| Index: base/gfx/convolver.cc
 | 
| ===================================================================
 | 
| --- base/gfx/convolver.cc	(revision 6142)
 | 
| +++ base/gfx/convolver.cc	(working copy)
 | 
| @@ -1,335 +0,0 @@
 | 
| -// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
 | 
| -// Use of this source code is governed by a BSD-style license that can be
 | 
| -// found in the LICENSE file.
 | 
| -
 | 
| -#include <algorithm>
 | 
| -
 | 
| -#include "base/basictypes.h"
 | 
| -#include "base/gfx/convolver.h"
 | 
| -#include "base/logging.h"
 | 
| -
 | 
| -namespace gfx {
 | 
| -
 | 
| -namespace {
 | 
| -
 | 
| -// Converts the argument to an 8-bit unsigned value by clamping to the range
 | 
| -// 0-255.
 | 
| -inline uint8 ClampTo8(int32 a) {
 | 
| -  if (static_cast<uint32>(a) < 256)
 | 
| -    return a;  // Avoid the extra check in the common case.
 | 
| -  if (a < 0)
 | 
| -    return 0;
 | 
| -  return 255;
 | 
| -}
 | 
| -
 | 
| -// Stores a list of rows in a circular buffer. The usage is you write into it
 | 
| -// by calling AdvanceRow. It will keep track of which row in the buffer it
 | 
| -// should use next, and the total number of rows added.
 | 
| -class CircularRowBuffer {
 | 
| - public:
 | 
| -  // The number of pixels in each row is given in |source_row_pixel_width|.
 | 
| -  // The maximum number of rows needed in the buffer is |max_y_filter_size|
 | 
| -  // (we only need to store enough rows for the biggest filter).
 | 
| -  //
 | 
| -  // We use the |first_input_row| to compute the coordinates of all of the
 | 
| -  // following rows returned by Advance().
 | 
| -  CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
 | 
| -                    int first_input_row)
 | 
| -      : row_byte_width_(dest_row_pixel_width * 4),
 | 
| -        num_rows_(max_y_filter_size),
 | 
| -        next_row_(0),
 | 
| -        next_row_coordinate_(first_input_row) {
 | 
| -    buffer_.resize(row_byte_width_ * max_y_filter_size);
 | 
| -    row_addresses_.resize(num_rows_);
 | 
| -  }
 | 
| -
 | 
| -  // Moves to the next row in the buffer, returning a pointer to the beginning
 | 
| -  // of it.
 | 
| -  uint8* AdvanceRow() {
 | 
| -    uint8* row = &buffer_[next_row_ * row_byte_width_];
 | 
| -    next_row_coordinate_++;
 | 
| -
 | 
| -    // Set the pointer to the next row to use, wrapping around if necessary.
 | 
| -    next_row_++;
 | 
| -    if (next_row_ == num_rows_)
 | 
| -      next_row_ = 0;
 | 
| -    return row;
 | 
| -  }
 | 
| -
 | 
| -  // Returns a pointer to an "unrolled" array of rows. These rows will start
 | 
| -  // at the y coordinate placed into |*first_row_index| and will continue in
 | 
| -  // order for the maximum number of rows in this circular buffer.
 | 
| -  //
 | 
| -  // The |first_row_index_| may be negative. This means the circular buffer
 | 
| -  // starts before the top of the image (it hasn't been filled yet).
 | 
| -  uint8* const* GetRowAddresses(int* first_row_index) {
 | 
| -    // Example for a 4-element circular buffer holding coords 6-9.
 | 
| -    //   Row 0   Coord 8
 | 
| -    //   Row 1   Coord 9
 | 
| -    //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10.
 | 
| -    //   Row 3   Coord 7
 | 
| -    //
 | 
| -    // The "next" row is also the first (lowest) coordinate. This computation
 | 
| -    // may yield a negative value, but that's OK, the math will work out
 | 
| -    // since the user of this buffer will compute the offset relative
 | 
| -    // to the first_row_index and the negative rows will never be used.
