| Index: Source/core/platform/image-decoders/bmp/BMPImageReader.cpp
|
| diff --git a/Source/core/platform/image-decoders/bmp/BMPImageReader.cpp b/Source/core/platform/image-decoders/bmp/BMPImageReader.cpp
|
| deleted file mode 100644
|
| index e062eb00b771b25eb2875b37f2306190c99b100d..0000000000000000000000000000000000000000
|
| --- a/Source/core/platform/image-decoders/bmp/BMPImageReader.cpp
|
| +++ /dev/null
|
| @@ -1,737 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2008, 2009, Google Inc. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions are
|
| - * met:
|
| - *
|
| - * * Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * * Redistributions in binary form must reproduce the above
|
| - * copyright notice, this list of conditions and the following disclaimer
|
| - * in the documentation and/or other materials provided with the
|
| - * distribution.
|
| - * * Neither the name of Google Inc. nor the names of its
|
| - * contributors may be used to endorse or promote products derived from
|
| - * this software without specific prior written permission.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#include "config.h"
|
| -#include "core/platform/image-decoders/bmp/BMPImageReader.h"
|
| -
|
| -namespace WebCore {
|
| -
|
| -BMPImageReader::BMPImageReader(ImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask)
|
| - : m_parent(parent)
|
| - , m_buffer(0)
|
| - , m_decodedOffset(decodedAndHeaderOffset)
|
| - , m_headerOffset(decodedAndHeaderOffset)
|
| - , m_imgDataOffset(imgDataOffset)
|
| - , m_isOS21x(false)
|
| - , m_isOS22x(false)
|
| - , m_isTopDown(false)
|
| - , m_needToProcessBitmasks(false)
|
| - , m_needToProcessColorTable(false)
|
| - , m_tableSizeInBytes(0)
|
| - , m_seenNonZeroAlphaPixel(false)
|
| - , m_seenZeroAlphaPixel(false)
|
| - , m_andMaskState(usesAndMask ? NotYetDecoded : None)
|
| -{
|
| - // Clue-in decodeBMP() that we need to detect the correct info header size.
|
| - memset(&m_infoHeader, 0, sizeof(m_infoHeader));
|
| -}
|
| -
|
| -bool BMPImageReader::decodeBMP(bool onlySize)
|
| -{
|
| - // Calculate size of info header.
|
| - if (!m_infoHeader.biSize && !readInfoHeaderSize())
|
| - return false;
|
| -
|
| - // Read and process info header.
|
| - if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader())
|
| - return false;
|
| -
|
| - // processInfoHeader() set the size, so if that's all we needed, we're done.
|
| - if (onlySize)
|
| - return true;
|
| -
|
| - // Read and process the bitmasks, if needed.
|
| - if (m_needToProcessBitmasks && !processBitmasks())
|
| - return false;
|
| -
|
| - // Read and process the color table, if needed.
|
| - if (m_needToProcessColorTable && !processColorTable())
|
| - return false;
|
| -
|
| - // Initialize the framebuffer if needed.
|
| - ASSERT(m_buffer); // Parent should set this before asking us to decode!
|
| - if (m_buffer->status() == ImageFrame::FrameEmpty) {
|
| - if (!m_buffer->setSize(m_parent->size().width(), m_parent->size().height()))
|
| - return m_parent->setFailed(); // Unable to allocate.
|
| - m_buffer->setStatus(ImageFrame::FramePartial);
|
| - // setSize() calls eraseARGB(), which resets the alpha flag, so we force
|
| - // it back to false here. We'll set it true below in all cases where
|
| - // these 0s could actually show through.
|
| - m_buffer->setHasAlpha(false);
|
| -
|
| - // For BMPs, the frame always fills the entire image.
|
| - m_buffer->setOriginalFrameRect(IntRect(IntPoint(), m_parent->size()));
|
| -
|
| - if (!m_isTopDown)
|
| - m_coord.setY(m_parent->size().height() - 1);
|
| - }
|
| -
|
| - // Decode the data.
