| Index: gcc/mpfr/exp2.c | 
| diff --git a/gcc/mpfr/exp2.c b/gcc/mpfr/exp2.c | 
| deleted file mode 100644 | 
| index ee14fc00c15c8d979f06631aff223469e5354f9a..0000000000000000000000000000000000000000 | 
| --- a/gcc/mpfr/exp2.c | 
| +++ /dev/null | 
| @@ -1,146 +0,0 @@ | 
| -/* mpfr_exp2 -- power of 2 function 2^y | 
| - | 
| -Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. | 
| -Contributed by the Arenaire and Cacao projects, INRIA. | 
| - | 
| -This file is part of the GNU MPFR Library. | 
| - | 
| -The GNU MPFR Library is free software; you can redistribute it and/or modify | 
| -it under the terms of the GNU Lesser General Public License as published by | 
| -the Free Software Foundation; either version 2.1 of the License, or (at your | 
| -option) any later version. | 
| - | 
| -The GNU MPFR Library is distributed in the hope that it will be useful, but | 
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
| -or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
| -License for more details. | 
| - | 
| -You should have received a copy of the GNU Lesser General Public License | 
| -along with the GNU MPFR Library; see the file COPYING.LIB.  If not, write to | 
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, | 
| -MA 02110-1301, USA. */ | 
| - | 
| -#define MPFR_NEED_LONGLONG_H | 
| -#include "mpfr-impl.h" | 
| - | 
| -/* The computation of y = 2^z is done by                           * | 
| - *     y = exp(z*log(2)). The result is exact iff z is an integer. */ | 
| - | 
| -int | 
| -mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) | 
| -{ | 
| -  int inexact; | 
| -  long xint; | 
| -  mpfr_t xfrac; | 
| -  MPFR_SAVE_EXPO_DECL (expo); | 
| - | 
| -  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) | 
| -    { | 
| -      if (MPFR_IS_NAN (x)) | 
| -        { | 
| -          MPFR_SET_NAN (y); | 
| -          MPFR_RET_NAN; | 
| -        } | 
| -      else if (MPFR_IS_INF (x)) | 
| -        { | 
| -          if (MPFR_IS_POS (x)) | 
| -            MPFR_SET_INF (y); | 
| -          else | 
| -            MPFR_SET_ZERO (y); | 
| -          MPFR_SET_POS (y); | 
| -          MPFR_RET (0); | 
| -        } | 
| -      else /* 2^0 = 1 */ | 
| -        { | 
| -          MPFR_ASSERTD (MPFR_IS_ZERO(x)); | 
| -          return mpfr_set_ui (y, 1, rnd_mode); | 
| -        } | 
| -    } | 
| - | 
| -  /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, | 
| -     if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ | 
| -  MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2); | 
| -  if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0)) | 
| -    { | 
| -      mp_rnd_t rnd2 = rnd_mode; | 
| -      /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ | 
| -      if (rnd_mode == GMP_RNDN && | 
| -          mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) | 
| -        rnd2 = GMP_RNDZ; | 
| -      return mpfr_underflow (y, rnd2, 1); | 
| -    } | 
| - | 
| -  MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); | 
| -  if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0)) | 
| -    return mpfr_overflow (y, rnd_mode, 1); | 
| - | 
| -  /* We now know that emin - 1 <= x < emax. */ | 
| - | 
| -  MPFR_SAVE_EXPO_MARK (expo); | 
| - | 
| -  /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have | 
| -     |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1); | 
| -     if x < 0 we must round towards 0 (dir=0). */ | 
| -  MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0, | 
| -                                    MPFR_SIGN(x) > 0, rnd_mode, expo, {}); | 
| - | 
| -  xint = mpfr_get_si (x, GMP_RNDZ); | 
| -  mpfr_init2 (xfrac, MPFR_PREC (x)); | 
| -  mpfr_sub_si (xfrac, x, xint, GMP_RNDN); /* exact */ | 
| - | 
| -  if (MPFR_IS_ZERO (xfrac)) | 
| -    { | 
| -      mpfr_set_ui (y, 1, GMP_RNDN); | 
| -      inexact = 0; | 
| -    } | 
| -  else | 
| -    { | 
| -      /* Declaration of the intermediary variable */ | 
| -      mpfr_t t; | 
| - | 
| -      /* Declaration of the size variable */ | 
| -      mp_prec_t Ny = MPFR_PREC(y);              /* target precision */ | 
| -      mp_prec_t Nt;                             /* working precision */ | 
| -      mp_exp_t err;                             /* error */ | 
| -      MPFR_ZIV_DECL (loop); | 
| - | 
| -      /* compute the precision of intermediary variable */ | 
| -      /* the optimal number of bits : see algorithms.tex */ | 
| -      Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny); | 
| - | 
| -      /* initialise of intermediary variable */ | 
| -      mpfr_init2 (t, Nt); | 
| - | 
| -      /* First computation */ | 
| -      MPFR_ZIV_INIT (loop, Nt); | 
| -      for (;;) | 
| -        { | 
| -          /* compute exp(x*ln(2))*/ | 
| -          mpfr_const_log2 (t, GMP_RNDU);       /* ln(2) */ | 
| -          mpfr_mul (t, xfrac, t, GMP_RNDU);    /* xfrac * ln(2) */ | 
| -          err = Nt - (MPFR_GET_EXP (t) + 2);   /* Estimate of the error */ | 
| -          mpfr_exp (t, t, GMP_RNDN);           /* exp(xfrac * ln(2)) */ | 
| - | 
| -          if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) | 
| -            break; | 
| - | 
| -          /* Actualisation of the precision */ | 
| -          MPFR_ZIV_NEXT (loop, Nt); | 
| -          mpfr_set_prec (t, Nt); | 
| -        } | 
| -      MPFR_ZIV_FREE (loop); | 
| - | 
| -      inexact = mpfr_set (y, t, rnd_mode); | 
| - | 
| -      mpfr_clear (t); | 
| -    } | 
| - | 
| -  mpfr_clear (xfrac); | 
| -  mpfr_clear_flags (); | 
| -  mpfr_mul_2si (y, y, xint, GMP_RNDN); /* exact or overflow */ | 
| -  /* Note: We can have an overflow only when t was rounded up to 2. */ | 
| -  MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0); | 
| -  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); | 
| -  MPFR_SAVE_EXPO_FREE (expo); | 
| -  return mpfr_check_range (y, inexact, rnd_mode); | 
| -} | 
|  |