | |
4566 entry.Jump(); | |
4567 | |
4568 // Cleanup. No need to spill because VirtualFrame::Drop is safe for | |
4569 // any frame. | |
4570 node->break_target()->Bind(); | |
4571 frame_->Drop(5); | |
4572 | |
4573 // Exit. | |
4574 exit.Bind(); | |
4575 | |
4576 node->continue_target()->Unuse(); | |
4577 node->break_target()->Unuse(); | |
4578 } | |
4579 | |
4580 | |
4581 void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { | |
4582 ASSERT(!in_spilled_code()); | |
4583 VirtualFrame::SpilledScope spilled_scope; | |
4584 Comment cmnt(masm_, "[ TryCatchStatement"); | |
4585 CodeForStatementPosition(node); | |
4586 | |
4587 JumpTarget try_block; | |
4588 JumpTarget exit; | |
4589 | |
4590 try_block.Call(); | |
4591 // --- Catch block --- | |
4592 frame_->EmitPush(eax); | |
4593 | |
4594 // Store the caught exception in the catch variable. | |
4595 Variable* catch_var = node->catch_var()->var(); | |
4596 ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); | |
4597 StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); | |
4598 | |
4599 // Remove the exception from the stack. | |
4600 frame_->Drop(); | |
4601 | |
4602 VisitStatementsAndSpill(node->catch_block()->statements()); | |
4603 if (has_valid_frame()) { | |
4604 exit.Jump(); | |
4605 } | |
4606 | |
4607 | |
4608 // --- Try block --- | |
4609 try_block.Bind(); | |
4610 | |
4611 frame_->PushTryHandler(TRY_CATCH_HANDLER); | |
4612 int handler_height = frame_->height(); | |
4613 | |
4614 // Shadow the jump targets for all escapes from the try block, including | |
4615 // returns. During shadowing, the original target is hidden as the | |
4616 // ShadowTarget and operations on the original actually affect the | |
4617 // shadowing target. | |
4618 // | |
4619 // We should probably try to unify the escaping targets and the return | |
4620 // target. | |
4621 int nof_escapes = node->escaping_targets()->length(); | |
4622 List<ShadowTarget*> shadows(1 + nof_escapes); | |
4623 | |
4624 // Add the shadow target for the function return. | |
4625 static const int kReturnShadowIndex = 0; | |
4626 shadows.Add(new ShadowTarget(&function_return_)); | |
4627 bool function_return_was_shadowed = function_return_is_shadowed_; | |
4628 function_return_is_shadowed_ = true; | |
4629 ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); | |
4630 | |
4631 // Add the remaining shadow targets. | |
4632 for (int i = 0; i < nof_escapes; i++) { | |
4633 shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); | |
4634 } | |
4635 | |
4636 // Generate code for the statements in the try block. | |
4637 VisitStatementsAndSpill(node->try_block()->statements()); | |
4638 | |
4639 // Stop the introduced shadowing and count the number of required unlinks. | |
4640 // After shadowing stops, the original targets are unshadowed and the | |
4641 // ShadowTargets represent the formerly shadowing targets. | |
4642 bool has_unlinks = false; | |
4643 for (int i = 0; i < shadows.length(); i++) { | |
4644 shadows[i]->StopShadowing(); | |
4645 has_unlinks = has_unlinks || shadows[i]->is_linked(); | |
4646 } | |
4647 function_return_is_shadowed_ = function_return_was_shadowed; | |
4648 | |
4649 // Get an external reference to the handler address. | |
4650 ExternalReference handler_address(Isolate::k_handler_address, | |
4651 masm()->isolate()); | |
4652 | |
4653 // Make sure that there's nothing left on the stack above the | |
4654 // handler structure. | |
4655 if (FLAG_debug_code) { | |
4656 __ mov(eax, Operand::StaticVariable(handler_address)); | |
4657 __ cmp(esp, Operand(eax)); | |
4658 __ Assert(equal, "stack pointer should point to top handler"); | |
4659 } | |
4660 | |
4661 // If we can fall off the end of the try block, unlink from try chain. | |
4662 if (has_valid_frame()) { | |
4663 // The next handler address is on top of the frame. Unlink from | |
4664 // the handler list and drop the rest of this handler from the | |
4665 // frame. | |
4666 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
4667 frame_->EmitPop(Operand::StaticVariable(handler_address)); | |
4668 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
4669 if (has_unlinks) { | |
4670 exit.Jump(); | |
4671 } | |
4672 } | |
4673 | |
4674 // Generate unlink code for the (formerly) shadowing targets that | |
4675 // have been jumped to. Deallocate each shadow target. | |
4676 Result return_value; | |
4677 for (int i = 0; i < shadows.length(); i++) { | |
4678 if (shadows[i]->is_linked()) { | |
4679 // Unlink from try chain; be careful not to destroy the TOS if | |
4680 // there is one. | |
4681 if (i == kReturnShadowIndex) { | |
4682 shadows[i]->Bind(&return_value); | |
4683 return_value.ToRegister(eax); | |
4684 } else { | |
4685 shadows[i]->Bind(); | |
4686 } | |
4687 // Because we can be jumping here (to spilled code) from | |
4688 // unspilled code, we need to reestablish a spilled frame at | |
4689 // this block. | |
4690 frame_->SpillAll(); | |
4691 | |
4692 // Reload sp from the top handler, because some statements that we | |
4693 // break from (eg, for...in) may have left stuff on the stack. | |
4694 __ mov(esp, Operand::StaticVariable(handler_address)); | |
4695 frame_->Forget(frame_->height() - handler_height); | |
4696 | |
4697 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
4698 frame_->EmitPop(Operand::StaticVariable(handler_address)); | |
4699 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
4700 | |
4701 if (i == kReturnShadowIndex) { | |
4702 if (!function_return_is_shadowed_) frame_->PrepareForReturn(); | |
4703 shadows[i]->other_target()->Jump(&return_value); | |
4704 } else { | |
4705 shadows[i]->other_target()->Jump(); | |
4706 } | |
4707 } | |
4708 } | |
4709 | |
4710 exit.Bind(); | |
4711 } | |
4712 | |
4713 | |
4714 void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { | |
4715 ASSERT(!in_spilled_code()); | |
4716 VirtualFrame::SpilledScope spilled_scope; | |
4717 Comment cmnt(masm_, "[ TryFinallyStatement"); | |
4718 CodeForStatementPosition(node); | |
4719 | |
4720 // State: Used to keep track of reason for entering the finally | |
4721 // block. Should probably be extended to hold information for | |
4722 // break/continue from within the try block. | |
4723 enum { FALLING, THROWING, JUMPING }; | |
4724 | |
4725 JumpTarget try_block; | |
4726 JumpTarget finally_block; | |
4727 | |
4728 try_block.Call(); | |
4729 | |
4730 frame_->EmitPush(eax); | |
4731 // In case of thrown exceptions, this is where we continue. | |
4732 __ Set(ecx, Immediate(Smi::FromInt(THROWING))); | |
4733 finally_block.Jump(); | |
4734 | |
4735 // --- Try block --- | |
4736 try_block.Bind(); | |
4737 | |
4738 frame_->PushTryHandler(TRY_FINALLY_HANDLER); | |
4739 int handler_height = frame_->height(); | |
4740 | |
4741 // Shadow the jump targets for all escapes from the try block, including | |
4742 // returns. During shadowing, the original target is hidden as the | |
4743 // ShadowTarget and operations on the original actually affect the | |
4744 // shadowing target. | |
4745 // | |
4746 // We should probably try to unify the escaping targets and the return | |
4747 // target. | |
4748 int nof_escapes = node->escaping_targets()->length(); | |
4749 List<ShadowTarget*> shadows(1 + nof_escapes); | |
4750 | |
4751 // Add the shadow target for the function return. | |
4752 static const int kReturnShadowIndex = 0; | |
4753 shadows.Add(new ShadowTarget(&function_return_)); | |
4754 bool function_return_was_shadowed = function_return_is_shadowed_; | |
4755 function_return_is_shadowed_ = true; | |
4756 ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); | |
4757 | |
4758 // Add the remaining shadow targets. | |
4759 for (int i = 0; i < nof_escapes; i++) { | |
4760 shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); | |
4761 } | |
4762 | |
4763 // Generate code for the statements in the try block. | |
4764 VisitStatementsAndSpill(node->try_block()->statements()); | |
4765 | |
4766 // Stop the introduced shadowing and count the number of required unlinks. | |
4767 // After shadowing stops, the original targets are unshadowed and the | |
4768 // ShadowTargets represent the formerly shadowing targets. | |
4769 int nof_unlinks = 0; | |
4770 for (int i = 0; i < shadows.length(); i++) { | |
4771 shadows[i]->StopShadowing(); | |
4772 if (shadows[i]->is_linked()) nof_unlinks++; | |
4773 } | |
4774 function_return_is_shadowed_ = function_return_was_shadowed; | |
4775 | |
4776 // Get an external reference to the handler address. | |
4777 ExternalReference handler_address(Isolate::k_handler_address, | |
4778 masm()->isolate()); | |
4779 | |
4780 // If we can fall off the end of the try block, unlink from the try | |
4781 // chain and set the state on the frame to FALLING. | |
4782 if (has_valid_frame()) { | |
4783 // The next handler address is on top of the frame. | |
4784 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
4785 frame_->EmitPop(Operand::StaticVariable(handler_address)); | |
4786 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
4787 | |
4788 // Fake a top of stack value (unneeded when FALLING) and set the | |
4789 // state in ecx, then jump around the unlink blocks if any. | |
4790 frame_->EmitPush(Immediate(FACTORY->undefined_value())); | |
4791 __ Set(ecx, Immediate(Smi::FromInt(FALLING))); | |
4792 if (nof_unlinks > 0) { | |
4793 finally_block.Jump(); | |
4794 } | |
4795 } | |
4796 | |
4797 // Generate code to unlink and set the state for the (formerly) | |
4798 // shadowing targets that have been jumped to. | |
4799 for (int i = 0; i < shadows.length(); i++) { | |
4800 if (shadows[i]->is_linked()) { | |
4801 // If we have come from the shadowed return, the return value is | |
4802 // on the virtual frame. We must preserve it until it is | |
4803 // pushed. | |
4804 if (i == kReturnShadowIndex) { | |
4805 Result return_value; | |
4806 shadows[i]->Bind(&return_value); | |
4807 return_value.ToRegister(eax); | |
4808 } else { | |
4809 shadows[i]->Bind(); | |
4810 } | |
4811 // Because we can be jumping here (to spilled code) from | |
4812 // unspilled code, we need to reestablish a spilled frame at | |
4813 // this block. | |
4814 frame_->SpillAll(); | |
4815 | |
4816 // Reload sp from the top handler, because some statements that | |
4817 // we break from (eg, for...in) may have left stuff on the | |
4818 // stack. | |
4819 __ mov(esp, Operand::StaticVariable(handler_address)); | |
4820 frame_->Forget(frame_->height() - handler_height); | |
4821 | |
4822 // Unlink this handler and drop it from the frame. | |
4823 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | |
4824 frame_->EmitPop(Operand::StaticVariable(handler_address)); | |
4825 frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); | |
4826 | |
4827 if (i == kReturnShadowIndex) { | |
4828 // If this target shadowed the function return, materialize | |
4829 // the return value on the stack. | |
4830 frame_->EmitPush(eax); | |
4831 } else { | |
4832 // Fake TOS for targets that shadowed breaks and continues. | |
4833 frame_->EmitPush(Immediate(FACTORY->undefined_value())); | |
4834 } | |
4835 __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); | |
4836 if (--nof_unlinks > 0) { | |
4837 // If this is not the last unlink block, jump around the next. | |
4838 finally_block.Jump(); | |
4839 } | |
4840 } | |
4841 } | |
4842 | |
4843 // --- Finally block --- | |
4844 finally_block.Bind(); | |
4845 | |
4846 // Push the state on the stack. | |
4847 frame_->EmitPush(ecx); | |
4848 | |
4849 // We keep two elements on the stack - the (possibly faked) result | |
4850 // and the state - while evaluating the finally block. | |
4851 // | |
4852 // Generate code for the statements in the finally block. | |
4853 VisitStatementsAndSpill(node->finally_block()->statements()); | |
4854 | |
4855 if (has_valid_frame()) { | |
4856 // Restore state and return value or faked TOS. | |
4857 frame_->EmitPop(ecx); | |
4858 frame_->EmitPop(eax); | |
4859 } | |
4860 | |
4861 // Generate code to jump to the right destination for all used | |
4862 // formerly shadowing targets. Deallocate each shadow target. | |
4863 for (int i = 0; i < shadows.length(); i++) { | |
4864 if (has_valid_frame() && shadows[i]->is_bound()) { | |
4865 BreakTarget* original = shadows[i]->other_target(); | |
4866 __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); | |
4867 if (i == kReturnShadowIndex) { | |
4868 // The return value is (already) in eax. | |
4869 Result return_value = allocator_->Allocate(eax); | |
4870 ASSERT(return_value.is_valid()); | |
4871 if (function_return_is_shadowed_) { | |
4872 original->Branch(equal, &return_value); | |
4873 } else { | |
4874 // Branch around the preparation for return which may emit | |
4875 // code. | |
4876 JumpTarget skip; | |
4877 skip.Branch(not_equal); | |
4878 frame_->PrepareForReturn(); | |
4879 original->Jump(&return_value); | |
4880 skip.Bind(); | |
4881 } | |
4882 } else { | |
4883 original->Branch(equal); | |
4884 } | |
4885 } | |
4886 } | |
4887 | |
4888 if (has_valid_frame()) { | |
4889 // Check if we need to rethrow the exception. | |
4890 JumpTarget exit; | |
4891 __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); | |
4892 exit.Branch(not_equal); | |
4893 | |
4894 // Rethrow exception. | |
4895 frame_->EmitPush(eax); // undo pop from above | |
4896 frame_->CallRuntime(Runtime::kReThrow, 1); | |
4897 | |
4898 // Done. | |
4899 exit.Bind(); | |
4900 } | |
4901 } | |
4902 | |
4903 | |
4904 void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { | |
4905 ASSERT(!in_spilled_code()); | |
4906 Comment cmnt(masm_, "[ DebuggerStatement"); | |
4907 CodeForStatementPosition(node); | |
4908 #ifdef ENABLE_DEBUGGER_SUPPORT | |
4909 // Spill everything, even constants, to the frame. | |
4910 frame_->SpillAll(); | |
4911 | |
4912 frame_->DebugBreak(); | |
4913 // Ignore the return value. | |
4914 #endif | |
4915 } | |
4916 | |
4917 | |
4918 Result CodeGenerator::InstantiateFunction( | |
4919 Handle<SharedFunctionInfo> function_info, | |
4920 bool pretenure) { | |
4921 // The inevitable call will sync frame elements to memory anyway, so | |
4922 // we do it eagerly to allow us to push the arguments directly into | |
4923 // place. | |
4924 frame()->SyncRange(0, frame()->element_count() - 1); | |
4925 | |
4926 // Use the fast case closure allocation code that allocates in new | |
4927 // space for nested functions that don't need literals cloning. | |
4928 if (!pretenure && | |
4929 scope()->is_function_scope() && | |
4930 function_info->num_literals() == 0) { | |
4931 FastNewClosureStub stub( | |
4932 function_info->strict_mode() ? kStrictMode : kNonStrictMode); | |
4933 frame()->EmitPush(Immediate(function_info)); | |
4934 return frame()->CallStub(&stub, 1); | |
4935 } else { | |
4936 // Call the runtime to instantiate the function based on the | |
4937 // shared function info. | |
4938 frame()->EmitPush(esi); | |
4939 frame()->EmitPush(Immediate(function_info)); | |
4940 frame()->EmitPush(Immediate(pretenure | |
4941 ? FACTORY->true_value() | |
4942 : FACTORY->false_value())); | |
4943 return frame()->CallRuntime(Runtime::kNewClosure, 3); | |
4944 } | |
4945 } | |
4946 | |
4947 | |
4948 void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { | |
4949 Comment cmnt(masm_, "[ FunctionLiteral"); | |
4950 ASSERT(!in_safe_int32_mode()); | |
4951 // Build the function info and instantiate it. | |
4952 Handle<SharedFunctionInfo> function_info = | |
4953 Compiler::BuildFunctionInfo(node, script()); | |
4954 // Check for stack-overflow exception. | |
4955 if (function_info.is_null()) { | |
4956 SetStackOverflow(); | |
4957 return; | |
4958 } | |
4959 Result result = InstantiateFunction(function_info, node->pretenure()); | |
4960 frame()->Push(&result); | |
4961 } | |
4962 | |
4963 | |
4964 void CodeGenerator::VisitSharedFunctionInfoLiteral( | |
4965 SharedFunctionInfoLiteral* node) { | |
4966 ASSERT(!in_safe_int32_mode()); | |
4967 Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); | |
4968 Result result = InstantiateFunction(node->shared_function_info(), false); | |
4969 frame()->Push(&result); | |
4970 } | |
4971 | |
4972 | |
4973 void CodeGenerator::VisitConditional(Conditional* node) { | |
4974 Comment cmnt(masm_, "[ Conditional"); | |
4975 ASSERT(!in_safe_int32_mode()); | |
4976 JumpTarget then; | |
4977 JumpTarget else_; | |
4978 JumpTarget exit; | |
4979 ControlDestination dest(&then, &else_, true); | |
4980 LoadCondition(node->condition(), &dest, true); | |
4981 | |
4982 if (dest.false_was_fall_through()) { | |
4983 // The else target was bound, so we compile the else part first. | |
4984 Load(node->else_expression()); | |
4985 | |
4986 if (then.is_linked()) { | |
4987 exit.Jump(); | |
4988 then.Bind(); | |
4989 Load(node->then_expression()); | |
4990 } | |
4991 } else { | |
4992 // The then target was bound, so we compile the then part first. | |
4993 Load(node->then_expression()); | |
4994 | |
4995 if (else_.is_linked()) { | |
4996 exit.Jump(); | |
4997 else_.Bind(); | |
4998 Load(node->else_expression()); | |
4999 } | |
5000 } | |
5001 | |
5002 exit.Bind(); | |
5003 } | |
5004 | |
5005 | |
5006 void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { | |
5007 if (slot->type() == Slot::LOOKUP) { | |
5008 ASSERT(slot->var()->is_dynamic()); | |
5009 JumpTarget slow; | |
5010 JumpTarget done; | |
5011 Result value; | |
5012 | |
5013 // Generate fast case for loading from slots that correspond to | |
5014 // local/global variables or arguments unless they are shadowed by | |
5015 // eval-introduced bindings. | |
5016 EmitDynamicLoadFromSlotFastCase(slot, | |
5017 typeof_state, | |
5018 &value, | |
5019 &slow, | |
5020 &done); | |
5021 | |
5022 slow.Bind(); | |
5023 // A runtime call is inevitable. We eagerly sync frame elements | |
5024 // to memory so that we can push the arguments directly into place | |
5025 // on top of the frame. | |
5026 frame()->SyncRange(0, frame()->element_count() - 1); | |
5027 frame()->EmitPush(esi); | |
5028 frame()->EmitPush(Immediate(slot->var()->name())); | |
5029 if (typeof_state == INSIDE_TYPEOF) { | |
5030 value = | |
5031 frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); | |
5032 } else { | |
5033 value = frame()->CallRuntime(Runtime::kLoadContextSlot, 2); | |
5034 } | |
5035 | |
5036 done.Bind(&value); | |
5037 frame_->Push(&value); | |
5038 | |
5039 } else if (slot->var()->mode() == Variable::CONST) { | |
5040 // Const slots may contain 'the hole' value (the constant hasn't been | |
5041 // initialized yet) which needs to be converted into the 'undefined' | |
5042 // value. | |
5043 // | |
5044 // We currently spill the virtual frame because constants use the | |
5045 // potentially unsafe direct-frame access of SlotOperand. | |
5046 VirtualFrame::SpilledScope spilled_scope; | |
5047 Comment cmnt(masm_, "[ Load const"); | |
5048 Label exit; | |
5049 __ mov(ecx, SlotOperand(slot, ecx)); | |
5050 __ cmp(ecx, FACTORY->the_hole_value()); | |
5051 __ j(not_equal, &exit); | |
5052 __ mov(ecx, FACTORY->undefined_value()); | |
5053 __ bind(&exit); | |
5054 frame()->EmitPush(ecx); | |
5055 | |
5056 } else if (slot->type() == Slot::PARAMETER) { | |
5057 frame()->PushParameterAt(slot->index()); | |
5058 | |
5059 } else if (slot->type() == Slot::LOCAL) { | |
5060 frame()->PushLocalAt(slot->index()); | |
5061 | |
5062 } else { | |
5063 // The other remaining slot types (LOOKUP and GLOBAL) cannot reach | |
5064 // here. | |
5065 // | |
5066 // The use of SlotOperand below is safe for an unspilled frame | |
5067 // because it will always be a context slot. | |
5068 ASSERT(slot->type() == Slot::CONTEXT); | |
5069 Result temp = allocator()->Allocate(); | |
5070 ASSERT(temp.is_valid()); | |
5071 __ mov(temp.reg(), SlotOperand(slot, temp.reg())); | |
5072 frame()->Push(&temp); | |
5073 } | |
5074 } | |
5075 | |
5076 | |
5077 void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, | |
5078 TypeofState state) { | |
5079 LoadFromSlot(slot, state); | |
5080 | |
5081 // Bail out quickly if we're not using lazy arguments allocation. | |
5082 if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; | |
5083 | |
5084 // ... or if the slot isn't a non-parameter arguments slot. | |
5085 if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; | |
5086 | |
5087 // If the loaded value is a constant, we know if the arguments | |
5088 // object has been lazily loaded yet. | |
5089 Result result = frame()->Pop(); | |
5090 if (result.is_constant()) { | |
5091 if (result.handle()->IsArgumentsMarker()) { | |
5092 result = StoreArgumentsObject(false); | |
5093 } | |
5094 frame()->Push(&result); | |
5095 return; | |
5096 } | |
5097 ASSERT(result.is_register()); | |
5098 // The loaded value is in a register. If it is the sentinel that | |
5099 // indicates that we haven't loaded the arguments object yet, we | |
5100 // need to do it now. | |
5101 JumpTarget exit; | |
5102 __ cmp(Operand(result.reg()), Immediate(FACTORY->arguments_marker())); | |
5103 frame()->Push(&result); | |
5104 exit.Branch(not_equal); | |
5105 | |
5106 result = StoreArgumentsObject(false); | |
5107 frame()->SetElementAt(0, &result); | |
5108 result.Unuse(); | |
5109 exit.Bind(); | |
5110 return; | |
5111 } | |
5112 | |
5113 | |
5114 Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( | |
5115 Slot* slot, | |
5116 TypeofState typeof_state, | |
5117 JumpTarget* slow) { | |
5118 ASSERT(!in_safe_int32_mode()); | |
5119 // Check that no extension objects have been created by calls to | |
5120 // eval from the current scope to the global scope. | |
5121 Register context = esi; | |
5122 Result tmp = allocator_->Allocate(); | |
5123 ASSERT(tmp.is_valid()); // All non-reserved registers were available. | |
5124 | |
5125 Scope* s = scope(); | |
5126 while (s != NULL) { | |
5127 if (s->num_heap_slots() > 0) { | |
5128 if (s->calls_eval()) { | |
5129 // Check that extension is NULL. | |
5130 __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), | |
5131 Immediate(0)); | |
5132 slow->Branch(not_equal, not_taken); | |
5133 } | |
5134 // Load next context in chain. | |
5135 __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); | |
5136 __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); | |
5137 context = tmp.reg(); | |
5138 } | |
5139 // If no outer scope calls eval, we do not need to check more | |
5140 // context extensions. If we have reached an eval scope, we check | |
5141 // all extensions from this point. | |
5142 if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; | |
5143 s = s->outer_scope(); | |
5144 } | |
5145 | |
5146 if (s != NULL && s->is_eval_scope()) { | |
5147 // Loop up the context chain. There is no frame effect so it is | |
5148 // safe to use raw labels here. | |
5149 Label next, fast; | |
5150 if (!context.is(tmp.reg())) { | |
5151 __ mov(tmp.reg(), context); | |
5152 } | |
5153 __ bind(&next); | |
5154 // Terminate at global context. | |
5155 __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), | |
5156 Immediate(FACTORY->global_context_map())); | |
5157 __ j(equal, &fast); | |
5158 // Check that extension is NULL. | |
5159 __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); | |
5160 slow->Branch(not_equal, not_taken); | |
5161 // Load next context in chain. | |
5162 __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); | |
5163 __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); | |
5164 __ jmp(&next); | |
5165 __ bind(&fast); | |
5166 } | |
5167 tmp.Unuse(); | |
5168 | |
5169 // All extension objects were empty and it is safe to use a global | |
5170 // load IC call. | |
5171 // The register allocator prefers eax if it is free, so the code generator | |
5172 // will load the global object directly into eax, which is where the LoadIC | |
5173 // expects it. | |
5174 frame_->Spill(eax); | |
5175 LoadGlobal(); | |
5176 frame_->Push(slot->var()->name()); | |
5177 RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) | |
5178 ? RelocInfo::CODE_TARGET | |
5179 : RelocInfo::CODE_TARGET_CONTEXT; | |
5180 Result answer = frame_->CallLoadIC(mode); | |
5181 // A test eax instruction following the call signals that the inobject | |
5182 // property case was inlined. Ensure that there is not a test eax | |
5183 // instruction here. | |
5184 __ nop(); | |
5185 return answer; | |
5186 } | |
5187 | |
5188 | |
5189 void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, | |
5190 TypeofState typeof_state, | |
5191 Result* result, | |
5192 JumpTarget* slow, | |
5193 JumpTarget* done) { | |
5194 // Generate fast-case code for variables that might be shadowed by | |
5195 // eval-introduced variables. Eval is used a lot without | |
5196 // introducing variables. In those cases, we do not want to | |
5197 // perform a runtime call for all variables in the scope | |
5198 // containing the eval. | |
5199 if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { | |
5200 *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); | |
5201 done->Jump(result); | |
5202 | |
5203 } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { | |
5204 Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); | |
5205 Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); | |
5206 if (potential_slot != NULL) { | |
5207 // Generate fast case for locals that rewrite to slots. | |
5208 // Allocate a fresh register to use as a temp in | |
5209 // ContextSlotOperandCheckExtensions and to hold the result | |
5210 // value. | |
5211 *result = allocator()->Allocate(); | |
5212 ASSERT(result->is_valid()); | |
5213 __ mov(result->reg(), | |
5214 ContextSlotOperandCheckExtensions(potential_slot, *result, slow)); | |
5215 if (potential_slot->var()->mode() == Variable::CONST) { | |
5216 __ cmp(result->reg(), FACTORY->the_hole_value()); | |
5217 done->Branch(not_equal, result); | |
5218 __ mov(result->reg(), FACTORY->undefined_value()); | |
5219 } | |
5220 done->Jump(result); | |
5221 } else if (rewrite != NULL) { | |
5222 // Generate fast case for calls of an argument function. | |
5223 Property* property = rewrite->AsProperty(); | |
5224 if (property != NULL) { | |
5225 VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); | |
5226 Literal* key_literal = property->key()->AsLiteral(); | |
5227 if (obj_proxy != NULL && | |
5228 key_literal != NULL && | |
5229 obj_proxy->IsArguments() && | |
5230 key_literal->handle()->IsSmi()) { | |
5231 // Load arguments object if there are no eval-introduced | |
5232 // variables. Then load the argument from the arguments | |
5233 // object using keyed load. | |
5234 Result arguments = allocator()->Allocate(); | |
5235 ASSERT(arguments.is_valid()); | |
5236 __ mov(arguments.reg(), | |
5237 ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), | |
5238 arguments, | |
5239 slow)); | |
5240 frame_->Push(&arguments); | |
5241 frame_->Push(key_literal->handle()); | |
5242 *result = EmitKeyedLoad(); | |
5243 done->Jump(result); | |
5244 } | |
5245 } | |
5246 } | |
5247 } | |
5248 } | |
5249 | |
5250 | |
5251 void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { | |
5252 if (slot->type() == Slot::LOOKUP) { | |
5253 ASSERT(slot->var()->is_dynamic()); | |
5254 | |
5255 // For now, just do a runtime call. Since the call is inevitable, | |
5256 // we eagerly sync the virtual frame so we can directly push the | |
5257 // arguments into place. | |