|
| - if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) {
|
| - if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) {
|
| - const ProcessingResult result = processNonRLEData(false, 0);
|
| - if (result != Success)
|
| - return (result == Failure) ? m_parent->setFailed() : false;
|
| - } else if (!processRLEData())
|
| - return false;
|
| - }
|
| -
|
| - // If the image has an AND mask and there was no alpha data, process the
|
| - // mask.
|
| - if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) {
|
| - // Reset decoding coordinates to start of image.
|
| - m_coord.setX(0);
|
| - m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1));
|
| -
|
| - // The AND mask is stored as 1-bit data.
|
| - m_infoHeader.biBitCount = 1;
|
| -
|
| - m_andMaskState = Decoding;
|
| - }
|
| - if (m_andMaskState == Decoding) {
|
| - const ProcessingResult result = processNonRLEData(false, 0);
|
| - if (result != Success)
|
| - return (result == Failure) ? m_parent->setFailed() : false;
|
| - }
|
| -
|
| - // Done!
|
| - m_buffer->setStatus(ImageFrame::FrameComplete);
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::readInfoHeaderSize()
|
| -{
|
| - // Get size of info header.
|
| - ASSERT(m_decodedOffset == m_headerOffset);
|
| - if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4))
|
| - return false;
|
| - m_infoHeader.biSize = readUint32(0);
|
| - // Don't increment m_decodedOffset here, it just makes the code in
|
| - // processInfoHeader() more confusing.
|
| -
|
| - // Don't allow the header to overflow (which would be harmless here, but
|
| - // problematic or at least confusing in other places), or to overrun the
|
| - // image data.
|
| - if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize))))
|
| - return m_parent->setFailed();
|
| -
|
| - // See if this is a header size we understand:
|
| - // OS/2 1.x: 12
|
| - if (m_infoHeader.biSize == 12)
|
| - m_isOS21x = true;
|
| - // Windows V3: 40
|
| - else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus())
|
| - ;
|
| - // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
|
| - else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46)))
|
| - m_isOS22x = true;
|
| - else
|
| - return m_parent->setFailed();
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::processInfoHeader()
|
| -{
|
| - // Read info header.
|
| - ASSERT(m_decodedOffset == m_headerOffset);
|
| - if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader())
|
| - return false;
|
| - m_decodedOffset += m_infoHeader.biSize;
|
| -
|
| - // Sanity-check header values.
|
| - if (!isInfoHeaderValid())
|
| - return m_parent->setFailed();
|
| -
|
| - // Set our size.
|
| - if (!m_parent->setSize(m_infoHeader.biWidth, m_infoHeader.biHeight))
|
| - return false;
|
| -
|
| - // For paletted images, bitmaps can set biClrUsed to 0 to mean "all
|
| - // colors", so set it to the maximum number of colors for this bit depth.
|
| - // Also do this for bitmaps that put too large a value here.
|
| - if (m_infoHeader.biBitCount < 16) {
|
| - const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount;
|
| - if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors))
|
| - m_infoHeader.biClrUsed = maxColors;
|
| - }
|
| -
|
| - // For any bitmaps that set their BitCount to the wrong value, reset the
|
| - // counts now that we've calculated the number of necessary colors, since
|
| - // other code relies on this value being correct.
|
| - if (m_infoHeader.biCompression == RLE8)
|
| - m_infoHeader.biBitCount = 8;
|
| - else if (m_infoHeader.biCompression == RLE4)
|
| - m_infoHeader.biBitCount = 4;
|
| -
|
| - // Tell caller what still needs to be processed.
|
| - if (m_infoHeader.biBitCount >= 16)
|
| - m_needToProcessBitmasks = true;
|
| - else if (m_infoHeader.biBitCount)
|
| - m_needToProcessColorTable = true;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::readInfoHeader()
|
| -{
|
| - // Pre-initialize some fields that not all headers set.
|
| - m_infoHeader.biCompression = RGB;
|
| - m_infoHeader.biClrUsed = 0;
|
| -
|
| - if (m_isOS21x) {
|
| - m_infoHeader.biWidth = readUint16(4);
|
| - m_infoHeader.biHeight = readUint16(6);
|
| - ASSERT(m_andMaskState == None); // ICO is a Windows format, not OS/2!
