| Index: src/lib/crypto/crypto_scrypt-sse.c
|
| diff --git a/src/lib/crypto/crypto_scrypt-sse.c b/src/lib/crypto/crypto_scrypt-sse.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..875175e83dd6c559f1b82ef56901b66134e9e7a7
|
| --- /dev/null
|
| +++ b/src/lib/crypto/crypto_scrypt-sse.c
|
| @@ -0,0 +1,366 @@
|
| +/*-
|
| + * Copyright 2009 Colin Percival
|
| + * All rights reserved.
|
| + *
|
| + * Redistribution and use in source and binary forms, with or without
|
| + * modification, are permitted provided that the following conditions
|
| + * are met:
|
| + * 1. Redistributions of source code must retain the above copyright
|
| + * notice, this list of conditions and the following disclaimer.
|
| + * 2. Redistributions in binary form must reproduce the above copyright
|
| + * notice, this list of conditions and the following disclaimer in the
|
| + * documentation and/or other materials provided with the distribution.
|
| + *
|
| + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
| + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
| + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
| + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
| + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
| + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
| + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
| + * SUCH DAMAGE.
|
| + *
|
| + * This file was originally written by Colin Percival as part of the Tarsnap
|
| + * online backup system.
|
| + */
|
| +#include "scrypt_platform.h"
|
| +
|
| +#include <sys/types.h>
|
| +#include <sys/mman.h>
|
| +
|
| +#include <emmintrin.h>
|
| +#include <errno.h>
|
| +#include <stdint.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +
|
| +#include "sha256.h"
|
| +#include "sysendian.h"
|
| +
|
| +#include "crypto_scrypt.h"
|
| +
|
| +static void blkcpy(void *, void *, size_t);
|
| +static void blkxor(void *, void *, size_t);
|
| +static void salsa20_8(__m128i *);
|
| +static void blockmix_salsa8(__m128i *, __m128i *, __m128i *, size_t);
|
| +static uint64_t integerify(void *, size_t);
|
| +static void smix(uint8_t *, size_t, uint64_t, void *, void *);
|
| +
|
| +static void
|
| +blkcpy(void * dest, void * src, size_t len)
|
| +{
|
| + __m128i * D = dest;
|
| + __m128i * S = src;
|
| + size_t L = len / 16;
|
| + size_t i;
|
| +
|
| + for (i = 0; i < L; i++)
|
| + D[i] = S[i];
|
| +}
|
| +
|
| +static void
|
| +blkxor(void * dest, void * src, size_t len)
|
| +{
|
| + __m128i * D = dest;
|
| + __m128i * S = src;
|
| + size_t L = len / 16;
|
| + size_t i;
|
| +
|
| + for (i = 0; i < L; i++)
|
| + D[i] = _mm_xor_si128(D[i], S[i]);
|
| +}
|
| +
|
| +/**
|
| + * salsa20_8(B):
|
| + * Apply the salsa20/8 core to the provided block.
|
| + */
|
| +static void
|
| +salsa20_8(__m128i B[4])
|
| +{
|
| + __m128i X0, X1, X2, X3;
|
| + __m128i T;
|
| + size_t i;
|
| +
|
| + X0 = B[0];
|
| + X1 = B[1];
|
| + X2 = B[2];
|
| + X3 = B[3];
|
| +
|
| + for (i = 0; i < 8; i += 2) {
|
| + /* Operate on "columns". */
|
| + T = _mm_add_epi32(X0, X3);
|
| + X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
|
| + X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
|
| + T = _mm_add_epi32(X1, X0);
|
| + X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
| + X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
| + T = _mm_add_epi32(X2, X1);
|
| + X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
|
| + X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
|
| + T = _mm_add_epi32(X3, X2);
|
| + X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
| + X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
| +
|
| + /* Rearrange data. */
|
| + X1 = _mm_shuffle_epi32(X1, 0x93);
|
| + X2 = _mm_shuffle_epi32(X2, 0x4E);
|
| + X3 = _mm_shuffle_epi32(X3, 0x39);
|
| +
|
| + /* Operate on "rows". */
|
| + T = _mm_add_epi32(X0, X1);
|
| + X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
|
| + X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
|
| + T = _mm_add_epi32(X3, X0);
|
| + X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
| + X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
| + T = _mm_add_epi32(X2, X3);
|
| + X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
|
| + X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
|
| + T = _mm_add_epi32(X1, X2);
|
| + X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
| + X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
| +
|
| + /* Rearrange data. */
|
| + X1 = _mm_shuffle_epi32(X1, 0x39);
|
| + X2 = _mm_shuffle_epi32(X2, 0x4E);
|
| + X3 = _mm_shuffle_epi32(X3, 0x93);
|
| + }
|
| +
|
| + B[0] = _mm_add_epi32(B[0], X0);
|
| + B[1] = _mm_add_epi32(B[1], X1);
|
| + B[2] = _mm_add_epi32(B[2], X2);
|
| + B[3] = _mm_add_epi32(B[3], X3);
|
| +}
|
| +
|
| +/**
|
| + * blockmix_salsa8(Bin, Bout, X, r):
|
| + * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
|
| + * bytes in length; the output Bout must also be the same size. The
|
| + * temporary space X must be 64 bytes.