5258 frame_->SyncRange(0, frame_->element_count() - 1); | |
5259 | |
5260 frame_->EmitPush(esi); | |
5261 frame_->EmitPush(Immediate(slot->var()->name())); | |
5262 | |
5263 Result value; | |
5264 if (init_state == CONST_INIT) { | |
5265 // Same as the case for a normal store, but ignores attribute | |
5266 // (e.g. READ_ONLY) of context slot so that we can initialize const | |
5267 // properties (introduced via eval("const foo = (some expr);")). Also, | |
5268 // uses the current function context instead of the top context. | |
5269 // | |
5270 // Note that we must declare the foo upon entry of eval(), via a | |
5271 // context slot declaration, but we cannot initialize it at the same | |
5272 // time, because the const declaration may be at the end of the eval | |
5273 // code (sigh...) and the const variable may have been used before | |
5274 // (where its value is 'undefined'). Thus, we can only do the | |
5275 // initialization when we actually encounter the expression and when | |
5276 // the expression operands are defined and valid, and thus we need the | |
5277 // split into 2 operations: declaration of the context slot followed | |
5278 // by initialization. | |
5279 value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); | |
5280 } else { | |
5281 frame_->Push(Smi::FromInt(strict_mode_flag())); | |
5282 value = frame_->CallRuntime(Runtime::kStoreContextSlot, 4); | |
5283 } | |
5284 // Storing a variable must keep the (new) value on the expression | |
5285 // stack. This is necessary for compiling chained assignment | |
5286 // expressions. | |
5287 frame_->Push(&value); | |
5288 | |
5289 } else { | |
5290 ASSERT(!slot->var()->is_dynamic()); | |
5291 | |
5292 JumpTarget exit; | |
5293 if (init_state == CONST_INIT) { | |
5294 ASSERT(slot->var()->mode() == Variable::CONST); | |
5295 // Only the first const initialization must be executed (the slot | |
5296 // still contains 'the hole' value). When the assignment is executed, | |
5297 // the code is identical to a normal store (see below). | |
5298 // | |
5299 // We spill the frame in the code below because the direct-frame | |
5300 // access of SlotOperand is potentially unsafe with an unspilled | |
5301 // frame. | |
5302 VirtualFrame::SpilledScope spilled_scope; | |
5303 Comment cmnt(masm_, "[ Init const"); | |
5304 __ mov(ecx, SlotOperand(slot, ecx)); | |
5305 __ cmp(ecx, FACTORY->the_hole_value()); | |
5306 exit.Branch(not_equal); | |
5307 } | |
5308 | |
5309 // We must execute the store. Storing a variable must keep the (new) | |
5310 // value on the stack. This is necessary for compiling assignment | |
5311 // expressions. | |
5312 // | |
5313 // Note: We will reach here even with slot->var()->mode() == | |
5314 // Variable::CONST because of const declarations which will initialize | |
5315 // consts to 'the hole' value and by doing so, end up calling this code. | |
5316 if (slot->type() == Slot::PARAMETER) { | |
5317 frame_->StoreToParameterAt(slot->index()); | |
5318 } else if (slot->type() == Slot::LOCAL) { | |
5319 frame_->StoreToLocalAt(slot->index()); | |
5320 } else { | |
5321 // The other slot types (LOOKUP and GLOBAL) cannot reach here. | |
5322 // | |
5323 // The use of SlotOperand below is safe for an unspilled frame | |
5324 // because the slot is a context slot. | |
5325 ASSERT(slot->type() == Slot::CONTEXT); | |
5326 frame_->Dup(); | |
5327 Result value = frame_->Pop(); | |
5328 value.ToRegister(); | |
5329 Result start = allocator_->Allocate(); | |
5330 ASSERT(start.is_valid()); | |
5331 __ mov(SlotOperand(slot, start.reg()), value.reg()); | |
5332 // RecordWrite may destroy the value registers. | |
5333 // | |
5334 // TODO(204): Avoid actually spilling when the value is not | |
5335 // needed (probably the common case). | |
5336 frame_->Spill(value.reg()); | |
5337 int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; | |
5338 Result temp = allocator_->Allocate(); | |
5339 ASSERT(temp.is_valid()); | |
5340 __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); | |
5341 // The results start, value, and temp are unused by going out of | |
5342 // scope. | |
5343 } | |
5344 | |
5345 exit.Bind(); | |
5346 } | |
5347 } | |
5348 | |
5349 | |
5350 void CodeGenerator::VisitSlot(Slot* slot) { | |
5351 Comment cmnt(masm_, "[ Slot"); | |
5352 if (in_safe_int32_mode()) { | |
5353 if ((slot->type() == Slot::LOCAL && !slot->is_arguments())) { | |
5354 frame()->UntaggedPushLocalAt(slot->index()); | |
5355 } else if (slot->type() == Slot::PARAMETER) { | |
5356 frame()->UntaggedPushParameterAt(slot->index()); | |
5357 } else { | |
5358 UNREACHABLE(); | |
5359 } | |
5360 } else { | |
5361 LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); | |
5362 } | |
5363 } | |
5364 | |
5365 | |
5366 void CodeGenerator::VisitVariableProxy(VariableProxy* node) { | |
5367 Comment cmnt(masm_, "[ VariableProxy"); | |
5368 Variable* var = node->var(); | |
5369 Expression* expr = var->rewrite(); | |
5370 if (expr != NULL) { | |
5371 Visit(expr); | |
5372 } else { | |
5373 ASSERT(var->is_global()); | |
5374 ASSERT(!in_safe_int32_mode()); | |
5375 Reference ref(this, node); | |
5376 ref.GetValue(); | |
5377 } | |
5378 } | |
5379 | |
5380 | |
5381 void CodeGenerator::VisitLiteral(Literal* node) { | |
5382 Comment cmnt(masm_, "[ Literal"); | |
5383 if (frame_->ConstantPoolOverflowed()) { | |
5384 Result temp = allocator_->Allocate(); | |
5385 ASSERT(temp.is_valid()); | |
5386 if (in_safe_int32_mode()) { | |
5387 temp.set_untagged_int32(true); | |
5388 } | |
5389 __ Set(temp.reg(), Immediate(node->handle())); | |
5390 frame_->Push(&temp); | |
5391 } else { | |
5392 if (in_safe_int32_mode()) { | |
5393 frame_->PushUntaggedElement(node->handle()); | |
5394 } else { | |
5395 frame_->Push(node->handle()); | |
5396 } | |
5397 } | |
5398 } | |
5399 | |
5400 | |
5401 void CodeGenerator::PushUnsafeSmi(Handle<Object> value) { | |
5402 ASSERT(value->IsSmi()); | |
5403 int bits = reinterpret_cast<int>(*value); | |
5404 __ push(Immediate(bits ^ jit_cookie_)); | |
5405 __ xor_(Operand(esp, 0), Immediate(jit_cookie_)); | |
5406 } | |
5407 | |
5408 | |
5409 void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) { | |
5410 ASSERT(value->IsSmi()); | |
5411 int bits = reinterpret_cast<int>(*value); | |
5412 __ mov(Operand(ebp, offset), Immediate(bits ^ jit_cookie_)); | |
5413 __ xor_(Operand(ebp, offset), Immediate(jit_cookie_)); | |
5414 } | |
5415 | |
5416 | |
5417 void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) { | |
5418 ASSERT(target.is_valid()); | |
5419 ASSERT(value->IsSmi()); | |
5420 int bits = reinterpret_cast<int>(*value); | |
5421 __ Set(target, Immediate(bits ^ jit_cookie_)); | |
5422 __ xor_(target, jit_cookie_); | |
5423 } | |
5424 | |
5425 | |
5426 bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { | |
5427 if (!value->IsSmi()) return false; | |
5428 int int_value = Smi::cast(*value)->value(); | |
5429 return !is_intn(int_value, kMaxSmiInlinedBits); | |
5430 } | |
5431 | |
5432 | |
5433 // Materialize the regexp literal 'node' in the literals array | |
5434 // 'literals' of the function. Leave the regexp boilerplate in | |
5435 // 'boilerplate'. | |
5436 class DeferredRegExpLiteral: public DeferredCode { | |
5437 public: | |
5438 DeferredRegExpLiteral(Register boilerplate, | |
5439 Register literals, | |
5440 RegExpLiteral* node) | |
5441 : boilerplate_(boilerplate), literals_(literals), node_(node) { | |
5442 set_comment("[ DeferredRegExpLiteral"); | |
5443 } | |
5444 | |
5445 void Generate(); | |
5446 | |
5447 private: | |
5448 Register boilerplate_; | |
5449 Register literals_; | |
5450 RegExpLiteral* node_; | |
5451 }; | |
5452 | |
5453 | |
5454 void DeferredRegExpLiteral::Generate() { | |
5455 // Since the entry is undefined we call the runtime system to | |
5456 // compute the literal. | |
5457 // Literal array (0). | |
5458 __ push(literals_); | |
5459 // Literal index (1). | |
5460 __ push(Immediate(Smi::FromInt(node_->literal_index()))); | |
5461 // RegExp pattern (2). | |
5462 __ push(Immediate(node_->pattern())); | |
5463 // RegExp flags (3). | |
5464 __ push(Immediate(node_->flags())); | |
5465 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); | |
5466 if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); | |
5467 } | |
5468 | |
5469 | |
5470 class DeferredAllocateInNewSpace: public DeferredCode { | |
5471 public: | |
5472 DeferredAllocateInNewSpace(int size, | |
5473 Register target, | |
5474 int registers_to_save = 0) | |
5475 : size_(size), target_(target), registers_to_save_(registers_to_save) { | |
5476 ASSERT(size >= kPointerSize && size <= HEAP->MaxObjectSizeInNewSpace()); | |
5477 ASSERT_EQ(0, registers_to_save & target.bit()); | |
5478 set_comment("[ DeferredAllocateInNewSpace"); | |
5479 } | |
5480 void Generate(); | |
5481 | |
5482 private: | |
5483 int size_; | |
5484 Register target_; | |
5485 int registers_to_save_; | |
5486 }; | |
5487 | |
5488 | |
5489 void DeferredAllocateInNewSpace::Generate() { | |
5490 for (int i = 0; i < kNumRegs; i++) { | |
5491 if (registers_to_save_ & (1 << i)) { | |
5492 Register save_register = { i }; | |
5493 __ push(save_register); | |
5494 } | |
5495 } | |
5496 __ push(Immediate(Smi::FromInt(size_))); | |
5497 __ CallRuntime(Runtime::kAllocateInNewSpace, 1); | |
5498 if (!target_.is(eax)) { | |
5499 __ mov(target_, eax); | |
5500 } | |
5501 for (int i = kNumRegs - 1; i >= 0; i--) { | |
5502 if (registers_to_save_ & (1 << i)) { | |
5503 Register save_register = { i }; | |
5504 __ pop(save_register); | |
5505 } | |
5506 } | |
5507 } | |
5508 | |
5509 | |
5510 void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { | |
5511 ASSERT(!in_safe_int32_mode()); | |
5512 Comment cmnt(masm_, "[ RegExp Literal"); | |
5513 | |
5514 // Retrieve the literals array and check the allocated entry. Begin | |
5515 // with a writable copy of the function of this activation in a | |
5516 // register. | |
5517 frame_->PushFunction(); | |
5518 Result literals = frame_->Pop(); | |
5519 literals.ToRegister(); | |
5520 frame_->Spill(literals.reg()); | |
5521 | |
5522 // Load the literals array of the function. | |
5523 __ mov(literals.reg(), | |
5524 FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); | |
5525 | |
5526 // Load the literal at the ast saved index. | |
5527 Result boilerplate = allocator_->Allocate(); | |
5528 ASSERT(boilerplate.is_valid()); | |
5529 int literal_offset = | |
5530 FixedArray::kHeaderSize + node->literal_index() * kPointerSize; | |
5531 __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); | |
5532 | |
5533 // Check whether we need to materialize the RegExp object. If so, | |
5534 // jump to the deferred code passing the literals array. | |
5535 DeferredRegExpLiteral* deferred = | |
5536 new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); | |
5537 __ cmp(boilerplate.reg(), FACTORY->undefined_value()); | |
5538 deferred->Branch(equal); | |
5539 deferred->BindExit(); | |
5540 | |
5541 // Register of boilerplate contains RegExp object. | |
5542 | |
5543 Result tmp = allocator()->Allocate(); | |
5544 ASSERT(tmp.is_valid()); | |
5545 | |
5546 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | |
5547 | |
5548 DeferredAllocateInNewSpace* allocate_fallback = | |
5549 new DeferredAllocateInNewSpace(size, literals.reg()); | |
5550 frame_->Push(&boilerplate); | |
5551 frame_->SpillTop(); | |
5552 __ AllocateInNewSpace(size, | |
5553 literals.reg(), | |
5554 tmp.reg(), | |
5555 no_reg, | |
5556 allocate_fallback->entry_label(), | |
5557 TAG_OBJECT); | |
5558 allocate_fallback->BindExit(); | |
5559 boilerplate = frame_->Pop(); | |
5560 // Copy from boilerplate to clone and return clone. | |
5561 | |
5562 for (int i = 0; i < size; i += kPointerSize) { | |
5563 __ mov(tmp.reg(), FieldOperand(boilerplate.reg(), i)); | |
5564 __ mov(FieldOperand(literals.reg(), i), tmp.reg()); | |
5565 } | |
5566 frame_->Push(&literals); | |
5567 } | |
5568 | |
5569 | |
5570 void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { | |
5571 ASSERT(!in_safe_int32_mode()); | |
5572 Comment cmnt(masm_, "[ ObjectLiteral"); | |
5573 | |
5574 // Load a writable copy of the function of this activation in a | |
5575 // register. | |
5576 frame_->PushFunction(); | |
5577 Result literals = frame_->Pop(); | |
5578 literals.ToRegister(); | |
5579 frame_->Spill(literals.reg()); | |
5580 | |
5581 // Load the literals array of the function. | |
5582 __ mov(literals.reg(), | |
5583 FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); | |
5584 // Literal array. | |
5585 frame_->Push(&literals); | |
5586 // Literal index. | |
5587 frame_->Push(Smi::FromInt(node->literal_index())); | |
5588 // Constant properties. | |
5589 frame_->Push(node->constant_properties()); | |
5590 // Should the object literal have fast elements? | |
5591 frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0)); | |
5592 Result clone; | |
5593 if (node->depth() > 1) { | |
5594 clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); | |
5595 } else { | |
5596 clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); | |
5597 } | |
5598 frame_->Push(&clone); | |
5599 | |
5600 // Mark all computed expressions that are bound to a key that | |
5601 // is shadowed by a later occurrence of the same key. For the | |
5602 // marked expressions, no store code is emitted. | |
5603 node->CalculateEmitStore(); | |
5604 | |
5605 for (int i = 0; i < node->properties()->length(); i++) { | |
5606 ObjectLiteral::Property* property = node->properties()->at(i); | |
5607 switch (property->kind()) { | |
5608 case ObjectLiteral::Property::CONSTANT: | |
5609 break; | |
5610 case ObjectLiteral::Property::MATERIALIZED_LITERAL: | |
5611 if (CompileTimeValue::IsCompileTimeValue(property->value())) break; | |
5612 // else fall through. | |
5613 case ObjectLiteral::Property::COMPUTED: { | |
5614 Handle<Object> key(property->key()->handle()); | |
5615 if (key->IsSymbol()) { | |
5616 // Duplicate the object as the IC receiver. | |
5617 frame_->Dup(); | |
5618 Load(property->value()); | |
5619 if (property->emit_store()) { | |
5620 Result ignored = | |
5621 frame_->CallStoreIC(Handle<String>::cast(key), false, | |
5622 strict_mode_flag()); | |
5623 // A test eax instruction following the store IC call would | |
5624 // indicate the presence of an inlined version of the | |
5625 // store. Add a nop to indicate that there is no such | |
5626 // inlined version. | |
5627 __ nop(); | |
5628 } else { | |
5629 frame_->Drop(2); | |
5630 } | |
5631 break; | |
5632 } | |
5633 // Fall through | |
5634 } | |
5635 case ObjectLiteral::Property::PROTOTYPE: { | |
5636 // Duplicate the object as an argument to the runtime call. | |
5637 frame_->Dup(); | |
5638 Load(property->key()); | |
5639 Load(property->value()); | |
5640 if (property->emit_store()) { | |
5641 frame_->Push(Smi::FromInt(NONE)); // PropertyAttributes | |
5642 // Ignore the result. | |
5643 Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 4); | |
5644 } else { | |
5645 frame_->Drop(3); | |
5646 } | |
5647 break; | |
5648 } | |
5649 case ObjectLiteral::Property::SETTER: { | |
5650 // Duplicate the object as an argument to the runtime call. | |
5651 frame_->Dup(); | |
5652 Load(property->key()); | |
5653 frame_->Push(Smi::FromInt(1)); | |
5654 Load(property->value()); | |
5655 Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); | |
5656 // Ignore the result. | |
5657 break; | |
5658 } | |
5659 case ObjectLiteral::Property::GETTER: { | |
5660 // Duplicate the object as an argument to the runtime call. | |
5661 frame_->Dup(); | |
5662 Load(property->key()); | |
5663 frame_->Push(Smi::FromInt(0)); | |
5664 Load(property->value()); | |
5665 Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); | |
5666 // Ignore the result. | |
5667 break; | |
5668 } | |
5669 default: UNREACHABLE(); | |
5670 } | |
5671 } | |
5672 } | |
5673 | |
5674 | |
5675 void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { | |
5676 ASSERT(!in_safe_int32_mode()); | |
5677 Comment cmnt(masm_, "[ ArrayLiteral"); | |
5678 | |
5679 // Load a writable copy of the function of this activation in a | |
5680 // register. | |
5681 frame_->PushFunction(); | |
5682 Result literals = frame_->Pop(); | |
5683 literals.ToRegister(); | |
5684 frame_->Spill(literals.reg()); | |
5685 | |
5686 // Load the literals array of the function. | |
5687 __ mov(literals.reg(), | |
5688 FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); | |
5689 | |
5690 frame_->Push(&literals); | |
5691 frame_->Push(Smi::FromInt(node->literal_index())); | |
5692 frame_->Push(node->constant_elements()); | |
5693 int length = node->values()->length(); | |
5694 Result clone; | |
5695 if (node->constant_elements()->map() == HEAP->fixed_cow_array_map()) { | |
5696 FastCloneShallowArrayStub stub( | |
5697 FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); | |
5698 clone = frame_->CallStub(&stub, 3); | |
5699 Counters* counters = masm()->isolate()->counters(); | |
5700 __ IncrementCounter(counters->cow_arrays_created_stub(), 1); | |
5701 } else if (node->depth() > 1) { | |
5702 clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); | |
5703 } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { | |
5704 clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); | |
5705 } else { | |
5706 FastCloneShallowArrayStub stub( | |
5707 FastCloneShallowArrayStub::CLONE_ELEMENTS, length); | |
5708 clone = frame_->CallStub(&stub, 3); | |
5709 } | |
5710 frame_->Push(&clone); | |
5711 | |
5712 // Generate code to set the elements in the array that are not | |
5713 // literals. | |
5714 for (int i = 0; i < length; i++) { | |
5715 Expression* value = node->values()->at(i); | |
5716 | |
5717 if (!CompileTimeValue::ArrayLiteralElementNeedsInitialization(value)) { | |
5718 continue; | |
5719 } | |
5720 | |
5721 // The property must be set by generated code. | |
5722 Load(value); | |
5723 | |
5724 // Get the property value off the stack. | |
5725 Result prop_value = frame_->Pop(); | |
5726 prop_value.ToRegister(); | |
5727 | |
5728 // Fetch the array literal while leaving a copy on the stack and | |
5729 // use it to get the elements array. | |
5730 frame_->Dup(); | |
5731 Result elements = frame_->Pop(); | |
5732 elements.ToRegister(); | |
5733 frame_->Spill(elements.reg()); | |
5734 // Get the elements array. | |
5735 __ mov(elements.reg(), | |
5736 FieldOperand(elements.reg(), JSObject::kElementsOffset)); | |
5737 | |
5738 // Write to the indexed properties array. | |
5739 int offset = i * kPointerSize + FixedArray::kHeaderSize; | |
5740 __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); | |
5741 | |
5742 // Update the write barrier for the array address. | |
5743 frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. | |
5744 Result scratch = allocator_->Allocate(); | |
5745 ASSERT(scratch.is_valid()); | |
5746 __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); | |
5747 } | |
5748 } | |
5749 | |
5750 | |
5751 void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { | |
5752 ASSERT(!in_safe_int32_mode()); | |
5753 ASSERT(!in_spilled_code()); | |
5754 // Call runtime routine to allocate the catch extension object and | |
5755 // assign the exception value to the catch variable. | |
5756 Comment cmnt(masm_, "[ CatchExtensionObject"); | |
5757 Load(node->key()); | |
5758 Load(node->value()); | |
5759 Result result = | |
5760 frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); | |
5761 frame_->Push(&result); | |
5762 } | |
5763 | |
5764 | |
5765 void CodeGenerator::EmitSlotAssignment(Assignment* node) { | |
5766 #ifdef DEBUG | |
5767 int original_height = frame()->height(); | |
5768 #endif | |
5769 Comment cmnt(masm(), "[ Variable Assignment"); | |
5770 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
5771 ASSERT(var != NULL); | |
5772 Slot* slot = var->AsSlot(); | |
5773 ASSERT(slot != NULL); | |
5774 | |
5775 // Evaluate the right-hand side. | |
5776 if (node->is_compound()) { | |
5777 // For a compound assignment the right-hand side is a binary operation | |
5778 // between the current property value and the actual right-hand side. | |
5779 LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); | |
5780 Load(node->value()); | |
5781 | |
5782 // Perform the binary operation. | |
5783 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
5784 // Construct the implicit binary operation. | |
5785 BinaryOperation expr(node); | |
5786 GenericBinaryOperation(&expr, | |
5787 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
5788 } else { | |
5789 // For non-compound assignment just load the right-hand side. | |
5790 Load(node->value()); | |
5791 } | |
5792 | |
5793 // Perform the assignment. | |
5794 if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { | |
5795 CodeForSourcePosition(node->position()); | |
5796 StoreToSlot(slot, | |
5797 node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); | |
5798 } | |
5799 ASSERT(frame()->height() == original_height + 1); | |
5800 } | |
5801 | |
5802 | |
5803 void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { | |
5804 #ifdef DEBUG | |
5805 int original_height = frame()->height(); | |
5806 #endif | |
5807 Comment cmnt(masm(), "[ Named Property Assignment"); | |
5808 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
5809 Property* prop = node->target()->AsProperty(); | |
5810 ASSERT(var == NULL || (prop == NULL && var->is_global())); | |
5811 | |
5812 // Initialize name and evaluate the receiver sub-expression if necessary. If | |
5813 // the receiver is trivial it is not placed on the stack at this point, but | |
5814 // loaded whenever actually needed. | |
5815 Handle<String> name; | |
5816 bool is_trivial_receiver = false; | |
5817 if (var != NULL) { | |
5818 name = var->name(); | |
5819 } else { | |
5820 Literal* lit = prop->key()->AsLiteral(); | |
5821 ASSERT_NOT_NULL(lit); | |
5822 name = Handle<String>::cast(lit->handle()); | |
5823 // Do not materialize the receiver on the frame if it is trivial. | |
5824 is_trivial_receiver = prop->obj()->IsTrivial(); | |
5825 if (!is_trivial_receiver) Load(prop->obj()); | |
5826 } | |
5827 | |
5828 // Change to slow case in the beginning of an initialization block to | |
5829 // avoid the quadratic behavior of repeatedly adding fast properties. | |
5830 if (node->starts_initialization_block()) { | |
5831 // Initialization block consists of assignments of the form expr.x = ..., so | |
5832 // this will never be an assignment to a variable, so there must be a | |
5833 // receiver object. | |
5834 ASSERT_EQ(NULL, var); | |
5835 if (is_trivial_receiver) { | |
5836 frame()->Push(prop->obj()); | |
5837 } else { | |
5838 frame()->Dup(); | |
5839 } | |
5840 Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); | |
5841 } | |
5842 | |
5843 // Change to fast case at the end of an initialization block. To prepare for | |
5844 // that add an extra copy of the receiver to the frame, so that it can be | |
5845 // converted back to fast case after the assignment. | |
5846 if (node->ends_initialization_block() && !is_trivial_receiver) { | |
5847 frame()->Dup(); | |
5848 } | |
5849 | |
5850 // Stack layout: | |
5851 // [tos] : receiver (only materialized if non-trivial) | |
5852 // [tos+1] : receiver if at the end of an initialization block | |
5853 | |
5854 // Evaluate the right-hand side. | |
5855 if (node->is_compound()) { | |
5856 // For a compound assignment the right-hand side is a binary operation | |
5857 // between the current property value and the actual right-hand side. | |
5858 if (is_trivial_receiver) { | |
5859 frame()->Push(prop->obj()); | |
5860 } else if (var != NULL) { | |
5861 // The LoadIC stub expects the object in eax. | |
5862 // Freeing eax causes the code generator to load the global into it. | |
5863 frame_->Spill(eax); | |
5864 LoadGlobal(); | |
5865 } else { | |
5866 frame()->Dup(); | |
5867 } | |
5868 Result value = EmitNamedLoad(name, var != NULL); | |
5869 frame()->Push(&value); | |
5870 Load(node->value()); | |
5871 | |
5872 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
5873 // Construct the implicit binary operation. | |
5874 BinaryOperation expr(node); | |
5875 GenericBinaryOperation(&expr, | |
5876 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
5877 } else { | |
5878 // For non-compound assignment just load the right-hand side. | |
5879 Load(node->value()); | |
5880 } | |
5881 | |
5882 // Stack layout: | |
5883 // [tos] : value | |
5884 // [tos+1] : receiver (only materialized if non-trivial) | |
5885 // [tos+2] : receiver if at the end of an initialization block | |
5886 | |
5887 // Perform the assignment. It is safe to ignore constants here. | |
5888 ASSERT(var == NULL || var->mode() != Variable::CONST); | |
5889 ASSERT_NE(Token::INIT_CONST, node->op()); | |
5890 if (is_trivial_receiver) { | |
5891 Result value = frame()->Pop(); | |
5892 frame()->Push(prop->obj()); | |
5893 frame()->Push(&value); | |
5894 } | |
5895 CodeForSourcePosition(node->position()); | |
5896 bool is_contextual = (var != NULL); | |
5897 Result answer = EmitNamedStore(name, is_contextual); | |
5898 frame()->Push(&answer); | |
5899 | |
5900 // Stack layout: | |
5901 // [tos] : result | |
5902 // [tos+1] : receiver if at the end of an initialization block | |
5903 | |
5904 if (node->ends_initialization_block()) { | |
5905 ASSERT_EQ(NULL, var); | |
5906 // The argument to the runtime call is the receiver. | |
5907 if (is_trivial_receiver) { | |
5908 frame()->Push(prop->obj()); | |
5909 } else { | |
5910 // A copy of the receiver is below the value of the assignment. Swap | |
5911 // the receiver and the value of the assignment expression. | |
5912 Result result = frame()->Pop(); | |
5913 Result receiver = frame()->Pop(); | |
5914 frame()->Push(&result); | |
5915 frame()->Push(&receiver); | |
5916 } | |
5917 Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); | |
5918 } | |
5919 | |
5920 // Stack layout: | |
5921 // [tos] : result | |
5922 | |
5923 ASSERT_EQ(frame()->height(), original_height + 1); | |
5924 } | |
5925 | |
5926 | |
5927 void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { | |
5928 #ifdef DEBUG | |
5929 int original_height = frame()->height(); | |
5930 #endif | |
5931 Comment cmnt(masm_, "[ Keyed Property Assignment"); | |
5932 Property* prop = node->target()->AsProperty(); | |
5933 ASSERT_NOT_NULL(prop); | |
5934 | |
5935 // Evaluate the receiver subexpression. | |
5936 Load(prop->obj()); | |
5937 | |
5938 // Change to slow case in the beginning of an initialization block to | |
5939 // avoid the quadratic behavior of repeatedly adding fast properties. | |
5940 if (node->starts_initialization_block()) { | |
5941 frame_->Dup(); | |
5942 Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); | |
5943 } | |
5944 | |
5945 // Change to fast case at the end of an initialization block. To prepare for | |
5946 // that add an extra copy of the receiver to the frame, so that it can be | |
5947 // converted back to fast case after the assignment. | |
5948 if (node->ends_initialization_block()) { | |
5949 frame_->Dup(); | |
5950 } | |
5951 | |
5952 // Evaluate the key subexpression. | |
5953 Load(prop->key()); | |
5954 | |
5955 // Stack layout: | |
5956 // [tos] : key | |
5957 // [tos+1] : receiver | |
5958 // [tos+2] : receiver if at the end of an initialization block | |
