| Index: src/lib/crypto/crypto_scrypt-ref.c
 | 
| diff --git a/src/lib/crypto/crypto_scrypt-ref.c b/src/lib/crypto/crypto_scrypt-ref.c
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..b47ca452e5759dc444a5b54c1123e952c5eb9eb3
 | 
| --- /dev/null
 | 
| +++ b/src/lib/crypto/crypto_scrypt-ref.c
 | 
| @@ -0,0 +1,284 @@
 | 
| +/*-
 | 
| + * Copyright 2009 Colin Percival
 | 
| + * All rights reserved.
 | 
| + *
 | 
| + * Redistribution and use in source and binary forms, with or without
 | 
| + * modification, are permitted provided that the following conditions
 | 
| + * are met:
 | 
| + * 1. Redistributions of source code must retain the above copyright
 | 
| + *    notice, this list of conditions and the following disclaimer.
 | 
| + * 2. Redistributions in binary form must reproduce the above copyright
 | 
| + *    notice, this list of conditions and the following disclaimer in the
 | 
| + *    documentation and/or other materials provided with the distribution.
 | 
| + *
 | 
| + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | 
| + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
| + * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
| + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
| + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
| + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
| + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
| + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
| + * SUCH DAMAGE.
 | 
| + *
 | 
| + * This file was originally written by Colin Percival as part of the Tarsnap
 | 
| + * online backup system.
 | 
| + */
 | 
| +#include "scrypt_platform.h"
 | 
| +
 | 
| +#include <errno.h>
 | 
| +#include <stdint.h>
 | 
| +#include <stdlib.h>
 | 
| +#include <string.h>
 | 
| +
 | 
| +#include "sha256.h"
 | 
| +#include "sysendian.h"
 | 
| +
 | 
| +#include "crypto_scrypt.h"
 | 
| +
 | 
| +static void blkcpy(uint8_t *, uint8_t *, size_t);
 | 
| +static void blkxor(uint8_t *, uint8_t *, size_t);
 | 
| +static void salsa20_8(uint8_t[64]);
 | 
| +static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
 | 
| +static uint64_t integerify(uint8_t *, size_t);
 | 
| +static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
 | 
| +
 | 
| +static void
 | 
| +blkcpy(uint8_t * dest, uint8_t * src, size_t len)
 | 
| +{
 | 
| +	size_t i;
 | 
| +
 | 
| +	for (i = 0; i < len; i++)
 | 
| +		dest[i] = src[i];
 | 
| +}
 | 
| +
 | 
| +static void
 | 
| +blkxor(uint8_t * dest, uint8_t * src, size_t len)
 | 
| +{
 | 
| +	size_t i;
 | 
| +
 | 
| +	for (i = 0; i < len; i++)
 | 
| +		dest[i] ^= src[i];
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * salsa20_8(B):
 | 
| + * Apply the salsa20/8 core to the provided block.
 | 
| + */
 | 
| +static void
 | 
| +salsa20_8(uint8_t B[64])
 | 
| +{
 | 
| +	uint32_t B32[16];
 | 
| +	uint32_t x[16];
 | 
| +	size_t i;
 | 
| +
 | 
| +	/* Convert little-endian values in. */
 | 
| +	for (i = 0; i < 16; i++)
 | 
| +		B32[i] = le32dec(&B[i * 4]);
 | 
| +
 | 
| +	/* Compute x = doubleround^4(B32). */
 | 
| +	for (i = 0; i < 16; i++)
 | 
| +		x[i] = B32[i];
 | 
| +	for (i = 0; i < 8; i += 2) {
 | 
| +#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
 | 
| +		/* Operate on columns. */
 | 
| +		x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
 | 
| +		x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);
 | 
| +
 | 
| +		x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
 | 
| +		x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);
 | 
| +
 | 
| +		x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
 | 
| +		x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);
 | 
| +
 | 
| +		x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
 | 
| +		x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);
 | 
| +
 | 
| +		/* Operate on rows. */
 | 
| +		x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
 | 
| +		x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);
 | 
| +
 | 
| +		x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
 | 
| +		x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);
 | 
| +
 | 
| +		x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
 | 
| +		x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);
 | 
| +
 | 
| +		x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
 | 
| +		x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
 | 
| +#undef R
 | 
| +	}
 | 
| +
 | 
| +	/* Compute B32 = B32 + x. */
 | 
| +	for (i = 0; i < 16; i++)
 | 
| +		B32[i] += x[i];
 | 
| +
 | 
| +	/* Convert little-endian values out. */
 | 
| +	for (i = 0; i < 16; i++)
 | 
| +		le32enc(&B[4 * i], B32[i]);
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * blockmix_salsa8(B, Y, r):
 | 
| + * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
 | 
| + * length; the temporary space Y must also be the same size.