|
| + */
|
| +static void
|
| +blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
|
| +{
|
| + size_t i;
|
| +
|
| + /* 1: X <-- B_{2r - 1} */
|
| + blkcpy(X, &Bin[8 * r - 4], 64);
|
| +
|
| + /* 2: for i = 0 to 2r - 1 do */
|
| + for (i = 0; i < r; i++) {
|
| + /* 3: X <-- H(X \xor B_i) */
|
| + blkxor(X, &Bin[i * 8], 64);
|
| + salsa20_8(X);
|
| +
|
| + /* 4: Y_i <-- X */
|
| + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
| + blkcpy(&Bout[i * 4], X, 64);
|
| +
|
| + /* 3: X <-- H(X \xor B_i) */
|
| + blkxor(X, &Bin[i * 8 + 4], 64);
|
| + salsa20_8(X);
|
| +
|
| + /* 4: Y_i <-- X */
|
| + /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
| + blkcpy(&Bout[(r + i) * 4], X, 64);
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * integerify(B, r):
|
| + * Return the result of parsing B_{2r-1} as a little-endian integer.
|
| + */
|
| +static uint64_t
|
| +integerify(void * B, size_t r)
|
| +{
|
| + uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
|
| +
|
| + return (((uint64_t)(X[13]) << 32) + X[0]);
|
| +}
|
| +
|
| +/**
|
| + * smix(B, r, N, V, XY):
|
| + * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
|
| + * the temporary storage V must be 128rN bytes in length; the temporary
|
| + * storage XY must be 256r + 64 bytes in length. The value N must be a
|
| + * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
|
| + * multiple of 64 bytes.
|
| + */
|
| +static void
|
| +smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
|
| +{
|
| + __m128i * X = XY;
|
| + __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
|
| + __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
|
| + uint32_t * X32 = (void *)X;
|
| + uint64_t i, j;
|
| + size_t k;
|
| +
|
| + /* 1: X <-- B */
|
| + for (k = 0; k < 2 * r; k++) {
|
| + for (i = 0; i < 16; i++) {
|
| + X32[k * 16 + i] =
|
| + le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
|
| + }
|
| + }
|
| +
|
| + /* 2: for i = 0 to N - 1 do */
|
| + for (i = 0; i < N; i += 2) {
|
| + /* 3: V_i <-- X */
|
| + blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
|
| +
|
| + /* 4: X <-- H(X) */
|
| + blockmix_salsa8(X, Y, Z, r);
|
| +
|
| + /* 3: V_i <-- X */
|
| + blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
|
| + Y, 128 * r);
|
| +
|
| + /* 4: X <-- H(X) */
|
| + blockmix_salsa8(Y, X, Z, r);
|
| + }
|
| +
|
| + /* 6: for i = 0 to N - 1 do */
|
| + for (i = 0; i < N; i += 2) {
|
| + /* 7: j <-- Integerify(X) mod N */
|
| + j = integerify(X, r) & (N - 1);
|
| +
|
| + /* 8: X <-- H(X \xor V_j) */
|
| + blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
|
| + blockmix_salsa8(X, Y, Z, r);
|
| +
|
| + /* 7: j <-- Integerify(X) mod N */
|
| + j = integerify(Y, r) & (N - 1);
|
| +
|
| + /* 8: X <-- H(X \xor V_j) */
|
| + blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
|
| + blockmix_salsa8(Y, X, Z, r);
|
| + }
|
| +
|
| + /* 10: B' <-- X */
|
| + for (k = 0; k < 2 * r; k++) {
|
| + for (i = 0; i < 16; i++) {
|
| + le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
|
| + X32[k * 16 + i]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
| + * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
| + * p, buflen) and write the result into buf. The parameters r, p, and buflen
|
| + * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
| + * must be a power of 2 greater than 1.