|
| - m_infoHeader.biBitCount = readUint16(10);
|
| - return true;
|
| - }
|
| -
|
| - m_infoHeader.biWidth = readUint32(4);
|
| - m_infoHeader.biHeight = readUint32(8);
|
| - if (m_andMaskState != None)
|
| - m_infoHeader.biHeight /= 2;
|
| - m_infoHeader.biBitCount = readUint16(14);
|
| -
|
| - // Read compression type, if present.
|
| - if (m_infoHeader.biSize >= 20) {
|
| - uint32_t biCompression = readUint32(16);
|
| -
|
| - // Detect OS/2 2.x-specific compression types.
|
| - if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) {
|
| - m_infoHeader.biCompression = HUFFMAN1D;
|
| - m_isOS22x = true;
|
| - } else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) {
|
| - m_infoHeader.biCompression = RLE24;
|
| - m_isOS22x = true;
|
| - } else if (biCompression > 5)
|
| - return m_parent->setFailed(); // Some type we don't understand.
|
| - else
|
| - m_infoHeader.biCompression = static_cast<CompressionType>(biCompression);
|
| - }
|
| -
|
| - // Read colors used, if present.
|
| - if (m_infoHeader.biSize >= 36)
|
| - m_infoHeader.biClrUsed = readUint32(32);
|
| -
|
| - // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do
|
| - // that here. If the bit depth is less than 16, these values will be
|
| - // ignored by the image data decoders. If the bit depth is at least 16 but
|
| - // the compression format isn't BITFIELDS, these values will be ignored and
|
| - // overwritten* in processBitmasks().
|
| - // NOTE: We allow alpha here. Microsoft doesn't really document this well,
|
| - // but some BMPs appear to use it.
|
| - //
|
| - // For non-Windows V4+, m_bitMasks[] et. al will be initialized later
|
| - // during processBitmasks().
|
| - //
|
| - // *Except the alpha channel. Bizarrely, some RGB bitmaps expect decoders
|
| - // to pay attention to the alpha mask here, so there's a special case in
|
| - // processBitmasks() that doesn't always overwrite that value.
|
| - if (isWindowsV4Plus()) {
|
| - m_bitMasks[0] = readUint32(40);
|
| - m_bitMasks[1] = readUint32(44);
|
| - m_bitMasks[2] = readUint32(48);
|
| - m_bitMasks[3] = readUint32(52);
|
| - }
|
| -
|
| - // Detect top-down BMPs.
|
| - if (m_infoHeader.biHeight < 0) {
|
| - m_isTopDown = true;
|
| - m_infoHeader.biHeight = -m_infoHeader.biHeight;
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::isInfoHeaderValid() const
|
| -{
|
| - // Non-positive widths/heights are invalid. (We've already flipped the
|
| - // sign of the height for top-down bitmaps.)
|
| - if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight)
|
| - return false;
|
| -
|
| - // Only Windows V3+ has top-down bitmaps.
|
| - if (m_isTopDown && (m_isOS21x || m_isOS22x))
|
| - return false;
|
| -
|
| - // Only bit depths of 1, 4, 8, or 24 are universally supported.
|
| - if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) {
|
| - // Windows V3+ additionally supports bit depths of 0 (for embedded
|
| - // JPEG/PNG images), 16, and 32.
|
| - if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
|
| - return false;
|
| - }
|
| -
|
| - // Each compression type is only valid with certain bit depths (except RGB,
|
| - // which can be used with any bit depth). Also, some formats do not
|
| - // some compression types.
|
| - switch (m_infoHeader.biCompression) {
|
| - case RGB:
|
| - if (!m_infoHeader.biBitCount)
|
| - return false;
|
| - break;
|
| -
|
| - case RLE8:
|
| - // Supposedly there are undocumented formats like "BitCount = 1,
|
| - // Compression = RLE4" (which means "4 bit, but with a 2-color table"),
|
| - // so also allow the paletted RLE compression types to have too low a
|
| - // bit count; we'll correct this later.
|
| - if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8))
|
| - return false;
|
| - break;
|
| -
|
| - case RLE4:
|
| - // See comments in RLE8.
