| Index: base/gfx/convolver.cc
|
| ===================================================================
|
| --- base/gfx/convolver.cc (revision 6142)
|
| +++ base/gfx/convolver.cc (working copy)
|
| @@ -1,335 +0,0 @@
|
| -// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/basictypes.h"
|
| -#include "base/gfx/convolver.h"
|
| -#include "base/logging.h"
|
| -
|
| -namespace gfx {
|
| -
|
| -namespace {
|
| -
|
| -// Converts the argument to an 8-bit unsigned value by clamping to the range
|
| -// 0-255.
|
| -inline uint8 ClampTo8(int32 a) {
|
| - if (static_cast<uint32>(a) < 256)
|
| - return a; // Avoid the extra check in the common case.
|
| - if (a < 0)
|
| - return 0;
|
| - return 255;
|
| -}
|
| -
|
| -// Stores a list of rows in a circular buffer. The usage is you write into it
|
| -// by calling AdvanceRow. It will keep track of which row in the buffer it
|
| -// should use next, and the total number of rows added.
|
| -class CircularRowBuffer {
|
| - public:
|
| - // The number of pixels in each row is given in |source_row_pixel_width|.
|
| - // The maximum number of rows needed in the buffer is |max_y_filter_size|
|
| - // (we only need to store enough rows for the biggest filter).
|
| - //
|
| - // We use the |first_input_row| to compute the coordinates of all of the
|
| - // following rows returned by Advance().
|
| - CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
|
| - int first_input_row)
|
| - : row_byte_width_(dest_row_pixel_width * 4),
|
| - num_rows_(max_y_filter_size),
|
| - next_row_(0),
|
| - next_row_coordinate_(first_input_row) {
|
| - buffer_.resize(row_byte_width_ * max_y_filter_size);
|
| - row_addresses_.resize(num_rows_);
|
| - }
|
| -
|
| - // Moves to the next row in the buffer, returning a pointer to the beginning
|
| - // of it.
|
| - uint8* AdvanceRow() {
|
| - uint8* row = &buffer_[next_row_ * row_byte_width_];
|
| - next_row_coordinate_++;
|
| -
|
| - // Set the pointer to the next row to use, wrapping around if necessary.
|
| - next_row_++;
|
| - if (next_row_ == num_rows_)
|
| - next_row_ = 0;
|
| - return row;
|
| - }
|
| -
|
| - // Returns a pointer to an "unrolled" array of rows. These rows will start
|
| - // at the y coordinate placed into |*first_row_index| and will continue in
|
| - // order for the maximum number of rows in this circular buffer.
|
| - //
|
| - // The |first_row_index_| may be negative. This means the circular buffer
|
| - // starts before the top of the image (it hasn't been filled yet).
|
| - uint8* const* GetRowAddresses(int* first_row_index) {
|
| - // Example for a 4-element circular buffer holding coords 6-9.
|
| - // Row 0 Coord 8
|
| - // Row 1 Coord 9
|
| - // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
|
| - // Row 3 Coord 7
|
| - //
|
| - // The "next" row is also the first (lowest) coordinate. This computation
|
| - // may yield a negative value, but that's OK, the math will work out
|
| - // since the user of this buffer will compute the offset relative
|
| - // to the first_row_index and the negative rows will never be used.
|
| - *first_row_index = next_row_coordinate_ - num_rows_;
|
| -
|
| - int cur_row = next_row_;
|
| - for (int i = 0; i < num_rows_; i++) {
|
| - row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
|
| -
|
| - // Advance to the next row, wrapping if necessary.
|
| - cur_row++;
|
| - if (cur_row == num_rows_)
|
| - cur_row = 0;
|
| - }
|
| - return &row_addresses_[0];
|
| - }
|
| -
|
| - private:
|
| - // The buffer storing the rows. They are packed, each one row_byte_width_.
|
| - std::vector<uint8> buffer_;
|
| -
|
| - // Number of bytes per row in the |buffer_|.
|
| - int row_byte_width_;
|
| -
|
| - // The number of rows available in the buffer.
|
| - int num_rows_;
|
| -
|
| - // The next row index we should write into. This wraps around as the
|
| - // circular buffer is used.
|
| - int next_row_;
|
| -
|
| - // The y coordinate of the |next_row_|. This is incremented each time a
|
| - // new row is appended and does not wrap.
|
| - int next_row_coordinate_;
|
| -
|
| - // Buffer used by GetRowAddresses().
|
| - std::vector<uint8*> row_addresses_;
|
| -};
|
| -
|
| -// Convolves horizontally along a single row. The row data is given in
|
| -// |src_data| and continues for the num_values() of the filter.
|
| -template<bool has_alpha>
|
| -void ConvolveHorizontally(const uint8* src_data,
|
| - const ConvolusionFilter1D& filter,
|
| - unsigned char* out_row) {
|
| - // Loop over each pixel on this row in the output image.
