Chromium Code Reviews| Index: lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
| diff --git a/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp b/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..bb3c894600e4823739c823c4cc70a26d418c3b08 |
| --- /dev/null |
| +++ b/lib/Transforms/NaCl/SimplifyStructRegSignatures.cpp |
| @@ -0,0 +1,688 @@ |
| +//===- SimplifyStructRegSignatures.cpp - struct regs to struct pointers----===// |
| +// |
| +// The LLVM Compiler Infrastructure |
| +// |
| +// This file is distributed under the University of Illinois Open Source |
| +// License. See LICENSE.TXT for details. |
| +// |
| +//===----------------------------------------------------------------------===// |
| +// |
| +// This pass replaces function signatures exposing struct registers |
| +// to byval pointer-based signatures. |
| +// |
| +// There are 2 types of signatures that are thus changed: |
| +// |
| +// @foo(%some_struct %val) -> @foo(%some_struct* byval %val) |
| +// and |
| +// %someStruct @bar(<other_args>) -> void @bar(%someStruct* sret, <other_args>) |
| +// |
| +// Such function types may appear in other type declarations, for example: |
| +// |
| +// %a_struct = type { void (%some_struct)*, i32 } |
| +// |
| +// We map such types to corresponding types, mapping the function types |
| +// appropriately: |
| +// |
| +// %a_struct.0 = type { void (%some_struct*)*, i32 } |
| +//===----------------------------------------------------------------------===// |
| + |
| +#include "llvm/ADT/SmallString.h" |
| +#include "llvm/IR/IRBuilder.h" |
| +#include "llvm/ADT/ArrayRef.h" |
| +#include "llvm/ADT/DenseSet.h" |
| +#include "llvm/ADT/ilist.h" |
| +#include "llvm/ADT/SetVector.h" |
| +#include "llvm/ADT/SmallVector.h" |
| +#include "llvm/ADT/Twine.h" |
| +#include "llvm/IR/Argument.h" |
| +#include "llvm/IR/Attributes.h" |
| +#include "llvm/IR/BasicBlock.h" |
| +#include "llvm/IR/DebugInfo.h" |
| +#include "llvm/IR/DerivedTypes.h" |
| +#include "llvm/IR/Function.h" |
| +#include "llvm/IR/GlobalValue.h" |
| +#include "llvm/IR/Instructions.h" |
| +#include "llvm/IR/Module.h" |
| +#include "llvm/IR/Type.h" |
| +#include "llvm/IR/Use.h" |
| +#include "llvm/IR/User.h" |
| +#include "llvm/IR/Value.h" |
| +#include "llvm/Pass.h" |
| +#include "llvm/PassInfo.h" |
| +#include "llvm/PassRegistry.h" |
| +#include "llvm/PassSupport.h" |
| +#include "llvm/Transforms/NaCl.h" |
| +#include "llvm/Support/Debug.h" |
| + |
| +#include <cassert> |
| +#include <cstddef> |
| + |
| +using namespace llvm; |
| + |
| +namespace { |
| + |
| +static const unsigned int TypicalFuncArity = 8; |
| +static const unsigned int TypicalStructArity = 8; |
| + |
| +class MappingResult { |
| +public: |
| + MappingResult(Type *ATy, bool Chg) { |
| + Ty = ATy; |
| + Changed = Chg; |
| + } |
| + |
| + bool isChanged() { return Changed; } |
| + |
| + Type *operator->() { return Ty; } |
| + |
| + operator Type *() { return Ty; } |
| + |
| +private: |
| + Type *Ty; |
| + bool Changed; |
| +}; |
| + |
| +// Utility class. For any given type, get the associated type that is free of |
| +// struct register arguments. |
| +class TypeMapper { |
| +public: |
| + typedef DenseMap<StructType *, StructType *> StructMap; |
| + Type *getSimpleType(LLVMContext &Ctx, Type *Ty); |
| + |
| +private: |
| + DenseMap<Type *, Type *> MappedTypes; |