5959 | |
5960 // Evaluate the right-hand side. | |
5961 if (node->is_compound()) { | |
5962 // For a compound assignment the right-hand side is a binary operation | |
5963 // between the current property value and the actual right-hand side. | |
5964 // Duplicate receiver and key for loading the current property value. | |
5965 frame()->PushElementAt(1); | |
5966 frame()->PushElementAt(1); | |
5967 Result value = EmitKeyedLoad(); | |
5968 frame()->Push(&value); | |
5969 Load(node->value()); | |
5970 | |
5971 // Perform the binary operation. | |
5972 bool overwrite_value = node->value()->ResultOverwriteAllowed(); | |
5973 BinaryOperation expr(node); | |
5974 GenericBinaryOperation(&expr, | |
5975 overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); | |
5976 } else { | |
5977 // For non-compound assignment just load the right-hand side. | |
5978 Load(node->value()); | |
5979 } | |
5980 | |
5981 // Stack layout: | |
5982 // [tos] : value | |
5983 // [tos+1] : key | |
5984 // [tos+2] : receiver | |
5985 // [tos+3] : receiver if at the end of an initialization block | |
5986 | |
5987 // Perform the assignment. It is safe to ignore constants here. | |
5988 ASSERT(node->op() != Token::INIT_CONST); | |
5989 CodeForSourcePosition(node->position()); | |
5990 Result answer = EmitKeyedStore(prop->key()->type()); | |
5991 frame()->Push(&answer); | |
5992 | |
5993 // Stack layout: | |
5994 // [tos] : result | |
5995 // [tos+1] : receiver if at the end of an initialization block | |
5996 | |
5997 // Change to fast case at the end of an initialization block. | |
5998 if (node->ends_initialization_block()) { | |
5999 // The argument to the runtime call is the extra copy of the receiver, | |
6000 // which is below the value of the assignment. Swap the receiver and | |
6001 // the value of the assignment expression. | |
6002 Result result = frame()->Pop(); | |
6003 Result receiver = frame()->Pop(); | |
6004 frame()->Push(&result); | |
6005 frame()->Push(&receiver); | |
6006 Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); | |
6007 } | |
6008 | |
6009 // Stack layout: | |
6010 // [tos] : result | |
6011 | |
6012 ASSERT(frame()->height() == original_height + 1); | |
6013 } | |
6014 | |
6015 | |
6016 void CodeGenerator::VisitAssignment(Assignment* node) { | |
6017 ASSERT(!in_safe_int32_mode()); | |
6018 #ifdef DEBUG | |
6019 int original_height = frame()->height(); | |
6020 #endif | |
6021 Variable* var = node->target()->AsVariableProxy()->AsVariable(); | |
6022 Property* prop = node->target()->AsProperty(); | |
6023 | |
6024 if (var != NULL && !var->is_global()) { | |
6025 EmitSlotAssignment(node); | |
6026 | |
6027 } else if ((prop != NULL && prop->key()->IsPropertyName()) || | |
6028 (var != NULL && var->is_global())) { | |
6029 // Properties whose keys are property names and global variables are | |
6030 // treated as named property references. We do not need to consider | |
6031 // global 'this' because it is not a valid left-hand side. | |
6032 EmitNamedPropertyAssignment(node); | |
6033 | |
6034 } else if (prop != NULL) { | |
6035 // Other properties (including rewritten parameters for a function that | |
6036 // uses arguments) are keyed property assignments. | |
6037 EmitKeyedPropertyAssignment(node); | |
6038 | |
6039 } else { | |
6040 // Invalid left-hand side. | |
6041 Load(node->target()); | |
6042 Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); | |
6043 // The runtime call doesn't actually return but the code generator will | |
6044 // still generate code and expects a certain frame height. | |
6045 frame()->Push(&result); | |
6046 } | |
6047 | |
6048 ASSERT(frame()->height() == original_height + 1); | |
6049 } | |
6050 | |
6051 | |
6052 void CodeGenerator::VisitThrow(Throw* node) { | |
6053 ASSERT(!in_safe_int32_mode()); | |
6054 Comment cmnt(masm_, "[ Throw"); | |
6055 Load(node->exception()); | |
6056 Result result = frame_->CallRuntime(Runtime::kThrow, 1); | |
6057 frame_->Push(&result); | |
6058 } | |
6059 | |
6060 | |
6061 void CodeGenerator::VisitProperty(Property* node) { | |
6062 ASSERT(!in_safe_int32_mode()); | |
6063 Comment cmnt(masm_, "[ Property"); | |
6064 Reference property(this, node); | |
6065 property.GetValue(); | |
6066 } | |
6067 | |
6068 | |
6069 void CodeGenerator::VisitCall(Call* node) { | |
6070 ASSERT(!in_safe_int32_mode()); | |
6071 Comment cmnt(masm_, "[ Call"); | |
6072 | |
6073 Expression* function = node->expression(); | |
6074 ZoneList<Expression*>* args = node->arguments(); | |
6075 | |
6076 // Check if the function is a variable or a property. | |
6077 Variable* var = function->AsVariableProxy()->AsVariable(); | |
6078 Property* property = function->AsProperty(); | |
6079 | |
6080 // ------------------------------------------------------------------------ | |
6081 // Fast-case: Use inline caching. | |
6082 // --- | |
6083 // According to ECMA-262, section 11.2.3, page 44, the function to call | |
6084 // must be resolved after the arguments have been evaluated. The IC code | |
6085 // automatically handles this by loading the arguments before the function | |
6086 // is resolved in cache misses (this also holds for megamorphic calls). | |
6087 // ------------------------------------------------------------------------ | |
6088 | |
6089 if (var != NULL && var->is_possibly_eval()) { | |
6090 // ---------------------------------- | |
6091 // JavaScript example: 'eval(arg)' // eval is not known to be shadowed | |
6092 // ---------------------------------- | |
6093 | |
6094 // In a call to eval, we first call %ResolvePossiblyDirectEval to | |
6095 // resolve the function we need to call and the receiver of the | |
6096 // call. Then we call the resolved function using the given | |
6097 // arguments. | |
6098 | |
6099 // Prepare the stack for the call to the resolved function. | |
6100 Load(function); | |
6101 | |
6102 // Allocate a frame slot for the receiver. | |
6103 frame_->Push(FACTORY->undefined_value()); | |
6104 | |
6105 // Load the arguments. | |
6106 int arg_count = args->length(); | |
6107 for (int i = 0; i < arg_count; i++) { | |
6108 Load(args->at(i)); | |
6109 frame_->SpillTop(); | |
6110 } | |
6111 | |
6112 // Result to hold the result of the function resolution and the | |
6113 // final result of the eval call. | |
6114 Result result; | |
6115 | |
6116 // If we know that eval can only be shadowed by eval-introduced | |
6117 // variables we attempt to load the global eval function directly | |
6118 // in generated code. If we succeed, there is no need to perform a | |
6119 // context lookup in the runtime system. | |
6120 JumpTarget done; | |
6121 if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { | |
6122 ASSERT(var->AsSlot()->type() == Slot::LOOKUP); | |
6123 JumpTarget slow; | |
6124 // Prepare the stack for the call to | |
6125 // ResolvePossiblyDirectEvalNoLookup by pushing the loaded | |
6126 // function, the first argument to the eval call and the | |
6127 // receiver. | |
6128 Result fun = LoadFromGlobalSlotCheckExtensions(var->AsSlot(), | |
6129 NOT_INSIDE_TYPEOF, | |
6130 &slow); | |
6131 frame_->Push(&fun); | |
6132 if (arg_count > 0) { | |
6133 frame_->PushElementAt(arg_count); | |
6134 } else { | |
6135 frame_->Push(FACTORY->undefined_value()); | |
6136 } | |
6137 frame_->PushParameterAt(-1); | |
6138 | |
6139 // Push the strict mode flag. | |
6140 frame_->Push(Smi::FromInt(strict_mode_flag())); | |
6141 | |
6142 // Resolve the call. | |
6143 result = | |
6144 frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); | |
6145 | |
6146 done.Jump(&result); | |
6147 slow.Bind(); | |
6148 } | |
6149 | |
6150 // Prepare the stack for the call to ResolvePossiblyDirectEval by | |
6151 // pushing the loaded function, the first argument to the eval | |
6152 // call and the receiver. | |
6153 frame_->PushElementAt(arg_count + 1); | |
6154 if (arg_count > 0) { | |
6155 frame_->PushElementAt(arg_count); | |
6156 } else { | |
6157 frame_->Push(FACTORY->undefined_value()); | |
6158 } | |
6159 frame_->PushParameterAt(-1); | |
6160 | |
6161 // Push the strict mode flag. | |
6162 frame_->Push(Smi::FromInt(strict_mode_flag())); | |
6163 | |
6164 // Resolve the call. | |
6165 result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); | |
6166 | |
6167 // If we generated fast-case code bind the jump-target where fast | |
6168 // and slow case merge. | |
6169 if (done.is_linked()) done.Bind(&result); | |
6170 | |
6171 // The runtime call returns a pair of values in eax (function) and | |
6172 // edx (receiver). Touch up the stack with the right values. | |
6173 Result receiver = allocator_->Allocate(edx); | |
6174 frame_->SetElementAt(arg_count + 1, &result); | |
6175 frame_->SetElementAt(arg_count, &receiver); | |
6176 receiver.Unuse(); | |
6177 | |
6178 // Call the function. | |
6179 CodeForSourcePosition(node->position()); | |
6180 InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; | |
6181 CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); | |
6182 result = frame_->CallStub(&call_function, arg_count + 1); | |
6183 | |
6184 // Restore the context and overwrite the function on the stack with | |
6185 // the result. | |
6186 frame_->RestoreContextRegister(); | |
6187 frame_->SetElementAt(0, &result); | |
6188 | |
6189 } else if (var != NULL && !var->is_this() && var->is_global()) { | |
6190 // ---------------------------------- | |
6191 // JavaScript example: 'foo(1, 2, 3)' // foo is global | |
6192 // ---------------------------------- | |
6193 | |
6194 // Pass the global object as the receiver and let the IC stub | |
6195 // patch the stack to use the global proxy as 'this' in the | |
6196 // invoked function. | |
6197 LoadGlobal(); | |
6198 | |
6199 // Load the arguments. | |
6200 int arg_count = args->length(); | |
6201 for (int i = 0; i < arg_count; i++) { | |
6202 Load(args->at(i)); | |
6203 frame_->SpillTop(); | |
6204 } | |
6205 | |
6206 // Push the name of the function onto the frame. | |
6207 frame_->Push(var->name()); | |
6208 | |
6209 // Call the IC initialization code. | |
6210 CodeForSourcePosition(node->position()); | |
6211 Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, | |
6212 arg_count, | |
6213 loop_nesting()); | |
6214 frame_->RestoreContextRegister(); | |
6215 frame_->Push(&result); | |
6216 | |
6217 } else if (var != NULL && var->AsSlot() != NULL && | |
6218 var->AsSlot()->type() == Slot::LOOKUP) { | |
6219 // ---------------------------------- | |
6220 // JavaScript examples: | |
6221 // | |
6222 // with (obj) foo(1, 2, 3) // foo may be in obj. | |
6223 // | |
6224 // function f() {}; | |
6225 // function g() { | |
6226 // eval(...); | |
6227 // f(); // f could be in extension object. | |
6228 // } | |
6229 // ---------------------------------- | |
6230 | |
6231 JumpTarget slow, done; | |
6232 Result function; | |
6233 | |
6234 // Generate fast case for loading functions from slots that | |
6235 // correspond to local/global variables or arguments unless they | |
6236 // are shadowed by eval-introduced bindings. | |
6237 EmitDynamicLoadFromSlotFastCase(var->AsSlot(), | |
6238 NOT_INSIDE_TYPEOF, | |
6239 &function, | |
6240 &slow, | |
6241 &done); | |
6242 | |
6243 slow.Bind(); | |
6244 // Enter the runtime system to load the function from the context. | |
6245 // Sync the frame so we can push the arguments directly into | |
6246 // place. | |
6247 frame_->SyncRange(0, frame_->element_count() - 1); | |
6248 frame_->EmitPush(esi); | |
6249 frame_->EmitPush(Immediate(var->name())); | |
6250 frame_->CallRuntime(Runtime::kLoadContextSlot, 2); | |
6251 // The runtime call returns a pair of values in eax and edx. The | |
6252 // looked-up function is in eax and the receiver is in edx. These | |
6253 // register references are not ref counted here. We spill them | |
6254 // eagerly since they are arguments to an inevitable call (and are | |
6255 // not sharable by the arguments). | |
6256 ASSERT(!allocator()->is_used(eax)); | |
6257 frame_->EmitPush(eax); | |
6258 | |
6259 // Load the receiver. | |
6260 ASSERT(!allocator()->is_used(edx)); | |
6261 frame_->EmitPush(edx); | |
6262 | |
6263 // If fast case code has been generated, emit code to push the | |
6264 // function and receiver and have the slow path jump around this | |
6265 // code. | |
6266 if (done.is_linked()) { | |
6267 JumpTarget call; | |
6268 call.Jump(); | |
6269 done.Bind(&function); | |
6270 frame_->Push(&function); | |
6271 LoadGlobalReceiver(); | |
6272 call.Bind(); | |
6273 } | |
6274 | |
6275 // Call the function. | |
6276 CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); | |
6277 | |
6278 } else if (property != NULL) { | |
6279 // Check if the key is a literal string. | |
6280 Literal* literal = property->key()->AsLiteral(); | |
6281 | |
6282 if (literal != NULL && literal->handle()->IsSymbol()) { | |
6283 // ------------------------------------------------------------------ | |
6284 // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' | |
6285 // ------------------------------------------------------------------ | |
6286 | |
6287 Handle<String> name = Handle<String>::cast(literal->handle()); | |
6288 | |
6289 if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && | |
6290 name->IsEqualTo(CStrVector("apply")) && | |
6291 args->length() == 2 && | |
6292 args->at(1)->AsVariableProxy() != NULL && | |
6293 args->at(1)->AsVariableProxy()->IsArguments()) { | |
6294 // Use the optimized Function.prototype.apply that avoids | |
6295 // allocating lazily allocated arguments objects. | |
6296 CallApplyLazy(property->obj(), | |
6297 args->at(0), | |
6298 args->at(1)->AsVariableProxy(), | |
6299 node->position()); | |
6300 | |
6301 } else { | |
6302 // Push the receiver onto the frame. | |
6303 Load(property->obj()); | |
6304 | |
6305 // Load the arguments. | |
6306 int arg_count = args->length(); | |
6307 for (int i = 0; i < arg_count; i++) { | |
6308 Load(args->at(i)); | |
6309 frame_->SpillTop(); | |
6310 } | |
6311 | |
6312 // Push the name of the function onto the frame. | |
6313 frame_->Push(name); | |
6314 | |
6315 // Call the IC initialization code. | |
6316 CodeForSourcePosition(node->position()); | |
6317 Result result = | |
6318 frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, | |
6319 loop_nesting()); | |
6320 frame_->RestoreContextRegister(); | |
6321 frame_->Push(&result); | |
6322 } | |
6323 | |
6324 } else { | |
6325 // ------------------------------------------- | |
6326 // JavaScript example: 'array[index](1, 2, 3)' | |
6327 // ------------------------------------------- | |
6328 | |
6329 // Load the function to call from the property through a reference. | |
6330 | |
6331 // Pass receiver to called function. | |
6332 if (property->is_synthetic()) { | |
6333 Reference ref(this, property); | |
6334 ref.GetValue(); | |
6335 // Use global object as receiver. | |
6336 LoadGlobalReceiver(); | |
6337 // Call the function. | |
6338 CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); | |
6339 } else { | |
6340 // Push the receiver onto the frame. | |
6341 Load(property->obj()); | |
6342 | |
6343 // Load the name of the function. | |
6344 Load(property->key()); | |
6345 | |
6346 // Swap the name of the function and the receiver on the stack to follow | |
6347 // the calling convention for call ICs. | |
6348 Result key = frame_->Pop(); | |
6349 Result receiver = frame_->Pop(); | |
6350 frame_->Push(&key); | |
6351 frame_->Push(&receiver); | |
6352 key.Unuse(); | |
6353 receiver.Unuse(); | |
6354 | |
6355 // Load the arguments. | |
6356 int arg_count = args->length(); | |
6357 for (int i = 0; i < arg_count; i++) { | |
6358 Load(args->at(i)); | |
6359 frame_->SpillTop(); | |
6360 } | |
6361 | |
6362 // Place the key on top of stack and call the IC initialization code. | |
6363 frame_->PushElementAt(arg_count + 1); | |
6364 CodeForSourcePosition(node->position()); | |
6365 Result result = | |
6366 frame_->CallKeyedCallIC(RelocInfo::CODE_TARGET, | |
6367 arg_count, | |
6368 loop_nesting()); | |
6369 frame_->Drop(); // Drop the key still on the stack. | |
6370 frame_->RestoreContextRegister(); | |
6371 frame_->Push(&result); | |
6372 } | |
6373 } | |
6374 | |
6375 } else { | |
6376 // ---------------------------------- | |
6377 // JavaScript example: 'foo(1, 2, 3)' // foo is not global | |
6378 // ---------------------------------- | |
6379 | |
6380 // Load the function. | |
6381 Load(function); | |
6382 | |
6383 // Pass the global proxy as the receiver. | |
6384 LoadGlobalReceiver(); | |
6385 | |
6386 // Call the function. | |
6387 CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); | |
6388 } | |
6389 } | |
6390 | |
6391 | |
6392 void CodeGenerator::VisitCallNew(CallNew* node) { | |
6393 ASSERT(!in_safe_int32_mode()); | |
6394 Comment cmnt(masm_, "[ CallNew"); | |
6395 | |
6396 // According to ECMA-262, section 11.2.2, page 44, the function | |
6397 // expression in new calls must be evaluated before the | |
6398 // arguments. This is different from ordinary calls, where the | |
6399 // actual function to call is resolved after the arguments have been | |
6400 // evaluated. | |
6401 | |
6402 // Push constructor on the stack. If it's not a function it's used as | |
6403 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is | |
6404 // ignored. | |
6405 Load(node->expression()); | |
6406 | |
6407 // Push the arguments ("left-to-right") on the stack. | |
6408 ZoneList<Expression*>* args = node->arguments(); | |
6409 int arg_count = args->length(); | |
6410 for (int i = 0; i < arg_count; i++) { | |
6411 Load(args->at(i)); | |
6412 } | |
6413 | |
6414 // Call the construct call builtin that handles allocation and | |
6415 // constructor invocation. | |
6416 CodeForSourcePosition(node->position()); | |
6417 Result result = frame_->CallConstructor(arg_count); | |
6418 frame_->Push(&result); | |
6419 } | |
6420 | |
6421 | |
6422 void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { | |
6423 ASSERT(args->length() == 1); | |
6424 Load(args->at(0)); | |
6425 Result value = frame_->Pop(); | |
6426 value.ToRegister(); | |
6427 ASSERT(value.is_valid()); | |
6428 __ test(value.reg(), Immediate(kSmiTagMask)); | |
6429 value.Unuse(); | |
6430 destination()->Split(zero); | |
6431 } | |
6432 | |
6433 | |
6434 void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { | |
6435 // Conditionally generate a log call. | |
6436 // Args: | |
6437 // 0 (literal string): The type of logging (corresponds to the flags). | |
6438 // This is used to determine whether or not to generate the log call. | |
6439 // 1 (string): Format string. Access the string at argument index 2 | |
6440 // with '%2s' (see Logger::LogRuntime for all the formats). | |
6441 // 2 (array): Arguments to the format string. | |
6442 ASSERT_EQ(args->length(), 3); | |
6443 #ifdef ENABLE_LOGGING_AND_PROFILING | |
6444 if (ShouldGenerateLog(args->at(0))) { | |
6445 Load(args->at(1)); | |
6446 Load(args->at(2)); | |
6447 frame_->CallRuntime(Runtime::kLog, 2); | |
6448 } | |
6449 #endif | |
6450 // Finally, we're expected to leave a value on the top of the stack. | |
6451 frame_->Push(FACTORY->undefined_value()); | |
6452 } | |
6453 | |
6454 | |
6455 void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { | |
6456 ASSERT(args->length() == 1); | |
6457 Load(args->at(0)); | |
6458 Result value = frame_->Pop(); | |
6459 value.ToRegister(); | |
6460 ASSERT(value.is_valid()); | |
6461 __ test(value.reg(), Immediate(kSmiTagMask | kSmiSignMask)); | |
6462 value.Unuse(); | |
6463 destination()->Split(zero); | |
6464 } | |
6465 | |
6466 | |
6467 class DeferredStringCharCodeAt : public DeferredCode { | |
6468 public: | |
6469 DeferredStringCharCodeAt(Register object, | |
6470 Register index, | |
6471 Register scratch, | |
6472 Register result) | |
6473 : result_(result), | |
6474 char_code_at_generator_(object, | |
6475 index, | |
6476 scratch, | |
6477 result, | |
6478 &need_conversion_, | |
6479 &need_conversion_, | |
6480 &index_out_of_range_, | |
6481 STRING_INDEX_IS_NUMBER) {} | |
6482 | |
6483 StringCharCodeAtGenerator* fast_case_generator() { | |
6484 return &char_code_at_generator_; | |
6485 } | |
6486 | |
6487 virtual void Generate() { | |
6488 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
6489 char_code_at_generator_.GenerateSlow(masm(), call_helper); | |
6490 | |
6491 __ bind(&need_conversion_); | |
6492 // Move the undefined value into the result register, which will | |
6493 // trigger conversion. | |
6494 __ Set(result_, Immediate(FACTORY->undefined_value())); | |
6495 __ jmp(exit_label()); | |
6496 | |
6497 __ bind(&index_out_of_range_); | |
6498 // When the index is out of range, the spec requires us to return | |
6499 // NaN. | |
6500 __ Set(result_, Immediate(FACTORY->nan_value())); | |
6501 __ jmp(exit_label()); | |
6502 } | |
6503 | |
6504 private: | |
6505 Register result_; | |
6506 | |
6507 Label need_conversion_; | |
6508 Label index_out_of_range_; | |
6509 | |
6510 StringCharCodeAtGenerator char_code_at_generator_; | |
6511 }; | |
6512 | |
6513 | |
6514 // This generates code that performs a String.prototype.charCodeAt() call | |
6515 // or returns a smi in order to trigger conversion. | |
6516 void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { | |
6517 Comment(masm_, "[ GenerateStringCharCodeAt"); | |
6518 ASSERT(args->length() == 2); | |
6519 | |
6520 Load(args->at(0)); | |
6521 Load(args->at(1)); | |
6522 Result index = frame_->Pop(); | |
6523 Result object = frame_->Pop(); | |
6524 object.ToRegister(); | |
6525 index.ToRegister(); | |
6526 // We might mutate the object register. | |
6527 frame_->Spill(object.reg()); | |
6528 | |
6529 // We need two extra registers. | |
6530 Result result = allocator()->Allocate(); | |
6531 ASSERT(result.is_valid()); | |
6532 Result scratch = allocator()->Allocate(); | |
6533 ASSERT(scratch.is_valid()); | |
6534 | |
6535 DeferredStringCharCodeAt* deferred = | |
6536 new DeferredStringCharCodeAt(object.reg(), | |
6537 index.reg(), | |
6538 scratch.reg(), | |
6539 result.reg()); | |
6540 deferred->fast_case_generator()->GenerateFast(masm_); | |
6541 deferred->BindExit(); | |
6542 frame_->Push(&result); | |
6543 } | |
6544 | |
6545 | |
6546 class DeferredStringCharFromCode : public DeferredCode { | |
6547 public: | |
6548 DeferredStringCharFromCode(Register code, | |
6549 Register result) | |
6550 : char_from_code_generator_(code, result) {} | |
6551 | |
6552 StringCharFromCodeGenerator* fast_case_generator() { | |
6553 return &char_from_code_generator_; | |
6554 } | |
6555 | |
6556 virtual void Generate() { | |
6557 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
6558 char_from_code_generator_.GenerateSlow(masm(), call_helper); | |
6559 } | |
6560 | |
6561 private: | |
6562 StringCharFromCodeGenerator char_from_code_generator_; | |
6563 }; | |
6564 | |
6565 | |
6566 // Generates code for creating a one-char string from a char code. | |
6567 void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { | |
6568 Comment(masm_, "[ GenerateStringCharFromCode"); | |
6569 ASSERT(args->length() == 1); | |
6570 | |
6571 Load(args->at(0)); | |
6572 | |
6573 Result code = frame_->Pop(); | |
6574 code.ToRegister(); | |
6575 ASSERT(code.is_valid()); | |
6576 | |
6577 Result result = allocator()->Allocate(); | |
6578 ASSERT(result.is_valid()); | |
6579 | |
6580 DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( | |
6581 code.reg(), result.reg()); | |
6582 deferred->fast_case_generator()->GenerateFast(masm_); | |
6583 deferred->BindExit(); | |
6584 frame_->Push(&result); | |
6585 } | |
6586 | |
6587 | |
6588 class DeferredStringCharAt : public DeferredCode { | |
6589 public: | |
6590 DeferredStringCharAt(Register object, | |
6591 Register index, | |
6592 Register scratch1, | |
6593 Register scratch2, | |
6594 Register result) | |
6595 : result_(result), | |
6596 char_at_generator_(object, | |
6597 index, | |
6598 scratch1, | |
6599 scratch2, | |
6600 result, | |
6601 &need_conversion_, | |
6602 &need_conversion_, | |
6603 &index_out_of_range_, | |
6604 STRING_INDEX_IS_NUMBER) {} | |
6605 | |
6606 StringCharAtGenerator* fast_case_generator() { | |
6607 return &char_at_generator_; | |
6608 } | |
6609 | |
6610 virtual void Generate() { | |
6611 VirtualFrameRuntimeCallHelper call_helper(frame_state()); | |
6612 char_at_generator_.GenerateSlow(masm(), call_helper); | |
6613 | |
6614 __ bind(&need_conversion_); | |
6615 // Move smi zero into the result register, which will trigger | |
6616 // conversion. | |
6617 __ Set(result_, Immediate(Smi::FromInt(0))); | |
6618 __ jmp(exit_label()); | |
6619 | |
6620 __ bind(&index_out_of_range_); | |
6621 // When the index is out of range, the spec requires us to return | |
6622 // the empty string. | |
6623 __ Set(result_, Immediate(FACTORY->empty_string())); | |
6624 __ jmp(exit_label()); | |
6625 } | |
6626 | |
6627 private: | |
6628 Register result_; | |
6629 | |
6630 Label need_conversion_; | |
6631 Label index_out_of_range_; | |
6632 | |
6633 StringCharAtGenerator char_at_generator_; | |
6634 }; | |
6635 | |
6636 | |
6637 // This generates code that performs a String.prototype.charAt() call | |
6638 // or returns a smi in order to trigger conversion. | |
6639 void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { | |
6640 Comment(masm_, "[ GenerateStringCharAt"); | |
6641 ASSERT(args->length() == 2); | |
6642 | |
6643 Load(args->at(0)); | |
6644 Load(args->at(1)); | |
6645 Result index = frame_->Pop(); | |
6646 Result object = frame_->Pop(); | |
6647 object.ToRegister(); | |
6648 index.ToRegister(); | |
6649 // We might mutate the object register. | |
6650 frame_->Spill(object.reg()); | |
6651 | |
6652 // We need three extra registers. | |
6653 Result result = allocator()->Allocate(); | |
6654 ASSERT(result.is_valid()); | |
6655 Result scratch1 = allocator()->Allocate(); | |
6656 ASSERT(scratch1.is_valid()); | |
6657 Result scratch2 = allocator()->Allocate(); | |
6658 ASSERT(scratch2.is_valid()); | |
6659 | |
6660 DeferredStringCharAt* deferred = | |
6661 new DeferredStringCharAt(object.reg(), | |
6662 index.reg(), | |
6663 scratch1.reg(), | |
6664 scratch2.reg(), | |
6665 result.reg()); | |
6666 deferred->fast_case_generator()->GenerateFast(masm_); | |
6667 deferred->BindExit(); | |
6668 frame_->Push(&result); | |
6669 } | |
6670 | |
6671 | |
6672 void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { | |
6673 ASSERT(args->length() == 1); | |
6674 Load(args->at(0)); | |
6675 Result value = frame_->Pop(); | |
6676 value.ToRegister(); | |
6677 ASSERT(value.is_valid()); | |
6678 __ test(value.reg(), Immediate(kSmiTagMask)); | |
6679 destination()->false_target()->Branch(equal); | |
6680 // It is a heap object - get map. | |
6681 Result temp = allocator()->Allocate(); | |
6682 ASSERT(temp.is_valid()); | |
6683 // Check if the object is a JS array or not. | |
6684 __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); | |
6685 value.Unuse(); | |
6686 temp.Unuse(); | |
6687 destination()->Split(equal); | |
6688 } | |
6689 | |
6690 | |
6691 void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { | |
6692 Label bailout, done, one_char_separator, long_separator, | |
6693 non_trivial_array, not_size_one_array, loop, loop_condition, | |
6694 loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; | |
6695 | |
