Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(24)

Unified Diff: gcc/mpfr/exp3.c

Issue 3050029: [gcc] GCC 4.5.0=>4.5.1 (Closed) Base URL: ssh://git@gitrw.chromium.org:9222/nacl-toolchain.git
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gcc/mpfr/exp2.c ('k') | gcc/mpfr/exp_2.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gcc/mpfr/exp3.c
diff --git a/gcc/mpfr/exp3.c b/gcc/mpfr/exp3.c
deleted file mode 100644
index 845f78ce4db2d412e78d4668ef0aa1408c6b3556..0000000000000000000000000000000000000000
--- a/gcc/mpfr/exp3.c
+++ /dev/null
@@ -1,333 +0,0 @@
-/* mpfr_exp -- exponential of a floating-point number
-
-Copyright 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
-Contributed by the Arenaire and Cacao projects, INRIA.
-
-This file is part of the GNU MPFR Library.
-
-The GNU MPFR Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 2.1 of the License, or (at your
-option) any later version.
-
-The GNU MPFR Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
-MA 02110-1301, USA. */
-
-#define MPFR_NEED_LONGLONG_H /* for MPFR_MPZ_SIZEINBASE2 */
-#include "mpfr-impl.h"
-
-/* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series
- Assume |p/2^r| < 1.
- We use the following binary splitting formula:
- P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
- Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
- T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise
- Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.
-
- Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j,
- we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array
- below.
-
- Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of
- two part.
-*/
-static void
-mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m,
- mpz_t *Q, mp_prec_t *mult)
-{
- unsigned long n, i, j;
- mpz_t *S, *ptoj;
- mp_prec_t *log2_nb_terms;
- mp_exp_t diff, expo;
- mp_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj;
- int k, l;
-
- MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1);
-
- S = Q + (m+1);
- ptoj = Q + 2*(m+1); /* ptoj[i] = mantissa^(2^i) */
- log2_nb_terms = mult + (m+1);
-
- /* Normalize p */
- MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0);
- n = mpz_scan1 (p, 0); /* number of trailing zeros in p */
- mpz_tdiv_q_2exp (p, p, n);
- r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */
-
- /* Set initial var */
- mpz_set (ptoj[0], p);
- for (k = 1; k < m; k++)
- mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */
- mpz_set_ui (Q[0], 1);
- mpz_set_ui (S[0], 1);
- k = 0;
- mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms
- satisfies P[k]/Q[k] <= 2^(-mult[k]) */
- log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */
- prec_i_have = 0;
-
- /* Main Loop */
- n = 1UL << m;
- for (i = 1; (prec_i_have < precy) && (i < n); i++)
- {
- /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */
- k++;
- log2_nb_terms[k] = 0; /* 1 term */
- mpz_set_ui (Q[k], i + 1);
- mpz_set_ui (S[k], i + 1);
- j = i + 1; /* we have computed j = i+1 terms so far */
- l = 0;
- while ((j & 1) == 0) /* combine and reduce */
- {
- /* invariant: S[k] corresponds to 2^l consecutive terms */
- mpz_mul (S[k], S[k], ptoj[l]);
- mpz_mul (S[k-1], S[k-1], Q[k]);
- /* Q[k] corresponds to 2^l consecutive terms too.
- Since it does not contains the factor 2^(r*2^l),
- when going from l to l+1 we need to multiply
- by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */
- mpz_mul_2exp (S[k-1], S[k-1], r << l);
- mpz_add (S[k-1], S[k-1], S[k]);
- mpz_mul (Q[k-1], Q[k-1], Q[k]);
- log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
- is a power of 2 by construction */
- MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]);
- MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]);
- mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1;
- prec_i_have = mult[k] = mult[k-1];
- /* since mult[k] >= mult[k-1] + nbits(Q[k]),
- we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */
- l ++;
- j >>= 1;
- k --;
- }
- }
-
- /* accumulate all products in S[0] and Q[0]. Warning: contrary to above,
- here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
- l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */
- while (k > 0)
- {
- j = log2_nb_terms[k-1];
- mpz_mul (S[k], S[k], ptoj[j]);
- mpz_mul (S[k-1], S[k-1], Q[k]);
- l += 1 << log2_nb_terms[k];
- mpz_mul_2exp (S[k-1], S[k-1], r * l);
- mpz_add (S[k-1], S[k-1], S[k]);
- mpz_mul (Q[k-1], Q[k-1], Q[k]);
- k--;
- }
-
- /* Q[0] now equals i! */
- MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]);
- diff = (mp_exp_t) prec_i_have - 2 * (mp_exp_t) precy;
- expo = diff;
- if (diff >= 0)
- mpz_div_2exp (S[0], S[0], diff);
- else
- mpz_mul_2exp (S[0], S[0], -diff);
-
- MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]);
- diff = (mp_exp_t) prec_i_have - (mp_prec_t) precy;
- expo -= diff;
- if (diff > 0)
- mpz_div_2exp (Q[0], Q[0], diff);
- else
- mpz_mul_2exp (Q[0], Q[0], -diff);
-
- mpz_tdiv_q (S[0], S[0], Q[0]);