| + MappingResult getSimpleArgumentType(LLVMContext &Ctx, Type *Ty, |
| + StructMap &Tentatives); |
| + MappingResult getSimpleAggregateTypeInternal(LLVMContext &Ctx, Type *Ty, |
| + StructMap &Tentatives); |
| + |
| + bool isChangedStruct(LLVMContext &Ctx, StructType *StructTy, |
| + SmallVector<Type *, TypicalStructArity> &ElemTypes, |
| + StructMap &Tentatives); |
| +}; |
| + |
| +// This is a ModulePass because the pass recreates functions in |
| +// order to change their signatures. |
| +class SimplifyStructRegSignatures : public ModulePass { |
| +public: |
| + static char ID; |
| + |
| + SimplifyStructRegSignatures() : ModulePass(ID) { |
| + initializeSimplifyStructRegSignaturesPass(*PassRegistry::getPassRegistry()); |
| + } |
| + virtual bool runOnModule(Module &M); |
| + |
| +private: |
| + TypeMapper Mapper; |
| + DenseSet<Function *> FunctionsToDelete; |
| + SetVector<CallInst *> CallsToPatch; |
| + SetVector<InvokeInst *> InvokesToPatch; |
| + DenseMap<Function *, Function *> FunctionMap; |
| + bool |
| + simplifyFunction(LLVMContext &Ctx, Function *OldFunc, |
| + DenseMap<const Function *, DISubprogram> &DISubprogramMap); |
| + void scheduleInstructionsForCleanup(Function *NewFunc); |
| + template <class TCall> |
| + void fixCallSite(LLVMContext &Ctx, TCall *Call, unsigned PreferredAlignment); |
| + void fixFunctionBody(LLVMContext &Ctx, Function *OldFunc, Function *NewFunc); |
| + |
| + template <class TCall> |
| + TCall *fixCallTargetAndArguments(LLVMContext &Ctx, IRBuilder<> &Builder, |
| + TCall *OldCall, Value *NewTarget, |
| + FunctionType *NewType, |
| + BasicBlock::iterator AllocaInsPoint, |
| + Value *ExtraArg = nullptr); |
| + void checkNoUnsupportedInstructions(LLVMContext &Ctx, Function *Fct); |
| +}; |
| +} |
| + |
| +char SimplifyStructRegSignatures::ID = 0; |
| + |
| +INITIALIZE_PASS( |
| + SimplifyStructRegSignatures, "simplify-struct-reg-signatures", |
| + "Simplify function signatures by removing struct register parameters", |
| + false, false) |
| + |
| +// The type is "simple" if it does not recursively reference a |
| +// function type with at least an operand (arg or return) typed as struct |
| +// register. |
| +Type *TypeMapper::getSimpleType(LLVMContext &Ctx, Type *Ty) { |
| + auto Found = MappedTypes.find(Ty); |
| + if (Found != MappedTypes.end()) { |
| + return Found->second; |
| + } |
| + |
| + StructMap Tentatives; |
| + auto Ret = getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); |
| + assert(Tentatives.size() == 0); |
| + |
| + if (!Ty->isStructTy()) { |
| + // Structs are memoized in getSimpleAggregateTypeInternal. |
| + MappedTypes[Ty] = Ret; |
| + } |
| + return Ret; |
| +} |
| + |
| +// Transforms any type that could transitively reference a function pointer |
| +// into a simplified type. |
| +// We enter this function trying to determine the mapping of a type. Because |
| +// of how structs are handled (not interned by llvm - see further comments |
| +// below) we may be working with temporary types - types (pointers, for example) |
| +// transitively referencing "tentative" structs. For that reason, we do not |
| +// memoize anything here, except for structs. The latter is so that we avoid |
| +// unnecessary repeated creation of types (pointers, function types, etc), |
| +// as we try to map a given type. |