6696 ASSERT(args->length() == 2); | |
6697 // We will leave the separator on the stack until the end of the function. | |
6698 Load(args->at(1)); | |
6699 // Load this to eax (= array) | |
6700 Load(args->at(0)); | |
6701 Result array_result = frame_->Pop(); | |
6702 array_result.ToRegister(eax); | |
6703 frame_->SpillAll(); | |
6704 | |
6705 // All aliases of the same register have disjoint lifetimes. | |
6706 Register array = eax; | |
6707 Register elements = no_reg; // Will be eax. | |
6708 | |
6709 Register index = edx; | |
6710 | |
6711 Register string_length = ecx; | |
6712 | |
6713 Register string = esi; | |
6714 | |
6715 Register scratch = ebx; | |
6716 | |
6717 Register array_length = edi; | |
6718 Register result_pos = no_reg; // Will be edi. | |
6719 | |
6720 // Separator operand is already pushed. | |
6721 Operand separator_operand = Operand(esp, 2 * kPointerSize); | |
6722 Operand result_operand = Operand(esp, 1 * kPointerSize); | |
6723 Operand array_length_operand = Operand(esp, 0); | |
6724 __ sub(Operand(esp), Immediate(2 * kPointerSize)); | |
6725 __ cld(); | |
6726 // Check that the array is a JSArray | |
6727 __ test(array, Immediate(kSmiTagMask)); | |
6728 __ j(zero, &bailout); | |
6729 __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); | |
6730 __ j(not_equal, &bailout); | |
6731 | |
6732 // Check that the array has fast elements. | |
6733 __ test_b(FieldOperand(scratch, Map::kBitField2Offset), | |
6734 1 << Map::kHasFastElements); | |
6735 __ j(zero, &bailout); | |
6736 | |
6737 // If the array has length zero, return the empty string. | |
6738 __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset)); | |
6739 __ sar(array_length, 1); | |
6740 __ j(not_zero, &non_trivial_array); | |
6741 __ mov(result_operand, FACTORY->empty_string()); | |
6742 __ jmp(&done); | |
6743 | |
6744 // Save the array length. | |
6745 __ bind(&non_trivial_array); | |
6746 __ mov(array_length_operand, array_length); | |
6747 | |
6748 // Save the FixedArray containing array's elements. | |
6749 // End of array's live range. | |
6750 elements = array; | |
6751 __ mov(elements, FieldOperand(array, JSArray::kElementsOffset)); | |
6752 array = no_reg; | |
6753 | |
6754 | |
6755 // Check that all array elements are sequential ASCII strings, and | |
6756 // accumulate the sum of their lengths, as a smi-encoded value. | |
6757 __ Set(index, Immediate(0)); | |
6758 __ Set(string_length, Immediate(0)); | |
6759 // Loop condition: while (index < length). | |
6760 // Live loop registers: index, array_length, string, | |
6761 // scratch, string_length, elements. | |
6762 __ jmp(&loop_condition); | |
6763 __ bind(&loop); | |
6764 __ cmp(index, Operand(array_length)); | |
6765 __ j(greater_equal, &done); | |
6766 | |
6767 __ mov(string, FieldOperand(elements, index, | |
6768 times_pointer_size, | |
6769 FixedArray::kHeaderSize)); | |
6770 __ test(string, Immediate(kSmiTagMask)); | |
6771 __ j(zero, &bailout); | |
6772 __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); | |
6773 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); | |
6774 __ and_(scratch, Immediate( | |
6775 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); | |
6776 __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); | |
6777 __ j(not_equal, &bailout); | |
6778 __ add(string_length, | |
6779 FieldOperand(string, SeqAsciiString::kLengthOffset)); | |
6780 __ j(overflow, &bailout); | |
6781 __ add(Operand(index), Immediate(1)); | |
6782 __ bind(&loop_condition); | |
6783 __ cmp(index, Operand(array_length)); | |
6784 __ j(less, &loop); | |
6785 | |
6786 // If array_length is 1, return elements[0], a string. | |
6787 __ cmp(array_length, 1); | |
6788 __ j(not_equal, ¬_size_one_array); | |
6789 __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize)); | |
6790 __ mov(result_operand, scratch); | |
6791 __ jmp(&done); | |
6792 | |
6793 __ bind(¬_size_one_array); | |
6794 | |
6795 // End of array_length live range. | |
6796 result_pos = array_length; | |
6797 array_length = no_reg; | |
6798 | |
6799 // Live registers: | |
6800 // string_length: Sum of string lengths, as a smi. | |
6801 // elements: FixedArray of strings. | |
6802 | |
6803 // Check that the separator is a flat ASCII string. | |
6804 __ mov(string, separator_operand); | |
6805 __ test(string, Immediate(kSmiTagMask)); | |
6806 __ j(zero, &bailout); | |
6807 __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset)); | |
6808 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); | |
6809 __ and_(scratch, Immediate( | |
6810 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); | |
6811 __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag); | |
6812 __ j(not_equal, &bailout); | |
6813 | |
6814 // Add (separator length times array_length) - separator length | |
6815 // to string_length. | |
6816 __ mov(scratch, separator_operand); | |
6817 __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset)); | |
6818 __ sub(string_length, Operand(scratch)); // May be negative, temporarily. | |
6819 __ imul(scratch, array_length_operand); | |
6820 __ j(overflow, &bailout); | |
6821 __ add(string_length, Operand(scratch)); | |
6822 __ j(overflow, &bailout); | |
6823 | |
6824 __ shr(string_length, 1); | |
6825 // Live registers and stack values: | |
6826 // string_length | |
6827 // elements | |
6828 __ AllocateAsciiString(result_pos, string_length, scratch, | |
6829 index, string, &bailout); | |
6830 __ mov(result_operand, result_pos); | |
6831 __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize)); | |
6832 | |
6833 | |
6834 __ mov(string, separator_operand); | |
6835 __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset), | |
6836 Immediate(Smi::FromInt(1))); | |
6837 __ j(equal, &one_char_separator); | |
6838 __ j(greater, &long_separator); | |
6839 | |
6840 | |
6841 // Empty separator case | |
6842 __ mov(index, Immediate(0)); | |
6843 __ jmp(&loop_1_condition); | |
6844 // Loop condition: while (index < length). | |
6845 __ bind(&loop_1); | |
6846 // Each iteration of the loop concatenates one string to the result. | |
6847 // Live values in registers: | |
6848 // index: which element of the elements array we are adding to the result. | |
6849 // result_pos: the position to which we are currently copying characters. | |
6850 // elements: the FixedArray of strings we are joining. | |
6851 | |
6852 // Get string = array[index]. | |
6853 __ mov(string, FieldOperand(elements, index, | |
6854 times_pointer_size, | |
6855 FixedArray::kHeaderSize)); | |
6856 __ mov(string_length, | |
6857 FieldOperand(string, String::kLengthOffset)); | |
6858 __ shr(string_length, 1); | |
6859 __ lea(string, | |
6860 FieldOperand(string, SeqAsciiString::kHeaderSize)); | |
6861 __ CopyBytes(string, result_pos, string_length, scratch); | |
6862 __ add(Operand(index), Immediate(1)); | |
6863 __ bind(&loop_1_condition); | |
6864 __ cmp(index, array_length_operand); | |
6865 __ j(less, &loop_1); // End while (index < length). | |
6866 __ jmp(&done); | |
6867 | |
6868 | |
6869 | |
6870 // One-character separator case | |
6871 __ bind(&one_char_separator); | |
6872 // Replace separator with its ascii character value. | |
6873 __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize)); | |
6874 __ mov_b(separator_operand, scratch); | |
6875 | |
6876 __ Set(index, Immediate(0)); | |
6877 // Jump into the loop after the code that copies the separator, so the first | |
6878 // element is not preceded by a separator | |
6879 __ jmp(&loop_2_entry); | |
6880 // Loop condition: while (index < length). | |
6881 __ bind(&loop_2); | |
6882 // Each iteration of the loop concatenates one string to the result. | |
6883 // Live values in registers: | |
6884 // index: which element of the elements array we are adding to the result. | |
6885 // result_pos: the position to which we are currently copying characters. | |
6886 | |
6887 // Copy the separator character to the result. | |
6888 __ mov_b(scratch, separator_operand); | |
6889 __ mov_b(Operand(result_pos, 0), scratch); | |
6890 __ inc(result_pos); | |
6891 | |
6892 __ bind(&loop_2_entry); | |
6893 // Get string = array[index]. | |
6894 __ mov(string, FieldOperand(elements, index, | |
6895 times_pointer_size, | |
6896 FixedArray::kHeaderSize)); | |
6897 __ mov(string_length, | |
6898 FieldOperand(string, String::kLengthOffset)); | |
6899 __ shr(string_length, 1); | |
6900 __ lea(string, | |
6901 FieldOperand(string, SeqAsciiString::kHeaderSize)); | |
6902 __ CopyBytes(string, result_pos, string_length, scratch); | |
6903 __ add(Operand(index), Immediate(1)); | |
6904 | |
6905 __ cmp(index, array_length_operand); | |
6906 __ j(less, &loop_2); // End while (index < length). | |
6907 __ jmp(&done); | |
6908 | |
6909 | |
6910 // Long separator case (separator is more than one character). | |
6911 __ bind(&long_separator); | |
6912 | |
6913 __ Set(index, Immediate(0)); | |
6914 // Jump into the loop after the code that copies the separator, so the first | |
6915 // element is not preceded by a separator | |
6916 __ jmp(&loop_3_entry); | |
6917 // Loop condition: while (index < length). | |
6918 __ bind(&loop_3); | |
6919 // Each iteration of the loop concatenates one string to the result. | |
6920 // Live values in registers: | |
6921 // index: which element of the elements array we are adding to the result. | |
6922 // result_pos: the position to which we are currently copying characters. | |
6923 | |
6924 // Copy the separator to the result. | |
6925 __ mov(string, separator_operand); | |
6926 __ mov(string_length, | |
6927 FieldOperand(string, String::kLengthOffset)); | |
6928 __ shr(string_length, 1); | |
6929 __ lea(string, | |
6930 FieldOperand(string, SeqAsciiString::kHeaderSize)); | |
6931 __ CopyBytes(string, result_pos, string_length, scratch); | |
6932 | |
6933 __ bind(&loop_3_entry); | |
6934 // Get string = array[index]. | |
6935 __ mov(string, FieldOperand(elements, index, | |
6936 times_pointer_size, | |
6937 FixedArray::kHeaderSize)); | |
6938 __ mov(string_length, | |
6939 FieldOperand(string, String::kLengthOffset)); | |
6940 __ shr(string_length, 1); | |
6941 __ lea(string, | |
6942 FieldOperand(string, SeqAsciiString::kHeaderSize)); | |
6943 __ CopyBytes(string, result_pos, string_length, scratch); | |
6944 __ add(Operand(index), Immediate(1)); | |
6945 | |
6946 __ cmp(index, array_length_operand); | |
6947 __ j(less, &loop_3); // End while (index < length). | |
6948 __ jmp(&done); | |
6949 | |
6950 | |
6951 __ bind(&bailout); | |
6952 __ mov(result_operand, FACTORY->undefined_value()); | |
6953 __ bind(&done); | |
6954 __ mov(eax, result_operand); | |
6955 // Drop temp values from the stack, and restore context register. | |
6956 __ add(Operand(esp), Immediate(2 * kPointerSize)); | |
6957 | |
6958 __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); | |
6959 frame_->Drop(1); | |
6960 frame_->Push(&array_result); | |
6961 } | |
6962 | |
6963 | |
6964 void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { | |
6965 ASSERT(args->length() == 1); | |
6966 Load(args->at(0)); | |
6967 Result value = frame_->Pop(); | |
6968 value.ToRegister(); | |
6969 ASSERT(value.is_valid()); | |
6970 __ test(value.reg(), Immediate(kSmiTagMask)); | |
6971 destination()->false_target()->Branch(equal); | |
6972 // It is a heap object - get map. | |
6973 Result temp = allocator()->Allocate(); | |
6974 ASSERT(temp.is_valid()); | |
6975 // Check if the object is a regexp. | |
6976 __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg()); | |
6977 value.Unuse(); | |
6978 temp.Unuse(); | |
6979 destination()->Split(equal); | |
6980 } | |
6981 | |
6982 | |
6983 void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { | |
6984 // This generates a fast version of: | |
6985 // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') | |
6986 ASSERT(args->length() == 1); | |
6987 Load(args->at(0)); | |
6988 Result obj = frame_->Pop(); | |
6989 obj.ToRegister(); | |
6990 | |
6991 __ test(obj.reg(), Immediate(kSmiTagMask)); | |
6992 destination()->false_target()->Branch(zero); | |
6993 __ cmp(obj.reg(), FACTORY->null_value()); | |
6994 destination()->true_target()->Branch(equal); | |
6995 | |
6996 Result map = allocator()->Allocate(); | |
6997 ASSERT(map.is_valid()); | |
6998 __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); | |
6999 // Undetectable objects behave like undefined when tested with typeof. | |
7000 __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), | |
7001 1 << Map::kIsUndetectable); | |
7002 destination()->false_target()->Branch(not_zero); | |
7003 // Do a range test for JSObject type. We can't use | |
7004 // MacroAssembler::IsInstanceJSObjectType, because we are using a | |
7005 // ControlDestination, so we copy its implementation here. | |
7006 __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); | |
7007 __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); | |
7008 __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); | |
7009 obj.Unuse(); | |
7010 map.Unuse(); | |
7011 destination()->Split(below_equal); | |
7012 } | |
7013 | |
7014 | |
7015 void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { | |
7016 // This generates a fast version of: | |
7017 // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || | |
7018 // typeof(arg) == function). | |
7019 // It includes undetectable objects (as opposed to IsObject). | |
7020 ASSERT(args->length() == 1); | |
7021 Load(args->at(0)); | |
7022 Result value = frame_->Pop(); | |
7023 value.ToRegister(); | |
7024 ASSERT(value.is_valid()); | |
7025 __ test(value.reg(), Immediate(kSmiTagMask)); | |
7026 destination()->false_target()->Branch(equal); | |
7027 | |
7028 // Check that this is an object. | |
7029 frame_->Spill(value.reg()); | |
7030 __ CmpObjectType(value.reg(), FIRST_JS_OBJECT_TYPE, value.reg()); | |
7031 value.Unuse(); | |
7032 destination()->Split(above_equal); | |
7033 } | |
7034 | |
7035 | |
7036 // Deferred code to check whether the String JavaScript object is safe for using | |
7037 // default value of. This code is called after the bit caching this information | |
7038 // in the map has been checked with the map for the object in the map_result_ | |
7039 // register. On return the register map_result_ contains 1 for true and 0 for | |
7040 // false. | |
7041 class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { | |
7042 public: | |
7043 DeferredIsStringWrapperSafeForDefaultValueOf(Register object, | |
7044 Register map_result, | |
7045 Register scratch1, | |
7046 Register scratch2) | |
7047 : object_(object), | |
7048 map_result_(map_result), | |
7049 scratch1_(scratch1), | |
7050 scratch2_(scratch2) { } | |
7051 | |
7052 virtual void Generate() { | |
7053 Label false_result; | |
7054 | |
7055 // Check that map is loaded as expected. | |
7056 if (FLAG_debug_code) { | |
7057 __ cmp(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); | |
7058 __ Assert(equal, "Map not in expected register"); | |
7059 } | |
7060 | |
7061 // Check for fast case object. Generate false result for slow case object. | |
7062 __ mov(scratch1_, FieldOperand(object_, JSObject::kPropertiesOffset)); | |
7063 __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); | |
7064 __ cmp(scratch1_, FACTORY->hash_table_map()); | |
7065 __ j(equal, &false_result); | |
7066 | |
7067 // Look for valueOf symbol in the descriptor array, and indicate false if | |
7068 // found. The type is not checked, so if it is a transition it is a false | |
7069 // negative. | |
7070 __ mov(map_result_, | |
7071 FieldOperand(map_result_, Map::kInstanceDescriptorsOffset)); | |
7072 __ mov(scratch1_, FieldOperand(map_result_, FixedArray::kLengthOffset)); | |
7073 // map_result_: descriptor array | |
7074 // scratch1_: length of descriptor array | |
7075 // Calculate the end of the descriptor array. | |
7076 STATIC_ASSERT(kSmiTag == 0); | |
7077 STATIC_ASSERT(kSmiTagSize == 1); | |
7078 STATIC_ASSERT(kPointerSize == 4); | |
7079 __ lea(scratch1_, | |
7080 Operand(map_result_, scratch1_, times_2, FixedArray::kHeaderSize)); | |
7081 // Calculate location of the first key name. | |
7082 __ add(Operand(map_result_), | |
7083 Immediate(FixedArray::kHeaderSize + | |
7084 DescriptorArray::kFirstIndex * kPointerSize)); | |
7085 // Loop through all the keys in the descriptor array. If one of these is the | |
7086 // symbol valueOf the result is false. | |
7087 Label entry, loop; | |
7088 __ jmp(&entry); | |
7089 __ bind(&loop); | |
7090 __ mov(scratch2_, FieldOperand(map_result_, 0)); | |
7091 __ cmp(scratch2_, FACTORY->value_of_symbol()); | |
7092 __ j(equal, &false_result); | |
7093 __ add(Operand(map_result_), Immediate(kPointerSize)); | |
7094 __ bind(&entry); | |
7095 __ cmp(map_result_, Operand(scratch1_)); | |
7096 __ j(not_equal, &loop); | |
7097 | |
7098 // Reload map as register map_result_ was used as temporary above. | |
7099 __ mov(map_result_, FieldOperand(object_, HeapObject::kMapOffset)); | |
7100 | |
7101 // If a valueOf property is not found on the object check that it's | |
7102 // prototype is the un-modified String prototype. If not result is false. | |
7103 __ mov(scratch1_, FieldOperand(map_result_, Map::kPrototypeOffset)); | |
7104 __ test(scratch1_, Immediate(kSmiTagMask)); | |
7105 __ j(zero, &false_result); | |
7106 __ mov(scratch1_, FieldOperand(scratch1_, HeapObject::kMapOffset)); | |
7107 __ mov(scratch2_, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
7108 __ mov(scratch2_, | |
7109 FieldOperand(scratch2_, GlobalObject::kGlobalContextOffset)); | |
7110 __ cmp(scratch1_, | |
7111 ContextOperand(scratch2_, | |
7112 Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); | |
7113 __ j(not_equal, &false_result); | |
7114 // Set the bit in the map to indicate that it has been checked safe for | |
7115 // default valueOf and set true result. | |
7116 __ or_(FieldOperand(map_result_, Map::kBitField2Offset), | |
7117 Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); | |
7118 __ Set(map_result_, Immediate(1)); | |
7119 __ jmp(exit_label()); | |
7120 __ bind(&false_result); | |
7121 // Set false result. | |
7122 __ Set(map_result_, Immediate(0)); | |
7123 } | |
7124 | |
7125 private: | |
7126 Register object_; | |
7127 Register map_result_; | |
7128 Register scratch1_; | |
7129 Register scratch2_; | |
7130 }; | |
7131 | |
7132 | |
7133 void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( | |
7134 ZoneList<Expression*>* args) { | |
7135 ASSERT(args->length() == 1); | |
7136 Load(args->at(0)); | |
7137 Result obj = frame_->Pop(); // Pop the string wrapper. | |
7138 obj.ToRegister(); | |
7139 ASSERT(obj.is_valid()); | |
7140 if (FLAG_debug_code) { | |
7141 __ AbortIfSmi(obj.reg()); | |
7142 } | |
7143 | |
7144 // Check whether this map has already been checked to be safe for default | |
7145 // valueOf. | |
7146 Result map_result = allocator()->Allocate(); | |
7147 ASSERT(map_result.is_valid()); | |
7148 __ mov(map_result.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); | |
7149 __ test_b(FieldOperand(map_result.reg(), Map::kBitField2Offset), | |
7150 1 << Map::kStringWrapperSafeForDefaultValueOf); | |
7151 destination()->true_target()->Branch(not_zero); | |
7152 | |
7153 // We need an additional two scratch registers for the deferred code. | |
7154 Result temp1 = allocator()->Allocate(); | |
7155 ASSERT(temp1.is_valid()); | |
7156 Result temp2 = allocator()->Allocate(); | |
7157 ASSERT(temp2.is_valid()); | |
7158 | |
7159 DeferredIsStringWrapperSafeForDefaultValueOf* deferred = | |
7160 new DeferredIsStringWrapperSafeForDefaultValueOf( | |
7161 obj.reg(), map_result.reg(), temp1.reg(), temp2.reg()); | |
7162 deferred->Branch(zero); | |
7163 deferred->BindExit(); | |
7164 __ test(map_result.reg(), Operand(map_result.reg())); | |
7165 obj.Unuse(); | |
7166 map_result.Unuse(); | |
7167 temp1.Unuse(); | |
7168 temp2.Unuse(); | |
7169 destination()->Split(not_equal); | |
7170 } | |
7171 | |
7172 | |
7173 void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { | |
7174 // This generates a fast version of: | |
7175 // (%_ClassOf(arg) === 'Function') | |
7176 ASSERT(args->length() == 1); | |
7177 Load(args->at(0)); | |
7178 Result obj = frame_->Pop(); | |
7179 obj.ToRegister(); | |
7180 __ test(obj.reg(), Immediate(kSmiTagMask)); | |
7181 destination()->false_target()->Branch(zero); | |
7182 Result temp = allocator()->Allocate(); | |
7183 ASSERT(temp.is_valid()); | |
7184 __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg()); | |
7185 obj.Unuse(); | |
7186 temp.Unuse(); | |
7187 destination()->Split(equal); | |
7188 } | |
7189 | |
7190 | |
7191 void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { | |
7192 ASSERT(args->length() == 1); | |
7193 Load(args->at(0)); | |
7194 Result obj = frame_->Pop(); | |
7195 obj.ToRegister(); | |
7196 __ test(obj.reg(), Immediate(kSmiTagMask)); | |
7197 destination()->false_target()->Branch(zero); | |
7198 Result temp = allocator()->Allocate(); | |
7199 ASSERT(temp.is_valid()); | |
7200 __ mov(temp.reg(), | |
7201 FieldOperand(obj.reg(), HeapObject::kMapOffset)); | |
7202 __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), | |
7203 1 << Map::kIsUndetectable); | |
7204 obj.Unuse(); | |
7205 temp.Unuse(); | |
7206 destination()->Split(not_zero); | |
7207 } | |
7208 | |
7209 | |
7210 void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { | |
7211 ASSERT(args->length() == 0); | |
7212 | |
7213 // Get the frame pointer for the calling frame. | |
7214 Result fp = allocator()->Allocate(); | |
7215 __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
7216 | |
7217 // Skip the arguments adaptor frame if it exists. | |
7218 Label check_frame_marker; | |
7219 __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), | |
7220 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
7221 __ j(not_equal, &check_frame_marker); | |
7222 __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); | |
7223 | |
7224 // Check the marker in the calling frame. | |
7225 __ bind(&check_frame_marker); | |
7226 __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), | |
7227 Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); | |
7228 fp.Unuse(); | |
7229 destination()->Split(equal); | |
7230 } | |
7231 | |
7232 | |
7233 void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { | |
7234 ASSERT(args->length() == 0); | |
7235 | |
7236 Result fp = allocator_->Allocate(); | |
7237 Result result = allocator_->Allocate(); | |
7238 ASSERT(fp.is_valid() && result.is_valid()); | |
7239 | |
7240 Label exit; | |
7241 | |
7242 // Get the number of formal parameters. | |
7243 __ Set(result.reg(), Immediate(Smi::FromInt(scope()->num_parameters()))); | |
7244 | |
7245 // Check if the calling frame is an arguments adaptor frame. | |
7246 __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); | |
7247 __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), | |
7248 Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | |
7249 __ j(not_equal, &exit); | |
7250 | |
7251 // Arguments adaptor case: Read the arguments length from the | |
7252 // adaptor frame. | |
7253 __ mov(result.reg(), | |
7254 Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); | |
7255 | |
7256 __ bind(&exit); | |
7257 result.set_type_info(TypeInfo::Smi()); | |
7258 if (FLAG_debug_code) __ AbortIfNotSmi(result.reg()); | |
7259 frame_->Push(&result); | |
7260 } | |
7261 | |
7262 | |
7263 void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { | |
7264 ASSERT(args->length() == 1); | |
7265 JumpTarget leave, null, function, non_function_constructor; | |
7266 Load(args->at(0)); // Load the object. | |
7267 Result obj = frame_->Pop(); | |
7268 obj.ToRegister(); | |
7269 frame_->Spill(obj.reg()); | |
7270 | |
7271 // If the object is a smi, we return null. | |
7272 __ test(obj.reg(), Immediate(kSmiTagMask)); | |
7273 null.Branch(zero); | |
7274 | |
7275 // Check that the object is a JS object but take special care of JS | |
7276 // functions to make sure they have 'Function' as their class. | |
7277 __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); | |
7278 null.Branch(below); | |
7279 | |
7280 // As long as JS_FUNCTION_TYPE is the last instance type and it is | |
7281 // right after LAST_JS_OBJECT_TYPE, we can avoid checking for | |
7282 // LAST_JS_OBJECT_TYPE. | |
7283 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); | |
7284 STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); | |
7285 __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); | |
7286 function.Branch(equal); | |
7287 | |
7288 // Check if the constructor in the map is a function. | |
7289 { Result tmp = allocator()->Allocate(); | |
7290 __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); | |
7291 __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); | |
7292 non_function_constructor.Branch(not_equal); | |
7293 } | |
7294 | |
7295 // The map register now contains the constructor function. Grab the | |
7296 // instance class name from there. | |
7297 __ mov(obj.reg(), | |
7298 FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); | |
7299 __ mov(obj.reg(), | |
7300 FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); | |
7301 frame_->Push(&obj); | |
7302 leave.Jump(); | |
7303 | |
7304 // Functions have class 'Function'. | |
7305 function.Bind(); | |
7306 frame_->Push(FACTORY->function_class_symbol()); | |
7307 leave.Jump(); | |
7308 | |
7309 // Objects with a non-function constructor have class 'Object'. | |
7310 non_function_constructor.Bind(); | |
7311 frame_->Push(FACTORY->Object_symbol()); | |
7312 leave.Jump(); | |
7313 | |
7314 // Non-JS objects have class null. | |
7315 null.Bind(); | |
7316 frame_->Push(FACTORY->null_value()); | |
7317 | |
7318 // All done. | |
7319 leave.Bind(); | |
7320 } | |
7321 | |
7322 | |
7323 void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { | |
7324 ASSERT(args->length() == 1); | |
7325 JumpTarget leave; | |
7326 Load(args->at(0)); // Load the object. | |
7327 frame_->Dup(); | |
7328 Result object = frame_->Pop(); | |
7329 object.ToRegister(); | |
7330 ASSERT(object.is_valid()); | |
7331 // if (object->IsSmi()) return object. | |
7332 __ test(object.reg(), Immediate(kSmiTagMask)); | |
7333 leave.Branch(zero, taken); | |
7334 // It is a heap object - get map. | |
7335 Result temp = allocator()->Allocate(); | |
7336 ASSERT(temp.is_valid()); | |
7337 // if (!object->IsJSValue()) return object. | |
7338 __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); | |
7339 leave.Branch(not_equal, not_taken); | |
7340 __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); | |
7341 object.Unuse(); | |
7342 frame_->SetElementAt(0, &temp); | |
7343 leave.Bind(); | |
7344 } | |
7345 | |
7346 | |
7347 void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { | |
7348 ASSERT(args->length() == 2); | |
7349 JumpTarget leave; | |
7350 Load(args->at(0)); // Load the object. | |
7351 Load(args->at(1)); // Load the value. | |
7352 Result value = frame_->Pop(); | |
7353 Result object = frame_->Pop(); | |
7354 value.ToRegister(); | |
7355 object.ToRegister(); | |
7356 | |
7357 // if (object->IsSmi()) return value. | |
7358 __ test(object.reg(), Immediate(kSmiTagMask)); | |
7359 leave.Branch(zero, &value, taken); | |
7360 | |
7361 // It is a heap object - get its map. | |
7362 Result scratch = allocator_->Allocate(); | |