 | 
| -    *first_row_index = next_row_coordinate_ - num_rows_;
 | 
| -
 | 
| -    int cur_row = next_row_;
 | 
| -    for (int i = 0; i < num_rows_; i++) {
 | 
| -      row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
 | 
| -
 | 
| -      // Advance to the next row, wrapping if necessary.
 | 
| -      cur_row++;
 | 
| -      if (cur_row == num_rows_)
 | 
| -        cur_row = 0;
 | 
| -    }
 | 
| -    return &row_addresses_[0];
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // The buffer storing the rows. They are packed, each one row_byte_width_.
 | 
| -  std::vector<uint8> buffer_;
 | 
| -
 | 
| -  // Number of bytes per row in the |buffer_|.
 | 
| -  int row_byte_width_;
 | 
| -
 | 
| -  // The number of rows available in the buffer.
 | 
| -  int num_rows_;
 | 
| -
 | 
| -  // The next row index we should write into. This wraps around as the
 | 
| -  // circular buffer is used.
 | 
| -  int next_row_;
 | 
| -
 | 
| -  // The y coordinate of the |next_row_|. This is incremented each time a
 | 
| -  // new row is appended and does not wrap.
 | 
| -  int next_row_coordinate_;
 | 
| -
 | 
| -  // Buffer used by GetRowAddresses().
 | 
| -  std::vector<uint8*> row_addresses_;
 | 
| -};
 | 
| -
 | 
| -// Convolves horizontally along a single row. The row data is given in
 | 
| -// |src_data| and continues for the num_values() of the filter.
 | 
| -template<bool has_alpha>
 | 
| -void ConvolveHorizontally(const uint8* src_data,
 | 
| -                          const ConvolusionFilter1D& filter,
 | 
| -                          unsigned char* out_row) {
 | 
| -  // Loop over each pixel on this row in the output image.
 | 
| -  int num_values = filter.num_values();
 | 
| -  for (int out_x = 0; out_x < num_values; out_x++) {
 | 
| -    // Get the filter that determines the current output pixel.
 | 
| -    int filter_offset, filter_length;
 | 
| -    const int16* filter_values =
 | 
| -        filter.FilterForValue(out_x, &filter_offset, &filter_length);
 | 
| -
 | 
| -    // Compute the first pixel in this row that the filter affects. It will
 | 
| -    // touch |filter_length| pixels (4 bytes each) after this.
 | 
| -    const uint8* row_to_filter = &src_data[filter_offset * 4];
 | 
| -
 | 
| -    // Apply the filter to the row to get the destination pixel in |accum|.
 | 
| -    int32 accum[4] = {0};
 | 
| -    for (int filter_x = 0; filter_x < filter_length; filter_x++) {
 | 
| -      int16 cur_filter = filter_values[filter_x];
 | 
| -      accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
 | 
| -      accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
 | 
| -      accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
 | 
| -      if (has_alpha)
 | 
| -        accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
 | 
| -    }
 | 
| -
 | 
| -    // Bring this value back in range. All of the filter scaling factors
 | 
| -    // are in fixed point with kShiftBits bits of fractional part.
 | 
| -    accum[0] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    accum[1] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    accum[2] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    if (has_alpha)
 | 
| -      accum[3] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -
 | 
| -    // Store the new pixel.
 | 
| -    out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
 | 
| -    out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
 | 
| -    out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
 | 
| -    if (has_alpha)
 | 
| -      out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -// Does vertical convolusion to produce one output row. The filter values and
 | 
| -// length are given in the first two parameters. These are applied to each
 | 
| -// of the rows pointed to in the |source_data_rows| array, with each row
 | 
| -// being |pixel_width| wide.
 | 
| -//
 | 
| -// The output must have room for |pixel_width * 4| bytes.
 | 
| -template<bool has_alpha>
 | 
| -void ConvolveVertically(const int16* filter_values,
 | 
| -                        int filter_length,
 | 
| -                        uint8* const* source_data_rows,
 | 
| -                        int pixel_width,
 | 
| -                        uint8* out_row) {
 | 
| -  // We go through each column in the output and do a vertical convolusion,
 | 
| -  // generating one output pixel each time.