|
| - if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4))
|
| - return false;
|
| - break;
|
| -
|
| - case BITFIELDS:
|
| - // Only valid for Windows V3+.
|
| - if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
|
| - return false;
|
| - break;
|
| -
|
| - case JPEG:
|
| - case PNG:
|
| - // Only valid for Windows V3+.
|
| - if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount)
|
| - return false;
|
| - break;
|
| -
|
| - case HUFFMAN1D:
|
| - // Only valid for OS/2 2.x.
|
| - if (!m_isOS22x || (m_infoHeader.biBitCount != 1))
|
| - return false;
|
| - break;
|
| -
|
| - case RLE24:
|
| - // Only valid for OS/2 2.x.
|
| - if (!m_isOS22x || (m_infoHeader.biBitCount != 24))
|
| - return false;
|
| - break;
|
| -
|
| - default:
|
| - // Some type we don't understand. This should have been caught in
|
| - // readInfoHeader().
|
| - ASSERT_NOT_REACHED();
|
| - return false;
|
| - }
|
| -
|
| - // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS.
|
| - if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS))
|
| - return false;
|
| -
|
| - // Reject the following valid bitmap types that we don't currently bother
|
| - // decoding. Few other people decode these either, they're unlikely to be
|
| - // in much use.
|
| - // TODO(pkasting): Consider supporting these someday.
|
| - // * Bitmaps larger than 2^16 pixels in either dimension (Windows
|
| - // probably doesn't draw these well anyway, and the decoded data would
|
| - // take a lot of memory).
|
| - if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16)))
|
| - return false;
|
| - // * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found
|
| - // in the wild, only used to send data to printers?).
|
| - if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG))
|
| - return false;
|
| - // * OS/2 2.x Huffman-encoded monochrome bitmaps (see
|
| - // http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
|
| - // algorithm).
|
| - if (m_infoHeader.biCompression == HUFFMAN1D)
|
| - return false;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::processBitmasks()
|
| -{
|
| - // Create m_bitMasks[] values.
|
| - if (m_infoHeader.biCompression != BITFIELDS) {
|
| - // The format doesn't actually use bitmasks. To simplify the decode
|
| - // logic later, create bitmasks for the RGB data. For Windows V4+,
|
| - // this overwrites the masks we read from the header, which are
|
| - // supposed to be ignored in non-BITFIELDS cases.
|
| - // 16 bits: MSB <- xRRRRRGG GGGBBBBB -> LSB
|
| - // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
|
| - const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8;
|
| - for (int i = 0; i <= 2; ++i)
|
| - m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1);
|
| -
|
| - // For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the
|
| - // header (see note in readInfoHeader()).
|
| - if (m_infoHeader.biBitCount < 32)
|
| - m_bitMasks[3] = 0;
|
| - else if (!isWindowsV4Plus())
|
| - m_bitMasks[3] = static_cast<uint32_t>(0xff000000);
|
| - } else if (!isWindowsV4Plus()) {
|
| - // For Windows V4+ BITFIELDS mode bitmaps, this was already done when
|
| - // we read the info header.
|
| -
|
| - // Fail if we don't have enough file space for the bitmasks.
|
| - static const size_t SIZEOF_BITMASKS = 12;
|
| - if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS))))
|
| - return m_parent->setFailed();
|
| -
|
| - // Read bitmasks.
|
| - if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS)
|
| - return false;
|
| - m_bitMasks[0] = readUint32(0);
|
| - m_bitMasks[1] = readUint32(4);
|
| - m_bitMasks[2] = readUint32(8);
|
| - // No alpha in anything other than Windows V4+.
|
| - m_bitMasks[3] = 0;
|
| -
|
| - m_decodedOffset += SIZEOF_BITMASKS;
|
| - }
|
| -
|
| - // We've now decoded all the non-image data we care about. Skip anything
|
| - // else before the actual raster data.
|
| - if (m_imgDataOffset)
|
| - m_decodedOffset = m_imgDataOffset;
|
| - m_needToProcessBitmasks = false;
|
| -
|
| - // Check masks and set shift values.