7363 ASSERT(scratch.is_valid()); | |
7364 // if (!object->IsJSValue()) return value. | |
7365 __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); | |
7366 leave.Branch(not_equal, &value, not_taken); | |
7367 | |
7368 // Store the value. | |
7369 __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); | |
7370 // Update the write barrier. Save the value as it will be | |
7371 // overwritten by the write barrier code and is needed afterward. | |
7372 Result duplicate_value = allocator_->Allocate(); | |
7373 ASSERT(duplicate_value.is_valid()); | |
7374 __ mov(duplicate_value.reg(), value.reg()); | |
7375 // The object register is also overwritten by the write barrier and | |
7376 // possibly aliased in the frame. | |
7377 frame_->Spill(object.reg()); | |
7378 __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), | |
7379 scratch.reg()); | |
7380 object.Unuse(); | |
7381 scratch.Unuse(); | |
7382 duplicate_value.Unuse(); | |
7383 | |
7384 // Leave. | |
7385 leave.Bind(&value); | |
7386 frame_->Push(&value); | |
7387 } | |
7388 | |
7389 | |
7390 void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { | |
7391 ASSERT(args->length() == 1); | |
7392 | |
7393 // ArgumentsAccessStub expects the key in edx and the formal | |
7394 // parameter count in eax. | |
7395 Load(args->at(0)); | |
7396 Result key = frame_->Pop(); | |
7397 // Explicitly create a constant result. | |
7398 Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); | |
7399 // Call the shared stub to get to arguments[key]. | |
7400 ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); | |
7401 Result result = frame_->CallStub(&stub, &key, &count); | |
7402 frame_->Push(&result); | |
7403 } | |
7404 | |
7405 | |
7406 void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { | |
7407 ASSERT(args->length() == 2); | |
7408 | |
7409 // Load the two objects into registers and perform the comparison. | |
7410 Load(args->at(0)); | |
7411 Load(args->at(1)); | |
7412 Result right = frame_->Pop(); | |
7413 Result left = frame_->Pop(); | |
7414 right.ToRegister(); | |
7415 left.ToRegister(); | |
7416 __ cmp(right.reg(), Operand(left.reg())); | |
7417 right.Unuse(); | |
7418 left.Unuse(); | |
7419 destination()->Split(equal); | |
7420 } | |
7421 | |
7422 | |
7423 void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { | |
7424 ASSERT(args->length() == 0); | |
7425 STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi. | |
7426 Result ebp_as_smi = allocator_->Allocate(); | |
7427 ASSERT(ebp_as_smi.is_valid()); | |
7428 __ mov(ebp_as_smi.reg(), Operand(ebp)); | |
7429 frame_->Push(&ebp_as_smi); | |
7430 } | |
7431 | |
7432 | |
7433 void CodeGenerator::GenerateRandomHeapNumber( | |
7434 ZoneList<Expression*>* args) { | |
7435 ASSERT(args->length() == 0); | |
7436 frame_->SpillAll(); | |
7437 | |
7438 Label slow_allocate_heapnumber; | |
7439 Label heapnumber_allocated; | |
7440 | |
7441 __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber); | |
7442 __ jmp(&heapnumber_allocated); | |
7443 | |
7444 __ bind(&slow_allocate_heapnumber); | |
7445 // Allocate a heap number. | |
7446 __ CallRuntime(Runtime::kNumberAlloc, 0); | |
7447 __ mov(edi, eax); | |
7448 | |
7449 __ bind(&heapnumber_allocated); | |
7450 | |
7451 __ PrepareCallCFunction(1, ebx); | |
7452 __ mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address())); | |
7453 __ CallCFunction(ExternalReference::random_uint32_function(masm()->isolate()), | |
7454 1); | |
7455 | |
7456 // Convert 32 random bits in eax to 0.(32 random bits) in a double | |
7457 // by computing: | |
7458 // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). | |
7459 // This is implemented on both SSE2 and FPU. | |
7460 if (CpuFeatures::IsSupported(SSE2)) { | |
7461 CpuFeatures::Scope fscope(SSE2); | |
7462 __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single. | |
7463 __ movd(xmm1, Operand(ebx)); | |
7464 __ movd(xmm0, Operand(eax)); | |
7465 __ cvtss2sd(xmm1, xmm1); | |
7466 __ pxor(xmm0, xmm1); | |
7467 __ subsd(xmm0, xmm1); | |
7468 __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0); | |
7469 } else { | |
7470 // 0x4130000000000000 is 1.0 x 2^20 as a double. | |
7471 __ mov(FieldOperand(edi, HeapNumber::kExponentOffset), | |
7472 Immediate(0x41300000)); | |
7473 __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax); | |
7474 __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); | |
7475 __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0)); | |
7476 __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); | |
7477 __ fsubp(1); | |
7478 __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset)); | |
7479 } | |
7480 __ mov(eax, edi); | |
7481 | |
7482 Result result = allocator_->Allocate(eax); | |
7483 frame_->Push(&result); | |
7484 } | |
7485 | |
7486 | |
7487 void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { | |
7488 ASSERT_EQ(2, args->length()); | |
7489 | |
7490 Load(args->at(0)); | |
7491 Load(args->at(1)); | |
7492 | |
7493 StringAddStub stub(NO_STRING_ADD_FLAGS); | |
7494 Result answer = frame_->CallStub(&stub, 2); | |
7495 frame_->Push(&answer); | |
7496 } | |
7497 | |
7498 | |
7499 void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { | |
7500 ASSERT_EQ(3, args->length()); | |
7501 | |
7502 Load(args->at(0)); | |
7503 Load(args->at(1)); | |
7504 Load(args->at(2)); | |
7505 | |
7506 SubStringStub stub; | |
7507 Result answer = frame_->CallStub(&stub, 3); | |
7508 frame_->Push(&answer); | |
7509 } | |
7510 | |
7511 | |
7512 void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { | |
7513 ASSERT_EQ(2, args->length()); | |
7514 | |
7515 Load(args->at(0)); | |
7516 Load(args->at(1)); | |
7517 | |
7518 StringCompareStub stub; | |
7519 Result answer = frame_->CallStub(&stub, 2); | |
7520 frame_->Push(&answer); | |
7521 } | |
7522 | |
7523 | |
7524 void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { | |
7525 ASSERT_EQ(4, args->length()); | |
7526 | |
7527 // Load the arguments on the stack and call the stub. | |
7528 Load(args->at(0)); | |
7529 Load(args->at(1)); | |
7530 Load(args->at(2)); | |
7531 Load(args->at(3)); | |
7532 | |
7533 RegExpExecStub stub; | |
7534 Result result = frame_->CallStub(&stub, 4); | |
7535 frame_->Push(&result); | |
7536 } | |
7537 | |
7538 | |
7539 void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { | |
7540 ASSERT_EQ(3, args->length()); | |
7541 | |
7542 Load(args->at(0)); // Size of array, smi. | |
7543 Load(args->at(1)); // "index" property value. | |
7544 Load(args->at(2)); // "input" property value. | |
7545 | |
7546 RegExpConstructResultStub stub; | |
7547 Result result = frame_->CallStub(&stub, 3); | |
7548 frame_->Push(&result); | |
7549 } | |
7550 | |
7551 | |
7552 class DeferredSearchCache: public DeferredCode { | |
7553 public: | |
7554 DeferredSearchCache(Register dst, Register cache, Register key) | |
7555 : dst_(dst), cache_(cache), key_(key) { | |
7556 set_comment("[ DeferredSearchCache"); | |
7557 } | |
7558 | |
7559 virtual void Generate(); | |
7560 | |
7561 private: | |
7562 Register dst_; // on invocation Smi index of finger, on exit | |
7563 // holds value being looked up. | |
7564 Register cache_; // instance of JSFunctionResultCache. | |
7565 Register key_; // key being looked up. | |
7566 }; | |
7567 | |
7568 | |
7569 void DeferredSearchCache::Generate() { | |
7570 Label first_loop, search_further, second_loop, cache_miss; | |
7571 | |
7572 // Smi-tagging is equivalent to multiplying by 2. | |
7573 STATIC_ASSERT(kSmiTag == 0); | |
7574 STATIC_ASSERT(kSmiTagSize == 1); | |
7575 | |
7576 Smi* kEntrySizeSmi = Smi::FromInt(JSFunctionResultCache::kEntrySize); | |
7577 Smi* kEntriesIndexSmi = Smi::FromInt(JSFunctionResultCache::kEntriesIndex); | |
7578 | |
7579 // Check the cache from finger to start of the cache. | |
7580 __ bind(&first_loop); | |
7581 __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); | |
7582 __ cmp(Operand(dst_), Immediate(kEntriesIndexSmi)); | |
7583 __ j(less, &search_further); | |
7584 | |
7585 __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); | |
7586 __ j(not_equal, &first_loop); | |
7587 | |
7588 __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); | |
7589 __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); | |
7590 __ jmp(exit_label()); | |
7591 | |
7592 __ bind(&search_further); | |
7593 | |
7594 // Check the cache from end of cache up to finger. | |
7595 __ mov(dst_, FieldOperand(cache_, JSFunctionResultCache::kCacheSizeOffset)); | |
7596 | |
7597 __ bind(&second_loop); | |
7598 __ sub(Operand(dst_), Immediate(kEntrySizeSmi)); | |
7599 // Consider prefetching into some reg. | |
7600 __ cmp(dst_, FieldOperand(cache_, JSFunctionResultCache::kFingerOffset)); | |
7601 __ j(less_equal, &cache_miss); | |
7602 | |
7603 __ cmp(key_, CodeGenerator::FixedArrayElementOperand(cache_, dst_)); | |
7604 __ j(not_equal, &second_loop); | |
7605 | |
7606 __ mov(FieldOperand(cache_, JSFunctionResultCache::kFingerOffset), dst_); | |
7607 __ mov(dst_, CodeGenerator::FixedArrayElementOperand(cache_, dst_, 1)); | |
7608 __ jmp(exit_label()); | |
7609 | |
7610 __ bind(&cache_miss); | |
7611 __ push(cache_); // store a reference to cache | |
7612 __ push(key_); // store a key | |
7613 __ push(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); | |
7614 __ push(key_); | |
7615 // On ia32 function must be in edi. | |
7616 __ mov(edi, FieldOperand(cache_, JSFunctionResultCache::kFactoryOffset)); | |
7617 ParameterCount expected(1); | |
7618 __ InvokeFunction(edi, expected, CALL_FUNCTION); | |
7619 | |
7620 // Find a place to put new cached value into. | |
7621 Label add_new_entry, update_cache; | |
7622 __ mov(ecx, Operand(esp, kPointerSize)); // restore the cache | |
7623 // Possible optimization: cache size is constant for the given cache | |
7624 // so technically we could use a constant here. However, if we have | |
7625 // cache miss this optimization would hardly matter much. | |
7626 | |
7627 // Check if we could add new entry to cache. | |
7628 __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); | |
7629 __ cmp(ebx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); | |
7630 __ j(greater, &add_new_entry); | |
7631 | |
7632 // Check if we could evict entry after finger. | |
7633 __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); | |
7634 __ add(Operand(edx), Immediate(kEntrySizeSmi)); | |
7635 __ cmp(ebx, Operand(edx)); | |
7636 __ j(greater, &update_cache); | |
7637 | |
7638 // Need to wrap over the cache. | |
7639 __ mov(edx, Immediate(kEntriesIndexSmi)); | |
7640 __ jmp(&update_cache); | |
7641 | |
7642 __ bind(&add_new_entry); | |
7643 __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset)); | |
7644 __ lea(ebx, Operand(edx, JSFunctionResultCache::kEntrySize << 1)); | |
7645 __ mov(FieldOperand(ecx, JSFunctionResultCache::kCacheSizeOffset), ebx); | |
7646 | |
7647 // Update the cache itself. | |
7648 // edx holds the index. | |
7649 __ bind(&update_cache); | |
7650 __ pop(ebx); // restore the key | |
7651 __ mov(FieldOperand(ecx, JSFunctionResultCache::kFingerOffset), edx); | |
7652 // Store key. | |
7653 __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); | |
7654 __ RecordWrite(ecx, 0, ebx, edx); | |
7655 | |
7656 // Store value. | |
7657 __ pop(ecx); // restore the cache. | |
7658 __ mov(edx, FieldOperand(ecx, JSFunctionResultCache::kFingerOffset)); | |
7659 __ add(Operand(edx), Immediate(Smi::FromInt(1))); | |
7660 __ mov(ebx, eax); | |
7661 __ mov(CodeGenerator::FixedArrayElementOperand(ecx, edx), ebx); | |
7662 __ RecordWrite(ecx, 0, ebx, edx); | |
7663 | |
7664 if (!dst_.is(eax)) { | |
7665 __ mov(dst_, eax); | |
7666 } | |
7667 } | |
7668 | |
7669 | |
7670 void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { | |
7671 ASSERT_EQ(2, args->length()); | |
7672 | |
7673 ASSERT_NE(NULL, args->at(0)->AsLiteral()); | |
7674 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); | |
7675 | |
7676 Handle<FixedArray> jsfunction_result_caches( | |
7677 masm()->isolate()->global_context()->jsfunction_result_caches()); | |
7678 if (jsfunction_result_caches->length() <= cache_id) { | |
7679 __ Abort("Attempt to use undefined cache."); | |
7680 frame_->Push(FACTORY->undefined_value()); | |
7681 return; | |
7682 } | |
7683 | |
7684 Load(args->at(1)); | |
7685 Result key = frame_->Pop(); | |
7686 key.ToRegister(); | |
7687 | |
7688 Result cache = allocator()->Allocate(); | |
7689 ASSERT(cache.is_valid()); | |
7690 __ mov(cache.reg(), ContextOperand(esi, Context::GLOBAL_INDEX)); | |
7691 __ mov(cache.reg(), | |
7692 FieldOperand(cache.reg(), GlobalObject::kGlobalContextOffset)); | |
7693 __ mov(cache.reg(), | |
7694 ContextOperand(cache.reg(), Context::JSFUNCTION_RESULT_CACHES_INDEX)); | |
7695 __ mov(cache.reg(), | |
7696 FieldOperand(cache.reg(), FixedArray::OffsetOfElementAt(cache_id))); | |
7697 | |
7698 Result tmp = allocator()->Allocate(); | |
7699 ASSERT(tmp.is_valid()); | |
7700 | |
7701 DeferredSearchCache* deferred = new DeferredSearchCache(tmp.reg(), | |
7702 cache.reg(), | |
7703 key.reg()); | |
7704 | |
7705 // tmp.reg() now holds finger offset as a smi. | |
7706 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
7707 __ mov(tmp.reg(), FieldOperand(cache.reg(), | |
7708 JSFunctionResultCache::kFingerOffset)); | |
7709 __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg())); | |
7710 deferred->Branch(not_equal); | |
7711 | |
7712 __ mov(tmp.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg(), 1)); | |
7713 | |
7714 deferred->BindExit(); | |
7715 frame_->Push(&tmp); | |
7716 } | |
7717 | |
7718 | |
7719 void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { | |
7720 ASSERT_EQ(args->length(), 1); | |
7721 | |
7722 // Load the argument on the stack and call the stub. | |
7723 Load(args->at(0)); | |
7724 NumberToStringStub stub; | |
7725 Result result = frame_->CallStub(&stub, 1); | |
7726 frame_->Push(&result); | |
7727 } | |
7728 | |
7729 | |
7730 class DeferredSwapElements: public DeferredCode { | |
7731 public: | |
7732 DeferredSwapElements(Register object, Register index1, Register index2) | |
7733 : object_(object), index1_(index1), index2_(index2) { | |
7734 set_comment("[ DeferredSwapElements"); | |
7735 } | |
7736 | |
7737 virtual void Generate(); | |
7738 | |
7739 private: | |
7740 Register object_, index1_, index2_; | |
7741 }; | |
7742 | |
7743 | |
7744 void DeferredSwapElements::Generate() { | |
7745 __ push(object_); | |
7746 __ push(index1_); | |
7747 __ push(index2_); | |
7748 __ CallRuntime(Runtime::kSwapElements, 3); | |
7749 } | |
7750 | |
7751 | |
7752 void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { | |
7753 // Note: this code assumes that indices are passed are within | |
7754 // elements' bounds and refer to valid (not holes) values. | |
7755 Comment cmnt(masm_, "[ GenerateSwapElements"); | |
7756 | |
7757 ASSERT_EQ(3, args->length()); | |
7758 | |
7759 Load(args->at(0)); | |
7760 Load(args->at(1)); | |
7761 Load(args->at(2)); | |
7762 | |
7763 Result index2 = frame_->Pop(); | |
7764 index2.ToRegister(); | |
7765 | |
7766 Result index1 = frame_->Pop(); | |
7767 index1.ToRegister(); | |
7768 | |
7769 Result object = frame_->Pop(); | |
7770 object.ToRegister(); | |
7771 | |
7772 Result tmp1 = allocator()->Allocate(); | |
7773 tmp1.ToRegister(); | |
7774 Result tmp2 = allocator()->Allocate(); | |
7775 tmp2.ToRegister(); | |
7776 | |
7777 frame_->Spill(object.reg()); | |
7778 frame_->Spill(index1.reg()); | |
7779 frame_->Spill(index2.reg()); | |
7780 | |
7781 DeferredSwapElements* deferred = new DeferredSwapElements(object.reg(), | |
7782 index1.reg(), | |
7783 index2.reg()); | |
7784 | |
7785 // Fetch the map and check if array is in fast case. | |
7786 // Check that object doesn't require security checks and | |
7787 // has no indexed interceptor. | |
7788 __ CmpObjectType(object.reg(), FIRST_JS_OBJECT_TYPE, tmp1.reg()); | |
7789 deferred->Branch(below); | |
7790 __ test_b(FieldOperand(tmp1.reg(), Map::kBitFieldOffset), | |
7791 KeyedLoadIC::kSlowCaseBitFieldMask); | |
7792 deferred->Branch(not_zero); | |
7793 | |
7794 // Check the object's elements are in fast case and writable. | |
7795 __ mov(tmp1.reg(), FieldOperand(object.reg(), JSObject::kElementsOffset)); | |
7796 __ cmp(FieldOperand(tmp1.reg(), HeapObject::kMapOffset), | |
7797 Immediate(FACTORY->fixed_array_map())); | |
7798 deferred->Branch(not_equal); | |
7799 | |
7800 // Smi-tagging is equivalent to multiplying by 2. | |
7801 STATIC_ASSERT(kSmiTag == 0); | |
7802 STATIC_ASSERT(kSmiTagSize == 1); | |
7803 | |
7804 // Check that both indices are smis. | |
7805 __ mov(tmp2.reg(), index1.reg()); | |
7806 __ or_(tmp2.reg(), Operand(index2.reg())); | |
7807 __ test(tmp2.reg(), Immediate(kSmiTagMask)); | |
7808 deferred->Branch(not_zero); | |
7809 | |
7810 // Check that both indices are valid. | |
7811 __ mov(tmp2.reg(), FieldOperand(object.reg(), JSArray::kLengthOffset)); | |
7812 __ cmp(tmp2.reg(), Operand(index1.reg())); | |
7813 deferred->Branch(below_equal); | |
7814 __ cmp(tmp2.reg(), Operand(index2.reg())); | |
7815 deferred->Branch(below_equal); | |
7816 | |
7817 // Bring addresses into index1 and index2. | |
7818 __ lea(index1.reg(), FixedArrayElementOperand(tmp1.reg(), index1.reg())); | |
7819 __ lea(index2.reg(), FixedArrayElementOperand(tmp1.reg(), index2.reg())); | |
7820 | |
7821 // Swap elements. | |
7822 __ mov(object.reg(), Operand(index1.reg(), 0)); | |
7823 __ mov(tmp2.reg(), Operand(index2.reg(), 0)); | |
7824 __ mov(Operand(index2.reg(), 0), object.reg()); | |
7825 __ mov(Operand(index1.reg(), 0), tmp2.reg()); | |
7826 | |
7827 Label done; | |
7828 __ InNewSpace(tmp1.reg(), tmp2.reg(), equal, &done); | |
7829 // Possible optimization: do a check that both values are Smis | |
7830 // (or them and test against Smi mask.) | |
7831 | |
7832 __ mov(tmp2.reg(), tmp1.reg()); | |
7833 __ RecordWriteHelper(tmp2.reg(), index1.reg(), object.reg()); | |
7834 __ RecordWriteHelper(tmp1.reg(), index2.reg(), object.reg()); | |
7835 __ bind(&done); | |
7836 | |
7837 deferred->BindExit(); | |
7838 frame_->Push(FACTORY->undefined_value()); | |
7839 } | |
7840 | |
7841 | |
7842 void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { | |
7843 Comment cmnt(masm_, "[ GenerateCallFunction"); | |
7844 | |
7845 ASSERT(args->length() >= 2); | |
7846 | |
7847 int n_args = args->length() - 2; // for receiver and function. | |
7848 Load(args->at(0)); // receiver | |
7849 for (int i = 0; i < n_args; i++) { | |
7850 Load(args->at(i + 1)); | |
7851 } | |
7852 Load(args->at(n_args + 1)); // function | |
7853 Result result = frame_->CallJSFunction(n_args); | |
7854 frame_->Push(&result); | |
7855 } | |
7856 | |
7857 | |
7858 // Generates the Math.pow method. Only handles special cases and | |
7859 // branches to the runtime system for everything else. Please note | |
7860 // that this function assumes that the callsite has executed ToNumber | |
7861 // on both arguments. | |
7862 void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { | |
7863 ASSERT(args->length() == 2); | |
7864 Load(args->at(0)); | |
7865 Load(args->at(1)); | |
7866 if (!CpuFeatures::IsSupported(SSE2)) { | |
7867 Result res = frame_->CallRuntime(Runtime::kMath_pow, 2); | |
7868 frame_->Push(&res); | |
7869 } else { | |
7870 CpuFeatures::Scope use_sse2(SSE2); | |
7871 Label allocate_return; | |
7872 // Load the two operands while leaving the values on the frame. | |
7873 frame()->Dup(); | |
7874 Result exponent = frame()->Pop(); | |
7875 exponent.ToRegister(); | |
7876 frame()->Spill(exponent.reg()); | |
7877 frame()->PushElementAt(1); | |
7878 Result base = frame()->Pop(); | |
7879 base.ToRegister(); | |
7880 frame()->Spill(base.reg()); | |
7881 | |
7882 Result answer = allocator()->Allocate(); | |
7883 ASSERT(answer.is_valid()); | |
7884 ASSERT(!exponent.reg().is(base.reg())); | |
7885 JumpTarget call_runtime; | |
7886 | |
7887 // Save 1 in xmm3 - we need this several times later on. | |
7888 __ mov(answer.reg(), Immediate(1)); | |
7889 __ cvtsi2sd(xmm3, Operand(answer.reg())); | |
7890 | |
7891 Label exponent_nonsmi; | |
7892 Label base_nonsmi; | |
7893 // If the exponent is a heap number go to that specific case. | |
7894 __ test(exponent.reg(), Immediate(kSmiTagMask)); | |
7895 __ j(not_zero, &exponent_nonsmi); | |
7896 __ test(base.reg(), Immediate(kSmiTagMask)); | |
7897 __ j(not_zero, &base_nonsmi); | |
7898 | |
7899 // Optimized version when y is an integer. | |
7900 Label powi; | |
7901 __ SmiUntag(base.reg()); | |
7902 __ cvtsi2sd(xmm0, Operand(base.reg())); | |
7903 __ jmp(&powi); | |
7904 // exponent is smi and base is a heapnumber. | |
7905 __ bind(&base_nonsmi); | |
7906 __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), | |
7907 FACTORY->heap_number_map()); | |
7908 call_runtime.Branch(not_equal); | |
7909 | |
7910 __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); | |
7911 | |
7912 // Optimized version of pow if y is an integer. | |
7913 __ bind(&powi); | |
7914 __ SmiUntag(exponent.reg()); | |
7915 | |
7916 // Save exponent in base as we need to check if exponent is negative later. | |
7917 // We know that base and exponent are in different registers. | |
7918 __ mov(base.reg(), exponent.reg()); | |
7919 | |
7920 // Get absolute value of exponent. | |
7921 Label no_neg; | |
7922 __ cmp(exponent.reg(), 0); | |
7923 __ j(greater_equal, &no_neg); | |
7924 __ neg(exponent.reg()); | |
7925 __ bind(&no_neg); | |
7926 | |
7927 // Load xmm1 with 1. | |
7928 __ movsd(xmm1, xmm3); | |
7929 Label while_true; | |
7930 Label no_multiply; | |
7931 | |
7932 __ bind(&while_true); | |
7933 __ shr(exponent.reg(), 1); | |
7934 __ j(not_carry, &no_multiply); | |
7935 __ mulsd(xmm1, xmm0); | |
7936 __ bind(&no_multiply); | |
7937 __ test(exponent.reg(), Operand(exponent.reg())); | |
7938 __ mulsd(xmm0, xmm0); | |
7939 __ j(not_zero, &while_true); | |
7940 | |
7941 // x has the original value of y - if y is negative return 1/result. | |
7942 __ test(base.reg(), Operand(base.reg())); | |
7943 __ j(positive, &allocate_return); | |
7944 // Special case if xmm1 has reached infinity. | |
7945 __ mov(answer.reg(), Immediate(0x7FB00000)); | |
7946 __ movd(xmm0, Operand(answer.reg())); | |
7947 __ cvtss2sd(xmm0, xmm0); | |
7948 __ ucomisd(xmm0, xmm1); | |
7949 call_runtime.Branch(equal); | |
7950 __ divsd(xmm3, xmm1); | |
7951 __ movsd(xmm1, xmm3); | |
7952 __ jmp(&allocate_return); | |
7953 | |
7954 // exponent (or both) is a heapnumber - no matter what we should now work | |
7955 // on doubles. | |
7956 __ bind(&exponent_nonsmi); | |
7957 __ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset), | |
7958 FACTORY->heap_number_map()); | |
7959 call_runtime.Branch(not_equal); | |
7960 __ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); | |
7961 // Test if exponent is nan. | |
7962 __ ucomisd(xmm1, xmm1); | |
7963 call_runtime.Branch(parity_even); | |
7964 | |
7965 Label base_not_smi; | |
7966 Label handle_special_cases; | |
7967 __ test(base.reg(), Immediate(kSmiTagMask)); | |
7968 __ j(not_zero, &base_not_smi); | |
7969 __ SmiUntag(base.reg()); | |
7970 __ cvtsi2sd(xmm0, Operand(base.reg())); | |
7971 __ jmp(&handle_special_cases); | |
7972 __ bind(&base_not_smi); | |
7973 __ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset), | |
7974 FACTORY->heap_number_map()); | |
7975 call_runtime.Branch(not_equal); | |
7976 __ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); | |
7977 __ and_(answer.reg(), HeapNumber::kExponentMask); | |
7978 __ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask)); | |
7979 // base is NaN or +/-Infinity | |
7980 call_runtime.Branch(greater_equal); | |
7981 __ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); | |
7982 | |
7983 // base is in xmm0 and exponent is in xmm1. | |
7984 __ bind(&handle_special_cases); | |
7985 Label not_minus_half; | |
7986 // Test for -0.5. | |
7987 // Load xmm2 with -0.5. | |
7988 __ mov(answer.reg(), Immediate(0xBF000000)); | |
7989 __ movd(xmm2, Operand(answer.reg())); | |
7990 __ cvtss2sd(xmm2, xmm2); | |
7991 // xmm2 now has -0.5. | |
7992 __ ucomisd(xmm2, xmm1); | |
7993 __ j(not_equal, ¬_minus_half); | |
7994 | |
7995 // Calculates reciprocal of square root. | |
7996 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. | |
7997 __ xorpd(xmm1, xmm1); | |
7998 __ addsd(xmm1, xmm0); | |
7999 __ sqrtsd(xmm1, xmm1); | |
8000 __ divsd(xmm3, xmm1); | |
8001 __ movsd(xmm1, xmm3); | |
8002 __ jmp(&allocate_return); | |
8003 | |
8004 // Test for 0.5. | |
8005 __ bind(¬_minus_half); | |
8006 // Load xmm2 with 0.5. | |
8007 // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. | |
8008 __ addsd(xmm2, xmm3); | |
8009 // xmm2 now has 0.5. | |
8010 __ ucomisd(xmm2, xmm1); | |
8011 call_runtime.Branch(not_equal); | |
8012 // Calculates square root. | |
8013 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. | |
8014 __ xorpd(xmm1, xmm1); | |
8015 __ addsd(xmm1, xmm0); | |
8016 __ sqrtsd(xmm1, xmm1); | |
8017 | |
8018 JumpTarget done; | |
8019 Label failure, success; | |
8020 __ bind(&allocate_return); | |
8021 // Make a copy of the frame to enable us to handle allocation | |
8022 // failure after the JumpTarget jump. | |
8023 VirtualFrame* clone = new VirtualFrame(frame()); | |
8024 __ AllocateHeapNumber(answer.reg(), exponent.reg(), | |
8025 base.reg(), &failure); | |
8026 __ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); | |
8027 // Remove the two original values from the frame - we only need those | |
8028 // in the case where we branch to runtime. | |
8029 frame()->Drop(2); | |
8030 exponent.Unuse(); | |
8031 base.Unuse(); | |
8032 done.Jump(&answer); | |
8033 // Use the copy of the original frame as our current frame. | |
8034 RegisterFile empty_regs; | |
8035 SetFrame(clone, &empty_regs); | |
8036 // If we experience an allocation failure we branch to runtime. | |
8037 __ bind(&failure); | |
8038 call_runtime.Bind(); | |
8039 answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); | |
8040 | |
8041 done.Bind(&answer); | |
8042 frame()->Push(&answer); | |
8043 } | |
8044 } | |
8045 | |
8046 | |
8047 void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { | |
8048 ASSERT_EQ(args->length(), 1); | |
8049 Load(args->at(0)); | |
8050 TranscendentalCacheStub stub(TranscendentalCache::SIN, | |
8051 TranscendentalCacheStub::TAGGED); | |
8052 Result result = frame_->CallStub(&stub, 1); | |
8053 frame_->Push(&result); | |
8054 } | |
8055 | |
8056 | |
8057 void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { | |
8058 ASSERT_EQ(args->length(), 1); | |
8059 Load(args->at(0)); | |
8060 TranscendentalCacheStub stub(TranscendentalCache::COS, | |
8061 TranscendentalCacheStub::TAGGED); | |
8062 Result result = frame_->CallStub(&stub, 1); | |
8063 frame_->Push(&result); | |
8064 } | |
8065 | |
8066 | |
8067 void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { | |
8068 ASSERT_EQ(args->length(), 1); | |
8069 Load(args->at(0)); | |
8070 TranscendentalCacheStub stub(TranscendentalCache::LOG, | |
8071 TranscendentalCacheStub::TAGGED); | |
8072 Result result = frame_->CallStub(&stub, 1); | |
8073 frame_->Push(&result); | |
8074 } | |
8075 | |
8076 | |
8077 // Generates the Math.sqrt method. Please note - this function assumes that | |
8078 // the callsite has executed ToNumber on the argument. | |