| +MappingResult |
| +TypeMapper::getSimpleAggregateTypeInternal(LLVMContext &Ctx, Type *Ty, |
| + StructMap &Tentatives) { |
| + // Leverage the map for types we encounter on the way. |
| + auto Found = MappedTypes.find(Ty); |
| + if (Found != MappedTypes.end()) { |
| + return {Found->second, Found->second != Ty}; |
| + } |
| + |
| + if (auto *OldFnTy = dyn_cast<FunctionType>(Ty)) { |
| + Type *OldRetType = OldFnTy->getReturnType(); |
| + Type *NewRetType = OldRetType; |
| + Type *Void = Type::getVoidTy(Ctx); |
| + SmallVector<Type *, TypicalFuncArity> NewArgs; |
| + bool Changed = false; |
| + // Struct register returns become the first parameter of the new FT. |
| + // The new FT has void for the return type |
| + if (OldRetType->isAggregateType()) { |
| + NewRetType = Void; |
| + Changed = true; |
| + NewArgs.push_back(getSimpleArgumentType(Ctx, OldRetType, Tentatives)); |
| + } |
| + for (auto OldParam : OldFnTy->params()) { |
| + auto NewType = getSimpleArgumentType(Ctx, OldParam, Tentatives); |
| + Changed |= NewType.isChanged(); |
| + NewArgs.push_back(NewType); |
| + } |
| + Type *NewFuncType = |
| + FunctionType::get(NewRetType, NewArgs, OldFnTy->isVarArg()); |
| + return {NewFuncType, Changed}; |
| + } |
| + |
| + if (auto PtrTy = dyn_cast<PointerType>(Ty)) { |
| + auto NewTy = getSimpleAggregateTypeInternal( |
| + Ctx, PtrTy->getPointerElementType(), Tentatives); |
| + |
| + return {NewTy->getPointerTo(PtrTy->getAddressSpace()), NewTy.isChanged()}; |
| + } |
| + |
| + if (auto ArrTy = dyn_cast<ArrayType>(Ty)) { |
| + auto NewTy = getSimpleAggregateTypeInternal( |
| + Ctx, ArrTy->getArrayElementType(), Tentatives); |
| + return {ArrayType::get(NewTy, ArrTy->getArrayNumElements()), |
| + NewTy.isChanged()}; |
| + } |
| + |
| + if (auto VecTy = dyn_cast<VectorType>(Ty)) { |
| + auto NewTy = getSimpleAggregateTypeInternal( |
| + Ctx, VecTy->getVectorElementType(), Tentatives); |
| + return {VectorType::get(NewTy, VecTy->getVectorNumElements()), |
| + NewTy.isChanged()}; |
| + } |
| + |
| + // LLVM doesn't intern identified structs (the ones with a name). This, |
| + // together with the fact that such structs can be recursive, |
| + // complicates things a bit. We want to make sure that we only change |
| + // "unsimplified" structs (those that somehow reference funcs that |
| + // are not simple). |
| + // We don't want to change "simplified" structs, otherwise converting |
| + // instruction types will become trickier. |
| + if (auto StructTy = dyn_cast<StructType>(Ty)) { |
| + SmallVector<Type *, TypicalStructArity> ElemTypes; |
| + if (!StructTy->isLiteral()) { |
| + // Literals - struct without a name - cannot be recursive, so we |
| + // don't need to form tentatives. |
| + auto Found = Tentatives.find(StructTy); |
| + |
| + // Having a tentative means we are in a recursion trying to map this |
| + // particular struct, so arriving back to it is not a change. |
| + // We will determine if this struct is actually |
| + // changed by checking its other fields. |
| + if (Found != Tentatives.end()) { |
| + return {Found->second, false}; |
| + } |
| + // We have never seen this struct, so we start a tentative. |
| + std::string NewName = StructTy->getStructName(); |
| + NewName += ".simplified"; |
| + StructType *Tentative = StructType::create(Ctx, NewName); |