|
| - for (int i = 0; i < 4; ++i) {
|
| - // Trim the mask to the allowed bit depth. Some Windows V4+ BMPs
|
| - // specify a bogus alpha channel in bits that don't exist in the pixel
|
| - // data (for example, bits 25-31 in a 24-bit RGB format).
|
| - if (m_infoHeader.biBitCount < 32)
|
| - m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1);
|
| -
|
| - // For empty masks (common on the alpha channel, especially after the
|
| - // trimming above), quickly clear the shifts and continue, to avoid an
|
| - // infinite loop in the counting code below.
|
| - uint32_t tempMask = m_bitMasks[i];
|
| - if (!tempMask) {
|
| - m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0;
|
| - continue;
|
| - }
|
| -
|
| - // Make sure bitmask does not overlap any other bitmasks.
|
| - for (int j = 0; j < i; ++j) {
|
| - if (tempMask & m_bitMasks[j])
|
| - return m_parent->setFailed();
|
| - }
|
| -
|
| - // Count offset into pixel data.
|
| - for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1)
|
| - ++m_bitShiftsRight[i];
|
| -
|
| - // Count size of mask.
|
| - for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1)
|
| - --m_bitShiftsLeft[i];
|
| -
|
| - // Make sure bitmask is contiguous.
|
| - if (tempMask)
|
| - return m_parent->setFailed();
|
| -
|
| - // Since RGBABuffer tops out at 8 bits per channel, adjust the shift
|
| - // amounts to use the most significant 8 bits of the channel.
|
| - if (m_bitShiftsLeft[i] < 0) {
|
| - m_bitShiftsRight[i] -= m_bitShiftsLeft[i];
|
| - m_bitShiftsLeft[i] = 0;
|
| - }
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::processColorTable()
|
| -{
|
| - m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4);
|
| -
|
| - // Fail if we don't have enough file space for the color table.
|
| - if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes))))
|
| - return m_parent->setFailed();
|
| -
|
| - // Read color table.
|
| - if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes))
|
| - return false;
|
| - m_colorTable.resize(m_infoHeader.biClrUsed);
|
| - for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) {
|
| - m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++];
|
| - m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++];
|
| - m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++];
|
| - // Skip padding byte (not present on OS/2 1.x).
|
| - if (!m_isOS21x)
|
| - ++m_decodedOffset;
|
| - }
|
| -
|
| - // We've now decoded all the non-image data we care about. Skip anything
|
| - // else before the actual raster data.
|
| - if (m_imgDataOffset)
|
| - m_decodedOffset = m_imgDataOffset;
|
| - m_needToProcessColorTable = false;
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool BMPImageReader::processRLEData()
|
| -{
|
| - if (m_decodedOffset > m_data->size())
|
| - return false;
|
| -
|
| - // RLE decoding is poorly specified. Two main problems:
|
| - // (1) Are EOL markers necessary? What happens when we have too many
|
| - // pixels for one row?
|
| - // http://www.fileformat.info/format/bmp/egff.htm says extra pixels
|
| - // should wrap to the next line. Real BMPs I've encountered seem to
|
| - // instead expect extra pixels to be ignored until the EOL marker is
|
| - // seen, although this has only happened in a few cases and I suspect
|
| - // those BMPs may be invalid. So we only change lines on EOL (or Delta
|
| - // with dy > 0), and fail in most cases when pixels extend past the end
|
| - // of the line.
|
| - // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
|
| - // pixels?
|
| - // http://www.daubnet.com/formats/BMP.html says these should be filled
|
| - // with color 0. However, the "do nothing" and "don't care" comments
|
| - // of other references suggest leaving these alone, i.e. letting them
|
| - // be transparent to the background behind the image. This seems to
|
| - // match how MSPAINT treats BMPs, so we do that. Note that when we
|
| - // actually skip pixels for a case like this, we need to note on the
|
| - // framebuffer that we have alpha.
|
| -
|
| - // Impossible to decode row-at-a-time, so just do things as a stream of
|
| - // bytes.
|
| - while (true) {
|
| - // Every entry takes at least two bytes; bail if there isn't enough
|
| - // data.
