| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include <algorithm> | |
| 6 | |
| 7 #include "base/basictypes.h" | |
| 8 #include "base/gfx/convolver.h" | |
| 9 #include "base/logging.h" | |
| 10 | |
| 11 namespace gfx { | |
| 12 | |
| 13 namespace { | |
| 14 | |
| 15 // Converts the argument to an 8-bit unsigned value by clamping to the range | |
| 16 // 0-255. | |
| 17 inline uint8 ClampTo8(int32 a) { | |
| 18 if (static_cast<uint32>(a) < 256) | |
| 19 return a; // Avoid the extra check in the common case. | |
| 20 if (a < 0) | |
| 21 return 0; | |
| 22 return 255; | |
| 23 } | |
| 24 | |
| 25 // Stores a list of rows in a circular buffer. The usage is you write into it | |
| 26 // by calling AdvanceRow. It will keep track of which row in the buffer it | |
| 27 // should use next, and the total number of rows added. | |
| 28 class CircularRowBuffer { | |
| 29 public: | |
| 30 // The number of pixels in each row is given in |source_row_pixel_width|. | |
| 31 // The maximum number of rows needed in the buffer is |max_y_filter_size| | |
| 32 // (we only need to store enough rows for the biggest filter). | |
| 33 // | |
| 34 // We use the |first_input_row| to compute the coordinates of all of the | |
| 35 // following rows returned by Advance(). | |
| 36 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, | |
| 37 int first_input_row) | |
| 38 : row_byte_width_(dest_row_pixel_width * 4), | |
| 39 num_rows_(max_y_filter_size), | |
| 40 next_row_(0), | |
| 41 next_row_coordinate_(first_input_row) { | |
| 42 buffer_.resize(row_byte_width_ * max_y_filter_size); | |
| 43 row_addresses_.resize(num_rows_); | |
| 44 } | |
| 45 | |
| 46 // Moves to the next row in the buffer, returning a pointer to the beginning | |
| 47 // of it. | |
| 48 uint8* AdvanceRow() { | |
| 49 uint8* row = &buffer_[next_row_ * row_byte_width_]; | |
| 50 next_row_coordinate_++; | |
| 51 | |
| 52 // Set the pointer to the next row to use, wrapping around if necessary. | |
| 53 next_row_++; | |
| 54 if (next_row_ == num_rows_) | |
| 55 next_row_ = 0; | |
| 56 return row; | |
| 57 } | |
| 58 | |
| 59 // Returns a pointer to an "unrolled" array of rows. These rows will start | |
| 60 // at the y coordinate placed into |*first_row_index| and will continue in | |
| 61 // order for the maximum number of rows in this circular buffer. | |
| 62 // | |
| 63 // The |first_row_index_| may be negative. This means the circular buffer | |
| 64 // starts before the top of the image (it hasn't been filled yet). | |
| 65 uint8* const* GetRowAddresses(int* first_row_index) { | |
| 66 // Example for a 4-element circular buffer holding coords 6-9. | |
| 67 // Row 0 Coord 8 | |
| 68 // Row 1 Coord 9 | |
| 69 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. | |
| 70 // Row 3 Coord 7 | |
| 71 // | |
| 72 // The "next" row is also the first (lowest) coordinate. This computation | |
| 73 // may yield a negative value, but that's OK, the math will work out | |
| 74 // since the user of this buffer will compute the offset relative | |
| 75 // to the first_row_index and the negative rows will never be used. | |
| 76 *first_row_index = next_row_coordinate_ - num_rows_; | |
| 77 | |
| 78 int cur_row = next_row_; | |
| 79 for (int i = 0; i < num_rows_; i++) { | |
| 80 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; | |
| 81 | |
| 82 // Advance to the next row, wrapping if necessary. | |
| 83 cur_row++; | |
| 84 if (cur_row == num_rows_) | |
| 85 cur_row = 0; | |
| 86 } | |
| 87 return &row_addresses_[0]; | |
| 88 } | |
| 89 | |
| 90 private: | |
| 91 // The buffer storing the rows. They are packed, each one row_byte_width_. | |
