Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 //===- SimplifyStructRegSignatures.cpp - struct regs to struct pointers----===// | |
| 2 // | |
| 3 // The LLVM Compiler Infrastructure | |
| 4 // | |
| 5 // This file is distributed under the University of Illinois Open Source | |
| 6 // License. See LICENSE.TXT for details. | |
| 7 // | |
| 8 //===----------------------------------------------------------------------===// | |
| 9 // | |
| 10 // This pass replaces function signatures exposing struct registers | |
| 11 // to byval pointer-based signatures. | |
| 12 // | |
| 13 // There are 2 types of signatures that are thus changed: | |
| 14 // | |
| 15 // @foo(%some_struct %val) -> @foo(%some_struct* byval %val) | |
| 16 // and | |
| 17 // %someStruct @bar(<other_args>) -> void @bar(%someStruct* sret, <other_args>) | |
| 18 // | |
| 19 // Such function types may appear in other type declarations, for example: | |
| 20 // | |
| 21 // %a_struct = type { void (%some_struct)*, i32 } | |
| 22 // | |
| 23 // We map such types to corresponding types, mapping the function types | |
| 24 // appropriately: | |
| 25 // | |
| 26 // %a_struct.0 = type { void (%some_struct*)*, i32 } | |
| 27 //===----------------------------------------------------------------------===// | |
| 28 | |
| 29 #include "llvm/ADT/SmallString.h" | |
| 30 #include "llvm/IR/IRBuilder.h" | |
| 31 #include "llvm/ADT/ArrayRef.h" | |
| 32 #include "llvm/ADT/DenseSet.h" | |
| 33 #include "llvm/ADT/ilist.h" | |
| 34 #include "llvm/ADT/SetVector.h" | |
| 35 #include "llvm/ADT/SmallVector.h" | |
| 36 #include "llvm/ADT/Twine.h" | |
| 37 #include "llvm/IR/Argument.h" | |
| 38 #include "llvm/IR/Attributes.h" | |
| 39 #include "llvm/IR/BasicBlock.h" | |
| 40 #include "llvm/IR/DebugInfo.h" | |
| 41 #include "llvm/IR/DerivedTypes.h" | |
| 42 #include "llvm/IR/Function.h" | |
| 43 #include "llvm/IR/GlobalValue.h" | |
| 44 #include "llvm/IR/Instructions.h" | |
| 45 #include "llvm/IR/Module.h" | |
| 46 #include "llvm/IR/Type.h" | |
| 47 #include "llvm/IR/Use.h" | |
| 48 #include "llvm/IR/User.h" | |
| 49 #include "llvm/IR/Value.h" | |
| 50 #include "llvm/Pass.h" | |
| 51 #include "llvm/PassInfo.h" | |
| 52 #include "llvm/PassRegistry.h" | |
| 53 #include "llvm/PassSupport.h" | |
| 54 #include "llvm/Transforms/NaCl.h" | |
| 55 #include "llvm/Support/Debug.h" | |
| 56 | |
| 57 #include <cassert> | |
| 58 #include <cstddef> | |
| 59 | |
| 60 using namespace llvm; | |
| 61 | |
| 62 namespace { | |
| 63 | |
| 64 static const unsigned int TypicalFuncArity = 8; | |
| 65 static const unsigned int TypicalStructArity = 8; | |
| 66 | |
| 67 class MappingResult { | |
| 68 public: | |
| 69 MappingResult(Type *ATy, bool Chg) { | |
| 70 Ty = ATy; | |
| 71 Changed = Chg; | |
| 72 } | |
| 73 | |
| 74 bool isChanged() { return Changed; } | |
| 75 | |
| 76 Type *operator->() { return Ty; } | |
| 77 | |
| 78 operator Type *() { return Ty; } | |
| 79 | |
| 80 private: | |
| 81 Type *Ty; | |
| 82 bool Changed; | |
| 83 }; | |
| 84 | |
| 85 // Utility class. For any given type, get the associated type that is free of | |
| 86 // struct register arguments. | |
| 87 class TypeMapper { | |
| 88 public: | |
| 89 typedef DenseMap<StructType *, StructType *> StructMap; | |
| 90 Type *getSimpleType(LLVMContext &Ctx, Type *Ty); | |
| 91 | |
| 92 private: | |
| 93 DenseMap<Type *, Type *> MappedTypes; | |
| 94 MappingResult getSimpleArgumentType(LLVMContext &Ctx, Type *Ty, | |
| 95 StructMap &Tentatives); | |
| 96 MappingResult getSimpleAggregateTypeInternal(LLVMContext &Ctx, Type *Ty, | |
| 97 StructMap &Tentatives); | |
| 98 | |