8079 void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { | |
8080 ASSERT_EQ(args->length(), 1); | |
8081 Load(args->at(0)); | |
8082 | |
8083 if (!CpuFeatures::IsSupported(SSE2)) { | |
8084 Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); | |
8085 frame()->Push(&result); | |
8086 } else { | |
8087 CpuFeatures::Scope use_sse2(SSE2); | |
8088 // Leave original value on the frame if we need to call runtime. | |
8089 frame()->Dup(); | |
8090 Result result = frame()->Pop(); | |
8091 result.ToRegister(); | |
8092 frame()->Spill(result.reg()); | |
8093 Label runtime; | |
8094 Label non_smi; | |
8095 Label load_done; | |
8096 JumpTarget end; | |
8097 | |
8098 __ test(result.reg(), Immediate(kSmiTagMask)); | |
8099 __ j(not_zero, &non_smi); | |
8100 __ SmiUntag(result.reg()); | |
8101 __ cvtsi2sd(xmm0, Operand(result.reg())); | |
8102 __ jmp(&load_done); | |
8103 __ bind(&non_smi); | |
8104 __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), | |
8105 FACTORY->heap_number_map()); | |
8106 __ j(not_equal, &runtime); | |
8107 __ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); | |
8108 | |
8109 __ bind(&load_done); | |
8110 __ sqrtsd(xmm0, xmm0); | |
8111 // A copy of the virtual frame to allow us to go to runtime after the | |
8112 // JumpTarget jump. | |
8113 Result scratch = allocator()->Allocate(); | |
8114 VirtualFrame* clone = new VirtualFrame(frame()); | |
8115 __ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime); | |
8116 | |
8117 __ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); | |
8118 frame()->Drop(1); | |
8119 scratch.Unuse(); | |
8120 end.Jump(&result); | |
8121 // We only branch to runtime if we have an allocation error. | |
8122 // Use the copy of the original frame as our current frame. | |
8123 RegisterFile empty_regs; | |
8124 SetFrame(clone, &empty_regs); | |
8125 __ bind(&runtime); | |
8126 result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); | |
8127 | |
8128 end.Bind(&result); | |
8129 frame()->Push(&result); | |
8130 } | |
8131 } | |
8132 | |
8133 | |
8134 void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { | |
8135 ASSERT_EQ(2, args->length()); | |
8136 Load(args->at(0)); | |
8137 Load(args->at(1)); | |
8138 Result right_res = frame_->Pop(); | |
8139 Result left_res = frame_->Pop(); | |
8140 right_res.ToRegister(); | |
8141 left_res.ToRegister(); | |
8142 Result tmp_res = allocator()->Allocate(); | |
8143 ASSERT(tmp_res.is_valid()); | |
8144 Register right = right_res.reg(); | |
8145 Register left = left_res.reg(); | |
8146 Register tmp = tmp_res.reg(); | |
8147 right_res.Unuse(); | |
8148 left_res.Unuse(); | |
8149 tmp_res.Unuse(); | |
8150 __ cmp(left, Operand(right)); | |
8151 destination()->true_target()->Branch(equal); | |
8152 // Fail if either is a non-HeapObject. | |
8153 __ mov(tmp, left); | |
8154 __ and_(Operand(tmp), right); | |
8155 __ test(Operand(tmp), Immediate(kSmiTagMask)); | |
8156 destination()->false_target()->Branch(equal); | |
8157 __ CmpObjectType(left, JS_REGEXP_TYPE, tmp); | |
8158 destination()->false_target()->Branch(not_equal); | |
8159 __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset)); | |
8160 destination()->false_target()->Branch(not_equal); | |
8161 __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset)); | |
8162 __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset)); | |
8163 destination()->Split(equal); | |
8164 } | |
8165 | |
8166 | |
8167 void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { | |
8168 ASSERT(args->length() == 1); | |
8169 Load(args->at(0)); | |
8170 Result value = frame_->Pop(); | |
8171 value.ToRegister(); | |
8172 ASSERT(value.is_valid()); | |
8173 if (FLAG_debug_code) { | |
8174 __ AbortIfNotString(value.reg()); | |
8175 } | |
8176 | |
8177 __ test(FieldOperand(value.reg(), String::kHashFieldOffset), | |
8178 Immediate(String::kContainsCachedArrayIndexMask)); | |
8179 | |
8180 value.Unuse(); | |
8181 destination()->Split(zero); | |
8182 } | |
8183 | |
8184 | |
8185 void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { | |
8186 ASSERT(args->length() == 1); | |
8187 Load(args->at(0)); | |
8188 Result string = frame_->Pop(); | |
8189 string.ToRegister(); | |
8190 if (FLAG_debug_code) { | |
8191 __ AbortIfNotString(string.reg()); | |
8192 } | |
8193 | |
8194 Result number = allocator()->Allocate(); | |
8195 ASSERT(number.is_valid()); | |
8196 __ mov(number.reg(), FieldOperand(string.reg(), String::kHashFieldOffset)); | |
8197 __ IndexFromHash(number.reg(), number.reg()); | |
8198 string.Unuse(); | |
8199 frame_->Push(&number); | |
8200 } | |
8201 | |
8202 | |
8203 void CodeGenerator::VisitCallRuntime(CallRuntime* node) { | |
8204 ASSERT(!in_safe_int32_mode()); | |
8205 if (CheckForInlineRuntimeCall(node)) { | |
8206 return; | |
8207 } | |
8208 | |
8209 ZoneList<Expression*>* args = node->arguments(); | |
8210 Comment cmnt(masm_, "[ CallRuntime"); | |
8211 const Runtime::Function* function = node->function(); | |
8212 | |
8213 if (function == NULL) { | |
8214 // Push the builtins object found in the current global object. | |
8215 Result temp = allocator()->Allocate(); | |
8216 ASSERT(temp.is_valid()); | |
8217 __ mov(temp.reg(), GlobalObjectOperand()); | |
8218 __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); | |
8219 frame_->Push(&temp); | |
8220 } | |
8221 | |
8222 // Push the arguments ("left-to-right"). | |
8223 int arg_count = args->length(); | |
8224 for (int i = 0; i < arg_count; i++) { | |
8225 Load(args->at(i)); | |
8226 } | |
8227 | |
8228 if (function == NULL) { | |
8229 // Call the JS runtime function. | |
8230 frame_->Push(node->name()); | |
8231 Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, | |
8232 arg_count, | |
8233 loop_nesting_); | |
8234 frame_->RestoreContextRegister(); | |
8235 frame_->Push(&answer); | |
8236 } else { | |
8237 // Call the C runtime function. | |
8238 Result answer = frame_->CallRuntime(function, arg_count); | |
8239 frame_->Push(&answer); | |
8240 } | |
8241 } | |
8242 | |
8243 | |
8244 void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { | |
8245 Comment cmnt(masm_, "[ UnaryOperation"); | |
8246 | |
8247 Token::Value op = node->op(); | |
8248 | |
8249 if (op == Token::NOT) { | |
8250 // Swap the true and false targets but keep the same actual label | |
8251 // as the fall through. | |
8252 destination()->Invert(); | |
8253 LoadCondition(node->expression(), destination(), true); | |
8254 // Swap the labels back. | |
8255 destination()->Invert(); | |
8256 | |
8257 } else if (op == Token::DELETE) { | |
8258 Property* property = node->expression()->AsProperty(); | |
8259 if (property != NULL) { | |
8260 Load(property->obj()); | |
8261 Load(property->key()); | |
8262 frame_->Push(Smi::FromInt(strict_mode_flag())); | |
8263 Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 3); | |
8264 frame_->Push(&answer); | |
8265 return; | |
8266 } | |
8267 | |
8268 Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); | |
8269 if (variable != NULL) { | |
8270 // Delete of an unqualified identifier is disallowed in strict mode | |
8271 // but "delete this" is. | |
8272 ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); | |
8273 Slot* slot = variable->AsSlot(); | |
8274 if (variable->is_global()) { | |
8275 LoadGlobal(); | |
8276 frame_->Push(variable->name()); | |
8277 frame_->Push(Smi::FromInt(kNonStrictMode)); | |
8278 Result answer = frame_->InvokeBuiltin(Builtins::DELETE, | |
8279 CALL_FUNCTION, 3); | |
8280 frame_->Push(&answer); | |
8281 | |
8282 } else if (slot != NULL && slot->type() == Slot::LOOKUP) { | |
8283 // Call the runtime to delete from the context holding the named | |
8284 // variable. Sync the virtual frame eagerly so we can push the | |
8285 // arguments directly into place. | |
8286 frame_->SyncRange(0, frame_->element_count() - 1); | |
8287 frame_->EmitPush(esi); | |
8288 frame_->EmitPush(Immediate(variable->name())); | |
8289 Result answer = frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); | |
8290 frame_->Push(&answer); | |
8291 } else { | |
8292 // Default: Result of deleting non-global, not dynamically | |
8293 // introduced variables is false. | |
8294 frame_->Push(FACTORY->false_value()); | |
8295 } | |
8296 } else { | |
8297 // Default: Result of deleting expressions is true. | |
8298 Load(node->expression()); // may have side-effects | |
8299 frame_->SetElementAt(0, FACTORY->true_value()); | |
8300 } | |
8301 | |
8302 } else if (op == Token::TYPEOF) { | |
8303 // Special case for loading the typeof expression; see comment on | |
8304 // LoadTypeofExpression(). | |
8305 LoadTypeofExpression(node->expression()); | |
8306 Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); | |
8307 frame_->Push(&answer); | |
8308 | |
8309 } else if (op == Token::VOID) { | |
8310 Expression* expression = node->expression(); | |
8311 if (expression && expression->AsLiteral() && ( | |
8312 expression->AsLiteral()->IsTrue() || | |
8313 expression->AsLiteral()->IsFalse() || | |
8314 expression->AsLiteral()->handle()->IsNumber() || | |
8315 expression->AsLiteral()->handle()->IsString() || | |
8316 expression->AsLiteral()->handle()->IsJSRegExp() || | |
8317 expression->AsLiteral()->IsNull())) { | |
8318 // Omit evaluating the value of the primitive literal. | |
8319 // It will be discarded anyway, and can have no side effect. | |
8320 frame_->Push(FACTORY->undefined_value()); | |
8321 } else { | |
8322 Load(node->expression()); | |
8323 frame_->SetElementAt(0, FACTORY->undefined_value()); | |
8324 } | |
8325 | |
8326 } else { | |
8327 if (in_safe_int32_mode()) { | |
8328 Visit(node->expression()); | |
8329 Result value = frame_->Pop(); | |
8330 ASSERT(value.is_untagged_int32()); | |
8331 // Registers containing an int32 value are not multiply used. | |
8332 ASSERT(!value.is_register() || !frame_->is_used(value.reg())); | |
8333 value.ToRegister(); | |
8334 switch (op) { | |
8335 case Token::SUB: { | |
8336 __ neg(value.reg()); | |
8337 frame_->Push(&value); | |
8338 if (node->no_negative_zero()) { | |
8339 // -MIN_INT is MIN_INT with the overflow flag set. | |
8340 unsafe_bailout_->Branch(overflow); | |
8341 } else { | |
8342 // MIN_INT and 0 both have bad negations. They both have 31 zeros. | |
8343 __ test(value.reg(), Immediate(0x7FFFFFFF)); | |
8344 unsafe_bailout_->Branch(zero); | |
8345 } | |
8346 break; | |
8347 } | |
8348 case Token::BIT_NOT: { | |
8349 __ not_(value.reg()); | |
8350 frame_->Push(&value); | |
8351 break; | |
8352 } | |
8353 case Token::ADD: { | |
8354 // Unary plus has no effect on int32 values. | |
8355 frame_->Push(&value); | |
8356 break; | |
8357 } | |
8358 default: | |
8359 UNREACHABLE(); | |
8360 break; | |
8361 } | |
8362 } else { | |
8363 Load(node->expression()); | |
8364 bool can_overwrite = node->expression()->ResultOverwriteAllowed(); | |
8365 UnaryOverwriteMode overwrite = | |
8366 can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; | |
8367 bool no_negative_zero = node->expression()->no_negative_zero(); | |
8368 switch (op) { | |
8369 case Token::NOT: | |
8370 case Token::DELETE: | |
8371 case Token::TYPEOF: | |
8372 UNREACHABLE(); // handled above | |
8373 break; | |
8374 | |
8375 case Token::SUB: { | |
8376 GenericUnaryOpStub stub( | |
8377 Token::SUB, | |
8378 overwrite, | |
8379 NO_UNARY_FLAGS, | |
8380 no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); | |
8381 Result operand = frame_->Pop(); | |
8382 Result answer = frame_->CallStub(&stub, &operand); | |
8383 answer.set_type_info(TypeInfo::Number()); | |
8384 frame_->Push(&answer); | |
8385 break; | |
8386 } | |
8387 case Token::BIT_NOT: { | |
8388 // Smi check. | |
8389 JumpTarget smi_label; | |
8390 JumpTarget continue_label; | |
8391 Result operand = frame_->Pop(); | |
8392 TypeInfo operand_info = operand.type_info(); | |
8393 operand.ToRegister(); | |
8394 if (operand_info.IsSmi()) { | |
8395 if (FLAG_debug_code) __ AbortIfNotSmi(operand.reg()); | |
8396 frame_->Spill(operand.reg()); | |
8397 // Set smi tag bit. It will be reset by the not operation. | |
8398 __ lea(operand.reg(), Operand(operand.reg(), kSmiTagMask)); | |
8399 __ not_(operand.reg()); | |
8400 Result answer = operand; | |
8401 answer.set_type_info(TypeInfo::Smi()); | |
8402 frame_->Push(&answer); | |
8403 } else { | |
8404 __ test(operand.reg(), Immediate(kSmiTagMask)); | |
8405 smi_label.Branch(zero, &operand, taken); | |
8406 | |
8407 GenericUnaryOpStub stub(Token::BIT_NOT, | |
8408 overwrite, | |
8409 NO_UNARY_SMI_CODE_IN_STUB); | |
8410 Result answer = frame_->CallStub(&stub, &operand); | |
8411 continue_label.Jump(&answer); | |
8412 | |
8413 smi_label.Bind(&answer); | |
8414 answer.ToRegister(); | |
8415 frame_->Spill(answer.reg()); | |
8416 // Set smi tag bit. It will be reset by the not operation. | |
8417 __ lea(answer.reg(), Operand(answer.reg(), kSmiTagMask)); | |
8418 __ not_(answer.reg()); | |
8419 | |
8420 continue_label.Bind(&answer); | |
8421 answer.set_type_info(TypeInfo::Integer32()); | |
8422 frame_->Push(&answer); | |
8423 } | |
8424 break; | |
8425 } | |
8426 case Token::ADD: { | |
8427 // Smi check. | |
8428 JumpTarget continue_label; | |
8429 Result operand = frame_->Pop(); | |
8430 TypeInfo operand_info = operand.type_info(); | |
8431 operand.ToRegister(); | |
8432 __ test(operand.reg(), Immediate(kSmiTagMask)); | |
8433 continue_label.Branch(zero, &operand, taken); | |
8434 | |
8435 frame_->Push(&operand); | |
8436 Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, | |
8437 CALL_FUNCTION, 1); | |
8438 | |
8439 continue_label.Bind(&answer); | |
8440 if (operand_info.IsSmi()) { | |
8441 answer.set_type_info(TypeInfo::Smi()); | |
8442 } else if (operand_info.IsInteger32()) { | |
8443 answer.set_type_info(TypeInfo::Integer32()); | |
8444 } else { | |
8445 answer.set_type_info(TypeInfo::Number()); | |
8446 } | |
8447 frame_->Push(&answer); | |
8448 break; | |
8449 } | |
8450 default: | |
8451 UNREACHABLE(); | |
8452 } | |
8453 } | |
8454 } | |
8455 } | |
8456 | |
8457 | |
8458 // The value in dst was optimistically incremented or decremented. The | |
8459 // result overflowed or was not smi tagged. Undo the operation, call | |
8460 // into the runtime to convert the argument to a number, and call the | |
8461 // specialized add or subtract stub. The result is left in dst. | |
8462 class DeferredPrefixCountOperation: public DeferredCode { | |
8463 public: | |
8464 DeferredPrefixCountOperation(Register dst, | |
8465 bool is_increment, | |
8466 TypeInfo input_type) | |
8467 : dst_(dst), is_increment_(is_increment), input_type_(input_type) { | |
8468 set_comment("[ DeferredCountOperation"); | |
8469 } | |
8470 | |
8471 virtual void Generate(); | |
8472 | |
8473 private: | |
8474 Register dst_; | |
8475 bool is_increment_; | |
8476 TypeInfo input_type_; | |
8477 }; | |
8478 | |
8479 | |
8480 void DeferredPrefixCountOperation::Generate() { | |
8481 // Undo the optimistic smi operation. | |
8482 if (is_increment_) { | |
8483 __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); | |
8484 } else { | |
8485 __ add(Operand(dst_), Immediate(Smi::FromInt(1))); | |
8486 } | |
8487 Register left; | |
8488 if (input_type_.IsNumber()) { | |
8489 left = dst_; | |
8490 } else { | |
8491 __ push(dst_); | |
8492 __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); | |
8493 left = eax; | |
8494 } | |
8495 | |
8496 GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, | |
8497 NO_OVERWRITE, | |
8498 NO_GENERIC_BINARY_FLAGS, | |
8499 TypeInfo::Number()); | |
8500 stub.GenerateCall(masm_, left, Smi::FromInt(1)); | |
8501 | |
8502 if (!dst_.is(eax)) __ mov(dst_, eax); | |
8503 } | |
8504 | |
8505 | |
8506 // The value in dst was optimistically incremented or decremented. The | |
8507 // result overflowed or was not smi tagged. Undo the operation and call | |
8508 // into the runtime to convert the argument to a number. Update the | |
8509 // original value in old. Call the specialized add or subtract stub. | |
8510 // The result is left in dst. | |
8511 class DeferredPostfixCountOperation: public DeferredCode { | |
8512 public: | |
8513 DeferredPostfixCountOperation(Register dst, | |
8514 Register old, | |
8515 bool is_increment, | |
8516 TypeInfo input_type) | |
8517 : dst_(dst), | |
8518 old_(old), | |
8519 is_increment_(is_increment), | |
8520 input_type_(input_type) { | |
8521 set_comment("[ DeferredCountOperation"); | |
8522 } | |
8523 | |
8524 virtual void Generate(); | |
8525 | |
8526 private: | |
8527 Register dst_; | |
8528 Register old_; | |
8529 bool is_increment_; | |
8530 TypeInfo input_type_; | |
8531 }; | |
8532 | |
8533 | |
8534 void DeferredPostfixCountOperation::Generate() { | |
8535 // Undo the optimistic smi operation. | |
8536 if (is_increment_) { | |
8537 __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); | |
8538 } else { | |
8539 __ add(Operand(dst_), Immediate(Smi::FromInt(1))); | |
8540 } | |
8541 Register left; | |
8542 if (input_type_.IsNumber()) { | |
8543 __ push(dst_); // Save the input to use as the old value. | |
8544 left = dst_; | |
8545 } else { | |
8546 __ push(dst_); | |
8547 __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); | |
8548 __ push(eax); // Save the result of ToNumber to use as the old value. | |
8549 left = eax; | |
8550 } | |
8551 | |
8552 GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, | |
8553 NO_OVERWRITE, | |
8554 NO_GENERIC_BINARY_FLAGS, | |
8555 TypeInfo::Number()); | |
8556 stub.GenerateCall(masm_, left, Smi::FromInt(1)); | |
8557 | |
8558 if (!dst_.is(eax)) __ mov(dst_, eax); | |
8559 __ pop(old_); | |
8560 } | |
8561 | |
8562 | |
8563 void CodeGenerator::VisitCountOperation(CountOperation* node) { | |
8564 ASSERT(!in_safe_int32_mode()); | |
8565 Comment cmnt(masm_, "[ CountOperation"); | |
8566 | |
8567 bool is_postfix = node->is_postfix(); | |
8568 bool is_increment = node->op() == Token::INC; | |
8569 | |
8570 Variable* var = node->expression()->AsVariableProxy()->AsVariable(); | |
8571 bool is_const = (var != NULL && var->mode() == Variable::CONST); | |
8572 | |
8573 // Postfix operations need a stack slot under the reference to hold | |
8574 // the old value while the new value is being stored. This is so that | |
8575 // in the case that storing the new value requires a call, the old | |
8576 // value will be in the frame to be spilled. | |
8577 if (is_postfix) frame_->Push(Smi::FromInt(0)); | |
8578 | |
8579 // A constant reference is not saved to, so a constant reference is not a | |
8580 // compound assignment reference. | |
8581 { Reference target(this, node->expression(), !is_const); | |
8582 if (target.is_illegal()) { | |
8583 // Spoof the virtual frame to have the expected height (one higher | |
8584 // than on entry). | |
8585 if (!is_postfix) frame_->Push(Smi::FromInt(0)); | |
8586 return; | |
8587 } | |
8588 target.TakeValue(); | |
8589 | |
8590 Result new_value = frame_->Pop(); | |
8591 new_value.ToRegister(); | |
8592 | |
8593 Result old_value; // Only allocated in the postfix case. | |
8594 if (is_postfix) { | |
8595 // Allocate a temporary to preserve the old value. | |
8596 old_value = allocator_->Allocate(); | |
8597 ASSERT(old_value.is_valid()); | |
8598 __ mov(old_value.reg(), new_value.reg()); | |
8599 | |
8600 // The return value for postfix operations is ToNumber(input). | |
8601 // Keep more precise type info if the input is some kind of | |
8602 // number already. If the input is not a number we have to wait | |
8603 // for the deferred code to convert it. | |
8604 if (new_value.type_info().IsNumber()) { | |
8605 old_value.set_type_info(new_value.type_info()); | |
8606 } | |
8607 } | |
8608 | |
8609 // Ensure the new value is writable. | |
8610 frame_->Spill(new_value.reg()); | |
8611 | |
8612 Result tmp; | |
8613 if (new_value.is_smi()) { | |
8614 if (FLAG_debug_code) __ AbortIfNotSmi(new_value.reg()); | |
8615 } else { | |
8616 // We don't know statically if the input is a smi. | |
8617 // In order to combine the overflow and the smi tag check, we need | |
8618 // to be able to allocate a byte register. We attempt to do so | |
8619 // without spilling. If we fail, we will generate separate overflow | |
8620 // and smi tag checks. | |
8621 // We allocate and clear a temporary byte register before performing | |
8622 // the count operation since clearing the register using xor will clear | |
8623 // the overflow flag. | |
8624 tmp = allocator_->AllocateByteRegisterWithoutSpilling(); | |
8625 if (tmp.is_valid()) { | |
8626 __ Set(tmp.reg(), Immediate(0)); | |
8627 } | |
8628 } | |
8629 | |
8630 if (is_increment) { | |
8631 __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); | |
8632 } else { | |
8633 __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); | |
8634 } | |
8635 | |
8636 DeferredCode* deferred = NULL; | |
8637 if (is_postfix) { | |
8638 deferred = new DeferredPostfixCountOperation(new_value.reg(), | |
8639 old_value.reg(), | |
8640 is_increment, | |
8641 new_value.type_info()); | |
8642 } else { | |
8643 deferred = new DeferredPrefixCountOperation(new_value.reg(), | |
8644 is_increment, | |
8645 new_value.type_info()); | |
8646 } | |
8647 | |
8648 if (new_value.is_smi()) { | |
8649 // In case we have a smi as input just check for overflow. | |
8650 deferred->Branch(overflow); | |
8651 } else { | |
8652 // If the count operation didn't overflow and the result is a valid | |
8653 // smi, we're done. Otherwise, we jump to the deferred slow-case | |
8654 // code. | |
8655 // We combine the overflow and the smi tag check if we could | |
8656 // successfully allocate a temporary byte register. | |
8657 if (tmp.is_valid()) { | |
8658 __ setcc(overflow, tmp.reg()); | |
8659 __ or_(Operand(tmp.reg()), new_value.reg()); | |
8660 __ test(tmp.reg(), Immediate(kSmiTagMask)); | |
8661 tmp.Unuse(); | |
8662 deferred->Branch(not_zero); | |
8663 } else { | |
8664 // Otherwise we test separately for overflow and smi tag. | |
8665 deferred->Branch(overflow); | |
8666 __ test(new_value.reg(), Immediate(kSmiTagMask)); | |
8667 deferred->Branch(not_zero); | |
8668 } | |
8669 } | |
8670 deferred->BindExit(); | |
8671 | |
8672 // Postfix count operations return their input converted to | |
8673 // number. The case when the input is already a number is covered | |
8674 // above in the allocation code for old_value. | |
8675 if (is_postfix && !new_value.type_info().IsNumber()) { | |
8676 old_value.set_type_info(TypeInfo::Number()); | |
8677 } | |
8678 | |
8679 // The result of ++ or -- is an Integer32 if the | |
8680 // input is a smi. Otherwise it is a number. | |
8681 if (new_value.is_smi()) { | |
8682 new_value.set_type_info(TypeInfo::Integer32()); | |
8683 } else { | |
8684 new_value.set_type_info(TypeInfo::Number()); | |
8685 } | |
8686 | |
8687 // Postfix: store the old value in the allocated slot under the | |
8688 // reference. | |
8689 if (is_postfix) frame_->SetElementAt(target.size(), &old_value); | |
8690 | |
8691 frame_->Push(&new_value); | |
8692 // Non-constant: update the reference. | |
8693 if (!is_const) target.SetValue(NOT_CONST_INIT); | |
8694 } | |
8695 | |
8696 // Postfix: drop the new value and use the old. | |
8697 if (is_postfix) frame_->Drop(); | |
8698 } | |
8699 | |
8700 | |
8701 void CodeGenerator::Int32BinaryOperation(BinaryOperation* node) { | |
8702 Token::Value op = node->op(); | |
8703 Comment cmnt(masm_, "[ Int32BinaryOperation"); | |
8704 ASSERT(in_safe_int32_mode()); | |
8705 ASSERT(safe_int32_mode_enabled()); | |
8706 ASSERT(FLAG_safe_int32_compiler); | |
8707 | |
8708 if (op == Token::COMMA) { | |
8709 // Discard left value. | |
8710 frame_->Nip(1); | |
8711 return; | |
8712 } | |
8713 | |
8714 Result right = frame_->Pop(); | |
8715 Result left = frame_->Pop(); | |
8716 | |
8717 ASSERT(right.is_untagged_int32()); | |
8718 ASSERT(left.is_untagged_int32()); | |
8719 // Registers containing an int32 value are not multiply used. | |
8720 ASSERT(!left.is_register() || !frame_->is_used(left.reg())); | |
8721 ASSERT(!right.is_register() || !frame_->is_used(right.reg())); | |
8722 | |
8723 switch (op) { | |
8724 case Token::COMMA: | |
8725 case Token::OR: | |
8726 case Token::AND: | |
8727 UNREACHABLE(); | |
8728 break; | |
8729 case Token::BIT_OR: | |
8730 case Token::BIT_XOR: | |
8731 case Token::BIT_AND: | |
8732 if (left.is_constant() || right.is_constant()) { | |
8733 int32_t value; // Put constant in value, non-constant in left. | |
8734 // Constants are known to be int32 values, from static analysis, | |
8735 // or else will be converted to int32 by implicit ECMA [[ToInt32]]. | |
8736 if (left.is_constant()) { | |
8737 ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); | |
8738 value = NumberToInt32(*left.handle()); | |
8739 left = right; | |
8740 } else { | |
8741 ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); | |
8742 value = NumberToInt32(*right.handle()); | |
8743 } | |
8744 | |
8745 left.ToRegister(); | |
8746 if (op == Token::BIT_OR) { | |
8747 __ or_(Operand(left.reg()), Immediate(value)); | |
8748 } else if (op == Token::BIT_XOR) { | |
8749 __ xor_(Operand(left.reg()), Immediate(value)); | |
8750 } else { | |
8751 ASSERT(op == Token::BIT_AND); | |
8752 __ and_(Operand(left.reg()), Immediate(value)); | |
8753 } | |
8754 } else { | |
8755 ASSERT(left.is_register()); | |
8756 ASSERT(right.is_register()); | |
8757 if (op == Token::BIT_OR) { | |
8758 __ or_(left.reg(), Operand(right.reg())); | |
8759 } else if (op == Token::BIT_XOR) { | |
8760 __ xor_(left.reg(), Operand(right.reg())); | |
8761 } else { | |
8762 ASSERT(op == Token::BIT_AND); | |
8763 __ and_(left.reg(), Operand(right.reg())); | |
8764 } | |
8765 } | |
8766 frame_->Push(&left); | |
8767 right.Unuse(); | |
8768 break; | |
8769 case Token::SAR: | |
8770 case Token::SHL: | |
8771 case Token::SHR: { | |
8772 bool test_shr_overflow = false; | |
8773 left.ToRegister(); | |
8774 if (right.is_constant()) { | |
8775 ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); | |
8776 int shift_amount = NumberToInt32(*right.handle()) & 0x1F; | |
8777 if (op == Token::SAR) { | |
8778 __ sar(left.reg(), shift_amount); | |
8779 } else if (op == Token::SHL) { | |
8780 __ shl(left.reg(), shift_amount); | |
8781 } else { | |
8782 ASSERT(op == Token::SHR); | |
8783 __ shr(left.reg(), shift_amount); | |
8784 if (shift_amount == 0) test_shr_overflow = true; | |
8785 } | |
8786 } else { | |
8787 // Move right to ecx | |
8788 if (left.is_register() && left.reg().is(ecx)) { | |
8789 right.ToRegister(); | |
8790 __ xchg(left.reg(), right.reg()); | |
8791 left = right; // Left is unused here, copy of right unused by Push. | |
8792 } else { | |
8793 right.ToRegister(ecx); | |
8794 left.ToRegister(); | |
8795 } | |
8796 if (op == Token::SAR) { | |
8797 __ sar_cl(left.reg()); | |
8798 } else if (op == Token::SHL) { | |
8799 __ shl_cl(left.reg()); | |
8800 } else { | |
8801 ASSERT(op == Token::SHR); | |
8802 __ shr_cl(left.reg()); | |
8803 test_shr_overflow = true; | |
8804 } | |
8805 } | |
8806 { | |
8807 Register left_reg = left.reg(); | |
8808 frame_->Push(&left); | |
8809 right.Unuse(); | |
8810 if (test_shr_overflow && !node->to_int32()) { | |
8811 // Uint32 results with top bit set are not Int32 values. | |
8812 // If they will be forced to Int32, skip the test. | |
8813 // Test is needed because shr with shift amount 0 does not set flags. | |
8814 __ test(left_reg, Operand(left_reg)); | |