| 92 std::vector<uint8> buffer_; | |
| 93 | |
| 94 // Number of bytes per row in the |buffer_|. | |
| 95 int row_byte_width_; | |
| 96 | |
| 97 // The number of rows available in the buffer. | |
| 98 int num_rows_; | |
| 99 | |
| 100 // The next row index we should write into. This wraps around as the | |
| 101 // circular buffer is used. | |
| 102 int next_row_; | |
| 103 | |
| 104 // The y coordinate of the |next_row_|. This is incremented each time a | |
| 105 // new row is appended and does not wrap. | |
| 106 int next_row_coordinate_; | |
| 107 | |
| 108 // Buffer used by GetRowAddresses(). | |
| 109 std::vector<uint8*> row_addresses_; | |
| 110 }; | |
| 111 | |
| 112 // Convolves horizontally along a single row. The row data is given in | |
| 113 // |src_data| and continues for the num_values() of the filter. | |
| 114 template<bool has_alpha> | |
| 115 void ConvolveHorizontally(const uint8* src_data, | |
| 116 const ConvolusionFilter1D& filter, | |
| 117 unsigned char* out_row) { | |
| 118 // Loop over each pixel on this row in the output image. | |
| 119 int num_values = filter.num_values(); | |
| 120 for (int out_x = 0; out_x < num_values; out_x++) { | |
| 121 // Get the filter that determines the current output pixel. | |
| 122 int filter_offset, filter_length; | |
| 123 const int16* filter_values = | |
| 124 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
| 125 | |
| 126 // Compute the first pixel in this row that the filter affects. It will | |
| 127 // touch |filter_length| pixels (4 bytes each) after this. | |
| 128 const uint8* row_to_filter = &src_data[filter_offset * 4]; | |
| 129 | |
| 130 // Apply the filter to the row to get the destination pixel in |accum|. | |
| 131 int32 accum[4] = {0}; | |
| 132 for (int filter_x = 0; filter_x < filter_length; filter_x++) { | |
| 133 int16 cur_filter = filter_values[filter_x]; | |
| 134 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; | |
| 135 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; | |
| 136 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; | |
| 137 if (has_alpha) | |
| 138 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; | |
| 139 } | |
| 140 | |
| 141 // Bring this value back in range. All of the filter scaling factors | |
| 142 // are in fixed point with kShiftBits bits of fractional part. | |
| 143 accum[0] >>= ConvolusionFilter1D::kShiftBits; | |
| 144 accum[1] >>= ConvolusionFilter1D::kShiftBits; | |
| 145 accum[2] >>= ConvolusionFilter1D::kShiftBits; | |
| 146 if (has_alpha) | |
| 147 accum[3] >>= ConvolusionFilter1D::kShiftBits; | |
| 148 | |
| 149 // Store the new pixel. | |
| 150 out_row[out_x * 4 + 0] = ClampTo8(accum[0]); | |
| 151 out_row[out_x * 4 + 1] = ClampTo8(accum[1]); | |
| 152 out_row[out_x * 4 + 2] = ClampTo8(accum[2]); | |
| 153 if (has_alpha) | |
| 154 out_row[out_x * 4 + 3] = ClampTo8(accum[3]); | |
| 155 } | |
| 156 } | |
| 157 | |
| 158 // Does vertical convolusion to produce one output row. The filter values and | |
| 159 // length are given in the first two parameters. These are applied to each | |
| 160 // of the rows pointed to in the |source_data_rows| array, with each row | |
| 161 // being |pixel_width| wide. | |
| 162 // | |
| 163 // The output must have room for |pixel_width * 4| bytes. | |
| 164 template<bool has_alpha> | |
| 165 void ConvolveVertically(const int16* filter_values, | |
| 166 int filter_length, | |
| 167 uint8* const* source_data_rows, | |
| 168 int pixel_width, | |
| 169 uint8* out_row) { | |
| 170 // We go through each column in the output and do a vertical convolusion, | |
| 171 // generating one output pixel each time. | |
| 172 for (int out_x = 0; out_x < pixel_width; out_x++) { | |