| + Tentatives[StructTy] = Tentative; |
| + |
| + bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); |
| + |
| + Tentatives.erase(StructTy); |
| + // We can now decide the mapping of the struct. We will register it |
| + // early with MappedTypes, to avoid leaking tentatives unnecessarily. |
| + // We are leaking the created struct here, but there is no way to |
| + // correctly delete it. |
| + if (!Changed) { |
| + return {MappedTypes[StructTy] = StructTy, false}; |
| + } else { |
| + Tentative->setBody(ElemTypes, StructTy->isPacked()); |
| + return {MappedTypes[StructTy] = Tentative, true}; |
| + } |
| + } else { |
| + bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); |
| + return {MappedTypes[StructTy] = |
| + StructType::get(Ctx, ElemTypes, StructTy->isPacked()), |
| + Changed}; |
| + } |
| + } |
| + |
| + // Anything else stays the same. |
| + return {Ty, false}; |
| +} |
| + |
| +bool TypeMapper::isChangedStruct( |
| + LLVMContext &Ctx, StructType *StructTy, |
| + SmallVector<Type *, TypicalStructArity> &ElemTypes, StructMap &Tentatives) { |
| + bool Changed = false; |
| + unsigned StructElemCount = StructTy->getStructNumElements(); |
| + for (unsigned I = 0; I < StructElemCount; I++) { |
| + auto NewElem = getSimpleAggregateTypeInternal( |
| + Ctx, StructTy->getStructElementType(I), Tentatives); |
| + ElemTypes.push_back(NewElem); |
| + Changed |= NewElem.isChanged(); |
| + } |
| + return Changed; |
| +} |
| + |
| +// Get the simplified type of a function argument. |
| +MappingResult TypeMapper::getSimpleArgumentType(LLVMContext &Ctx, Type *Ty, |
| + StructMap &Tentatives) { |
| + // struct registers become pointers to simple structs |
| + if (Ty->isAggregateType()) { |
| + return MappingResult( |
| + PointerType::get(getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives), |
| + 0), |
| + true); |
| + } |
| + |
| + return getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); |
| +} |
| + |
| +// Apply 'byval' to func arguments that used to be struct regs. |
| +// Apply 'sret' to the argument corresponding to the return in the old |
| +// signature. |
| +static void ApplyByValAndSRet(Function *OldFunc, Function *NewFunc) { |
| + // When calling addAttribute, the first one refers to the function, so we |
| + // skip past that. |
| + unsigned ArgOffset = 1; |
| + if (OldFunc->getReturnType()->isAggregateType()) { |
| + NewFunc->addAttribute(1, Attribute::AttrKind::StructRet); |
| + ArgOffset++; |
| + } |
| + |
| + auto &NewArgList = NewFunc->getArgumentList(); |
| + auto NewArg = NewArgList.begin(); |
| + for (const Argument &OldArg : OldFunc->getArgumentList()) { |
| + if (OldArg.getType()->isAggregateType()) { |
| + NewFunc->addAttribute(NewArg->getArgNo() + ArgOffset, |
| + Attribute::AttrKind::ByVal); |
| + } |
| + NewArg++; |
| + } |
| +} |
| + |
| +// Update the arg names for a newly created function. |
| +static void UpdateArgNames(Function *OldFunc, Function *NewFunc) { |
| + auto NewArgIter = NewFunc->arg_begin(); |
| + if (OldFunc->getReturnType()->isAggregateType()) { |
| + NewArgIter->setName("retVal"); |
| + NewArgIter++; |
| + } |
| + |
| + for (const Argument &OldArg : OldFunc->args()) { |
| + Argument *NewArg = NewArgIter++; |
| + NewArg->setName(OldArg.getName() + |
| + (OldArg.getType()->isAggregateType() ? ".ptr" : "")); |
| + } |
| +} |
| + |