- mpfr_set_z (y, S[0], GMP_RNDD);
- MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) );
-}
-
-#define shift (BITS_PER_MP_LIMB/2)
-
-int
-mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
-{
- mpfr_t t, x_copy, tmp;
- mpz_t uk;
- mp_exp_t ttt, shift_x;
- unsigned long twopoweri;
- mpz_t *P;
- mp_prec_t *mult;
- int i, k, loop;
- int prec_x;
- mp_prec_t realprec, Prec;
- int iter;
- int inexact = 0;
- MPFR_SAVE_EXPO_DECL (expo);
- MPFR_ZIV_DECL (ziv_loop);
-
- MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
- ("y[%#R]=%R inexact=%d", y, y, inexact));
-
- MPFR_SAVE_EXPO_MARK (expo);
-
- /* decompose x */
- /* we first write x = 1.xxxxxxxxxxxxx
- ----- k bits -- */
- prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_BITS_PER_MP_LIMB;
- if (prec_x < 0)
- prec_x = 0;
-
- ttt = MPFR_GET_EXP (x);
- mpfr_init2 (x_copy, MPFR_PREC(x));
- mpfr_set (x_copy, x, GMP_RNDD);
-
- /* we shift to get a number less than 1 */
- if (ttt > 0)
- {
- shift_x = ttt;
- mpfr_div_2ui (x_copy, x, ttt, GMP_RNDN);
- ttt = MPFR_GET_EXP (x_copy);
- }
- else
- shift_x = 0;
- MPFR_ASSERTD (ttt <= 0);
-
- /* Init prec and vars */
- realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
- Prec = realprec + shift + 2 + shift_x;
- mpfr_init2 (t, Prec);
- mpfr_init2 (tmp, Prec);
- mpz_init (uk);
-
- /* Main loop */
- MPFR_ZIV_INIT (ziv_loop, realprec);
- for (;;)
- {
- int scaled = 0;
- MPFR_BLOCK_DECL (flags);
-
- k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_BITS_PER_MP_LIMB;
-
- /* now we have to extract */
- twopoweri = BITS_PER_MP_LIMB;
-
- /* Allocate tables */
- P = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
- for (i = 0; i < 3*(k+2); i++)
- mpz_init (P[i]);
- mult = (mp_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mp_prec_t));
-
- /* Particular case for i==0 */
- mpfr_extract (uk, x_copy, 0);
- MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
- mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
- for (loop = 0; loop < shift; loop++)
- mpfr_sqr (tmp, tmp, GMP_RNDD);
- twopoweri *= 2;
-
- /* General case */
- iter = (k <= prec_x) ? k : prec_x;
- for (i = 1; i <= iter; i++)
- {
- mpfr_extract (uk, x_copy, i);
- if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
- {
- mpfr_exp_rational (t, uk, twopoweri - ttt, k - i + 1, P, mult);
- mpfr_mul (tmp, tmp, t, GMP_RNDD);
- }
- MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
- twopoweri *=2;
- }
-
- /* Clear tables */
- for (i = 0; i < 3*(k+2); i++)
- mpz_clear (P[i]);
- (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
- (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mp_prec_t));
-
- if (shift_x > 0)
- {
- MPFR_BLOCK (flags, {
- for (loop = 0; loop < shift_x - 1; loop++)
- mpfr_sqr (tmp, tmp, GMP_RNDD);
- mpfr_sqr (t, tmp, GMP_RNDD);
- } );
-
- if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
- {
- /* tmp <= exact result, so that it is a real overflow. */
- inexact = mpfr_overflow (y, rnd_mode, 1);
- MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
- break;
- }
-
- if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
- {
- /* This may be a spurious underflow. So, let's scale
- the result. */
- mpfr_mul_2ui (tmp, tmp, 1, GMP_RNDD); /* no overflow, exact */
- mpfr_sqr (t, tmp, GMP_RNDD);
- if (MPFR_IS_ZERO (t))
- {
- /* approximate result < 2^(emin - 3), thus
- exact result < 2^(emin - 2). */
- inexact = mpfr_underflow (y, (rnd_mode == GMP_RNDN) ?
- GMP_RNDZ : rnd_mode, 1);
- MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
- break;
- }
- scaled = 1;
- }
- }
-
- if (mpfr_can_round (shift_x > 0 ? t : tmp, realprec, GMP_RNDD, GMP_RNDZ,
- MPFR_PREC(y) + (rnd_mode == GMP_RNDN)))
- {
- inexact = mpfr_set (y, shift_x > 0 ? t : tmp, rnd_mode);
- if (MPFR_UNLIKELY (scaled && MPFR_IS_PURE_FP (y)))
- {
- int inex2;
- mp_exp_t ey;
-
- /* The result has been scaled and needs to be corrected. */
- ey = MPFR_GET_EXP (y);
- inex2 = mpfr_mul_2si (y, y, -2, rnd_mode);
- if (inex2) /* underflow */
- {
- if (rnd_mode == GMP_RNDN && inexact < 0 &&
- MPFR_IS_ZERO (y) && ey == __gmpfr_emin + 1)
- {
- /* Double rounding case: in GMP_RNDN, the scaled
- result has been rounded downward to 2^emin.
- As the exact result is > 2^(emin - 2), correct
- rounding must be done upward. */
- /* TODO: make sure in coverage tests that this line
- is reached. */
- inexact = mpfr_underflow (y, GMP_RNDU, 1);
- }
- else
- {
- /* No double rounding. */
- inexact = inex2;
- }
- MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
- }
- }
- break;
- }
-
- MPFR_ZIV_NEXT (ziv_loop, realprec);
- Prec = realprec + shift + 2 + shift_x;
- mpfr_set_prec (t, Prec);
- mpfr_set_prec (tmp, Prec);
- }
- MPFR_ZIV_FREE (ziv_loop);
-
- mpz_clear (uk);
- mpfr_clear (tmp);
- mpfr_clear (t);
- mpfr_clear (x_copy);
- MPFR_SAVE_EXPO_FREE (expo);
- return inexact;
-}
« no previous file with comments | « gcc/mpfr/exp2.c ('k') | gcc/mpfr/exp_2.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698