| 99 bool isChangedStruct(LLVMContext &Ctx, StructType *StructTy, | |
| 100 SmallVector<Type *, TypicalStructArity> &ElemTypes, | |
| 101 StructMap &Tentatives); | |
| 102 }; | |
| 103 | |
| 104 // This is a ModulePass because the pass recreates functions in | |
| 105 // order to change their signatures. | |
| 106 class SimplifyStructRegSignatures : public ModulePass { | |
| 107 public: | |
| 108 static char ID; | |
| 109 | |
| 110 SimplifyStructRegSignatures() : ModulePass(ID) { | |
| 111 initializeSimplifyStructRegSignaturesPass(*PassRegistry::getPassRegistry()); | |
| 112 } | |
| 113 virtual bool runOnModule(Module &M); | |
| 114 | |
| 115 private: | |
| 116 TypeMapper Mapper; | |
| 117 DenseSet<Function *> FunctionsToDelete; | |
| 118 SetVector<CallInst *> CallsToPatch; | |
| 119 SetVector<InvokeInst *> InvokesToPatch; | |
| 120 DenseMap<Function *, Function *> FunctionMap; | |
| 121 bool | |
| 122 simplifyFunction(LLVMContext &Ctx, Function *OldFunc, | |
| 123 DenseMap<const Function *, DISubprogram> &DISubprogramMap); | |
| 124 void scheduleInstructionsForCleanup(Function *NewFunc); | |
| 125 template <class TCall> | |
| 126 void fixCallSite(LLVMContext &Ctx, TCall *Call, unsigned PreferredAlignment); | |
| 127 void fixFunctionBody(LLVMContext &Ctx, Function *OldFunc, Function *NewFunc); | |
| 128 | |
| 129 template <class TCall> | |
| 130 TCall *fixCallTargetAndArguments(LLVMContext &Ctx, IRBuilder<> &Builder, | |
| 131 TCall *OldCall, Value *NewTarget, | |
| 132 FunctionType *NewType, | |
| 133 BasicBlock::iterator AllocaInsPoint, | |
| 134 Value *ExtraArg = nullptr); | |
| 135 void checkNoUnsupportedInstructions(LLVMContext &Ctx, Function *Fct); | |
| 136 }; | |
| 137 } | |
| 138 | |
| 139 char SimplifyStructRegSignatures::ID = 0; | |
| 140 | |
| 141 INITIALIZE_PASS( | |
| 142 SimplifyStructRegSignatures, "simplify-struct-reg-signatures", | |
| 143 "Simplify function signatures by removing struct register parameters", | |
| 144 false, false) | |
| 145 | |
| 146 // The type is "simple" if it does not recursively reference a | |
| 147 // function type with at least an operand (arg or return) typed as struct | |
| 148 // register. | |
| 149 Type *TypeMapper::getSimpleType(LLVMContext &Ctx, Type *Ty) { | |
| 150 auto Found = MappedTypes.find(Ty); | |
| 151 if (Found != MappedTypes.end()) { | |
| 152 return Found->second; | |
| 153 } | |
| 154 | |
| 155 StructMap Tentatives; | |
| 156 auto Ret = getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); | |
| 157 assert(Tentatives.size() == 0); | |
| 158 | |
| 159 if (!Ty->isStructTy()) { | |
| 160 // Structs are memoized in getSimpleAggregateTypeInternal. | |
| 161 MappedTypes[Ty] = Ret; | |
| 162 } | |
| 163 return Ret; | |
| 164 } | |
| 165 | |
| 166 // Transforms any type that could transitively reference a function pointer | |
| 167 // into a simplified type. | |
| 168 // We enter this function trying to determine the mapping of a type. Because | |
| 169 // of how structs are handled (not interned by llvm - see further comments | |
| 170 // below) we may be working with temporary types - types (pointers, for example) | |
| 171 // transitively referencing "tentative" structs. For that reason, we do not | |
| 172 // memoize anything here, except for structs. The latter is so that we avoid | |
| 173 // unnecessary repeated creation of types (pointers, function types, etc), | |
| 174 // as we try to map a given type. | |
| 175 MappingResult | |
| 176 TypeMapper::getSimpleAggregateTypeInternal(LLVMContext &Ctx, Type *Ty, | |
| 177 StructMap &Tentatives) { | |
| 178 // Leverage the map for types we encounter on the way. | |