 | 
| -  for (int out_x = 0; out_x < pixel_width; out_x++) {
 | 
| -    // Compute the number of bytes over in each row that the current column
 | 
| -    // we're convolving starts at. The pixel will cover the next 4 bytes.
 | 
| -    int byte_offset = out_x * 4;
 | 
| -
 | 
| -    // Apply the filter to one column of pixels.
 | 
| -    int32 accum[4] = {0};
 | 
| -    for (int filter_y = 0; filter_y < filter_length; filter_y++) {
 | 
| -      int16 cur_filter = filter_values[filter_y];
 | 
| -      accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
 | 
| -      accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
 | 
| -      accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
 | 
| -      if (has_alpha)
 | 
| -        accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
 | 
| -    }
 | 
| -
 | 
| -    // Bring this value back in range. All of the filter scaling factors
 | 
| -    // are in fixed point with kShiftBits bits of precision.
 | 
| -    accum[0] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    accum[1] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    accum[2] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -    if (has_alpha)
 | 
| -      accum[3] >>= ConvolusionFilter1D::kShiftBits;
 | 
| -
 | 
| -    // Store the new pixel.
 | 
| -    out_row[byte_offset + 0] = ClampTo8(accum[0]);
 | 
| -    out_row[byte_offset + 1] = ClampTo8(accum[1]);
 | 
| -    out_row[byte_offset + 2] = ClampTo8(accum[2]);
 | 
| -    if (has_alpha) {
 | 
| -      uint8 alpha = ClampTo8(accum[3]);
 | 
| -
 | 
| -      // Make sure the alpha channel doesn't come out larger than any of the
 | 
| -      // color channels. We use premultipled alpha channels, so this should
 | 
| -      // never happen, but rounding errors will cause this from time to time.
 | 
| -      // These "impossible" colors will cause overflows (and hence random pixel
 | 
| -      // values) when the resulting bitmap is drawn to the screen.
 | 
| -      //
 | 
| -      // We only need to do this when generating the final output row (here).
 | 
| -      int max_color_channel = std::max(out_row[byte_offset + 0],
 | 
| -          std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
 | 
| -      if (alpha < max_color_channel)
 | 
| -        out_row[byte_offset + 3] = max_color_channel;
 | 
| -      else
 | 
| -        out_row[byte_offset + 3] = alpha;
 | 
| -    } else {
 | 
| -      // No alpha channel, the image is opaque.
 | 
| -      out_row[byte_offset + 3] = 0xff;
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -}  // namespace
 | 
| -
 | 
| -// ConvolusionFilter1D ---------------------------------------------------------
 | 
| -
 | 
| -void ConvolusionFilter1D::AddFilter(int filter_offset,
 | 
| -                                    const float* filter_values,
 | 
| -                                    int filter_length) {
 | 
| -  FilterInstance instance;
 | 
| -  instance.data_location = static_cast<int>(filter_values_.size());
 | 
| -  instance.offset = filter_offset;
 | 
| -  instance.length = filter_length;
 | 
| -  filters_.push_back(instance);
 | 
| -
 | 
| -  DCHECK(filter_length > 0);
 | 
| -  for (int i = 0; i < filter_length; i++)
 | 
| -    filter_values_.push_back(FloatToFixed(filter_values[i]));
 | 
| -
 | 
| -  max_filter_ = std::max(max_filter_, filter_length);
 | 
| -}
 | 
| -
 | 
| -void ConvolusionFilter1D::AddFilter(int filter_offset,
 | 
| -                                    const int16* filter_values,
 | 
| -                                    int filter_length) {
 | 
| -  FilterInstance instance;
 | 
| -  instance.data_location = static_cast<int>(filter_values_.size());
 | 
| -  instance.offset = filter_offset;
 | 
| -  instance.length = filter_length;
 | 
| -  filters_.push_back(instance);
 | 
| -
 | 
| -  DCHECK(filter_length > 0);
 | 
| -  for (int i = 0; i < filter_length; i++)
 | 
| -    filter_values_.push_back(filter_values[i]);
 | 
| -
 | 
| -  max_filter_ = std::max(max_filter_, filter_length);
 | 
| -}
 | 
| -
 | 
| -// BGRAConvolve2D -------------------------------------------------------------
 | 
| -
 | 
| -void BGRAConvolve2D(const uint8* source_data,
 | 
| -                    int source_byte_row_stride,
 | 
| -                    bool source_has_alpha,
 | 
| -                    const ConvolusionFilter1D& filter_x,
 | 
| -                    const ConvolusionFilter1D& filter_y,
 | 
| -                    uint8* output) {
 | 
| -  int max_y_filter_size = filter_y.max_filter();
 | 
| -
 | 
| -  // The next row in the input that we will generate a horizontally
 | 
| -  // convolved row for. If the filter doesn't start at the beginning of the
 | 
| -  // image (this is the case when we are only resizing a subset), then we
 | 
| -  // don't want to generate any output rows before that. Compute the starting
 | 
| -  // row for convolusion as the first pixel for the first vertical filter.