| 173 // Compute the number of bytes over in each row that the current column | |
| 174 // we're convolving starts at. The pixel will cover the next 4 bytes. | |
| 175 int byte_offset = out_x * 4; | |
| 176 | |
| 177 // Apply the filter to one column of pixels. | |
| 178 int32 accum[4] = {0}; | |
| 179 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
| 180 int16 cur_filter = filter_values[filter_y]; | |
| 181 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; | |
| 182 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; | |
| 183 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; | |
| 184 if (has_alpha) | |
| 185 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; | |
| 186 } | |
| 187 | |
| 188 // Bring this value back in range. All of the filter scaling factors | |
| 189 // are in fixed point with kShiftBits bits of precision. | |
| 190 accum[0] >>= ConvolusionFilter1D::kShiftBits; | |
| 191 accum[1] >>= ConvolusionFilter1D::kShiftBits; | |
| 192 accum[2] >>= ConvolusionFilter1D::kShiftBits; | |
| 193 if (has_alpha) | |
| 194 accum[3] >>= ConvolusionFilter1D::kShiftBits; | |
| 195 | |
| 196 // Store the new pixel. | |
| 197 out_row[byte_offset + 0] = ClampTo8(accum[0]); | |
| 198 out_row[byte_offset + 1] = ClampTo8(accum[1]); | |
| 199 out_row[byte_offset + 2] = ClampTo8(accum[2]); | |
| 200 if (has_alpha) { | |
| 201 uint8 alpha = ClampTo8(accum[3]); | |
| 202 | |
| 203 // Make sure the alpha channel doesn't come out larger than any of the | |
| 204 // color channels. We use premultipled alpha channels, so this should | |
| 205 // never happen, but rounding errors will cause this from time to time. | |
| 206 // These "impossible" colors will cause overflows (and hence random pixel | |
| 207 // values) when the resulting bitmap is drawn to the screen. | |
| 208 // | |
| 209 // We only need to do this when generating the final output row (here). | |
| 210 int max_color_channel = std::max(out_row[byte_offset + 0], | |
| 211 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | |
| 212 if (alpha < max_color_channel) | |
| 213 out_row[byte_offset + 3] = max_color_channel; | |
| 214 else | |
| 215 out_row[byte_offset + 3] = alpha; | |
| 216 } else { | |
| 217 // No alpha channel, the image is opaque. | |
| 218 out_row[byte_offset + 3] = 0xff; | |
| 219 } | |
| 220 } | |
| 221 } | |
| 222 | |
| 223 } // namespace | |
| 224 | |
| 225 // ConvolusionFilter1D --------------------------------------------------------- | |
| 226 | |
| 227 void ConvolusionFilter1D::AddFilter(int filter_offset, | |
| 228 const float* filter_values, | |
| 229 int filter_length) { | |
| 230 FilterInstance instance; | |
| 231 instance.data_location = static_cast<int>(filter_values_.size()); | |
| 232 instance.offset = filter_offset; | |
| 233 instance.length = filter_length; | |
| 234 filters_.push_back(instance); | |
| 235 | |
| 236 DCHECK(filter_length > 0); | |
| 237 for (int i = 0; i < filter_length; i++) | |
| 238 filter_values_.push_back(FloatToFixed(filter_values[i])); | |
| 239 | |
| 240 max_filter_ = std::max(max_filter_, filter_length); | |
| 241 } | |
| 242 | |
| 243 void ConvolusionFilter1D::AddFilter(int filter_offset, | |
| 244 const int16* filter_values, | |
| 245 int filter_length) { | |
| 246 FilterInstance instance; | |
| 247 instance.data_location = static_cast<int>(filter_values_.size()); | |
| 248 instance.offset = filter_offset; | |
| 249 instance.length = filter_length; | |
| 250 filters_.push_back(instance); | |
| 251 | |
| 252 DCHECK(filter_length > 0); | |
| 253 for (int i = 0; i < filter_length; i++) | |
| 254 filter_values_.push_back(filter_values[i]); | |
| 255 | |