| 179 auto Found = MappedTypes.find(Ty); | |
| 180 if (Found != MappedTypes.end()) { | |
| 181 return {Found->second, Found->second != Ty}; | |
| 182 } | |
| 183 | |
| 184 if (auto *OldFnTy = dyn_cast<FunctionType>(Ty)) { | |
| 185 Type *OldRetType = OldFnTy->getReturnType(); | |
| 186 Type *NewRetType = OldRetType; | |
| 187 Type *Void = Type::getVoidTy(Ctx); | |
| 188 SmallVector<Type *, TypicalFuncArity> NewArgs; | |
| 189 bool Changed = false; | |
| 190 // Struct register returns become the first parameter of the new FT. | |
| 191 // The new FT has void for the return type | |
| 192 if (OldRetType->isAggregateType()) { | |
| 193 NewRetType = Void; | |
| 194 Changed = true; | |
| 195 NewArgs.push_back(getSimpleArgumentType(Ctx, OldRetType, Tentatives)); | |
| 196 } | |
| 197 for (auto OldParam : OldFnTy->params()) { | |
| 198 auto NewType = getSimpleArgumentType(Ctx, OldParam, Tentatives); | |
| 199 Changed |= NewType.isChanged(); | |
| 200 NewArgs.push_back(NewType); | |
| 201 } | |
| 202 Type *NewFuncType = | |
| 203 FunctionType::get(NewRetType, NewArgs, OldFnTy->isVarArg()); | |
| 204 return {NewFuncType, Changed}; | |
| 205 } | |
| 206 | |
| 207 if (auto PtrTy = dyn_cast<PointerType>(Ty)) { | |
| 208 auto NewTy = getSimpleAggregateTypeInternal( | |
| 209 Ctx, PtrTy->getPointerElementType(), Tentatives); | |
| 210 | |
| 211 return {NewTy->getPointerTo(PtrTy->getAddressSpace()), NewTy.isChanged()}; | |
| 212 } | |
| 213 | |
| 214 if (auto ArrTy = dyn_cast<ArrayType>(Ty)) { | |
| 215 auto NewTy = getSimpleAggregateTypeInternal( | |
| 216 Ctx, ArrTy->getArrayElementType(), Tentatives); | |
| 217 return {ArrayType::get(NewTy, ArrTy->getArrayNumElements()), | |
| 218 NewTy.isChanged()}; | |
| 219 } | |
| 220 | |
| 221 if (auto VecTy = dyn_cast<VectorType>(Ty)) { | |
| 222 auto NewTy = getSimpleAggregateTypeInternal( | |
| 223 Ctx, VecTy->getVectorElementType(), Tentatives); | |
| 224 return {VectorType::get(NewTy, VecTy->getVectorNumElements()), | |
| 225 NewTy.isChanged()}; | |
| 226 } | |
| 227 | |
| 228 // LLVM doesn't intern identified structs (the ones with a name). This, | |
| 229 // together with the fact that such structs can be recursive, | |
| 230 // complicates things a bit. We want to make sure that we only change | |
| 231 // "unsimplified" structs (those that somehow reference funcs that | |
| 232 // are not simple). | |
| 233 // We don't want to change "simplified" structs, otherwise converting | |
| 234 // instruction types will become trickier. | |
| 235 if (auto StructTy = dyn_cast<StructType>(Ty)) { | |
| 236 SmallVector<Type *, TypicalStructArity> ElemTypes; | |
| 237 if (!StructTy->isLiteral()) { | |
| 238 // Literals - struct without a name - cannot be recursive, so we | |
| 239 // don't need to form tentatives. | |
| 240 auto Found = Tentatives.find(StructTy); | |
| 241 | |
| 242 // Having a tentative means we are in a recursion trying to map this | |
| 243 // particular struct, so arriving back to it is not a change. | |
| 244 // We will determine if this struct is actually | |
| 245 // changed by checking its other fields. | |
| 246 if (Found != Tentatives.end()) { | |
| 247 return {Found->second, false}; | |
| 248 } | |
| 249 // We have never seen this struct, so we start a tentative. | |
| 250 std::string NewName = StructTy->getStructName(); | |
| 251 NewName += ".simplified"; | |
| 252 StructType *Tentative = StructType::create(Ctx, NewName); | |
| 253 Tentatives[StructTy] = Tentative; | |
| 254 | |
| 255 bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); | |
| 256 | |
| 257 Tentatives.erase(StructTy); | |
| 258 // We can now decide the mapping of the struct. We will register it | |
