| Index: gcc/mpfr/exp_2.c
|
| diff --git a/gcc/mpfr/exp_2.c b/gcc/mpfr/exp_2.c
|
| deleted file mode 100644
|
| index d25f6fac9d772239406e8b5ad3b372e1050bb829..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/exp_2.c
|
| +++ /dev/null
|
| @@ -1,410 +0,0 @@
|
| -/* mpfr_exp_2 -- exponential of a floating-point number
|
| - using algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n))
|
| -
|
| -Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -/* #define DEBUG */
|
| -#define MPFR_NEED_LONGLONG_H /* for count_leading_zeros */
|
| -#include "mpfr-impl.h"
|
| -
|
| -static unsigned long
|
| -mpfr_exp2_aux (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
|
| -static unsigned long
|
| -mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
|
| -static mp_exp_t
|
| -mpz_normalize (mpz_t, mpz_t, mp_exp_t);
|
| -static mp_exp_t
|
| -mpz_normalize2 (mpz_t, mpz_t, mp_exp_t, mp_exp_t);
|
| -
|
| -#define MY_INIT_MPZ(x, s) { \
|
| - (x)->_mp_alloc = (s); \
|
| - PTR(x) = (mp_ptr) MPFR_TMP_ALLOC((s)*BYTES_PER_MP_LIMB); \
|
| - (x)->_mp_size = 0; }
|
| -
|
| -/* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q.
|
| - Otherwise do nothing and return 0.
|
| - */
|
| -static mp_exp_t
|
| -mpz_normalize (mpz_t rop, mpz_t z, mp_exp_t q)
|
| -{
|
| - size_t k;
|
| -
|
| - MPFR_MPZ_SIZEINBASE2 (k, z);
|
| - MPFR_ASSERTD (k == (mpfr_uexp_t) k);
|
| - if (q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q)
|
| - {
|
| - mpz_div_2exp(rop, z, (unsigned long) ((mpfr_uexp_t) k - q));
|
| - return (mp_exp_t) k - q;
|
| - }
|
| - if (MPFR_UNLIKELY(rop != z))
|
| - mpz_set(rop, z);
|
| - return 0;
|
| -}
|
| -
|
| -/* if expz > target, shift z by (expz-target) bits to the left.
|
| - if expz < target, shift z by (target-expz) bits to the right.
|
| - Returns target.
|
| -*/
|
| -static mp_exp_t
|
| -mpz_normalize2 (mpz_t rop, mpz_t z, mp_exp_t expz, mp_exp_t target)
|
| -{
|
| - if (target > expz)
|
| - mpz_div_2exp(rop, z, target-expz);
|
| - else
|
| - mpz_mul_2exp(rop, z, expz-target);
|
| - return target;
|
| -}
|
| -
|
| -/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
|
| - where x = n*log(2)+(2^K)*r
|
| - together with the Paterson-Stockmeyer O(t^(1/2)) algorithm for the
|
| - evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)).
|
| - This function returns with the exact flags due to exp.
|
| -*/
|
| -int
|
| -mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
|
| -{
|
| - long n;
|
| - unsigned long K, k, l, err; /* FIXME: Which type ? */
|
| - int error_r;
|
| - mp_exp_t exps;
|
| - mp_prec_t q, precy;
|
| - int inexact;
|
| - mpfr_t r, s;
|
| - mpz_t ss;
|
| - MPFR_ZIV_DECL (loop);
|
| - MPFR_TMP_DECL(marker);
|
| -
|
| - MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
| - ("y[%#R]=%R inexact=%d", y, y, inexact));
|
| -
|
| - precy = MPFR_PREC(y);
|
| -
|
| - /* Warning: we cannot use the 'double' type here, since on 64-bit machines
|
| - x may be as large as 2^62*log(2) without overflow, and then x/log(2)
|
| - is about 2^62: not every integer of that size can be represented as a
|
| - 'double', thus the argument reduction would fail. */
|
| - if (MPFR_GET_EXP (x) <= -2)
|
| - /* |x| <= 0.25, thus n = round(x/log(2)) = 0 */
|
| - n = 0;
|
| - else
|
| - {
|
| - mpfr_init2 (r, sizeof (long) * CHAR_BIT);
|
| - mpfr_const_log2 (r, GMP_RNDZ);
|
| - mpfr_div (r, x, r, GMP_RNDN);
|
| - n = mpfr_get_si (r, GMP_RNDN);
|
| - mpfr_clear (r);
|
| - }
|
| - MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n));
|
| -
|
| - /* error bounds the cancelled bits in x - n*log(2) */
|
| - if (MPFR_UNLIKELY (n == 0))
|
| - error_r = 0;
|
| - else
|
| - count_leading_zeros (error_r, (mp_limb_t) SAFE_ABS (unsigned long, n));
|
| - error_r = BITS_PER_MP_LIMB - error_r + 2;
|
| -
|
| - /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of
|
| - n/K terms costs about n/(2K) multiplications when computed in fixed
|
| - point */
|
| - K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2)