|
| - int num_values = filter.num_values();
|
| - for (int out_x = 0; out_x < num_values; out_x++) {
|
| - // Get the filter that determines the current output pixel.
|
| - int filter_offset, filter_length;
|
| - const int16* filter_values =
|
| - filter.FilterForValue(out_x, &filter_offset, &filter_length);
|
| -
|
| - // Compute the first pixel in this row that the filter affects. It will
|
| - // touch |filter_length| pixels (4 bytes each) after this.
|
| - const uint8* row_to_filter = &src_data[filter_offset * 4];
|
| -
|
| - // Apply the filter to the row to get the destination pixel in |accum|.
|
| - int32 accum[4] = {0};
|
| - for (int filter_x = 0; filter_x < filter_length; filter_x++) {
|
| - int16 cur_filter = filter_values[filter_x];
|
| - accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
|
| - accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
|
| - accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
|
| - if (has_alpha)
|
| - accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
|
| - }
|
| -
|
| - // Bring this value back in range. All of the filter scaling factors
|
| - // are in fixed point with kShiftBits bits of fractional part.
|
| - accum[0] >>= ConvolusionFilter1D::kShiftBits;
|
| - accum[1] >>= ConvolusionFilter1D::kShiftBits;
|
| - accum[2] >>= ConvolusionFilter1D::kShiftBits;
|
| - if (has_alpha)
|
| - accum[3] >>= ConvolusionFilter1D::kShiftBits;
|
| -
|
| - // Store the new pixel.
|
| - out_row[out_x * 4 + 0] = ClampTo8(accum[0]);
|
| - out_row[out_x * 4 + 1] = ClampTo8(accum[1]);
|
| - out_row[out_x * 4 + 2] = ClampTo8(accum[2]);
|
| - if (has_alpha)
|
| - out_row[out_x * 4 + 3] = ClampTo8(accum[3]);
|
| - }
|
| -}
|
| -
|
| -// Does vertical convolusion to produce one output row. The filter values and
|
| -// length are given in the first two parameters. These are applied to each
|
| -// of the rows pointed to in the |source_data_rows| array, with each row
|
| -// being |pixel_width| wide.
|
| -//
|
| -// The output must have room for |pixel_width * 4| bytes.
|
| -template<bool has_alpha>
|
| -void ConvolveVertically(const int16* filter_values,
|
| - int filter_length,
|
| - uint8* const* source_data_rows,
|
| - int pixel_width,
|
| - uint8* out_row) {
|
| - // We go through each column in the output and do a vertical convolusion,
|
| - // generating one output pixel each time.
|
| - for (int out_x = 0; out_x < pixel_width; out_x++) {
|
| - // Compute the number of bytes over in each row that the current column
|
| - // we're convolving starts at. The pixel will cover the next 4 bytes.
|
| - int byte_offset = out_x * 4;
|
| -
|
| - // Apply the filter to one column of pixels.
|
| - int32 accum[4] = {0};
|
| - for (int filter_y = 0; filter_y < filter_length; filter_y++) {
|
| - int16 cur_filter = filter_values[filter_y];
|
| - accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
|
| - accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
|
| - accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
|
| - if (has_alpha)
|
| - accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
|
| - }
|
| -
|
| - // Bring this value back in range. All of the filter scaling factors
|
| - // are in fixed point with kShiftBits bits of precision.
|
| - accum[0] >>= ConvolusionFilter1D::kShiftBits;
|
| - accum[1] >>= ConvolusionFilter1D::kShiftBits;
|
| - accum[2] >>= ConvolusionFilter1D::kShiftBits;
|
| - if (has_alpha)
|
| - accum[3] >>= ConvolusionFilter1D::kShiftBits;
|
| -
|
| - // Store the new pixel.
|
| - out_row[byte_offset + 0] = ClampTo8(accum[0]);
|
| - out_row[byte_offset + 1] = ClampTo8(accum[1]);
|
| - out_row[byte_offset + 2] = ClampTo8(accum[2]);
|
| - if (has_alpha) {
|
| - uint8 alpha = ClampTo8(accum[3]);
|
| -
|
| - // Make sure the alpha channel doesn't come out larger than any of the
|
| - // color channels. We use premultipled alpha channels, so this should
|
| - // never happen, but rounding errors will cause this from time to time.
|
| - // These "impossible" colors will cause overflows (and hence random pixel
|
| - // values) when the resulting bitmap is drawn to the screen.
|
| - //
|
| - // We only need to do this when generating the final output row (here).
|
| - int max_color_channel = std::max(out_row[byte_offset + 0],
|
| - std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
|
| - if (alpha < max_color_channel)
|
| - out_row[byte_offset + 3] = max_color_channel;
|
| - else
|
| - out_row[byte_offset + 3] = alpha;
|
| - } else {
|
| - // No alpha channel, the image is opaque.