| 259 // early with MappedTypes, to avoid leaking tentatives unnecessarily. | |
| 260 // We are leaking the created struct here, but there is no way to | |
| 261 // correctly delete it. | |
| 262 if (!Changed) { | |
| 263 return {MappedTypes[StructTy] = StructTy, false}; | |
| 264 } else { | |
| 265 Tentative->setBody(ElemTypes, StructTy->isPacked()); | |
| 266 return {MappedTypes[StructTy] = Tentative, true}; | |
| 267 } | |
| 268 } else { | |
| 269 bool Changed = isChangedStruct(Ctx, StructTy, ElemTypes, Tentatives); | |
| 270 return {MappedTypes[StructTy] = | |
| 271 StructType::get(Ctx, ElemTypes, StructTy->isPacked()), | |
| 272 Changed}; | |
| 273 } | |
| 274 } | |
| 275 | |
| 276 // Anything else stays the same. | |
| 277 return {Ty, false}; | |
| 278 } | |
| 279 | |
| 280 bool TypeMapper::isChangedStruct( | |
| 281 LLVMContext &Ctx, StructType *StructTy, | |
| 282 SmallVector<Type *, TypicalStructArity> &ElemTypes, StructMap &Tentatives) { | |
| 283 bool Changed = false; | |
| 284 unsigned StructElemCount = StructTy->getStructNumElements(); | |
| 285 for (unsigned I = 0; I < StructElemCount; I++) { | |
| 286 auto NewElem = getSimpleAggregateTypeInternal( | |
| 287 Ctx, StructTy->getStructElementType(I), Tentatives); | |
| 288 ElemTypes.push_back(NewElem); | |
| 289 Changed |= NewElem.isChanged(); | |
| 290 } | |
| 291 return Changed; | |
| 292 } | |
| 293 | |
| 294 // Get the simplified type of a function argument. | |
| 295 MappingResult TypeMapper::getSimpleArgumentType(LLVMContext &Ctx, Type *Ty, | |
| 296 StructMap &Tentatives) { | |
| 297 // struct registers become pointers to simple structs | |
| 298 if (Ty->isAggregateType()) { | |
| 299 return MappingResult( | |
| 300 PointerType::get(getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives), | |
| 301 0), | |
| 302 true); | |
| 303 } | |
| 304 | |
| 305 return getSimpleAggregateTypeInternal(Ctx, Ty, Tentatives); | |
| 306 } | |
| 307 | |
| 308 // Apply 'byval' to func arguments that used to be struct regs. | |
| 309 // Apply 'sret' to the argument corresponding to the return in the old | |
| 310 // signature. | |
| 311 static void ApplyByValAndSRet(Function *OldFunc, Function *NewFunc) { | |
| 312 // When calling addAttribute, the first one refers to the function, so we | |
| 313 // skip past that. | |
| 314 unsigned ArgOffset = 1; | |
| 315 if (OldFunc->getReturnType()->isAggregateType()) { | |
| 316 NewFunc->addAttribute(1, Attribute::AttrKind::StructRet); | |
| 317 ArgOffset++; | |
| 318 } | |
| 319 | |
| 320 auto &NewArgList = NewFunc->getArgumentList(); | |
| 321 auto NewArg = NewArgList.begin(); | |
| 322 for (const Argument &OldArg : OldFunc->getArgumentList()) { | |
| 323 if (OldArg.getType()->isAggregateType()) { | |
| 324 NewFunc->addAttribute(NewArg->getArgNo() + ArgOffset, | |
| 325 Attribute::AttrKind::ByVal); | |
| 326 } | |
| 327 NewArg++; | |
| 328 } | |
| 329 } | |
| 330 | |
| 331 // Update the arg names for a newly created function. | |
| 332 static void UpdateArgNames(Function *OldFunc, Function *NewFunc) { | |
| 333 auto NewArgIter = NewFunc->arg_begin(); | |
| 334 if (OldFunc->getReturnType()->isAggregateType()) { | |
| 335 NewArgIter->setName("retVal"); | |
| 336 NewArgIter++; | |
| 337 } | |
| 338 | |
| 339 for (const Argument &OldArg : OldFunc->args()) { | |
| 340 Argument *NewArg = NewArgIter++; | |
| 341 NewArg->setName(OldArg.getName() + | |
| 342 (OldArg.getType()->isAggregateType() ? ".ptr" : "")); | |
| 343 } | |
| 344 } | |
| 345 | |
| 346 // Replace all uses of an old value with a new one, disregarding the type. We | |