|
| - : __gmpfr_cuberoot (4*precy);
|
| - l = (precy - 1) / K + 1;
|
| - err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18);
|
| - /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */
|
| - q = precy + err + K + 5;
|
| -
|
| - mpfr_init2 (r, q + error_r);
|
| - mpfr_init2 (s, q + error_r);
|
| -
|
| - /* the algorithm consists in computing an upper bound of exp(x) using
|
| - a precision of q bits, and see if we can round to MPFR_PREC(y) taking
|
| - into account the maximal error. Otherwise we increase q. */
|
| - MPFR_ZIV_INIT (loop, q);
|
| - for (;;)
|
| - {
|
| - MPFR_LOG_MSG (("n=%ld K=%lu l=%lu q=%lu error_r=%d\n",
|
| - n, K, l, (unsigned long) q, error_r));
|
| -
|
| - /* First reduce the argument to r = x - n * log(2),
|
| - so that r is small in absolute value. We want an upper
|
| - bound on r to get an upper bound on exp(x). */
|
| -
|
| - /* if n<0, we have to get an upper bound of log(2)
|
| - in order to get an upper bound of r = x-n*log(2) */
|
| - mpfr_const_log2 (s, (n >= 0) ? GMP_RNDZ : GMP_RNDU);
|
| - /* s is within 1 ulp of log(2) */
|
| -
|
| - mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? GMP_RNDZ : GMP_RNDU);
|
| - /* r is within 3 ulps of |n|*log(2) */
|
| - if (n < 0)
|
| - MPFR_CHANGE_SIGN (r);
|
| - /* r <= n*log(2), within 3 ulps */
|
| -
|
| - MPFR_LOG_VAR (x);
|
| - MPFR_LOG_VAR (r);
|
| -
|
| - mpfr_sub (r, x, r, GMP_RNDU);
|
| - /* possible cancellation here: if r is zero, increase the working
|
| - precision (Ziv's loop); otherwise, the error on r is at most
|
| - 3*2^(EXP(old_r)-EXP(new_r)) ulps */
|
| -
|
| - if (MPFR_IS_PURE_FP (r))
|
| - {
|
| - mp_exp_t cancel;
|
| -
|
| - /* number of cancelled bits */
|
| - cancel = MPFR_GET_EXP (x) - MPFR_GET_EXP (r);
|
| - if (cancel < 0) /* this might happen in the second loop if x is
|
| - tiny negative: the initial n is 0, then in the
|
| - first loop n becomes -1 and r = x + log(2) */
|
| - cancel = 0;
|
| - while (MPFR_IS_NEG (r))
|
| - { /* initial approximation n was too large */
|
| - n--;
|
| - mpfr_add (r, r, s, GMP_RNDU);
|
| - }
|
| - mpfr_prec_round (r, q, GMP_RNDU);
|
| - MPFR_LOG_VAR (r);
|
| - MPFR_ASSERTD (MPFR_IS_POS (r));
|
| - mpfr_div_2ui (r, r, K, GMP_RNDU); /* r = (x-n*log(2))/2^K, exact */
|
| -
|
| - MPFR_TMP_MARK(marker);
|
| - MY_INIT_MPZ(ss, 3 + 2*((q-1)/BITS_PER_MP_LIMB));
|
| - exps = mpfr_get_z_exp (ss, s);
|
| - /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */
|
| - MPFR_ASSERTD (MPFR_IS_PURE_FP (r) && MPFR_EXP (r) < 0);
|
| - l = (precy < MPFR_EXP_2_THRESHOLD)
|
| - ? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */
|
| - : mpfr_exp2_aux2 (ss, r, q, &exps); /* Paterson/Stockmeyer meth */
|
| -
|
| - MPFR_LOG_MSG (("l=%lu q=%lu (K+l)*q^2=%1.3e\n",
|
| - l, (unsigned long) q, (K + l) * (double) q * q));
|
| -
|
| - for (k = 0; k < K; k++)
|
| - {
|
| - mpz_mul (ss, ss, ss);
|
| - exps <<= 1;
|
| - exps += mpz_normalize (ss, ss, q);
|
| - }
|
| - mpfr_set_z (s, ss, GMP_RNDN);
|
| -
|
| - MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps);
|
| - MPFR_TMP_FREE(marker); /* don't need ss anymore */
|
| -
|
| - /* error is at most 2^K*l, plus cancel+2 to take into account of
|
| - the error of 3*2^(EXP(old_r)-EXP(new_r)) on r */
|
| - K += MPFR_INT_CEIL_LOG2 (l) + cancel + 2;
|
| -
|
| - MPFR_LOG_MSG (("before mult. by 2^n:\n", 0));
|
| - MPFR_LOG_VAR (s);
|
| - MPFR_LOG_MSG (("err=%lu bits\n", K));
|
| -
|
| - if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q - K, precy, rnd_mode)))
|
| - {
|
| - mpfr_clear_flags ();
|
| - inexact = mpfr_mul_2si (y, s, n, rnd_mode);
|
| - break;
|
| - }
|
| - }
|
| -
|
| - MPFR_ZIV_NEXT (loop, q);
|
| - mpfr_set_prec (r, q);
|
| - mpfr_set_prec (s, q);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| -
|
| - mpfr_clear (r);
|
| - mpfr_clear (s);
|
| -
|
| - return inexact;
|
| -}
|
| -
|
| -/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
|
| - using naive method with O(l) multiplications.