|
| - out_row[byte_offset + 3] = 0xff;
|
| - }
|
| - }
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -// ConvolusionFilter1D ---------------------------------------------------------
|
| -
|
| -void ConvolusionFilter1D::AddFilter(int filter_offset,
|
| - const float* filter_values,
|
| - int filter_length) {
|
| - FilterInstance instance;
|
| - instance.data_location = static_cast<int>(filter_values_.size());
|
| - instance.offset = filter_offset;
|
| - instance.length = filter_length;
|
| - filters_.push_back(instance);
|
| -
|
| - DCHECK(filter_length > 0);
|
| - for (int i = 0; i < filter_length; i++)
|
| - filter_values_.push_back(FloatToFixed(filter_values[i]));
|
| -
|
| - max_filter_ = std::max(max_filter_, filter_length);
|
| -}
|
| -
|
| -void ConvolusionFilter1D::AddFilter(int filter_offset,
|
| - const int16* filter_values,
|
| - int filter_length) {
|
| - FilterInstance instance;
|
| - instance.data_location = static_cast<int>(filter_values_.size());
|
| - instance.offset = filter_offset;
|
| - instance.length = filter_length;
|
| - filters_.push_back(instance);
|
| -
|
| - DCHECK(filter_length > 0);
|
| - for (int i = 0; i < filter_length; i++)
|
| - filter_values_.push_back(filter_values[i]);
|
| -
|
| - max_filter_ = std::max(max_filter_, filter_length);
|
| -}
|
| -
|
| -// BGRAConvolve2D -------------------------------------------------------------
|
| -
|
| -void BGRAConvolve2D(const uint8* source_data,
|
| - int source_byte_row_stride,
|
| - bool source_has_alpha,
|
| - const ConvolusionFilter1D& filter_x,
|
| - const ConvolusionFilter1D& filter_y,
|
| - uint8* output) {
|
| - int max_y_filter_size = filter_y.max_filter();
|
| -
|
| - // The next row in the input that we will generate a horizontally
|
| - // convolved row for. If the filter doesn't start at the beginning of the
|
| - // image (this is the case when we are only resizing a subset), then we
|
| - // don't want to generate any output rows before that. Compute the starting
|
| - // row for convolusion as the first pixel for the first vertical filter.
|
| - int filter_offset, filter_length;
|
| - const int16* filter_values =
|
| - filter_y.FilterForValue(0, &filter_offset, &filter_length);
|
| - int next_x_row = filter_offset;
|
| -
|
| - // We loop over each row in the input doing a horizontal convolusion. This
|
| - // will result in a horizontally convolved image. We write the results into
|
| - // a circular buffer of convolved rows and do vertical convolusion as rows
|
| - // are available. This prevents us from having to store the entire
|
| - // intermediate image and helps cache coherency.
|
| - CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
|
| - filter_offset);
|
| -
|
| - // Loop over every possible output row, processing just enough horizontal
|
| - // convolusions to run each subsequent vertical convolusion.
|
| - int output_row_byte_width = filter_x.num_values() * 4;
|
| - int num_output_rows = filter_y.num_values();
|
| - for (int out_y = 0; out_y < num_output_rows; out_y++) {
|
| - filter_values = filter_y.FilterForValue(out_y,
|
| - &filter_offset, &filter_length);
|
| -
|
| - // Generate output rows until we have enough to run the current filter.
|
| - while (next_x_row < filter_offset + filter_length) {
|
| - if (source_has_alpha) {
|
| - ConvolveHorizontally<true>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| - } else {
|
| - ConvolveHorizontally<false>(
|
| - &source_data[next_x_row * source_byte_row_stride],
|
| - filter_x, row_buffer.AdvanceRow());
|
| - }
|
| - next_x_row++;
|
| - }
|
| -
|
| - // Compute where in the output image this row of final data will go.
|
| - uint8* cur_output_row = &output[out_y * output_row_byte_width];
|
| -
|
| - // Get the list of rows that the circular buffer has, in order.
|
| - int first_row_in_circular_buffer;
|
| - uint8* const* rows_to_convolve =
|
| - row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
|
| -
|
| - // Now compute the start of the subset of those rows that the filter
|
| - // needs.
|
| - uint8* const* first_row_for_filter =
|
| - &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
|
| -
|
| - if (source_has_alpha) {
|
| - ConvolveVertically<true>(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row);
|
| - } else {
|
| - ConvolveVertically<false>(filter_values, filter_length,
|
| - first_row_for_filter,
|
| - filter_x.num_values(), cur_output_row);
|
| - }
|
| - }
|
| -}
|
| -
|
| -} // namespace gfx
|
| -
|
|
|