| 347 // correct the types after we wire the new parameters in, in fixFunctionBody. | |
| 348 static void BlindReplace(Value *Old, Value *New) { | |
| 349 for (auto UseIter = Old->use_begin(), E = Old->use_end(); E != UseIter;) { | |
| 350 Use &AUse = *(UseIter++); | |
| 351 AUse.set(New); | |
| 352 } | |
| 353 } | |
| 354 | |
| 355 // Adapt the body of a function for the new arguments. | |
| 356 static void ConvertArgumentValue(Value *Old, Value *New, | |
| 357 Instruction *InsPoint) { | |
| 358 if (Old == New) | |
| 359 return; | |
| 360 | |
| 361 if (Old->getType() == New->getType()) { | |
| 362 Old->replaceAllUsesWith(New); | |
| 363 New->takeName(Old); | |
| 364 return; | |
| 365 } | |
| 366 | |
| 367 bool IsAggregateToPtr = | |
| 368 Old->getType()->isAggregateType() && New->getType()->isPointerTy(); | |
| 369 BlindReplace(Old, (IsAggregateToPtr | |
| 370 ? new LoadInst(New, Old->getName() + ".sreg", InsPoint) | |
| 371 : New)); | |
| 372 } | |
| 373 | |
| 374 // Fix returns. Return true if fixes were needed. | |
| 375 static void FixReturn(Function *OldFunc, Function *NewFunc) { | |
| 376 | |
| 377 Argument *FirstNewArg = NewFunc->getArgumentList().begin(); | |
| 378 | |
| 379 for (auto BIter = NewFunc->begin(), LastBlock = NewFunc->end(); | |
| 380 LastBlock != BIter;) { | |
| 381 BasicBlock *BB = BIter++; | |
| 382 for (auto IIter = BB->begin(), LastI = BB->end(); LastI != IIter;) { | |
| 383 Instruction *Instr = IIter++; | |
| 384 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Instr)) { | |
| 385 auto RetVal = Ret->getReturnValue(); | |
| 386 IRBuilder<> Builder(Ret); | |
| 387 StoreInst *Store = Builder.CreateStore(RetVal, FirstNewArg); | |
| 388 Store->setAlignment(FirstNewArg->getParamAlignment()); | |
| 389 Builder.CreateRetVoid(); | |
| 390 Ret->eraseFromParent(); | |
| 391 } | |
| 392 } | |
| 393 } | |
| 394 } | |
| 395 | |
| 396 // TODO (mtrofin): is this comprehensive? | |
| 397 template <class TCall> | |
| 398 void CopyCallAttributesAndMetadata(TCall *Orig, TCall *NewCall) { | |
| 399 NewCall->setCallingConv(Orig->getCallingConv()); | |
| 400 NewCall->setAttributes(NewCall->getAttributes().addAttributes( | |
| 401 Orig->getContext(), AttributeSet::FunctionIndex, | |
| 402 Orig->getAttributes().getFnAttributes())); | |
| 403 NewCall->takeName(Orig); | |
| 404 } | |
| 405 | |
| 406 static InvokeInst *CreateCallFrom(InvokeInst *Orig, Value *Target, | |
| 407 ArrayRef<Value *> &Args, | |
| 408 IRBuilder<> &Builder) { | |
| 409 auto Ret = Builder.CreateInvoke(Target, Orig->getNormalDest(), | |
| 410 Orig->getUnwindDest(), Args); | |
| 411 CopyCallAttributesAndMetadata(Orig, Ret); | |
| 412 return Ret; | |
| 413 } | |
| 414 | |
| 415 static CallInst *CreateCallFrom(CallInst *Orig, Value *Target, | |
| 416 ArrayRef<Value *> &Args, IRBuilder<> &Builder) { | |
| 417 | |
| 418 CallInst *Ret = Builder.CreateCall(Target, Args); | |
| 419 Ret->setTailCallKind(Orig->getTailCallKind()); | |
| 420 CopyCallAttributesAndMetadata(Orig, Ret); | |
| 421 return Ret; | |
| 422 } | |
| 423 | |
| 424 // Fix a call site by handing return type changes and/or parameter type and | |
| 425 // attribute changes. | |
| 426 template <class TCall> | |
| 427 void SimplifyStructRegSignatures::fixCallSite(LLVMContext &Ctx, TCall *OldCall, | |
| 428 unsigned PreferredAlignment) { | |
| 429 Value *NewTarget = OldCall->getCalledValue(); | |
| 430 | |
| 431 if (Function *CalledFunc = dyn_cast<Function>(NewTarget)) { | |
| 432 NewTarget = this->FunctionMap[CalledFunc]; | |
| 433 } | |
| 434 assert(NewTarget); | |
| 435 | |
| 436 auto *NewType = cast<FunctionType>( | |
| 437 Mapper.getSimpleType(Ctx, NewTarget->getType())->getPointerElementType()); | |
