| Index: src/lib/crypto/crypto_scrypt-nosse.c
 | 
| diff --git a/src/lib/crypto/crypto_scrypt-nosse.c b/src/lib/crypto/crypto_scrypt-nosse.c
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..cad4d0e3b41841890ea79940ee354b901f707292
 | 
| --- /dev/null
 | 
| +++ b/src/lib/crypto/crypto_scrypt-nosse.c
 | 
| @@ -0,0 +1,338 @@
 | 
| +/*-
 | 
| + * Copyright 2009 Colin Percival
 | 
| + * All rights reserved.
 | 
| + *
 | 
| + * Redistribution and use in source and binary forms, with or without
 | 
| + * modification, are permitted provided that the following conditions
 | 
| + * are met:
 | 
| + * 1. Redistributions of source code must retain the above copyright
 | 
| + *    notice, this list of conditions and the following disclaimer.
 | 
| + * 2. Redistributions in binary form must reproduce the above copyright
 | 
| + *    notice, this list of conditions and the following disclaimer in the
 | 
| + *    documentation and/or other materials provided with the distribution.
 | 
| + *
 | 
| + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | 
| + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
| + * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
| + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
| + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
| + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
| + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
| + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
| + * SUCH DAMAGE.
 | 
| + *
 | 
| + * This file was originally written by Colin Percival as part of the Tarsnap
 | 
| + * online backup system.
 | 
| + */
 | 
| +#include "scrypt_platform.h"
 | 
| +
 | 
| +#include <sys/types.h>
 | 
| +#include <sys/mman.h>
 | 
| +
 | 
| +#include <errno.h>
 | 
| +#include <stdint.h>
 | 
| +#include <stdlib.h>
 | 
| +#include <string.h>
 | 
| +
 | 
| +#include "sha256.h"
 | 
| +#include "sysendian.h"
 | 
| +
 | 
| +#include "crypto_scrypt.h"
 | 
| +
 | 
| +static void blkcpy(void *, void *, size_t);
 | 
| +static void blkxor(void *, void *, size_t);
 | 
| +static void salsa20_8(uint32_t[16]);
 | 
| +static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
 | 
| +static uint64_t integerify(void *, size_t);
 | 
| +static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
 | 
| +
 | 
| +static void
 | 
| +blkcpy(void * dest, void * src, size_t len)
 | 
| +{
 | 
| +	size_t * D = dest;
 | 
| +	size_t * S = src;
 | 
| +	size_t L = len / sizeof(size_t);
 | 
| +	size_t i;
 | 
| +
 | 
| +	for (i = 0; i < L; i++)
 | 
| +		D[i] = S[i];
 | 
| +}
 | 
| +
 | 
| +static void
 | 
| +blkxor(void * dest, void * src, size_t len)
 | 
| +{
 | 
| +	size_t * D = dest;
 | 
| +	size_t * S = src;
 | 
| +	size_t L = len / sizeof(size_t);
 | 
| +	size_t i;
 | 
| +
 | 
| +	for (i = 0; i < L; i++)
 | 
| +		D[i] ^= S[i];
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * salsa20_8(B):
 | 
| + * Apply the salsa20/8 core to the provided block.
 | 
| + */
 | 
| +static void
 | 
| +salsa20_8(uint32_t B[16])
 | 
| +{
 | 
| +	uint32_t x[16];
 | 
| +	size_t i;
 | 
| +
 | 
| +	blkcpy(x, B, 64);
 | 
| +	for (i = 0; i < 8; i += 2) {
 | 
| +#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
 | 
| +		/* Operate on columns. */
 | 
| +		x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
 | 
| +		x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);
 | 
| +
 | 
| +		x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
 | 
| +		x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);
 | 
| +
 | 
| +		x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
 | 
| +		x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);
 | 
| +
 | 
| +		x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
 | 
| +		x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);
 | 
| +
 | 
| +		/* Operate on rows. */
 | 
| +		x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
 | 
| +		x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);
 | 
| +
 | 
| +		x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
 | 
| +		x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);
 | 
| +
 | 
| +		x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
 | 
| +		x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);
 | 
| +
 | 
| +		x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
 | 
| +		x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
 | 
| +#undef R
 | 
| +	}
 | 
| +	for (i = 0; i < 16; i++)
 | 
| +		B[i] += x[i];
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * blockmix_salsa8(Bin, Bout, X, r):
 | 
| + * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
 | 
| + * bytes in length; the output Bout must also be the same size.  The
 | 
| + * temporary space X must be 64 bytes.