| +// Replace all uses of an old value with a new one, disregarding the type. We |
| +// correct the types after we wire the new parameters in, in fixFunctionBody. |
| +static void BlindReplace(Value *Old, Value *New) { |
| + for (auto UseIter = Old->use_begin(), E = Old->use_end(); E != UseIter;) { |
| + Use &AUse = *(UseIter++); |
| + AUse.set(New); |
| + } |
| +} |
| + |
| +// Adapt the body of a function for the new arguments. |
| +static void ConvertArgumentValue(Value *Old, Value *New, |
| + Instruction *InsPoint) { |
| + if (Old == New) |
| + return; |
| + |
| + if (Old->getType() == New->getType()) { |
| + Old->replaceAllUsesWith(New); |
| + New->takeName(Old); |
| + return; |
| + } |
| + |
| + bool IsAggregateToPtr = |
| + Old->getType()->isAggregateType() && New->getType()->isPointerTy(); |
| + BlindReplace(Old, (IsAggregateToPtr |
| + ? new LoadInst(New, Old->getName() + ".sreg", InsPoint) |
| + : New)); |
| +} |
| + |
| +// Fix returns. Return true if fixes were needed. |
| +static void FixReturn(Function *OldFunc, Function *NewFunc) { |
| + |
| + Argument *FirstNewArg = NewFunc->getArgumentList().begin(); |
| + |
| + for (auto BIter = NewFunc->begin(), LastBlock = NewFunc->end(); |
| + LastBlock != BIter;) { |
| + BasicBlock *BB = BIter++; |
| + for (auto IIter = BB->begin(), LastI = BB->end(); LastI != IIter;) { |
| + Instruction *Instr = IIter++; |
| + if (ReturnInst *Ret = dyn_cast<ReturnInst>(Instr)) { |
| + auto RetVal = Ret->getReturnValue(); |
| + IRBuilder<> Builder(Ret); |
| + StoreInst *Store = Builder.CreateStore(RetVal, FirstNewArg); |
| + Store->setAlignment(FirstNewArg->getParamAlignment()); |
| + Builder.CreateRetVoid(); |
| + Ret->eraseFromParent(); |
| + } |
| + } |
| + } |
| +} |
| + |
| +// TODO (mtrofin): is this comprehensive? |
| +template <class TCall> |
| +void CopyCallAttributesAndMetadata(TCall *Orig, TCall *NewCall) { |
| + NewCall->setCallingConv(Orig->getCallingConv()); |
| + NewCall->setAttributes(NewCall->getAttributes().addAttributes( |
| + Orig->getContext(), AttributeSet::FunctionIndex, |
| + Orig->getAttributes().getFnAttributes())); |
| + NewCall->takeName(Orig); |
| +} |
| + |
| +static InvokeInst *CreateCallFrom(InvokeInst *Orig, Value *Target, |
| + ArrayRef<Value *> &Args, |
| + IRBuilder<> &Builder) { |
| + auto Ret = Builder.CreateInvoke(Target, Orig->getNormalDest(), |
| + Orig->getUnwindDest(), Args); |
| + CopyCallAttributesAndMetadata(Orig, Ret); |
| + return Ret; |
| +} |
| + |
| +static CallInst *CreateCallFrom(CallInst *Orig, Value *Target, |
| + ArrayRef<Value *> &Args, IRBuilder<> &Builder) { |
| + |
| + CallInst *Ret = Builder.CreateCall(Target, Args); |
| + Ret->setTailCallKind(Orig->getTailCallKind()); |
| + CopyCallAttributesAndMetadata(Orig, Ret); |
| + return Ret; |
| +} |
| + |
| +// Fix a call site by handing return type changes and/or parameter type and |
| +// attribute changes. |
| +template <class TCall> |
| +void SimplifyStructRegSignatures::fixCallSite(LLVMContext &Ctx, TCall *OldCall, |
| + unsigned PreferredAlignment) { |
| + Value *NewTarget = OldCall->getCalledValue(); |
| + |
| + if (Function *CalledFunc = dyn_cast<Function>(NewTarget)) { |
| + NewTarget = this->FunctionMap[CalledFunc]; |
| + } |
| + assert(NewTarget); |
| + |
| + auto *NewType = cast<FunctionType>( |