| 438 | |
| 439 auto *OldRetType = OldCall->getType(); | |
| 440 const bool IsSRet = | |
| 441 !OldCall->getType()->isVoidTy() && NewType->getReturnType()->isVoidTy(); | |
| 442 | |
| 443 IRBuilder<> Builder(OldCall); | |
| 444 auto AllocaInsPoint = | |
| 445 OldCall->getParent()->getParent()->getEntryBlock().getFirstInsertionPt(); | |
| 446 | |
| 447 if (IsSRet) { | |
| 448 // Insert the Alloca at the beginning of the function, to ensure | |
| 449 // we do not leak space if the call is in a loop. | |
| 450 auto SavedInsPoint = Builder.GetInsertPoint(); | |
| 451 Builder.SetInsertPoint(AllocaInsPoint); | |
| 452 auto *Alloca = Builder.CreateAlloca(OldRetType); | |
| 453 AllocaInsPoint = Builder.GetInsertPoint(); | |
| 454 Builder.SetInsertPoint(SavedInsPoint); | |
| 455 | |
| 456 Alloca->takeName(OldCall); | |
| 457 Alloca->setAlignment(PreferredAlignment); | |
| 458 | |
| 459 auto *NewCall = fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, | |
| 460 NewType, AllocaInsPoint, Alloca); | |
| 461 assert(NewCall); | |
| 462 if (auto *Invoke = dyn_cast<InvokeInst>(OldCall)) | |
| 463 Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstInsertionPt()); | |
| 464 | |
| 465 auto *Load = Builder.CreateLoad(Alloca, Alloca->getName() + ".sreg"); | |
| 466 Load->setAlignment(Alloca->getAlignment()); | |
| 467 OldCall->replaceAllUsesWith(Load); | |
| 468 } else { | |
| 469 auto *NewCall = fixCallTargetAndArguments(Ctx, Builder, OldCall, NewTarget, | |
| 470 NewType, AllocaInsPoint); | |
| 471 OldCall->replaceAllUsesWith(NewCall); | |
| 472 } | |
| 473 | |
| 474 OldCall->eraseFromParent(); | |
| 475 } | |
| 476 | |
| 477 template <class TCall> | |
| 478 TCall *SimplifyStructRegSignatures::fixCallTargetAndArguments( | |
| 479 LLVMContext &Ctx, IRBuilder<> &Builder, TCall *OldCall, Value *NewTarget, | |
| 480 FunctionType *NewType, BasicBlock::iterator AllocaInsPoint, | |
| 481 Value *ExtraArg) { | |
| 482 SmallSetVector<unsigned, TypicalFuncArity> ByRefPlaces; | |
| 483 SmallVector<Value *, TypicalFuncArity> NewArgs; | |
| 484 | |
| 485 unsigned argOffset = ExtraArg ? 1 : 0; | |
| 486 if (ExtraArg) | |
| 487 NewArgs.push_back(ExtraArg); | |
| 488 | |
| 489 // Go over the argument list used in the call/invoke, in order to | |
| 490 // correctly deal with varargs scenarios. | |
|
JF
2015/03/20 16:41:32
We decided to avoid handling struct passed in vara
Mircea Trofin
2015/03/20 18:31:32
Done.
| |
| 491 unsigned NumActualParams = OldCall->getNumArgOperands(); | |
| 492 for (unsigned ArgPos = 0; ArgPos < NumActualParams; ArgPos++) { | |
| 493 | |
| 494 Use &OldArgUse = OldCall->getOperandUse(ArgPos); | |
| 495 Value *OldArg = OldArgUse; | |
| 496 Type *OldArgType = OldArg->getType(); | |
| 497 unsigned NewArgPos = OldArgUse.getOperandNo() + argOffset; | |
| 498 Type *NewArgType = NewType->getFunctionParamType(NewArgPos); | |
| 499 | |
| 500 if (OldArgType != NewArgType && OldArgType->isAggregateType()) { | |
| 501 // Insert the Alloca at the beginning of the function, to ensure | |
| 502 // we do not leak space if the call is in a loop. | |
| 503 auto SavedInsPoint = Builder.GetInsertPoint(); | |
| 504 Builder.SetInsertPoint(AllocaInsPoint); | |
| 505 | |
| 506 AllocaInst *Alloca = | |
| 507 Builder.CreateAlloca(OldArgType, nullptr, OldArg->getName() + ".ptr"); | |
| 508 AllocaInsPoint = Builder.GetInsertPoint(); | |
| 509 // Continue with the store at the saved insertion point. | |
| 510 Builder.SetInsertPoint(SavedInsPoint); | |
|
JF
2015/03/20 16:41:32
I think it would be better to pull this out as a f
Mircea Trofin
2015/03/20 18:31:32
Done.