8815 unsafe_bailout_->Branch(sign); | |
8816 } | |
8817 } | |
8818 break; | |
8819 } | |
8820 case Token::ADD: | |
8821 case Token::SUB: | |
8822 case Token::MUL: | |
8823 if ((left.is_constant() && op != Token::SUB) || right.is_constant()) { | |
8824 int32_t value; // Put constant in value, non-constant in left. | |
8825 if (right.is_constant()) { | |
8826 ASSERT(right.handle()->IsSmi() || right.handle()->IsHeapNumber()); | |
8827 value = NumberToInt32(*right.handle()); | |
8828 } else { | |
8829 ASSERT(left.handle()->IsSmi() || left.handle()->IsHeapNumber()); | |
8830 value = NumberToInt32(*left.handle()); | |
8831 left = right; | |
8832 } | |
8833 | |
8834 left.ToRegister(); | |
8835 if (op == Token::ADD) { | |
8836 __ add(Operand(left.reg()), Immediate(value)); | |
8837 } else if (op == Token::SUB) { | |
8838 __ sub(Operand(left.reg()), Immediate(value)); | |
8839 } else { | |
8840 ASSERT(op == Token::MUL); | |
8841 __ imul(left.reg(), left.reg(), value); | |
8842 } | |
8843 } else { | |
8844 left.ToRegister(); | |
8845 ASSERT(left.is_register()); | |
8846 ASSERT(right.is_register()); | |
8847 if (op == Token::ADD) { | |
8848 __ add(left.reg(), Operand(right.reg())); | |
8849 } else if (op == Token::SUB) { | |
8850 __ sub(left.reg(), Operand(right.reg())); | |
8851 } else { | |
8852 ASSERT(op == Token::MUL); | |
8853 // We have statically verified that a negative zero can be ignored. | |
8854 __ imul(left.reg(), Operand(right.reg())); | |
8855 } | |
8856 } | |
8857 right.Unuse(); | |
8858 frame_->Push(&left); | |
8859 if (!node->to_int32() || op == Token::MUL) { | |
8860 // If ToInt32 is called on the result of ADD, SUB, we don't | |
8861 // care about overflows. | |
8862 // Result of MUL can be non-representable precisely in double so | |
8863 // we have to check for overflow. | |
8864 unsafe_bailout_->Branch(overflow); | |
8865 } | |
8866 break; | |
8867 case Token::DIV: | |
8868 case Token::MOD: { | |
8869 if (right.is_register() && (right.reg().is(eax) || right.reg().is(edx))) { | |
8870 if (left.is_register() && left.reg().is(edi)) { | |
8871 right.ToRegister(ebx); | |
8872 } else { | |
8873 right.ToRegister(edi); | |
8874 } | |
8875 } | |
8876 left.ToRegister(eax); | |
8877 Result edx_reg = allocator_->Allocate(edx); | |
8878 right.ToRegister(); | |
8879 // The results are unused here because BreakTarget::Branch cannot handle | |
8880 // live results. | |
8881 Register right_reg = right.reg(); | |
8882 left.Unuse(); | |
8883 right.Unuse(); | |
8884 edx_reg.Unuse(); | |
8885 __ cmp(right_reg, 0); | |
8886 // Ensure divisor is positive: no chance of non-int32 or -0 result. | |
8887 unsafe_bailout_->Branch(less_equal); | |
8888 __ cdq(); // Sign-extend eax into edx:eax | |
8889 __ idiv(right_reg); | |
8890 if (op == Token::MOD) { | |
8891 // Negative zero can arise as a negative divident with a zero result. | |
8892 if (!node->no_negative_zero()) { | |
8893 Label not_negative_zero; | |
8894 __ test(edx, Operand(edx)); | |
8895 __ j(not_zero, ¬_negative_zero); | |
8896 __ test(eax, Operand(eax)); | |
8897 unsafe_bailout_->Branch(negative); | |
8898 __ bind(¬_negative_zero); | |
8899 } | |
8900 Result edx_result(edx, TypeInfo::Integer32()); | |
8901 edx_result.set_untagged_int32(true); | |
8902 frame_->Push(&edx_result); | |
8903 } else { | |
8904 ASSERT(op == Token::DIV); | |
8905 __ test(edx, Operand(edx)); | |
8906 unsafe_bailout_->Branch(not_equal); | |
8907 Result eax_result(eax, TypeInfo::Integer32()); | |
8908 eax_result.set_untagged_int32(true); | |
8909 frame_->Push(&eax_result); | |
8910 } | |
8911 break; | |
8912 } | |
8913 default: | |
8914 UNREACHABLE(); | |
8915 break; | |
8916 } | |
8917 } | |
8918 | |
8919 | |
8920 void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { | |
8921 // According to ECMA-262 section 11.11, page 58, the binary logical | |
8922 // operators must yield the result of one of the two expressions | |
8923 // before any ToBoolean() conversions. This means that the value | |
8924 // produced by a && or || operator is not necessarily a boolean. | |
8925 | |
8926 // NOTE: If the left hand side produces a materialized value (not | |
8927 // control flow), we force the right hand side to do the same. This | |
8928 // is necessary because we assume that if we get control flow on the | |
8929 // last path out of an expression we got it on all paths. | |
8930 if (node->op() == Token::AND) { | |
8931 ASSERT(!in_safe_int32_mode()); | |
8932 JumpTarget is_true; | |
8933 ControlDestination dest(&is_true, destination()->false_target(), true); | |
8934 LoadCondition(node->left(), &dest, false); | |
8935 | |
8936 if (dest.false_was_fall_through()) { | |
8937 // The current false target was used as the fall-through. If | |
8938 // there are no dangling jumps to is_true then the left | |
8939 // subexpression was unconditionally false. Otherwise we have | |
8940 // paths where we do have to evaluate the right subexpression. | |
8941 if (is_true.is_linked()) { | |
8942 // We need to compile the right subexpression. If the jump to | |
8943 // the current false target was a forward jump then we have a | |
8944 // valid frame, we have just bound the false target, and we | |
8945 // have to jump around the code for the right subexpression. | |
8946 if (has_valid_frame()) { | |
8947 destination()->false_target()->Unuse(); | |
8948 destination()->false_target()->Jump(); | |
8949 } | |
8950 is_true.Bind(); | |
8951 // The left subexpression compiled to control flow, so the | |
8952 // right one is free to do so as well. | |
8953 LoadCondition(node->right(), destination(), false); | |
8954 } else { | |
8955 // We have actually just jumped to or bound the current false | |
8956 // target but the current control destination is not marked as | |
8957 // used. | |
8958 destination()->Use(false); | |
8959 } | |
8960 | |
8961 } else if (dest.is_used()) { | |
8962 // The left subexpression compiled to control flow (and is_true | |
8963 // was just bound), so the right is free to do so as well. | |
8964 LoadCondition(node->right(), destination(), false); | |
8965 | |
8966 } else { | |
8967 // We have a materialized value on the frame, so we exit with | |
8968 // one on all paths. There are possibly also jumps to is_true | |
8969 // from nested subexpressions. | |
8970 JumpTarget pop_and_continue; | |
8971 JumpTarget exit; | |
8972 | |
8973 // Avoid popping the result if it converts to 'false' using the | |
8974 // standard ToBoolean() conversion as described in ECMA-262, | |
8975 // section 9.2, page 30. | |
8976 // | |
8977 // Duplicate the TOS value. The duplicate will be popped by | |
8978 // ToBoolean. | |
8979 frame_->Dup(); | |
8980 ControlDestination dest(&pop_and_continue, &exit, true); | |
8981 ToBoolean(&dest); | |
8982 | |
8983 // Pop the result of evaluating the first part. | |
8984 frame_->Drop(); | |
8985 | |
8986 // Compile right side expression. | |
8987 is_true.Bind(); | |
8988 Load(node->right()); | |
8989 | |
8990 // Exit (always with a materialized value). | |
8991 exit.Bind(); | |
8992 } | |
8993 | |
8994 } else { | |
8995 ASSERT(node->op() == Token::OR); | |
8996 ASSERT(!in_safe_int32_mode()); | |
8997 JumpTarget is_false; | |
8998 ControlDestination dest(destination()->true_target(), &is_false, false); | |
8999 LoadCondition(node->left(), &dest, false); | |
9000 | |
9001 if (dest.true_was_fall_through()) { | |
9002 // The current true target was used as the fall-through. If | |
9003 // there are no dangling jumps to is_false then the left | |
9004 // subexpression was unconditionally true. Otherwise we have | |
9005 // paths where we do have to evaluate the right subexpression. | |
9006 if (is_false.is_linked()) { | |
9007 // We need to compile the right subexpression. If the jump to | |
9008 // the current true target was a forward jump then we have a | |
9009 // valid frame, we have just bound the true target, and we | |
9010 // have to jump around the code for the right subexpression. | |
9011 if (has_valid_frame()) { | |
9012 destination()->true_target()->Unuse(); | |
9013 destination()->true_target()->Jump(); | |
9014 } | |
9015 is_false.Bind(); | |
9016 // The left subexpression compiled to control flow, so the | |
9017 // right one is free to do so as well. | |
9018 LoadCondition(node->right(), destination(), false); | |
9019 } else { | |
9020 // We have just jumped to or bound the current true target but | |
9021 // the current control destination is not marked as used. | |
9022 destination()->Use(true); | |
9023 } | |
9024 | |
9025 } else if (dest.is_used()) { | |
9026 // The left subexpression compiled to control flow (and is_false | |
9027 // was just bound), so the right is free to do so as well. | |
9028 LoadCondition(node->right(), destination(), false); | |
9029 | |
9030 } else { | |
9031 // We have a materialized value on the frame, so we exit with | |
9032 // one on all paths. There are possibly also jumps to is_false | |
9033 // from nested subexpressions. | |
9034 JumpTarget pop_and_continue; | |
9035 JumpTarget exit; | |
9036 | |
9037 // Avoid popping the result if it converts to 'true' using the | |
9038 // standard ToBoolean() conversion as described in ECMA-262, | |
9039 // section 9.2, page 30. | |
9040 // | |
9041 // Duplicate the TOS value. The duplicate will be popped by | |
9042 // ToBoolean. | |
9043 frame_->Dup(); | |
9044 ControlDestination dest(&exit, &pop_and_continue, false); | |
9045 ToBoolean(&dest); | |
9046 | |
9047 // Pop the result of evaluating the first part. | |
9048 frame_->Drop(); | |
9049 | |
9050 // Compile right side expression. | |
9051 is_false.Bind(); | |
9052 Load(node->right()); | |
9053 | |
9054 // Exit (always with a materialized value). | |
9055 exit.Bind(); | |
9056 } | |
9057 } | |
9058 } | |
9059 | |
9060 | |
9061 void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { | |
9062 Comment cmnt(masm_, "[ BinaryOperation"); | |
9063 | |
9064 if (node->op() == Token::AND || node->op() == Token::OR) { | |
9065 GenerateLogicalBooleanOperation(node); | |
9066 } else if (in_safe_int32_mode()) { | |
9067 Visit(node->left()); | |
9068 Visit(node->right()); | |
9069 Int32BinaryOperation(node); | |
9070 } else { | |
9071 // NOTE: The code below assumes that the slow cases (calls to runtime) | |
9072 // never return a constant/immutable object. | |
9073 OverwriteMode overwrite_mode = NO_OVERWRITE; | |
9074 if (node->left()->ResultOverwriteAllowed()) { | |
9075 overwrite_mode = OVERWRITE_LEFT; | |
9076 } else if (node->right()->ResultOverwriteAllowed()) { | |
9077 overwrite_mode = OVERWRITE_RIGHT; | |
9078 } | |
9079 | |
9080 if (node->left()->IsTrivial()) { | |
9081 Load(node->right()); | |
9082 Result right = frame_->Pop(); | |
9083 frame_->Push(node->left()); | |
9084 frame_->Push(&right); | |
9085 } else { | |
9086 Load(node->left()); | |
9087 Load(node->right()); | |
9088 } | |
9089 GenericBinaryOperation(node, overwrite_mode); | |
9090 } | |
9091 } | |
9092 | |
9093 | |
9094 void CodeGenerator::VisitThisFunction(ThisFunction* node) { | |
9095 ASSERT(!in_safe_int32_mode()); | |
9096 frame_->PushFunction(); | |
9097 } | |
9098 | |
9099 | |
9100 void CodeGenerator::VisitCompareOperation(CompareOperation* node) { | |
9101 ASSERT(!in_safe_int32_mode()); | |
9102 Comment cmnt(masm_, "[ CompareOperation"); | |
9103 | |
9104 bool left_already_loaded = false; | |
9105 | |
9106 // Get the expressions from the node. | |
9107 Expression* left = node->left(); | |
9108 Expression* right = node->right(); | |
9109 Token::Value op = node->op(); | |
9110 // To make typeof testing for natives implemented in JavaScript really | |
9111 // efficient, we generate special code for expressions of the form: | |
9112 // 'typeof <expression> == <string>'. | |
9113 UnaryOperation* operation = left->AsUnaryOperation(); | |
9114 if ((op == Token::EQ || op == Token::EQ_STRICT) && | |
9115 (operation != NULL && operation->op() == Token::TYPEOF) && | |
9116 (right->AsLiteral() != NULL && | |
9117 right->AsLiteral()->handle()->IsString())) { | |
9118 Handle<String> check(String::cast(*right->AsLiteral()->handle())); | |
9119 | |
9120 // Load the operand and move it to a register. | |
9121 LoadTypeofExpression(operation->expression()); | |
9122 Result answer = frame_->Pop(); | |
9123 answer.ToRegister(); | |
9124 | |
9125 if (check->Equals(HEAP->number_symbol())) { | |
9126 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
9127 destination()->true_target()->Branch(zero); | |
9128 frame_->Spill(answer.reg()); | |
9129 __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); | |
9130 __ cmp(answer.reg(), FACTORY->heap_number_map()); | |
9131 answer.Unuse(); | |
9132 destination()->Split(equal); | |
9133 | |
9134 } else if (check->Equals(HEAP->string_symbol())) { | |
9135 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
9136 destination()->false_target()->Branch(zero); | |
9137 | |
9138 // It can be an undetectable string object. | |
9139 Result temp = allocator()->Allocate(); | |
9140 ASSERT(temp.is_valid()); | |
9141 __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); | |
9142 __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), | |
9143 1 << Map::kIsUndetectable); | |
9144 destination()->false_target()->Branch(not_zero); | |
9145 __ CmpInstanceType(temp.reg(), FIRST_NONSTRING_TYPE); | |
9146 temp.Unuse(); | |
9147 answer.Unuse(); | |
9148 destination()->Split(below); | |
9149 | |
9150 } else if (check->Equals(HEAP->boolean_symbol())) { | |
9151 __ cmp(answer.reg(), FACTORY->true_value()); | |
9152 destination()->true_target()->Branch(equal); | |
9153 __ cmp(answer.reg(), FACTORY->false_value()); | |
9154 answer.Unuse(); | |
9155 destination()->Split(equal); | |
9156 | |
9157 } else if (check->Equals(HEAP->undefined_symbol())) { | |
9158 __ cmp(answer.reg(), FACTORY->undefined_value()); | |
9159 destination()->true_target()->Branch(equal); | |
9160 | |
9161 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
9162 destination()->false_target()->Branch(zero); | |
9163 | |
9164 // It can be an undetectable object. | |
9165 frame_->Spill(answer.reg()); | |
9166 __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); | |
9167 __ test_b(FieldOperand(answer.reg(), Map::kBitFieldOffset), | |
9168 1 << Map::kIsUndetectable); | |
9169 answer.Unuse(); | |
9170 destination()->Split(not_zero); | |
9171 | |
9172 } else if (check->Equals(HEAP->function_symbol())) { | |
9173 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
9174 destination()->false_target()->Branch(zero); | |
9175 frame_->Spill(answer.reg()); | |
9176 __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); | |
9177 destination()->true_target()->Branch(equal); | |
9178 // Regular expressions are callable so typeof == 'function'. | |
9179 __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); | |
9180 answer.Unuse(); | |
9181 destination()->Split(equal); | |
9182 } else if (check->Equals(HEAP->object_symbol())) { | |
9183 __ test(answer.reg(), Immediate(kSmiTagMask)); | |
9184 destination()->false_target()->Branch(zero); | |
9185 __ cmp(answer.reg(), FACTORY->null_value()); | |
9186 destination()->true_target()->Branch(equal); | |
9187 | |
9188 Result map = allocator()->Allocate(); | |
9189 ASSERT(map.is_valid()); | |
9190 // Regular expressions are typeof == 'function', not 'object'. | |
9191 __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg()); | |
9192 destination()->false_target()->Branch(equal); | |
9193 | |
9194 // It can be an undetectable object. | |
9195 __ test_b(FieldOperand(map.reg(), Map::kBitFieldOffset), | |
9196 1 << Map::kIsUndetectable); | |
9197 destination()->false_target()->Branch(not_zero); | |
9198 // Do a range test for JSObject type. We can't use | |
9199 // MacroAssembler::IsInstanceJSObjectType, because we are using a | |
9200 // ControlDestination, so we copy its implementation here. | |
9201 __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); | |
9202 __ sub(Operand(map.reg()), Immediate(FIRST_JS_OBJECT_TYPE)); | |
9203 __ cmp(map.reg(), LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE); | |
9204 answer.Unuse(); | |
9205 map.Unuse(); | |
9206 destination()->Split(below_equal); | |
9207 } else { | |
9208 // Uncommon case: typeof testing against a string literal that is | |
9209 // never returned from the typeof operator. | |
9210 answer.Unuse(); | |
9211 destination()->Goto(false); | |
9212 } | |
9213 return; | |
9214 } else if (op == Token::LT && | |
9215 right->AsLiteral() != NULL && | |
9216 right->AsLiteral()->handle()->IsHeapNumber()) { | |
9217 Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle())); | |
9218 if (check->value() == 2147483648.0) { // 0x80000000. | |
9219 Load(left); | |
9220 left_already_loaded = true; | |
9221 Result lhs = frame_->Pop(); | |
9222 lhs.ToRegister(); | |
9223 __ test(lhs.reg(), Immediate(kSmiTagMask)); | |
9224 destination()->true_target()->Branch(zero); // All Smis are less. | |
9225 Result scratch = allocator()->Allocate(); | |
9226 ASSERT(scratch.is_valid()); | |
9227 __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset)); | |
9228 __ cmp(scratch.reg(), FACTORY->heap_number_map()); | |
9229 JumpTarget not_a_number; | |
9230 not_a_number.Branch(not_equal, &lhs); | |
9231 __ mov(scratch.reg(), | |
9232 FieldOperand(lhs.reg(), HeapNumber::kExponentOffset)); | |
9233 __ cmp(Operand(scratch.reg()), Immediate(0xfff00000)); | |
9234 not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf. | |
9235 const uint32_t borderline_exponent = | |
9236 (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; | |
9237 __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent)); | |
9238 scratch.Unuse(); | |
9239 lhs.Unuse(); | |
9240 destination()->true_target()->Branch(less); | |
9241 destination()->false_target()->Jump(); | |
9242 | |
9243 not_a_number.Bind(&lhs); | |
9244 frame_->Push(&lhs); | |
9245 } | |
9246 } | |
9247 | |
9248 Condition cc = no_condition; | |
9249 bool strict = false; | |
9250 switch (op) { | |
9251 case Token::EQ_STRICT: | |
9252 strict = true; | |
9253 // Fall through | |
9254 case Token::EQ: | |
9255 cc = equal; | |
9256 break; | |
9257 case Token::LT: | |
9258 cc = less; | |
9259 break; | |
9260 case Token::GT: | |
9261 cc = greater; | |
9262 break; | |
9263 case Token::LTE: | |
9264 cc = less_equal; | |
9265 break; | |
9266 case Token::GTE: | |
9267 cc = greater_equal; | |
9268 break; | |
9269 case Token::IN: { | |
9270 if (!left_already_loaded) Load(left); | |
9271 Load(right); | |
9272 Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); | |
9273 frame_->Push(&answer); // push the result | |
9274 return; | |
9275 } | |
9276 case Token::INSTANCEOF: { | |
9277 if (!left_already_loaded) Load(left); | |
9278 Load(right); | |
9279 InstanceofStub stub(InstanceofStub::kNoFlags); | |
9280 Result answer = frame_->CallStub(&stub, 2); | |
9281 answer.ToRegister(); | |
9282 __ test(answer.reg(), Operand(answer.reg())); | |
9283 answer.Unuse(); | |
9284 destination()->Split(zero); | |
9285 return; | |
9286 } | |
9287 default: | |
9288 UNREACHABLE(); | |
9289 } | |
9290 | |
9291 if (left->IsTrivial()) { | |
9292 if (!left_already_loaded) { | |
9293 Load(right); | |
9294 Result right_result = frame_->Pop(); | |
9295 frame_->Push(left); | |
9296 frame_->Push(&right_result); | |
9297 } else { | |
9298 Load(right); | |
9299 } | |
9300 } else { | |
9301 if (!left_already_loaded) Load(left); | |
9302 Load(right); | |
9303 } | |
9304 Comparison(node, cc, strict, destination()); | |
9305 } | |
9306 | |
9307 | |
9308 void CodeGenerator::VisitCompareToNull(CompareToNull* node) { | |
9309 ASSERT(!in_safe_int32_mode()); | |
9310 Comment cmnt(masm_, "[ CompareToNull"); | |
9311 | |
9312 Load(node->expression()); | |
9313 Result operand = frame_->Pop(); | |
9314 operand.ToRegister(); | |
9315 __ cmp(operand.reg(), FACTORY->null_value()); | |
9316 if (node->is_strict()) { | |
9317 operand.Unuse(); | |
9318 destination()->Split(equal); | |
9319 } else { | |
9320 // The 'null' value is only equal to 'undefined' if using non-strict | |
9321 // comparisons. | |
9322 destination()->true_target()->Branch(equal); | |
9323 __ cmp(operand.reg(), FACTORY->undefined_value()); | |
9324 destination()->true_target()->Branch(equal); | |
9325 __ test(operand.reg(), Immediate(kSmiTagMask)); | |
9326 destination()->false_target()->Branch(equal); | |
9327 | |
9328 // It can be an undetectable object. | |
9329 // Use a scratch register in preference to spilling operand.reg(). | |
9330 Result temp = allocator()->Allocate(); | |
9331 ASSERT(temp.is_valid()); | |
9332 __ mov(temp.reg(), | |
9333 FieldOperand(operand.reg(), HeapObject::kMapOffset)); | |
9334 __ test_b(FieldOperand(temp.reg(), Map::kBitFieldOffset), | |
9335 1 << Map::kIsUndetectable); | |
9336 temp.Unuse(); | |
9337 operand.Unuse(); | |
9338 destination()->Split(not_zero); | |
9339 } | |
9340 } | |
9341 | |
9342 | |
9343 #ifdef DEBUG | |
9344 bool CodeGenerator::HasValidEntryRegisters() { | |
9345 return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) | |
9346 && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) | |
9347 && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) | |
9348 && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) | |
9349 && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); | |
9350 } | |
9351 #endif | |
9352 | |
9353 | |
9354 // Emit a LoadIC call to get the value from receiver and leave it in | |
9355 // dst. | |
9356 class DeferredReferenceGetNamedValue: public DeferredCode { | |
9357 public: | |
9358 DeferredReferenceGetNamedValue(Register dst, | |
9359 Register receiver, | |
9360 Handle<String> name, | |
9361 bool is_contextual) | |
9362 : dst_(dst), | |
9363 receiver_(receiver), | |
9364 name_(name), | |
9365 is_contextual_(is_contextual), | |
9366 is_dont_delete_(false) { | |
9367 set_comment(is_contextual | |
9368 ? "[ DeferredReferenceGetNamedValue (contextual)" | |
9369 : "[ DeferredReferenceGetNamedValue"); | |
9370 } | |
9371 | |
9372 virtual void Generate(); | |
9373 | |
9374 Label* patch_site() { return &patch_site_; } | |
9375 | |
9376 void set_is_dont_delete(bool value) { | |
9377 ASSERT(is_contextual_); | |
9378 is_dont_delete_ = value; | |
9379 } | |
9380 | |
9381 private: | |
9382 Label patch_site_; | |
9383 Register dst_; | |
9384 Register receiver_; | |
9385 Handle<String> name_; | |
9386 bool is_contextual_; | |
9387 bool is_dont_delete_; | |
9388 }; | |
9389 | |
9390 | |
9391 void DeferredReferenceGetNamedValue::Generate() { | |
9392 if (!receiver_.is(eax)) { | |
9393 __ mov(eax, receiver_); | |
9394 } | |
9395 __ Set(ecx, Immediate(name_)); | |
9396 Handle<Code> ic(masm()->isolate()->builtins()->builtin( | |
9397 Builtins::kLoadIC_Initialize)); | |
9398 RelocInfo::Mode mode = is_contextual_ | |
9399 ? RelocInfo::CODE_TARGET_CONTEXT | |
9400 : RelocInfo::CODE_TARGET; | |
9401 __ call(ic, mode); | |
9402 // The call must be followed by: | |
9403 // - a test eax instruction to indicate that the inobject property | |
9404 // case was inlined. | |
9405 // - a mov ecx or mov edx instruction to indicate that the | |
9406 // contextual property load was inlined. | |
9407 // | |
9408 // Store the delta to the map check instruction here in the test | |
9409 // instruction. Use masm_-> instead of the __ macro since the | |
9410 // latter can't return a value. | |
9411 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); | |
9412 // Here we use masm_-> instead of the __ macro because this is the | |
9413 // instruction that gets patched and coverage code gets in the way. | |
9414 Counters* counters = masm()->isolate()->counters(); | |
9415 if (is_contextual_) { | |
9416 masm_->mov(is_dont_delete_ ? edx : ecx, -delta_to_patch_site); | |
9417 __ IncrementCounter(counters->named_load_global_inline_miss(), 1); | |
9418 if (is_dont_delete_) { | |
9419 __ IncrementCounter(counters->dont_delete_hint_miss(), 1); | |
9420 } | |
9421 } else { | |
9422 masm_->test(eax, Immediate(-delta_to_patch_site)); | |
9423 __ IncrementCounter(counters->named_load_inline_miss(), 1); | |
9424 } | |
9425 | |
9426 if (!dst_.is(eax)) __ mov(dst_, eax); | |
9427 } | |
9428 | |
9429 | |
9430 class DeferredReferenceGetKeyedValue: public DeferredCode { | |
9431 public: | |
9432 explicit DeferredReferenceGetKeyedValue(Register dst, | |
9433 Register receiver, | |
9434 Register key) | |
9435 : dst_(dst), receiver_(receiver), key_(key) { | |
9436 set_comment("[ DeferredReferenceGetKeyedValue"); | |
9437 } | |
9438 | |
9439 virtual void Generate(); | |
9440 | |
9441 Label* patch_site() { return &patch_site_; } | |
9442 | |
9443 private: | |
9444 Label patch_site_; | |
9445 Register dst_; | |
9446 Register receiver_; | |
9447 Register key_; | |
9448 }; | |
9449 | |
9450 | |
9451 void DeferredReferenceGetKeyedValue::Generate() { | |
9452 if (!receiver_.is(eax)) { | |
9453 // Register eax is available for key. | |
9454 if (!key_.is(eax)) { | |
9455 __ mov(eax, key_); | |
9456 } | |
9457 if (!receiver_.is(edx)) { | |
9458 __ mov(edx, receiver_); | |
9459 } | |
9460 } else if (!key_.is(edx)) { | |
9461 // Register edx is available for receiver. | |
9462 if (!receiver_.is(edx)) { | |
9463 __ mov(edx, receiver_); | |
9464 } | |
9465 if (!key_.is(eax)) { | |
9466 __ mov(eax, key_); | |
9467 } | |
9468 } else { | |
9469 __ xchg(edx, eax); | |
9470 } | |
9471 // Calculate the delta from the IC call instruction to the map check | |
9472 // cmp instruction in the inlined version. This delta is stored in | |
9473 // a test(eax, delta) instruction after the call so that we can find | |
9474 // it in the IC initialization code and patch the cmp instruction. | |
9475 // This means that we cannot allow test instructions after calls to | |
9476 // KeyedLoadIC stubs in other places. | |
9477 Handle<Code> ic(masm()->isolate()->builtins()->builtin( | |
9478 Builtins::kKeyedLoadIC_Initialize)); | |
9479 __ call(ic, RelocInfo::CODE_TARGET); | |
9480 // The delta from the start of the map-compare instruction to the | |
9481 // test instruction. We use masm_-> directly here instead of the __ | |
9482 // macro because the macro sometimes uses macro expansion to turn | |
9483 // into something that can't return a value. This is encountered | |
9484 // when doing generated code coverage tests. | |
9485 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); | |
9486 // Here we use masm_-> instead of the __ macro because this is the | |
9487 // instruction that gets patched and coverage code gets in the way. | |
9488 masm_->test(eax, Immediate(-delta_to_patch_site)); | |
9489 Counters* counters = masm()->isolate()->counters(); | |
9490 __ IncrementCounter(counters->keyed_load_inline_miss(), 1); | |
9491 | |
9492 if (!dst_.is(eax)) __ mov(dst_, eax); | |
9493 } | |
9494 | |
9495 | |
9496 class DeferredReferenceSetKeyedValue: public DeferredCode { | |
9497 public: | |
9498 DeferredReferenceSetKeyedValue(Register value, | |
9499 Register key, | |
9500 Register receiver, | |
9501 Register scratch, | |
9502 StrictModeFlag strict_mode) | |
9503 : value_(value), | |
9504 key_(key), | |
9505 receiver_(receiver), | |
9506 scratch_(scratch), | |
9507 strict_mode_(strict_mode) { | |
9508 set_comment("[ DeferredReferenceSetKeyedValue"); | |
9509 } | |
9510 | |
9511 virtual void Generate(); | |
9512 | |