|
| - Return the number of iterations l.
|
| - The absolute error on s is less than 3*l*(l+1)*2^(-q).
|
| - Version using fixed-point arithmetic with mpz instead
|
| - of mpfr for internal computations.
|
| - s must have at least qn+1 limbs (qn should be enough, but currently fails
|
| - since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs)
|
| -*/
|
| -static unsigned long
|
| -mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
|
| -{
|
| - unsigned long l;
|
| - mp_exp_t dif, expt, expr;
|
| - mp_size_t qn;
|
| - mpz_t t, rr;
|
| - mp_size_t sbit, tbit;
|
| - MPFR_TMP_DECL(marker);
|
| -
|
| - MPFR_ASSERTN (MPFR_IS_PURE_FP (r));
|
| -
|
| - MPFR_TMP_MARK(marker);
|
| - qn = 1 + (q-1)/BITS_PER_MP_LIMB;
|
| - expt = 0;
|
| - *exps = 1 - (mp_exp_t) q; /* s = 2^(q-1) */
|
| - MY_INIT_MPZ(t, 2*qn+1);
|
| - MY_INIT_MPZ(rr, qn+1);
|
| - mpz_set_ui(t, 1);
|
| - mpz_set_ui(s, 1);
|
| - mpz_mul_2exp(s, s, q-1);
|
| - expr = mpfr_get_z_exp(rr, r); /* no error here */
|
| -
|
| - l = 0;
|
| - for (;;) {
|
| - l++;
|
| - mpz_mul(t, t, rr);
|
| - expt += expr;
|
| - MPFR_MPZ_SIZEINBASE2 (sbit, s);
|
| - MPFR_MPZ_SIZEINBASE2 (tbit, t);
|
| - dif = *exps + sbit - expt - tbit;
|
| - /* truncates the bits of t which are < ulp(s) = 2^(1-q) */
|
| - expt += mpz_normalize(t, t, (mp_exp_t) q-dif); /* error at most 2^(1-q) */
|
| - mpz_div_ui(t, t, l); /* error at most 2^(1-q) */
|
| - /* the error wrt t^l/l! is here at most 3*l*ulp(s) */
|
| - MPFR_ASSERTD (expt == *exps);
|
| - if (mpz_sgn (t) == 0)
|
| - break;
|
| - mpz_add(s, s, t); /* no error here: exact */
|
| - /* ensures rr has the same size as t: after several shifts, the error
|
| - on rr is still at most ulp(t)=ulp(s) */
|
| - MPFR_MPZ_SIZEINBASE2 (tbit, t);
|
| - expr += mpz_normalize(rr, rr, tbit);
|
| - }
|
| -
|
| - MPFR_TMP_FREE(marker);
|
| - return 3*l*(l+1);
|
| -}
|
| -
|
| -/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
|
| - using Paterson-Stockmeyer algorithm with O(sqrt(l)) multiplications.
|
| - Return l.
|
| - Uses m multiplications of full size and 2l/m of decreasing size,
|
| - i.e. a total equivalent to about m+l/m full multiplications,
|
| - i.e. 2*sqrt(l) for m=sqrt(l).
|
| - Version using mpz. ss must have at least (sizer+1) limbs.
|
| - The error is bounded by (l^2+4*l) ulps where l is the return value.