| |
| 511 Builder.CreateStore(OldArg, Alloca); | |
| 512 ByRefPlaces.insert(NewArgPos); | |
| 513 NewArgs.push_back(Alloca); | |
| 514 } else { | |
| 515 NewArgs.push_back(OldArg); | |
| 516 } | |
| 517 } | |
| 518 | |
| 519 ArrayRef<Value *> ArrRef = NewArgs; | |
| 520 TCall *NewCall = CreateCallFrom(OldCall, NewTarget, ArrRef, Builder); | |
| 521 | |
| 522 // Copy the attributes over, and add byref/sret as necessary. | |
| 523 const AttributeSet &OldAttrSet = OldCall->getAttributes(); | |
| 524 const AttributeSet &NewAttrSet = NewCall->getAttributes(); | |
| 525 | |
| 526 for (unsigned I = 0; I < NewCall->getNumArgOperands(); I++) { | |
| 527 NewCall->setAttributes(NewAttrSet.addAttributes( | |
| 528 Ctx, I + argOffset + 1, OldAttrSet.getParamAttributes(I + 1))); | |
| 529 if (ByRefPlaces.count(I)) { | |
| 530 NewCall->addAttribute(I + 1, Attribute::ByVal); | |
| 531 } | |
| 532 } | |
| 533 | |
| 534 if (ExtraArg) { | |
| 535 NewAttrSet.addAttributes(Ctx, 1, OldAttrSet.getRetAttributes()); | |
| 536 NewCall->addAttribute(1, Attribute::StructRet); | |
| 537 } else { | |
| 538 NewCall->setAttributes(NewAttrSet.addAttributes( | |
| 539 Ctx, AttributeSet::ReturnIndex, OldAttrSet.getRetAttributes())); | |
| 540 } | |
| 541 return NewCall; | |
| 542 } | |
| 543 | |
| 544 void SimplifyStructRegSignatures::scheduleInstructionsForCleanup( | |
| 545 Function *NewFunc) { | |
| 546 for (auto &BBIter : NewFunc->getBasicBlockList()) { | |
| 547 for (auto &IIter : BBIter.getInstList()) { | |
| 548 if (CallInst *Call = dyn_cast<CallInst>(&IIter)) { | |
| 549 CallsToPatch.insert(Call); | |
| 550 } else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(&IIter)) { | |
| 551 InvokesToPatch.insert(Invoke); | |
| 552 } | |
| 553 } | |
| 554 } | |
| 555 } | |
| 556 | |
| 557 // Change function body in the light of type changes. | |
| 558 void SimplifyStructRegSignatures::fixFunctionBody(LLVMContext &Ctx, | |
| 559 Function *OldFunc, | |
| 560 Function *NewFunc) { | |
| 561 if (NewFunc->empty()) | |
| 562 return; | |
| 563 | |
| 564 bool returnWasFixed = OldFunc->getReturnType()->isAggregateType(); | |
| 565 | |
| 566 Instruction *InsPoint = NewFunc->begin()->begin(); | |
| 567 auto NewArgIter = NewFunc->arg_begin(); | |
| 568 // Advance one more if we used to return a struct register. | |
| 569 if (returnWasFixed) | |
| 570 NewArgIter++; | |
| 571 | |
| 572 // Wire new parameters in. | |
| 573 for (auto ArgIter = OldFunc->arg_begin(), E = OldFunc->arg_end(); | |
| 574 E != ArgIter;) { | |
| 575 Argument *OldArg = ArgIter++; | |
| 576 Argument *NewArg = NewArgIter++; | |
| 577 ConvertArgumentValue(OldArg, NewArg, InsPoint); | |
| 578 } | |
| 579 | |
| 580 // Now fix instruction types. We know that each value could only possibly be | |
| 581 // of a simplified type. At the end of this, call sites will be invalid, but | |
| 582 // we handle that afterwards, to make sure we have all the functions changed | |
| 583 // first (so that calls have valid targets) | |
| 584 for (auto BBIter = NewFunc->begin(), LBlock = NewFunc->end(); | |
| 585 LBlock != BBIter;) { | |
| 586 auto Block = BBIter++; | |
| 587 for (auto IIter = Block->begin(), LIns = Block->end(); LIns != IIter;) { | |
| 588 auto Instr = IIter++; | |
| 589 Instr->mutateType(Mapper.getSimpleType(Ctx, Instr->getType())); | |
| 590 } | |
| 591 } | |
| 592 if (returnWasFixed) | |
| 593 FixReturn(OldFunc, NewFunc); | |
| 594 } | |
| 595 | |
| 596 // Ensure function is simplified, returning true if the function | |
| 597 // had to be changed. | |
| 598 bool SimplifyStructRegSignatures::simplifyFunction( | |
| 599 LLVMContext &Ctx, Function *OldFunc, | |
| 600 DenseMap<const Function *, DISubprogram> &DISubprogramMap) { | |
| 601 auto *OldFT = OldFunc->getFunctionType(); | |