9513 Label* patch_site() { return &patch_site_; } | |
9514 | |
9515 private: | |
9516 Register value_; | |
9517 Register key_; | |
9518 Register receiver_; | |
9519 Register scratch_; | |
9520 Label patch_site_; | |
9521 StrictModeFlag strict_mode_; | |
9522 }; | |
9523 | |
9524 | |
9525 void DeferredReferenceSetKeyedValue::Generate() { | |
9526 Counters* counters = masm()->isolate()->counters(); | |
9527 __ IncrementCounter(counters->keyed_store_inline_miss(), 1); | |
9528 // Move value_ to eax, key_ to ecx, and receiver_ to edx. | |
9529 Register old_value = value_; | |
9530 | |
9531 // First, move value to eax. | |
9532 if (!value_.is(eax)) { | |
9533 if (key_.is(eax)) { | |
9534 // Move key_ out of eax, preferably to ecx. | |
9535 if (!value_.is(ecx) && !receiver_.is(ecx)) { | |
9536 __ mov(ecx, key_); | |
9537 key_ = ecx; | |
9538 } else { | |
9539 __ mov(scratch_, key_); | |
9540 key_ = scratch_; | |
9541 } | |
9542 } | |
9543 if (receiver_.is(eax)) { | |
9544 // Move receiver_ out of eax, preferably to edx. | |
9545 if (!value_.is(edx) && !key_.is(edx)) { | |
9546 __ mov(edx, receiver_); | |
9547 receiver_ = edx; | |
9548 } else { | |
9549 // Both moves to scratch are from eax, also, no valid path hits both. | |
9550 __ mov(scratch_, receiver_); | |
9551 receiver_ = scratch_; | |
9552 } | |
9553 } | |
9554 __ mov(eax, value_); | |
9555 value_ = eax; | |
9556 } | |
9557 | |
9558 // Now value_ is in eax. Move the other two to the right positions. | |
9559 // We do not update the variables key_ and receiver_ to ecx and edx. | |
9560 if (key_.is(ecx)) { | |
9561 if (!receiver_.is(edx)) { | |
9562 __ mov(edx, receiver_); | |
9563 } | |
9564 } else if (key_.is(edx)) { | |
9565 if (receiver_.is(ecx)) { | |
9566 __ xchg(edx, ecx); | |
9567 } else { | |
9568 __ mov(ecx, key_); | |
9569 if (!receiver_.is(edx)) { | |
9570 __ mov(edx, receiver_); | |
9571 } | |
9572 } | |
9573 } else { // Key is not in edx or ecx. | |
9574 if (!receiver_.is(edx)) { | |
9575 __ mov(edx, receiver_); | |
9576 } | |
9577 __ mov(ecx, key_); | |
9578 } | |
9579 | |
9580 // Call the IC stub. | |
9581 Handle<Code> ic(masm()->isolate()->builtins()->builtin( | |
9582 (strict_mode_ == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict | |
9583 : Builtins::kKeyedStoreIC_Initialize)); | |
9584 __ call(ic, RelocInfo::CODE_TARGET); | |
9585 // The delta from the start of the map-compare instruction to the | |
9586 // test instruction. We use masm_-> directly here instead of the | |
9587 // __ macro because the macro sometimes uses macro expansion to turn | |
9588 // into something that can't return a value. This is encountered | |
9589 // when doing generated code coverage tests. | |
9590 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); | |
9591 // Here we use masm_-> instead of the __ macro because this is the | |
9592 // instruction that gets patched and coverage code gets in the way. | |
9593 masm_->test(eax, Immediate(-delta_to_patch_site)); | |
9594 // Restore value (returned from store IC) register. | |
9595 if (!old_value.is(eax)) __ mov(old_value, eax); | |
9596 } | |
9597 | |
9598 | |
9599 Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { | |
9600 #ifdef DEBUG | |
9601 int original_height = frame()->height(); | |
9602 #endif | |
9603 | |
9604 Isolate* isolate = masm()->isolate(); | |
9605 Factory* factory = isolate->factory(); | |
9606 Counters* counters = isolate->counters(); | |
9607 | |
9608 bool contextual_load_in_builtin = | |
9609 is_contextual && | |
9610 (isolate->bootstrapper()->IsActive() || | |
9611 (!info_->closure().is_null() && info_->closure()->IsBuiltin())); | |
9612 | |
9613 Result result; | |
9614 // Do not inline in the global code or when not in loop. | |
9615 if (scope()->is_global_scope() || | |
9616 loop_nesting() == 0 || | |
9617 contextual_load_in_builtin) { | |
9618 Comment cmnt(masm(), "[ Load from named Property"); | |
9619 frame()->Push(name); | |
9620 | |
9621 RelocInfo::Mode mode = is_contextual | |
9622 ? RelocInfo::CODE_TARGET_CONTEXT | |
9623 : RelocInfo::CODE_TARGET; | |
9624 result = frame()->CallLoadIC(mode); | |
9625 // A test eax instruction following the call signals that the inobject | |
9626 // property case was inlined. Ensure that there is not a test eax | |
9627 // instruction here. | |
9628 __ nop(); | |
9629 } else { | |
9630 // Inline the property load. | |
9631 Comment cmnt(masm(), is_contextual | |
9632 ? "[ Inlined contextual property load" | |
9633 : "[ Inlined named property load"); | |
9634 Result receiver = frame()->Pop(); | |
9635 receiver.ToRegister(); | |
9636 | |
9637 result = allocator()->Allocate(); | |
9638 ASSERT(result.is_valid()); | |
9639 DeferredReferenceGetNamedValue* deferred = | |
9640 new DeferredReferenceGetNamedValue(result.reg(), | |
9641 receiver.reg(), | |
9642 name, | |
9643 is_contextual); | |
9644 | |
9645 if (!is_contextual) { | |
9646 // Check that the receiver is a heap object. | |
9647 __ test(receiver.reg(), Immediate(kSmiTagMask)); | |
9648 deferred->Branch(zero); | |
9649 } | |
9650 | |
9651 __ bind(deferred->patch_site()); | |
9652 // This is the map check instruction that will be patched (so we can't | |
9653 // use the double underscore macro that may insert instructions). | |
9654 // Initially use an invalid map to force a failure. | |
9655 masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), | |
9656 Immediate(factory->null_value())); | |
9657 // This branch is always a forwards branch so it's always a fixed size | |
9658 // which allows the assert below to succeed and patching to work. | |
9659 deferred->Branch(not_equal); | |
9660 | |
9661 // The delta from the patch label to the actual load must be | |
9662 // statically known. | |
9663 ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == | |
9664 LoadIC::kOffsetToLoadInstruction); | |
9665 | |
9666 if (is_contextual) { | |
9667 // Load the (initialy invalid) cell and get its value. | |
9668 masm()->mov(result.reg(), factory->null_value()); | |
9669 if (FLAG_debug_code) { | |
9670 __ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset), | |
9671 factory->global_property_cell_map()); | |
9672 __ Assert(equal, "Uninitialized inlined contextual load"); | |
9673 } | |
9674 __ mov(result.reg(), | |
9675 FieldOperand(result.reg(), JSGlobalPropertyCell::kValueOffset)); | |
9676 __ cmp(result.reg(), factory->the_hole_value()); | |
9677 deferred->Branch(equal); | |
9678 bool is_dont_delete = false; | |
9679 if (!info_->closure().is_null()) { | |
9680 // When doing lazy compilation we can check if the global cell | |
9681 // already exists and use its "don't delete" status as a hint. | |
9682 AssertNoAllocation no_gc; | |
9683 v8::internal::GlobalObject* global_object = | |
9684 info_->closure()->context()->global(); | |
9685 LookupResult lookup; | |
9686 global_object->LocalLookupRealNamedProperty(*name, &lookup); | |
9687 if (lookup.IsProperty() && lookup.type() == NORMAL) { | |
9688 ASSERT(lookup.holder() == global_object); | |
9689 ASSERT(global_object->property_dictionary()->ValueAt( | |
9690 lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); | |
9691 is_dont_delete = lookup.IsDontDelete(); | |
9692 } | |
9693 } | |
9694 deferred->set_is_dont_delete(is_dont_delete); | |
9695 if (!is_dont_delete) { | |
9696 __ cmp(result.reg(), factory->the_hole_value()); | |
9697 deferred->Branch(equal); | |
9698 } else if (FLAG_debug_code) { | |
9699 __ cmp(result.reg(), factory->the_hole_value()); | |
9700 __ Check(not_equal, "DontDelete cells can't contain the hole"); | |
9701 } | |
9702 __ IncrementCounter(counters->named_load_global_inline(), 1); | |
9703 if (is_dont_delete) { | |
9704 __ IncrementCounter(counters->dont_delete_hint_hit(), 1); | |
9705 } | |
9706 } else { | |
9707 // The initial (invalid) offset has to be large enough to force a 32-bit | |
9708 // instruction encoding to allow patching with an arbitrary offset. Use | |
9709 // kMaxInt (minus kHeapObjectTag). | |
9710 int offset = kMaxInt; | |
9711 masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset)); | |
9712 __ IncrementCounter(counters->named_load_inline(), 1); | |
9713 } | |
9714 | |
9715 deferred->BindExit(); | |
9716 } | |
9717 ASSERT(frame()->height() == original_height - 1); | |
9718 return result; | |
9719 } | |
9720 | |
9721 | |
9722 Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { | |
9723 #ifdef DEBUG | |
9724 int expected_height = frame()->height() - (is_contextual ? 1 : 2); | |
9725 #endif | |
9726 | |
9727 Result result; | |
9728 if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { | |
9729 result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); | |
9730 // A test eax instruction following the call signals that the inobject | |
9731 // property case was inlined. Ensure that there is not a test eax | |
9732 // instruction here. | |
9733 __ nop(); | |
9734 } else { | |
9735 // Inline the in-object property case. | |
9736 JumpTarget slow, done; | |
9737 Label patch_site; | |
9738 | |
9739 // Get the value and receiver from the stack. | |
9740 Result value = frame()->Pop(); | |
9741 value.ToRegister(); | |
9742 Result receiver = frame()->Pop(); | |
9743 receiver.ToRegister(); | |
9744 | |
9745 // Allocate result register. | |
9746 result = allocator()->Allocate(); | |
9747 ASSERT(result.is_valid() && receiver.is_valid() && value.is_valid()); | |
9748 | |
9749 // Check that the receiver is a heap object. | |
9750 __ test(receiver.reg(), Immediate(kSmiTagMask)); | |
9751 slow.Branch(zero, &value, &receiver); | |
9752 | |
9753 // This is the map check instruction that will be patched (so we can't | |
9754 // use the double underscore macro that may insert instructions). | |
9755 // Initially use an invalid map to force a failure. | |
9756 __ bind(&patch_site); | |
9757 masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), | |
9758 Immediate(FACTORY->null_value())); | |
9759 // This branch is always a forwards branch so it's always a fixed size | |
9760 // which allows the assert below to succeed and patching to work. | |
9761 slow.Branch(not_equal, &value, &receiver); | |
9762 | |
9763 // The delta from the patch label to the store offset must be | |
9764 // statically known. | |
9765 ASSERT(masm()->SizeOfCodeGeneratedSince(&patch_site) == | |
9766 StoreIC::kOffsetToStoreInstruction); | |
9767 | |
9768 // The initial (invalid) offset has to be large enough to force a 32-bit | |
9769 // instruction encoding to allow patching with an arbitrary offset. Use | |
9770 // kMaxInt (minus kHeapObjectTag). | |
9771 int offset = kMaxInt; | |
9772 __ mov(FieldOperand(receiver.reg(), offset), value.reg()); | |
9773 __ mov(result.reg(), Operand(value.reg())); | |
9774 | |
9775 // Allocate scratch register for write barrier. | |
9776 Result scratch = allocator()->Allocate(); | |
9777 ASSERT(scratch.is_valid()); | |
9778 | |
9779 // The write barrier clobbers all input registers, so spill the | |
9780 // receiver and the value. | |
9781 frame_->Spill(receiver.reg()); | |
9782 frame_->Spill(value.reg()); | |
9783 | |
9784 // If the receiver and the value share a register allocate a new | |
9785 // register for the receiver. | |
9786 if (receiver.reg().is(value.reg())) { | |
9787 receiver = allocator()->Allocate(); | |
9788 ASSERT(receiver.is_valid()); | |
9789 __ mov(receiver.reg(), Operand(value.reg())); | |
9790 } | |
9791 | |
9792 // Update the write barrier. To save instructions in the inlined | |
9793 // version we do not filter smis. | |
9794 Label skip_write_barrier; | |
9795 __ InNewSpace(receiver.reg(), value.reg(), equal, &skip_write_barrier); | |
9796 int delta_to_record_write = masm_->SizeOfCodeGeneratedSince(&patch_site); | |
9797 __ lea(scratch.reg(), Operand(receiver.reg(), offset)); | |
9798 __ RecordWriteHelper(receiver.reg(), scratch.reg(), value.reg()); | |
9799 if (FLAG_debug_code) { | |
9800 __ mov(receiver.reg(), Immediate(BitCast<int32_t>(kZapValue))); | |
9801 __ mov(value.reg(), Immediate(BitCast<int32_t>(kZapValue))); | |
9802 __ mov(scratch.reg(), Immediate(BitCast<int32_t>(kZapValue))); | |
9803 } | |
9804 __ bind(&skip_write_barrier); | |
9805 value.Unuse(); | |
9806 scratch.Unuse(); | |
9807 receiver.Unuse(); | |
9808 done.Jump(&result); | |
9809 | |
9810 slow.Bind(&value, &receiver); | |
9811 frame()->Push(&receiver); | |
9812 frame()->Push(&value); | |
9813 result = frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); | |
9814 // Encode the offset to the map check instruction and the offset | |
9815 // to the write barrier store address computation in a test eax | |
9816 // instruction. | |
9817 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site); | |
9818 __ test(eax, | |
9819 Immediate((delta_to_record_write << 16) | delta_to_patch_site)); | |
9820 done.Bind(&result); | |
9821 } | |
9822 | |
9823 ASSERT_EQ(expected_height, frame()->height()); | |
9824 return result; | |
9825 } | |
9826 | |
9827 | |
9828 Result CodeGenerator::EmitKeyedLoad() { | |
9829 #ifdef DEBUG | |
9830 int original_height = frame()->height(); | |
9831 #endif | |
9832 Result result; | |
9833 // Inline array load code if inside of a loop. We do not know the | |
9834 // receiver map yet, so we initially generate the code with a check | |
9835 // against an invalid map. In the inline cache code, we patch the map | |
9836 // check if appropriate. | |
9837 if (loop_nesting() > 0) { | |
9838 Comment cmnt(masm_, "[ Inlined load from keyed Property"); | |
9839 | |
9840 // Use a fresh temporary to load the elements without destroying | |
9841 // the receiver which is needed for the deferred slow case. | |
9842 Result elements = allocator()->Allocate(); | |
9843 ASSERT(elements.is_valid()); | |
9844 | |
9845 Result key = frame_->Pop(); | |
9846 Result receiver = frame_->Pop(); | |
9847 key.ToRegister(); | |
9848 receiver.ToRegister(); | |
9849 | |
9850 // If key and receiver are shared registers on the frame, their values will | |
9851 // be automatically saved and restored when going to deferred code. | |
9852 // The result is in elements, which is guaranteed non-shared. | |
9853 DeferredReferenceGetKeyedValue* deferred = | |
9854 new DeferredReferenceGetKeyedValue(elements.reg(), | |
9855 receiver.reg(), | |
9856 key.reg()); | |
9857 | |
9858 __ test(receiver.reg(), Immediate(kSmiTagMask)); | |
9859 deferred->Branch(zero); | |
9860 | |
9861 // Check that the receiver has the expected map. | |
9862 // Initially, use an invalid map. The map is patched in the IC | |
9863 // initialization code. | |
9864 __ bind(deferred->patch_site()); | |
9865 // Use masm-> here instead of the double underscore macro since extra | |
9866 // coverage code can interfere with the patching. | |
9867 masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), | |
9868 Immediate(FACTORY->null_value())); | |
9869 deferred->Branch(not_equal); | |
9870 | |
9871 // Check that the key is a smi. | |
9872 if (!key.is_smi()) { | |
9873 __ test(key.reg(), Immediate(kSmiTagMask)); | |
9874 deferred->Branch(not_zero); | |
9875 } else { | |
9876 if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); | |
9877 } | |
9878 | |
9879 // Get the elements array from the receiver. | |
9880 __ mov(elements.reg(), | |
9881 FieldOperand(receiver.reg(), JSObject::kElementsOffset)); | |
9882 __ AssertFastElements(elements.reg()); | |
9883 | |
9884 // Check that the key is within bounds. | |
9885 __ cmp(key.reg(), | |
9886 FieldOperand(elements.reg(), FixedArray::kLengthOffset)); | |
9887 deferred->Branch(above_equal); | |
9888 | |
9889 // Load and check that the result is not the hole. | |
9890 // Key holds a smi. | |
9891 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); | |
9892 __ mov(elements.reg(), | |
9893 FieldOperand(elements.reg(), | |
9894 key.reg(), | |
9895 times_2, | |
9896 FixedArray::kHeaderSize)); | |
9897 result = elements; | |
9898 __ cmp(Operand(result.reg()), Immediate(FACTORY->the_hole_value())); | |
9899 deferred->Branch(equal); | |
9900 __ IncrementCounter(masm_->isolate()->counters()->keyed_load_inline(), 1); | |
9901 | |
9902 deferred->BindExit(); | |
9903 } else { | |
9904 Comment cmnt(masm_, "[ Load from keyed Property"); | |
9905 result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); | |
9906 // Make sure that we do not have a test instruction after the | |
9907 // call. A test instruction after the call is used to | |
9908 // indicate that we have generated an inline version of the | |
9909 // keyed load. The explicit nop instruction is here because | |
9910 // the push that follows might be peep-hole optimized away. | |
9911 __ nop(); | |
9912 } | |
9913 ASSERT(frame()->height() == original_height - 2); | |
9914 return result; | |
9915 } | |
9916 | |
9917 | |
9918 Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { | |
9919 #ifdef DEBUG | |
9920 int original_height = frame()->height(); | |
9921 #endif | |
9922 Result result; | |
9923 // Generate inlined version of the keyed store if the code is in a loop | |
9924 // and the key is likely to be a smi. | |
9925 if (loop_nesting() > 0 && key_type->IsLikelySmi()) { | |
9926 Comment cmnt(masm(), "[ Inlined store to keyed Property"); | |
9927 | |
9928 // Get the receiver, key and value into registers. | |
9929 result = frame()->Pop(); | |
9930 Result key = frame()->Pop(); | |
9931 Result receiver = frame()->Pop(); | |
9932 | |
9933 Result tmp = allocator_->Allocate(); | |
9934 ASSERT(tmp.is_valid()); | |
9935 Result tmp2 = allocator_->Allocate(); | |
9936 ASSERT(tmp2.is_valid()); | |
9937 | |
9938 // Determine whether the value is a constant before putting it in a | |
9939 // register. | |
9940 bool value_is_constant = result.is_constant(); | |
9941 | |
9942 // Make sure that value, key and receiver are in registers. | |
9943 result.ToRegister(); | |
9944 key.ToRegister(); | |
9945 receiver.ToRegister(); | |
9946 | |
9947 DeferredReferenceSetKeyedValue* deferred = | |
9948 new DeferredReferenceSetKeyedValue(result.reg(), | |
9949 key.reg(), | |
9950 receiver.reg(), | |
9951 tmp.reg(), | |
9952 strict_mode_flag()); | |
9953 | |
9954 // Check that the receiver is not a smi. | |
9955 __ test(receiver.reg(), Immediate(kSmiTagMask)); | |
9956 deferred->Branch(zero); | |
9957 | |
9958 // Check that the key is a smi. | |
9959 if (!key.is_smi()) { | |
9960 __ test(key.reg(), Immediate(kSmiTagMask)); | |
9961 deferred->Branch(not_zero); | |
9962 } else { | |
9963 if (FLAG_debug_code) __ AbortIfNotSmi(key.reg()); | |
9964 } | |
9965 | |
9966 // Check that the receiver is a JSArray. | |
9967 __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, tmp.reg()); | |
9968 deferred->Branch(not_equal); | |
9969 | |
9970 // Get the elements array from the receiver and check that it is not a | |
9971 // dictionary. | |
9972 __ mov(tmp.reg(), | |
9973 FieldOperand(receiver.reg(), JSArray::kElementsOffset)); | |
9974 | |
9975 // Check whether it is possible to omit the write barrier. If the elements | |
9976 // array is in new space or the value written is a smi we can safely update | |
9977 // the elements array without write barrier. | |
9978 Label in_new_space; | |
9979 __ InNewSpace(tmp.reg(), tmp2.reg(), equal, &in_new_space); | |
9980 if (!value_is_constant) { | |
9981 __ test(result.reg(), Immediate(kSmiTagMask)); | |
9982 deferred->Branch(not_zero); | |
9983 } | |
9984 | |
9985 __ bind(&in_new_space); | |
9986 // Bind the deferred code patch site to be able to locate the fixed | |
9987 // array map comparison. When debugging, we patch this comparison to | |
9988 // always fail so that we will hit the IC call in the deferred code | |
9989 // which will allow the debugger to break for fast case stores. | |
9990 __ bind(deferred->patch_site()); | |
9991 __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), | |
9992 Immediate(FACTORY->fixed_array_map())); | |
9993 deferred->Branch(not_equal); | |
9994 | |
9995 // Check that the key is within bounds. Both the key and the length of | |
9996 // the JSArray are smis (because the fixed array check above ensures the | |
9997 // elements are in fast case). Use unsigned comparison to handle negative | |
9998 // keys. | |
9999 __ cmp(key.reg(), | |
10000 FieldOperand(receiver.reg(), JSArray::kLengthOffset)); | |
10001 deferred->Branch(above_equal); | |
10002 | |
10003 // Store the value. | |
10004 __ mov(FixedArrayElementOperand(tmp.reg(), key.reg()), result.reg()); | |
10005 __ IncrementCounter(masm_->isolate()->counters()->keyed_store_inline(), 1); | |
10006 | |
10007 deferred->BindExit(); | |
10008 } else { | |
10009 result = frame()->CallKeyedStoreIC(strict_mode_flag()); | |
10010 // Make sure that we do not have a test instruction after the | |
10011 // call. A test instruction after the call is used to | |
10012 // indicate that we have generated an inline version of the | |
10013 // keyed store. | |
10014 __ nop(); | |
10015 } | |
10016 ASSERT(frame()->height() == original_height - 3); | |
10017 return result; | |
10018 } | |
10019 | |
10020 | |
10021 #undef __ | |
10022 #define __ ACCESS_MASM(masm) | |
10023 | |
10024 | |
10025 Handle<String> Reference::GetName() { | |
10026 ASSERT(type_ == NAMED); | |
10027 Property* property = expression_->AsProperty(); | |
10028 if (property == NULL) { | |
10029 // Global variable reference treated as a named property reference. | |
10030 VariableProxy* proxy = expression_->AsVariableProxy(); | |
10031 ASSERT(proxy->AsVariable() != NULL); | |
10032 ASSERT(proxy->AsVariable()->is_global()); | |
10033 return proxy->name(); | |
10034 } else { | |
10035 Literal* raw_name = property->key()->AsLiteral(); | |
10036 ASSERT(raw_name != NULL); | |
10037 return Handle<String>::cast(raw_name->handle()); | |
10038 } | |
10039 } | |
10040 | |
10041 | |
10042 void Reference::GetValue() { | |
10043 ASSERT(!cgen_->in_spilled_code()); | |
10044 ASSERT(cgen_->HasValidEntryRegisters()); | |
10045 ASSERT(!is_illegal()); | |
10046 MacroAssembler* masm = cgen_->masm(); | |
10047 | |
10048 // Record the source position for the property load. | |
10049 Property* property = expression_->AsProperty(); | |
10050 if (property != NULL) { | |
10051 cgen_->CodeForSourcePosition(property->position()); | |
10052 } | |
10053 | |
10054 switch (type_) { | |
10055 case SLOT: { | |
10056 Comment cmnt(masm, "[ Load from Slot"); | |
10057 Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); | |
10058 ASSERT(slot != NULL); | |
10059 cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); | |
10060 if (!persist_after_get_) set_unloaded(); | |
10061 break; | |
10062 } | |
10063 | |
10064 case NAMED: { | |
10065 Variable* var = expression_->AsVariableProxy()->AsVariable(); | |
10066 bool is_global = var != NULL; | |
10067 ASSERT(!is_global || var->is_global()); | |
10068 if (persist_after_get_) cgen_->frame()->Dup(); | |
10069 Result result = cgen_->EmitNamedLoad(GetName(), is_global); | |
10070 if (!persist_after_get_) set_unloaded(); | |
10071 cgen_->frame()->Push(&result); | |
10072 break; | |
10073 } | |
10074 | |
10075 case KEYED: { | |
10076 if (persist_after_get_) { | |
10077 cgen_->frame()->PushElementAt(1); | |
10078 cgen_->frame()->PushElementAt(1); | |
10079 } | |
10080 Result value = cgen_->EmitKeyedLoad(); | |
10081 cgen_->frame()->Push(&value); | |
10082 if (!persist_after_get_) set_unloaded(); | |
10083 break; | |
10084 } | |
10085 | |
10086 default: | |
10087 UNREACHABLE(); | |
10088 } | |
10089 } | |
10090 | |
10091 | |
10092 void Reference::TakeValue() { | |
10093 // For non-constant frame-allocated slots, we invalidate the value in the | |
10094 // slot. For all others, we fall back on GetValue. | |
10095 ASSERT(!cgen_->in_spilled_code()); | |
10096 ASSERT(!is_illegal()); | |
10097 if (type_ != SLOT) { | |
10098 GetValue(); | |
10099 return; | |
10100 } | |
10101 | |
10102 Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); | |
10103 ASSERT(slot != NULL); | |
10104 if (slot->type() == Slot::LOOKUP || | |
10105 slot->type() == Slot::CONTEXT || | |
10106 slot->var()->mode() == Variable::CONST || | |
10107 slot->is_arguments()) { | |
10108 GetValue(); | |
10109 return; | |
10110 } | |
10111 | |
10112 // Only non-constant, frame-allocated parameters and locals can | |
10113 // reach here. Be careful not to use the optimizations for arguments | |
10114 // object access since it may not have been initialized yet. | |
10115 ASSERT(!slot->is_arguments()); | |
10116 if (slot->type() == Slot::PARAMETER) { | |
10117 cgen_->frame()->TakeParameterAt(slot->index()); | |
10118 } else { | |
10119 ASSERT(slot->type() == Slot::LOCAL); | |
10120 cgen_->frame()->TakeLocalAt(slot->index()); | |
10121 } | |
10122 | |
10123 ASSERT(persist_after_get_); | |
10124 // Do not unload the reference, because it is used in SetValue. | |
10125 } | |
10126 | |
10127 | |
10128 void Reference::SetValue(InitState init_state) { | |
10129 ASSERT(cgen_->HasValidEntryRegisters()); | |
10130 ASSERT(!is_illegal()); | |
10131 MacroAssembler* masm = cgen_->masm(); | |
10132 switch (type_) { | |
10133 case SLOT: { | |
10134 Comment cmnt(masm, "[ Store to Slot"); | |
10135 Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); | |
10136 ASSERT(slot != NULL); | |
10137 cgen_->StoreToSlot(slot, init_state); | |
10138 set_unloaded(); | |
10139 break; | |
10140 } | |
10141 | |
10142 case NAMED: { | |
10143 Comment cmnt(masm, "[ Store to named Property"); | |
10144 Result answer = cgen_->EmitNamedStore(GetName(), false); | |
10145 cgen_->frame()->Push(&answer); | |
10146 set_unloaded(); | |
10147 break; | |
10148 } | |
10149 | |
10150 case KEYED: { | |
10151 Comment cmnt(masm, "[ Store to keyed Property"); | |
10152 Property* property = expression()->AsProperty(); | |
10153 ASSERT(property != NULL); | |
10154 | |
10155 Result answer = cgen_->EmitKeyedStore(property->key()->type()); | |
10156 cgen_->frame()->Push(&answer); | |
10157 set_unloaded(); | |
10158 break; | |
10159 } | |
10160 | |
10161 case UNLOADED: | |
10162 case ILLEGAL: | |
10163 UNREACHABLE(); | |
10164 } | |
10165 } | |
10166 | |
10167 | |
10168 #undef __ | |
10169 | |
10170 #define __ masm. | 51 #define __ masm. |
10171 | 52 |
10172 | |
10173 static void MemCopyWrapper(void* dest, const void* src, size_t size) { | 53 static void MemCopyWrapper(void* dest, const void* src, size_t size) { |
10174 memcpy(dest, src, size); | 54 memcpy(dest, src, size); |
10175 } | 55 } |
10176 | 56 |
10177 | 57 |
10178 OS::MemCopyFunction CreateMemCopyFunction() { | 58 OS::MemCopyFunction CreateMemCopyFunction() { |
10179 size_t actual_size; | 59 size_t actual_size; |
10180 // Allocate buffer in executable space. | 60 // Allocate buffer in executable space. |
10181 byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, | 61 byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, |
10182 &actual_size, | 62 &actual_size, |
(...skipping 193 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
10376 | 256 |
10377 CPU::FlushICache(buffer, actual_size); | 257 CPU::FlushICache(buffer, actual_size); |
10378 return FUNCTION_CAST<OS::MemCopyFunction>(buffer); | 258 return FUNCTION_CAST<OS::MemCopyFunction>(buffer); |
10379 } | 259 } |
10380 | 260 |
10381 #undef __ | 261 #undef __ |
10382 | 262 |
10383 } } // namespace v8::internal | 263 } } // namespace v8::internal |
10384 | 264 |
10385 #endif // V8_TARGET_ARCH_IA32 | 265 #endif // V8_TARGET_ARCH_IA32 |
OLD | NEW |