| + Mapper.getSimpleType(Ctx, NewTarget->getType())->getPointerElementType()); |
| + |
| + auto *OldRetType = OldCall->getType(); |
| + const bool IsSRet = |
| + !OldCall->getType()->isVoidTy() && NewType->getReturnType()->isVoidTy(); |
| + |
| + IRBuilder<> Builder(OldCall); |
| + auto AllocaInsPoint = |
| + OldCall->getParent()->getParent()->getEntryBlock().getFirstInsertionPt(); |
| + |
| + if (IsSRet) { |
| + // Insert the Alloca at the beginning of the function, to ensure |
| + // we do not leak space if the call is in a loop. |
| + auto SavedInsPoint = Builder.GetInsertPoint(); |
| + Builder.SetInsertPoint(AllocaInsPoint); |
| + auto *Alloca = Builder.CreateAlloca(OldRetType); |
| + AllocaInsPoint = Builder.GetInsertPoint(); |
| + Builder.SetInsertPoint(SavedInsPoint); |
| + |
| + Alloca->takeName(OldCall); |
| + Alloca->setAlignment(PreferredAlignment); |
| + |
| + auto *NewCall = fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, |
| + NewType, AllocaInsPoint, Alloca); |
| + assert(NewCall); |
| + if (auto *Invoke = dyn_cast<InvokeInst>(OldCall)) |
| + Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstInsertionPt()); |
| + |
| + auto *Load = Builder.CreateLoad(Alloca, Alloca->getName() + ".sreg"); |
| + Load->setAlignment(Alloca->getAlignment()); |
| + OldCall->replaceAllUsesWith(Load); |
| + } else { |
| + auto *NewCall = fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, |
| + NewType, AllocaInsPoint); |
| + OldCall->replaceAllUsesWith(NewCall); |
| + } |
| + |
| + OldCall->eraseFromParent(); |
| +} |
| + |
| +template <class TCall> |
| +TCall *SimplifyStructRegSignatures::fixCallTargetAndArguments( |
| + LLVMContext &Ctx, IRBuilder<> &Builder, TCall *OldCall, Value *NewTarget, |
| + FunctionType *NewType, BasicBlock::iterator AllocaInsPoint, |
| + Value *ExtraArg) { |
| + SmallSetVector<unsigned, TypicalFuncArity> ByRefPlaces; |
| + SmallVector<Value *, TypicalFuncArity> NewArgs; |
| + |
| + unsigned argOffset = ExtraArg ? 1 : 0; |
| + if (ExtraArg) |
| + NewArgs.push_back(ExtraArg); |
| + |
| + // Go over the argument list used in the call/invoke, in order to |
| + // correctly deal with varargs scenarios. |
|
JF
2015/03/20 16:41:32
We decided to avoid handling struct passed in vara
Mircea Trofin
2015/03/20 18:31:32
Done.
|
| + unsigned NumActualParams = OldCall->getNumArgOperands(); |
| + for (unsigned ArgPos = 0; ArgPos < NumActualParams; ArgPos++) { |
| + |
| + Use &OldArgUse = OldCall->getOperandUse(ArgPos); |
| + Value *OldArg = OldArgUse; |
| + Type *OldArgType = OldArg->getType(); |
| + unsigned NewArgPos = OldArgUse.getOperandNo() + argOffset; |
| + Type *NewArgType = NewType->getFunctionParamType(NewArgPos); |
| + |
| + if (OldArgType != NewArgType && OldArgType->isAggregateType()) { |
| + // Insert the Alloca at the beginning of the function, to ensure |
| + // we do not leak space if the call is in a loop. |
| + auto SavedInsPoint = Builder.GetInsertPoint(); |
| + Builder.SetInsertPoint(AllocaInsPoint); |
| + |
| + AllocaInst *Alloca = |
| + Builder.CreateAlloca(OldArgType, nullptr, OldArg->getName() + ".ptr"); |
| + AllocaInsPoint = Builder.GetInsertPoint(); |
| + // Continue with the store at the saved insertion point. |
| + Builder.SetInsertPoint(SavedInsPoint); |
|
JF
2015/03/20 16:41:32
I think it would be better to pull this out as a f
Mircea Trofin
2015/03/20 18:31:32
Done.