 | 
| + */
 | 
| +static void
 | 
| +blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
 | 
| +{
 | 
| +	size_t i;
 | 
| +
 | 
| +	/* 1: X <-- B_{2r - 1} */
 | 
| +	blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
 | 
| +
 | 
| +	/* 2: for i = 0 to 2r - 1 do */
 | 
| +	for (i = 0; i < 2 * r; i += 2) {
 | 
| +		/* 3: X <-- H(X \xor B_i) */
 | 
| +		blkxor(X, &Bin[i * 16], 64);
 | 
| +		salsa20_8(X);
 | 
| +
 | 
| +		/* 4: Y_i <-- X */
 | 
| +		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
 | 
| +		blkcpy(&Bout[i * 8], X, 64);
 | 
| +
 | 
| +		/* 3: X <-- H(X \xor B_i) */
 | 
| +		blkxor(X, &Bin[i * 16 + 16], 64);
 | 
| +		salsa20_8(X);
 | 
| +
 | 
| +		/* 4: Y_i <-- X */
 | 
| +		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
 | 
| +		blkcpy(&Bout[i * 8 + r * 16], X, 64);
 | 
| +	}
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * integerify(B, r):
 | 
| + * Return the result of parsing B_{2r-1} as a little-endian integer.
 | 
| + */
 | 
| +static uint64_t
 | 
| +integerify(void * B, size_t r)
 | 
| +{
 | 
| +	uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
 | 
| +
 | 
| +	return (((uint64_t)(X[1]) << 32) + X[0]);
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * smix(B, r, N, V, XY):
 | 
| + * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
 | 
| + * the temporary storage V must be 128rN bytes in length; the temporary
 | 
| + * storage XY must be 256r + 64 bytes in length.  The value N must be a
 | 
| + * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
 | 
| + * multiple of 64 bytes.
 | 
| + */
 | 
| +static void
 | 
| +smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
 | 
| +{
 | 
| +	uint32_t * X = XY;
 | 
| +	uint32_t * Y = &XY[32 * r];
 | 
| +	uint32_t * Z = &XY[64 * r];
 | 
| +	uint64_t i;
 | 
| +	uint64_t j;
 | 
| +	size_t k;
 | 
| +
 | 
| +	/* 1: X <-- B */
 | 
| +	for (k = 0; k < 32 * r; k++)
 | 
| +		X[k] = le32dec(&B[4 * k]);
 | 
| +
 | 
| +	/* 2: for i = 0 to N - 1 do */
 | 
| +	for (i = 0; i < N; i += 2) {
 | 
| +		/* 3: V_i <-- X */
 | 
| +		blkcpy(&V[i * (32 * r)], X, 128 * r);
 | 
| +
 | 
| +		/* 4: X <-- H(X) */
 | 
| +		blockmix_salsa8(X, Y, Z, r);
 | 
| +
 | 
| +		/* 3: V_i <-- X */
 | 
| +		blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
 | 
| +
 | 
| +		/* 4: X <-- H(X) */
 | 
| +		blockmix_salsa8(Y, X, Z, r);
 | 
| +	}
 | 
| +
 | 
| +	/* 6: for i = 0 to N - 1 do */
 | 
| +	for (i = 0; i < N; i += 2) {
 | 
| +		/* 7: j <-- Integerify(X) mod N */
 | 
| +		j = integerify(X, r) & (N - 1);
 | 
| +
 | 
| +		/* 8: X <-- H(X \xor V_j) */
 | 
| +		blkxor(X, &V[j * (32 * r)], 128 * r);
 | 
| +		blockmix_salsa8(X, Y, Z, r);
 | 
| +
 | 
| +		/* 7: j <-- Integerify(X) mod N */
 | 
| +		j = integerify(Y, r) & (N - 1);
 | 
| +
 | 
| +		/* 8: X <-- H(X \xor V_j) */
 | 
| +		blkxor(Y, &V[j * (32 * r)], 128 * r);
 | 
| +		blockmix_salsa8(Y, X, Z, r);
 | 
| +	}
 | 
| +
 | 
| +	/* 10: B' <-- X */
 | 
| +	for (k = 0; k < 32 * r; k++)
 | 
| +		le32enc(&B[4 * k], X[k]);
 | 
| +}
 | 
| +
 | 
| +/**
 | 
| + * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
 | 
| + * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
 | 
| + * p, buflen) and write the result into buf.  The parameters r, p, and buflen
 | 
| + * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
 | 
| + * must be a power of 2 greater than 1.