|
| -*/
|
| -static unsigned long
|
| -mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
|
| -{
|
| - mp_exp_t expr, *expR, expt;
|
| - mp_size_t sizer;
|
| - mp_prec_t ql;
|
| - unsigned long l, m, i;
|
| - mpz_t t, *R, rr, tmp;
|
| - mp_size_t sbit, rrbit;
|
| - MPFR_TMP_DECL(marker);
|
| -
|
| - /* estimate value of l */
|
| - MPFR_ASSERTD (MPFR_GET_EXP (r) < 0);
|
| - l = q / (- MPFR_GET_EXP (r));
|
| - m = __gmpfr_isqrt (l);
|
| - /* we access R[2], thus we need m >= 2 */
|
| - if (m < 2)
|
| - m = 2;
|
| -
|
| - MPFR_TMP_MARK(marker);
|
| - R = (mpz_t*) MPFR_TMP_ALLOC((m+1)*sizeof(mpz_t)); /* R[i] is r^i */
|
| - expR = (mp_exp_t*) MPFR_TMP_ALLOC((m+1)*sizeof(mp_exp_t)); /* exponent for R[i] */
|
| - sizer = 1 + (MPFR_PREC(r)-1)/BITS_PER_MP_LIMB;
|
| - mpz_init(tmp);
|
| - MY_INIT_MPZ(rr, sizer+2);
|
| - MY_INIT_MPZ(t, 2*sizer); /* double size for products */
|
| - mpz_set_ui(s, 0);
|
| - *exps = 1-q; /* 1 ulp = 2^(1-q) */
|
| - for (i = 0 ; i <= m ; i++)
|
| - MY_INIT_MPZ(R[i], sizer+2);
|
| - expR[1] = mpfr_get_z_exp(R[1], r); /* exact operation: no error */
|
| - expR[1] = mpz_normalize2(R[1], R[1], expR[1], 1-q); /* error <= 1 ulp */
|
| - mpz_mul(t, R[1], R[1]); /* err(t) <= 2 ulps */
|
| - mpz_div_2exp(R[2], t, q-1); /* err(R[2]) <= 3 ulps */
|
| - expR[2] = 1-q;
|
| - for (i = 3 ; i <= m ; i++)
|
| - {
|
| - mpz_mul(t, R[i-1], R[1]); /* err(t) <= 2*i-2 */
|
| - mpz_div_2exp(R[i], t, q-1); /* err(R[i]) <= 2*i-1 ulps */
|
| - expR[i] = 1-q;
|
| - }
|
| - mpz_set_ui (R[0], 1);
|
| - mpz_mul_2exp (R[0], R[0], q-1);
|
| - expR[0] = 1-q; /* R[0]=1 */
|
| - mpz_set_ui (rr, 1);
|
| - expr = 0; /* rr contains r^l/l! */
|
| - /* by induction: err(rr) <= 2*l ulps */
|
| -
|
| - l = 0;
|
| - ql = q; /* precision used for current giant step */
|
| - do
|
| - {
|
| - /* all R[i] must have exponent 1-ql */
|
| - if (l != 0)
|
| - for (i = 0 ; i < m ; i++)
|
| - expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1-ql);
|
| - /* the absolute error on R[i]*rr is still 2*i-1 ulps */
|
| - expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1-ql);
|
| - /* err(t) <= 2*m-1 ulps */
|
| - /* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)!
|
| - using Horner's scheme */
|
| - for (i = m-1 ; i-- != 0 ; )
|
| - {
|
| - mpz_div_ui (t, t, l+i+1); /* err(t) += 1 ulp */
|
| - mpz_add (t, t, R[i]);
|
| - }
|
| - /* now err(t) <= (3m-2) ulps */
|
| -
|
| - /* now multiplies t by r^l/l! and adds to s */
|
| - mpz_mul (t, t, rr);
|
| - expt += expr;
|
| - expt = mpz_normalize2 (t, t, expt, *exps);
|
| - /* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */
|
| - MPFR_ASSERTD (expt == *exps);
|
| - mpz_add (s, s, t); /* no error here */
|
| -
|
| - /* updates rr, the multiplication of the factors l+i could be done
|
| - using binary splitting too, but it is not sure it would save much */
|
| - mpz_mul (t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */
|
| - expr += expR[m];
|
| - mpz_set_ui (tmp, 1);
|
| - for (i = 1 ; i <= m ; i++)
|
| - mpz_mul_ui (tmp, tmp, l + i);
|
| - mpz_fdiv_q (t, t, tmp); /* err(t) <= err(rr) + 2m */
|
| - l += m;
|
| - if (MPFR_UNLIKELY (mpz_sgn (t) == 0))
|
| - break;
|
| - expr += mpz_normalize (rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */
|
| - if (MPFR_UNLIKELY (mpz_sgn (rr) == 0))
|
| - rrbit = 1;
|
| - else
|
| - MPFR_MPZ_SIZEINBASE2 (rrbit, rr);
|
| - MPFR_MPZ_SIZEINBASE2 (sbit, s);
|
| - ql = q - *exps - sbit + expr + rrbit;
|
| - /* TODO: Wrong cast. I don't want what is right, but this is
|
| - certainly wrong */
|
| - }
|
| - while ((size_t) expr+rrbit > (size_t) (int) -q);
|
| -
|
| - MPFR_TMP_FREE(marker);
|
| - mpz_clear(tmp);
|
| - return l*(l+4);
|
| -}
|
|
|