 | 
| + */
 | 
| +static void
 | 
| +blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
 | 
| +{
 | 
| +	uint8_t X[64];
 | 
| +	size_t i;
 | 
| +
 | 
| +	/* 1: X <-- B_{2r - 1} */
 | 
| +	blkcpy(X, &B[(2 * r - 1) * 64], 64);
 | 
| +
 | 
| +	/* 2: for i = 0 to 2r - 1 do */
 | 
| +	for (i = 0; i < 2 * r; i++) {
 | 
| +		/* 3: X <-- H(X \xor B_i) */
 | 
| +		blkxor(X, &B[i * 64], 64);
 | 
| +		salsa20_8(X);
 | 
| +
 | 
| +		/* 4: Y_i <-- X */
 | 
| +		blkcpy(&Y[i * 64], X, 64);
 | 
| +	}
 | 
| +
 | 
| +	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
 | 
| +	for (i = 0; i < r; i++)
 | 
| +		blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
 | 
| +	for (i = 0; i < r; i++)
 | 
| +		blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * integerify(B, r):
 | 
| + * Return the result of parsing B_{2r-1} as a little-endian integer.
 | 
| + */
 | 
| +static uint64_t
 | 
| +integerify(uint8_t * B, size_t r)
 | 
| +{
 | 
| +	uint8_t * X = &B[(2 * r - 1) * 64];
 | 
| +
 | 
| +	return (le64dec(X));
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * smix(B, r, N, V, XY):
 | 
| + * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
 | 
| + * temporary storage V must be 128rN bytes in length; the temporary storage
 | 
| + * XY must be 256r bytes in length.  The value N must be a power of 2.
 | 
| + */
 | 
| +static void
 | 
| +smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
 | 
| +{
 | 
| +	uint8_t * X = XY;
 | 
| +	uint8_t * Y = &XY[128 * r];
 | 
| +	uint64_t i;
 | 
| +	uint64_t j;
 | 
| +
 | 
| +	/* 1: X <-- B */
 | 
| +	blkcpy(X, B, 128 * r);
 | 
| +
 | 
| +	/* 2: for i = 0 to N - 1 do */
 | 
| +	for (i = 0; i < N; i++) {
 | 
| +		/* 3: V_i <-- X */
 | 
| +		blkcpy(&V[i * (128 * r)], X, 128 * r);
 | 
| +
 | 
| +		/* 4: X <-- H(X) */
 | 
| +		blockmix_salsa8(X, Y, r);
 | 
| +	}
 | 
| +
 | 
| +	/* 6: for i = 0 to N - 1 do */
 | 
| +	for (i = 0; i < N; i++) {
 | 
| +		/* 7: j <-- Integerify(X) mod N */
 | 
| +		j = integerify(X, r) & (N - 1);
 | 
| +
 | 
| +		/* 8: X <-- H(X \xor V_j) */
 | 
| +		blkxor(X, &V[j * (128 * r)], 128 * r);
 | 
| +		blockmix_salsa8(X, Y, r);
 | 
| +	}
 | 
| +
 | 
| +	/* 10: B' <-- X */
 | 
| +	blkcpy(B, X, 128 * r);
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
 | 
| + * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
 | 
| + * p, buflen) and write the result into buf.  The parameters r, p, and buflen
 | 
| + * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
 | 
| + * must be a power of 2.
 | 
| + *
 | 
| + * Return 0 on success; or -1 on error.
 | 
| + */
 | 
| +int
 | 
| +crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
 | 
| +    const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
 | 
| +    uint8_t * buf, size_t buflen)
 | 
| +{
 | 
| +	uint8_t * B;
 | 
| +	uint8_t * V;
 | 
| +	uint8_t * XY;
 | 
| +	uint32_t i;
 | 
| +
 | 
| +	/* Sanity-check parameters. */
 | 
| +#if SIZE_MAX > UINT32_MAX
 | 
| +	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
 | 
| +		errno = EFBIG;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +#endif
 | 
| +	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
 | 
| +		errno = EFBIG;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +	if (((N & (N - 1)) != 0) || (N == 0)) {
 | 
| +		errno = EINVAL;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +	if ((r > SIZE_MAX / 128 / p) ||
 | 
| +#if SIZE_MAX / 256 <= UINT32_MAX
 | 
| +	    (r > SIZE_MAX / 256) ||
 | 
| +#endif
 | 
| +	    (N > SIZE_MAX / 128 / r)) {
 | 
| +		errno = ENOMEM;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +
 | 
| +	/* Allocate memory. */
 | 
| +	if ((B = malloc(128 * r * p)) == NULL)
 | 
| +		goto err0;
 | 
| +	if ((XY = malloc(256 * r)) == NULL)
 | 
| +		goto err1;
 | 
| +	if ((V = malloc(128 * r * N)) == NULL)
 | 
| +		goto err2;
 | 
| +
 | 
| +	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
 | 
| +	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
 | 
| +
 | 
| +	/* 2: for i = 0 to p - 1 do */
 | 
| +	for (i = 0; i < p; i++) {
 | 
| +		/* 3: B_i <-- MF(B_i, N) */
 | 
| +		smix(&B[i * 128 * r], r, N, V, XY);
 | 
| +	}
 | 
| +
 | 
| +	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
 | 
| +	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
 | 
| +
 | 
| +	/* Free memory. */
 | 
| +	free(V);
 | 
| +	free(XY);
 | 
| +	free(B);
 | 
| +
 | 
| +	/* Success! */
 | 
| +	return (0);
 | 
| +
 | 
| +err2:
 | 
| +	free(XY);
 | 
| +err1:
 | 
| +	free(B);
 | 
| +err0:
 | 
| +	/* Failure! */
 | 
| +	return (-1);
 | 
| +}
 | 
| 
 |