| 602 auto *NewFT = cast<FunctionType>(Mapper.getSimpleType(Ctx, OldFT)); | |
| 603 | |
| 604 Function *&AssociatedFctLoc = FunctionMap[OldFunc]; | |
| 605 if (NewFT != OldFT) { | |
| 606 auto *NewFunc = Function::Create(NewFT, OldFunc->getLinkage()); | |
| 607 AssociatedFctLoc = NewFunc; | |
| 608 | |
| 609 NewFunc->copyAttributesFrom(OldFunc); | |
| 610 OldFunc->getParent()->getFunctionList().insert(OldFunc, NewFunc); | |
| 611 NewFunc->takeName(OldFunc); | |
| 612 | |
| 613 UpdateArgNames(OldFunc, NewFunc); | |
| 614 ApplyByValAndSRet(OldFunc, NewFunc); | |
| 615 | |
| 616 NewFunc->getBasicBlockList().splice(NewFunc->begin(), | |
| 617 OldFunc->getBasicBlockList()); | |
| 618 | |
| 619 fixFunctionBody(Ctx, OldFunc, NewFunc); | |
| 620 FunctionsToDelete.insert(OldFunc); | |
| 621 auto Found = DISubprogramMap.find(OldFunc); | |
| 622 if (Found != DISubprogramMap.end()) | |
| 623 Found->second.replaceFunction(NewFunc); | |
| 624 } else { | |
| 625 AssociatedFctLoc = OldFunc; | |
| 626 } | |
| 627 scheduleInstructionsForCleanup(AssociatedFctLoc); | |
| 628 return NewFT != OldFT; | |
| 629 } | |
| 630 | |
| 631 bool SimplifyStructRegSignatures::runOnModule(Module &M) { | |
| 632 bool Changed = false; | |
| 633 | |
| 634 const DataLayout *DL = M.getDataLayout(); | |
| 635 unsigned PreferredAlignment = 0; | |
| 636 if (DL) | |
| 637 PreferredAlignment = DL->getStackAlignment(); | |
| 638 | |
| 639 LLVMContext &Ctx = M.getContext(); | |
| 640 auto DISubprogramMap = makeSubprogramMap(M); | |
| 641 | |
| 642 // Change function signatures and fix a changed function body by | |
| 643 // wiring the new arguments. Call sites are unchanged at this point. | |
| 644 for (Module::iterator Iter = M.begin(), E = M.end(); Iter != E;) { | |
| 645 Function *Func = Iter++; | |
| 646 checkNoUnsupportedInstructions(Ctx, Func); | |
| 647 Changed |= simplifyFunction(Ctx, Func, DISubprogramMap); | |
| 648 } | |
| 649 | |
| 650 // Fix call sites. | |
| 651 for (auto &CallToFix : CallsToPatch) { | |
| 652 fixCallSite(Ctx, CallToFix, PreferredAlignment); | |
| 653 } | |
| 654 | |
| 655 for (auto &InvokeToFix : InvokesToPatch) { | |
| 656 fixCallSite(Ctx, InvokeToFix, PreferredAlignment); | |
| 657 } | |
| 658 | |
| 659 // Delete leftover functions - the ones with old signatures. | |
| 660 for (auto &ToDelete : FunctionsToDelete) { | |
| 661 ToDelete->eraseFromParent(); | |
| 662 } | |
| 663 | |
| 664 return Changed; | |
| 665 } | |
| 666 | |
| 667 void SimplifyStructRegSignatures::checkNoUnsupportedInstructions( | |
| 668 LLVMContext &Ctx, Function *Fct) { | |
| 669 for (auto &BB : Fct->getBasicBlockList()) | |
| 670 for (auto &Inst : BB.getInstList()) | |
| 671 if (auto *Landing = dyn_cast<LandingPadInst>(&Inst)) { | |
| 672 auto *LType = Landing->getPersonalityFn()->getType(); | |
| 673 if (LType != Mapper.getSimpleType(Ctx, LType)) | |
|
JF
2015/03/20 16:41:32
Before report_fatal_error you should:
errs() << *L
Mircea Trofin
2015/03/20 18:31:32
Done.
| |
| 674 llvm::report_fatal_error("Landing pads with aggregate register " | |
| 675 "signatures are not supported.", | |
| 676 true); | |
|
JF
2015/03/20 16:41:32
You don't need llvm:: here, and true is the defaul
Mircea Trofin
2015/03/20 18:31:32
Done.
| |
| 677 } else if (auto *Resume = dyn_cast<ResumeInst>(&Inst)) { | |
| 678 auto *RType = Resume->getValue()->getType(); | |
| 679 if (RType != Mapper.getSimpleType(Ctx, RType)) | |
| 680 llvm::report_fatal_error( | |
| 681 "Resumes with aggregate register signatures are not supported.", | |
| 682 true); | |
| 683 } | |
| 684 } | |
| 685 | |
| 686 ModulePass *llvm::createSimplifyStructRegSignaturesPass() { | |
| 687 return new SimplifyStructRegSignatures(); | |
| 688 } | |
| OLD | NEW |