| 256 max_filter_ = std::max(max_filter_, filter_length); | |
| 257 } | |
| 258 | |
| 259 // BGRAConvolve2D ------------------------------------------------------------- | |
| 260 | |
| 261 void BGRAConvolve2D(const uint8* source_data, | |
| 262 int source_byte_row_stride, | |
| 263 bool source_has_alpha, | |
| 264 const ConvolusionFilter1D& filter_x, | |
| 265 const ConvolusionFilter1D& filter_y, | |
| 266 uint8* output) { | |
| 267 int max_y_filter_size = filter_y.max_filter(); | |
| 268 | |
| 269 // The next row in the input that we will generate a horizontally | |
| 270 // convolved row for. If the filter doesn't start at the beginning of the | |
| 271 // image (this is the case when we are only resizing a subset), then we | |
| 272 // don't want to generate any output rows before that. Compute the starting | |
| 273 // row for convolusion as the first pixel for the first vertical filter. | |
| 274 int filter_offset, filter_length; | |
| 275 const int16* filter_values = | |
| 276 filter_y.FilterForValue(0, &filter_offset, &filter_length); | |
| 277 int next_x_row = filter_offset; | |
| 278 | |
| 279 // We loop over each row in the input doing a horizontal convolusion. This | |
| 280 // will result in a horizontally convolved image. We write the results into | |
| 281 // a circular buffer of convolved rows and do vertical convolusion as rows | |
| 282 // are available. This prevents us from having to store the entire | |
| 283 // intermediate image and helps cache coherency. | |
| 284 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, | |
| 285 filter_offset); | |
| 286 | |
| 287 // Loop over every possible output row, processing just enough horizontal | |
| 288 // convolusions to run each subsequent vertical convolusion. | |
| 289 int output_row_byte_width = filter_x.num_values() * 4; | |
| 290 int num_output_rows = filter_y.num_values(); | |
| 291 for (int out_y = 0; out_y < num_output_rows; out_y++) { | |
| 292 filter_values = filter_y.FilterForValue(out_y, | |
| 293 &filter_offset, &filter_length); | |
| 294 | |
| 295 // Generate output rows until we have enough to run the current filter. | |
| 296 while (next_x_row < filter_offset + filter_length) { | |
| 297 if (source_has_alpha) { | |
| 298 ConvolveHorizontally<true>( | |
| 299 &source_data[next_x_row * source_byte_row_stride], | |
| 300 filter_x, row_buffer.AdvanceRow()); | |
| 301 } else { | |
| 302 ConvolveHorizontally<false>( | |
| 303 &source_data[next_x_row * source_byte_row_stride], | |
| 304 filter_x, row_buffer.AdvanceRow()); | |
| 305 } | |
| 306 next_x_row++; | |
| 307 } | |
| 308 | |
| 309 // Compute where in the output image this row of final data will go. | |
| 310 uint8* cur_output_row = &output[out_y * output_row_byte_width]; | |
| 311 | |
| 312 // Get the list of rows that the circular buffer has, in order. | |
| 313 int first_row_in_circular_buffer; | |
| 314 uint8* const* rows_to_convolve = | |
| 315 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | |
| 316 | |
| 317 // Now compute the start of the subset of those rows that the filter | |
| 318 // needs. | |
| 319 uint8* const* first_row_for_filter = | |
| 320 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | |
| 321 | |
| 322 if (source_has_alpha) { | |
| 323 ConvolveVertically<true>(filter_values, filter_length, | |
| 324 first_row_for_filter, | |
| 325 filter_x.num_values(), cur_output_row); | |
| 326 } else { | |
| 327 ConvolveVertically<false>(filter_values, filter_length, | |
| 328 first_row_for_filter, | |
| 329 filter_x.num_values(), cur_output_row); | |
| 330 } | |
| 331 } | |
| 332 } | |
| 333 | |
| 334 } // namespace gfx | |
| 335 | |
| OLD | NEW |