 | 
| + *
 | 
| + * Return 0 on success; or -1 on error.
 | 
| + */
 | 
| +int
 | 
| +crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
 | 
| +    const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
 | 
| +    uint8_t * buf, size_t buflen)
 | 
| +{
 | 
| +	void * B0, * V0, * XY0;
 | 
| +	uint8_t * B;
 | 
| +	uint32_t * V;
 | 
| +	uint32_t * XY;
 | 
| +	uint32_t i;
 | 
| +
 | 
| +	/* Sanity-check parameters. */
 | 
| +#if SIZE_MAX > UINT32_MAX
 | 
| +	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
 | 
| +		errno = EFBIG;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +#endif
 | 
| +	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
 | 
| +		errno = EFBIG;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +	if (((N & (N - 1)) != 0) || (N == 0)) {
 | 
| +		errno = EINVAL;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +	if ((r > SIZE_MAX / 128 / p) ||
 | 
| +#if SIZE_MAX / 256 <= UINT32_MAX
 | 
| +	    (r > SIZE_MAX / 256) ||
 | 
| +#endif
 | 
| +	    (N > SIZE_MAX / 128 / r)) {
 | 
| +		errno = ENOMEM;
 | 
| +		goto err0;
 | 
| +	}
 | 
| +
 | 
| +	/* Allocate memory. */
 | 
| +#ifdef HAVE_POSIX_MEMALIGN
 | 
| +	if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
 | 
| +		goto err0;
 | 
| +	B = (uint8_t *)(B0);
 | 
| +	if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
 | 
| +		goto err1;
 | 
| +	XY = (uint32_t *)(XY0);
 | 
| +#ifndef MAP_ANON
 | 
| +	if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
 | 
| +		goto err2;
 | 
| +	V = (uint32_t *)(V0);
 | 
| +#endif
 | 
| +#else
 | 
| +	if ((B0 = malloc(128 * r * p + 63)) == NULL)
 | 
| +		goto err0;
 | 
| +	B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
 | 
| +	if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
 | 
| +		goto err1;
 | 
| +	XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
 | 
| +#ifndef MAP_ANON
 | 
| +	if ((V0 = malloc(128 * r * N + 63)) == NULL)
 | 
| +		goto err2;
 | 
| +	V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
 | 
| +#endif
 | 
| +#endif
 | 
| +#ifdef MAP_ANON
 | 
| +	if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
 | 
| +#ifdef MAP_NOCORE
 | 
| +	    MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
 | 
| +#else
 | 
| +	    MAP_ANON | MAP_PRIVATE,
 | 
| +#endif
 | 
| +	    -1, 0)) == MAP_FAILED)
 | 
| +		goto err2;
 | 
| +	V = (uint32_t *)(V0);
 | 
| +#endif
 | 
| +
 | 
| +	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
 | 
| +	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
 | 
| +
 | 
| +	/* 2: for i = 0 to p - 1 do */
 | 
| +	for (i = 0; i < p; i++) {
 | 
| +		/* 3: B_i <-- MF(B_i, N) */
 | 
| +		smix(&B[i * 128 * r], r, N, V, XY);
 | 
| +	}
 | 
| +
 | 
| +	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
 | 
| +	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
 | 
| +
 | 
| +	/* Free memory. */
 | 
| +#ifdef MAP_ANON
 | 
| +	if (munmap(V0, 128 * r * N))
 | 
| +		goto err2;
 | 
| +#else
 | 
| +	free(V0);
 | 
| +#endif
 | 
| +	free(XY0);
 | 
| +	free(B0);
 | 
| +
 | 
| +	/* Success! */
 | 
| +	return (0);
 | 
| +
 | 
| +err2:
 | 
| +	free(XY0);
 | 
| +err1:
 | 
| +	free(B0);
 | 
| +err0:
 | 
| +	/* Failure! */
 | 
| +	return (-1);
 | 
| +}
 | 
| 
 |