|
| + Builder.CreateStore(OldArg, Alloca); |
| + ByRefPlaces.insert(NewArgPos); |
| + NewArgs.push_back(Alloca); |
| + } else { |
| + NewArgs.push_back(OldArg); |
| + } |
| + } |
| + |
| + ArrayRef<Value *> ArrRef = NewArgs; |
| + TCall *NewCall = CreateCallFrom(OldCall, NewTarget, ArrRef, Builder); |
| + |
| + // Copy the attributes over, and add byref/sret as necessary. |
| + const AttributeSet &OldAttrSet = OldCall->getAttributes(); |
| + const AttributeSet &NewAttrSet = NewCall->getAttributes(); |
| + |
| + for (unsigned I = 0; I < NewCall->getNumArgOperands(); I++) { |
| + NewCall->setAttributes(NewAttrSet.addAttributes( |
| + Ctx, I + argOffset + 1, OldAttrSet.getParamAttributes(I + 1))); |
| + if (ByRefPlaces.count(I)) { |
| + NewCall->addAttribute(I + 1, Attribute::ByVal); |
| + } |
| + } |
| + |
| + if (ExtraArg) { |
| + NewAttrSet.addAttributes(Ctx, 1, OldAttrSet.getRetAttributes()); |
| + NewCall->addAttribute(1, Attribute::StructRet); |
| + } else { |
| + NewCall->setAttributes(NewAttrSet.addAttributes( |
| + Ctx, AttributeSet::ReturnIndex, OldAttrSet.getRetAttributes())); |
| + } |
| + return NewCall; |
| +} |
| + |
| +void SimplifyStructRegSignatures::scheduleInstructionsForCleanup( |
| + Function *NewFunc) { |
| + for (auto &BBIter : NewFunc->getBasicBlockList()) { |
| + for (auto &IIter : BBIter.getInstList()) { |
| + if (CallInst *Call = dyn_cast<CallInst>(&IIter)) { |
| + CallsToPatch.insert(Call); |
| + } else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(&IIter)) { |
| + InvokesToPatch.insert(Invoke); |
| + } |
| + } |
| + } |
| +} |
| + |
| +// Change function body in the light of type changes. |
| +void SimplifyStructRegSignatures::fixFunctionBody(LLVMContext &Ctx, |
| + Function *OldFunc, |
| + Function *NewFunc) { |
| + if (NewFunc->empty()) |
| + return; |
| + |
| + bool returnWasFixed = OldFunc->getReturnType()->isAggregateType(); |
| + |
| + Instruction *InsPoint = NewFunc->begin()->begin(); |
| + auto NewArgIter = NewFunc->arg_begin(); |
| + // Advance one more if we used to return a struct register. |
| + if (returnWasFixed) |
| + NewArgIter++; |
| + |
| + // Wire new parameters in. |
| + for (auto ArgIter = OldFunc->arg_begin(), E = OldFunc->arg_end(); |
| + E != ArgIter;) { |
| + Argument *OldArg = ArgIter++; |
| + Argument *NewArg = NewArgIter++; |
| + ConvertArgumentValue(OldArg, NewArg, InsPoint); |
| + } |
| + |
| + // Now fix instruction types. We know that each value could only possibly be |
| + // of a simplified type. At the end of this, call sites will be invalid, but |
| + // we handle that afterwards, to make sure we have all the functions changed |
| + // first (so that calls have valid targets) |
| + for (auto BBIter = NewFunc->begin(), LBlock = NewFunc->end(); |
| + LBlock != BBIter;) { |
| + auto Block = BBIter++; |
| + for (auto IIter = Block->begin(), LIns = Block->end(); LIns != IIter;) { |
| + auto Instr = IIter++; |
| + Instr->mutateType(Mapper.getSimpleType(Ctx, Instr->getType())); |
| + } |
| + } |
| + if (returnWasFixed) |
| + FixReturn(OldFunc, NewFunc); |
| +} |
| + |
| +// Ensure function is simplified, returning true if the function |
| +// had to be changed. |
| +bool SimplifyStructRegSignatures::simplifyFunction( |
| + LLVMContext &Ctx, Function *OldFunc, |
| + DenseMap<const Function *, DISubprogram> &DISubprogramMap) { |