 | 
| -  int filter_offset, filter_length;
 | 
| -  const int16* filter_values =
 | 
| -      filter_y.FilterForValue(0, &filter_offset, &filter_length);
 | 
| -  int next_x_row = filter_offset;
 | 
| -
 | 
| -  // We loop over each row in the input doing a horizontal convolusion. This
 | 
| -  // will result in a horizontally convolved image. We write the results into
 | 
| -  // a circular buffer of convolved rows and do vertical convolusion as rows
 | 
| -  // are available. This prevents us from having to store the entire
 | 
| -  // intermediate image and helps cache coherency.
 | 
| -  CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
 | 
| -                               filter_offset);
 | 
| -
 | 
| -  // Loop over every possible output row, processing just enough horizontal
 | 
| -  // convolusions to run each subsequent vertical convolusion.
 | 
| -  int output_row_byte_width = filter_x.num_values() * 4;
 | 
| -  int num_output_rows = filter_y.num_values();
 | 
| -  for (int out_y = 0; out_y < num_output_rows; out_y++) {
 | 
| -    filter_values = filter_y.FilterForValue(out_y,
 | 
| -                                            &filter_offset, &filter_length);
 | 
| -
 | 
| -    // Generate output rows until we have enough to run the current filter.
 | 
| -    while (next_x_row < filter_offset + filter_length) {
 | 
| -      if (source_has_alpha) {
 | 
| -        ConvolveHorizontally<true>(
 | 
| -            &source_data[next_x_row * source_byte_row_stride],
 | 
| -            filter_x, row_buffer.AdvanceRow());
 | 
| -      } else {
 | 
| -        ConvolveHorizontally<false>(
 | 
| -            &source_data[next_x_row * source_byte_row_stride],
 | 
| -            filter_x, row_buffer.AdvanceRow());
 | 
| -      }
 | 
| -      next_x_row++;
 | 
| -    }
 | 
| -
 | 
| -    // Compute where in the output image this row of final data will go.
 | 
| -    uint8* cur_output_row = &output[out_y * output_row_byte_width];
 | 
| -
 | 
| -    // Get the list of rows that the circular buffer has, in order.
 | 
| -    int first_row_in_circular_buffer;
 | 
| -    uint8* const* rows_to_convolve =
 | 
| -        row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
 | 
| -
 | 
| -    // Now compute the start of the subset of those rows that the filter
 | 
| -    // needs.
 | 
| -    uint8* const* first_row_for_filter =
 | 
| -        &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
 | 
| -
 | 
| -    if (source_has_alpha) {
 | 
| -      ConvolveVertically<true>(filter_values, filter_length,
 | 
| -                               first_row_for_filter,
 | 
| -                               filter_x.num_values(), cur_output_row);
 | 
| -    } else {
 | 
| -      ConvolveVertically<false>(filter_values, filter_length,
 | 
| -                                first_row_for_filter,
 | 
| -                                filter_x.num_values(), cur_output_row);
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -}  // namespace gfx
 | 
| -
 | 
| 
 |