Index: gcc/mpfr/factorial.c |
diff --git a/gcc/mpfr/factorial.c b/gcc/mpfr/factorial.c |
deleted file mode 100644 |
index 4cfb3238d465ae22eae32335b3e154760a10df28..0000000000000000000000000000000000000000 |
--- a/gcc/mpfr/factorial.c |
+++ /dev/null |
@@ -1,113 +0,0 @@ |
-/* mpfr_fac_ui -- factorial of a non-negative integer |
- |
-Copyright 2001, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
-Contributed by the Arenaire and Cacao projects, INRIA. |
- |
-This file is part of the GNU MPFR Library. |
- |
-The GNU MPFR Library is free software; you can redistribute it and/or modify |
-it under the terms of the GNU Lesser General Public License as published by |
-the Free Software Foundation; either version 2.1 of the License, or (at your |
-option) any later version. |
- |
-The GNU MPFR Library is distributed in the hope that it will be useful, but |
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
-License for more details. |
- |
-You should have received a copy of the GNU Lesser General Public License |
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to |
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
-MA 02110-1301, USA. */ |
- |
-#define MPFR_NEED_LONGLONG_H |
-#include "mpfr-impl.h" |
- |
- /* The computation of n! is done by |
- |
- n!=prod^{n}_{i=1}i |
- */ |
- |
-/* FIXME: efficient problems with large arguments; see comments in gamma.c. */ |
- |
-int |
-mpfr_fac_ui (mpfr_ptr y, unsigned long int x, mp_rnd_t rnd_mode) |
-{ |
- mpfr_t t; /* Variable of Intermediary Calculation*/ |
- unsigned long i; |
- int round, inexact; |
- |
- mp_prec_t Ny; /* Precision of output variable */ |
- mp_prec_t Nt; /* Precision of Intermediary Calculation variable */ |
- mp_prec_t err; /* Precision of error */ |
- |
- mp_rnd_t rnd; |
- MPFR_SAVE_EXPO_DECL (expo); |
- MPFR_ZIV_DECL (loop); |
- |
- /***** test x = 0 and x == 1******/ |
- if (MPFR_UNLIKELY (x <= 1)) |
- return mpfr_set_ui (y, 1, rnd_mode); /* 0! = 1 and 1! = 1 */ |
- |
- MPFR_SAVE_EXPO_MARK (expo); |
- |
- /* Initialisation of the Precision */ |
- Ny = MPFR_PREC (y); |
- |
- /* compute the size of intermediary variable */ |
- Nt = Ny + 2 * MPFR_INT_CEIL_LOG2 (x) + 7; |
- |
- mpfr_init2 (t, Nt); /* initialise of intermediary variable */ |
- |
- rnd = GMP_RNDZ; |
- MPFR_ZIV_INIT (loop, Nt); |
- for (;;) |
- { |
- /* compute factorial */ |
- inexact = mpfr_set_ui (t, 1, rnd); |
- for (i = 2 ; i <= x ; i++) |
- { |
- round = mpfr_mul_ui (t, t, i, rnd); |
- /* assume the first inexact product gives the sign |
- of difference: is that always correct? */ |
- if (inexact == 0) |
- inexact = round; |
- } |
- |
- err = Nt - 1 - MPFR_INT_CEIL_LOG2 (Nt); |
- |
- round = !inexact || mpfr_can_round (t, err, rnd, GMP_RNDZ, |
- Ny + (rnd_mode == GMP_RNDN)); |
- |
- if (MPFR_LIKELY (round)) |
- { |
- /* If inexact = 0, then t is exactly x!, so round is the |
- correct inexact flag. |
- Otherwise, t != x! since we rounded to zero or away. */ |
- round = mpfr_set (y, t, rnd_mode); |
- if (inexact == 0) |
- { |
- inexact = round; |
- break; |
- } |
- else if ((inexact < 0 && round <= 0) |
- || (inexact > 0 && round >= 0)) |
- break; |
- else /* inexact and round have opposite signs: we cannot |
- compute the inexact flag. Restart using the |
- symmetric rounding. */ |
- rnd = (rnd == GMP_RNDZ) ? GMP_RNDU : GMP_RNDZ; |
- } |
- MPFR_ZIV_NEXT (loop, Nt); |
- mpfr_set_prec (t, Nt); |
- } |
- MPFR_ZIV_FREE (loop); |
- |
- mpfr_clear (t); |
- MPFR_SAVE_EXPO_FREE (expo); |
- return mpfr_check_range (y, inexact, rnd_mode); |
-} |
- |
- |
- |
- |