| + auto *OldFT = OldFunc->getFunctionType(); |
| + auto *NewFT = cast<FunctionType>(Mapper.getSimpleType(Ctx, OldFT)); |
| + |
| + Function *&AssociatedFctLoc = FunctionMap[OldFunc]; |
| + if (NewFT != OldFT) { |
| + auto *NewFunc = Function::Create(NewFT, OldFunc->getLinkage()); |
| + AssociatedFctLoc = NewFunc; |
| + |
| + NewFunc->copyAttributesFrom(OldFunc); |
| + OldFunc->getParent()->getFunctionList().insert(OldFunc, NewFunc); |
| + NewFunc->takeName(OldFunc); |
| + |
| + UpdateArgNames(OldFunc, NewFunc); |
| + ApplyByValAndSRet(OldFunc, NewFunc); |
| + |
| + NewFunc->getBasicBlockList().splice(NewFunc->begin(), |
| + OldFunc->getBasicBlockList()); |
| + |
| + fixFunctionBody(Ctx, OldFunc, NewFunc); |
| + FunctionsToDelete.insert(OldFunc); |
| + auto Found = DISubprogramMap.find(OldFunc); |
| + if (Found != DISubprogramMap.end()) |
| + Found->second.replaceFunction(NewFunc); |
| + } else { |
| + AssociatedFctLoc = OldFunc; |
| + } |
| + scheduleInstructionsForCleanup(AssociatedFctLoc); |
| + return NewFT != OldFT; |
| +} |
| + |
| +bool SimplifyStructRegSignatures::runOnModule(Module &M) { |
| + bool Changed = false; |
| + |
| + const DataLayout *DL = M.getDataLayout(); |
| + unsigned PreferredAlignment = 0; |
| + if (DL) |
| + PreferredAlignment = DL->getStackAlignment(); |
| + |
| + LLVMContext &Ctx = M.getContext(); |
| + auto DISubprogramMap = makeSubprogramMap(M); |
| + |
| + // Change function signatures and fix a changed function body by |
| + // wiring the new arguments. Call sites are unchanged at this point. |
| + for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E;) { |
| + Function *Func = Iter++; |
| + checkNoUnsupportedInstructions(Ctx, Func); |
| + Changed |= simplifyFunction(Ctx, Func, DISubprogramMap); |
| + } |
| + |
| + // Fix call sites. |
| + for (auto &CallToFix : CallsToPatch) { |
| + fixCallSite(Ctx, CallToFix, PreferredAlignment); |
| + } |
| + |
| + for (auto &InvokeToFix : InvokesToPatch) { |
| + fixCallSite(Ctx, InvokeToFix, PreferredAlignment); |
| + } |
| + |
| + // Delete leftover functions - the ones with old signatures. |
| + for (auto &ToDelete : FunctionsToDelete) { |
| + ToDelete->eraseFromParent(); |
| + } |
| + |
| + return Changed; |
| +} |
| + |
| +void SimplifyStructRegSignatures::checkNoUnsupportedInstructions( |
| + LLVMContext &Ctx, Function *Fct) { |
| + for (auto &BB : Fct->getBasicBlockList()) |
| + for (auto &Inst : BB.getInstList()) |
| + if (auto *Landing = dyn_cast<LandingPadInst>(&Inst)) { |
| + auto *LType = Landing->getPersonalityFn()->getType(); |
| + if (LType != Mapper.getSimpleType(Ctx, LType)) |
|
JF
2015/03/20 16:41:32
Before report_fatal_error you should:
errs() << *L
Mircea Trofin
2015/03/20 18:31:32
Done.
|
| + llvm::report_fatal_error("Landing pads with aggregate register " |
| + "signatures are not supported.", |
| + true); |
|
JF
2015/03/20 16:41:32
You don't need llvm:: here, and true is the defaul
Mircea Trofin
2015/03/20 18:31:32
Done.
|
| + } else if (auto *Resume = dyn_cast<ResumeInst>(&Inst)) { |
| + auto *RType = Resume->getValue()->getType(); |
| + if (RType != Mapper.getSimpleType(Ctx, RType)) |
| + llvm::report_fatal_error( |
| + "Resumes with aggregate register signatures are not supported.", |
| + true); |
| + } |
| +} |
| + |
| +ModulePass *llvm::createSimplifyStructRegSignaturesPass() { |
| + return new SimplifyStructRegSignatures(); |
| +} |