|
| + *
|
| + * Return 0 on success; or -1 on error.
|
| + */
|
| +int
|
| +crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
|
| + const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
| + uint8_t * buf, size_t buflen)
|
| +{
|
| + void * B0, * V0, * XY0;
|
| + uint8_t * B;
|
| + uint32_t * V;
|
| + uint32_t * XY;
|
| + uint32_t i;
|
| +
|
| + /* Sanity-check parameters. */
|
| +#if SIZE_MAX > UINT32_MAX
|
| + if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
| + errno = EFBIG;
|
| + goto err0;
|
| + }
|
| +#endif
|
| + if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
| + errno = EFBIG;
|
| + goto err0;
|
| + }
|
| + if (((N & (N - 1)) != 0) || (N == 0)) {
|
| + errno = EINVAL;
|
| + goto err0;
|
| + }
|
| + if ((r > SIZE_MAX / 128 / p) ||
|
| +#if SIZE_MAX / 256 <= UINT32_MAX
|
| + (r > (SIZE_MAX - 64) / 256) ||
|
| +#endif
|
| + (N > SIZE_MAX / 128 / r)) {
|
| + errno = ENOMEM;
|
| + goto err0;
|
| + }
|
| +
|
| + /* Allocate memory. */
|
| +#ifdef HAVE_POSIX_MEMALIGN
|
| + if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
|
| + goto err0;
|
| + B = (uint8_t *)(B0);
|
| + if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
|
| + goto err1;
|
| + XY = (uint32_t *)(XY0);
|
| +#ifndef MAP_ANON
|
| + if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
|
| + goto err2;
|
| + V = (uint32_t *)(V0);
|
| +#endif
|
| +#else
|
| + if ((B0 = malloc(128 * r * p + 63)) == NULL)
|
| + goto err0;
|
| + B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
|
| + if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
|
| + goto err1;
|
| + XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
|
| +#ifndef MAP_ANON
|
| + if ((V0 = malloc(128 * r * N + 63)) == NULL)
|
| + goto err2;
|
| + V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
|
| +#endif
|
| +#endif
|
| +#ifdef MAP_ANON
|
| + if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
|
| +#ifdef MAP_NOCORE
|
| + MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
|
| +#else
|
| + MAP_ANON | MAP_PRIVATE,
|
| +#endif
|
| + -1, 0)) == MAP_FAILED)
|
| + goto err2;
|
| + V = (uint32_t *)(V0);
|
| +#endif
|
| +
|
| + /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
| + PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
|
| +
|
| + /* 2: for i = 0 to p - 1 do */
|
| + for (i = 0; i < p; i++) {
|
| + /* 3: B_i <-- MF(B_i, N) */
|
| + smix(&B[i * 128 * r], r, N, V, XY);
|
| + }
|
| +
|
| + /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
| + PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
|
| +
|
| + /* Free memory. */
|
| +#ifdef MAP_ANON
|
| + if (munmap(V0, 128 * r * N))
|
| + goto err2;
|
| +#else
|
| + free(V0);
|
| +#endif
|
| + free(XY0);
|
| + free(B0);
|
| +
|
| + /* Success! */
|
| + return (0);
|
| +
|
| +err2:
|
| + free(XY0);
|
| +err1:
|
| + free(B0);
|
| +err0:
|
| + /* Failure! */
|
| + return (-1);
|
| +}
|
|
|