|
| - if ((m_data->size() - m_decodedOffset) < 2)
|
| - return false;
|
| -
|
| - // For every entry except EOF, we'd better not have reached the end of
|
| - // the image.
|
| - const uint8_t count = m_data->data()[m_decodedOffset];
|
| - const uint8_t code = m_data->data()[m_decodedOffset + 1];
|
| - if ((count || (code != 1)) && pastEndOfImage(0))
|
| - return m_parent->setFailed();
|
| -
|
| - // Decode.
|
| - if (!count) {
|
| - switch (code) {
|
| - case 0: // Magic token: EOL
|
| - // Skip any remaining pixels in this row.
|
| - if (m_coord.x() < m_parent->size().width())
|
| - m_buffer->setHasAlpha(true);
|
| - moveBufferToNextRow();
|
| -
|
| - m_decodedOffset += 2;
|
| - break;
|
| -
|
| - case 1: // Magic token: EOF
|
| - // Skip any remaining pixels in the image.
|
| - if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0)))
|
| - m_buffer->setHasAlpha(true);
|
| - return true;
|
| -
|
| - case 2: { // Magic token: Delta
|
| - // The next two bytes specify dx and dy. Bail if there isn't
|
| - // enough data.
|
| - if ((m_data->size() - m_decodedOffset) < 4)
|
| - return false;
|
| -
|
| - // Fail if this takes us past the end of the desired row or
|
| - // past the end of the image.
|
| - const uint8_t dx = m_data->data()[m_decodedOffset + 2];
|
| - const uint8_t dy = m_data->data()[m_decodedOffset + 3];
|
| - if (dx || dy)
|
| - m_buffer->setHasAlpha(true);
|
| - if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy))
|
| - return m_parent->setFailed();
|
| -
|
| - // Skip intervening pixels.
|
| - m_coord.move(dx, m_isTopDown ? dy : -dy);
|
| -
|
| - m_decodedOffset += 4;
|
| - break;
|
| - }
|
| -
|
| - default: { // Absolute mode
|
| - // |code| pixels specified as in BI_RGB, zero-padded at the end
|
| - // to a multiple of 16 bits.
|
| - // Because processNonRLEData() expects m_decodedOffset to
|
| - // point to the beginning of the pixel data, bump it past
|
| - // the escape bytes and then reset if decoding failed.
|
| - m_decodedOffset += 2;
|
| - const ProcessingResult result = processNonRLEData(true, code);
|
| - if (result == Failure)
|
| - return m_parent->setFailed();
|
| - if (result == InsufficientData) {
|
| - m_decodedOffset -= 2;
|
| - return false;
|
| - }
|
| - break;
|
| - }
|
| - }
|
| - } else { // Encoded mode
|
| - // The following color data is repeated for |count| total pixels.
|
| - // Strangely, some BMPs seem to specify excessively large counts
|
| - // here; ignore pixels past the end of the row.
|
| - const int endX = std::min(m_coord.x() + count, m_parent->size().width());
|
| -
|
| - if (m_infoHeader.biCompression == RLE24) {
|
| - // Bail if there isn't enough data.
|
| - if ((m_data->size() - m_decodedOffset) < 4)
|
| - return false;
|
| -
|
| - // One BGR triple that we copy |count| times.
|
| - fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff);
|
| - m_decodedOffset += 4;
|
| - } else {
|
| - // RLE8 has one color index that gets repeated; RLE4 has two
|
| - // color indexes in the upper and lower 4 bits of the byte,
|
| - // which are alternated.
|
| - size_t colorIndexes[2] = {code, code};
|
| - if (m_infoHeader.biCompression == RLE4) {
|
| - colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf;
|
| - colorIndexes[1] &= 0xf;
|
| - }
|
| - if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed))
|
| - return m_parent->setFailed();
|
| - for (int which = 0; m_coord.x() < endX; ) {
|
| - setI(colorIndexes[which]);
|
| - which = !which;
|
| - }
|
| -
|
| - m_decodedOffset += 2;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels)
|
| -{
|
| - if (m_decodedOffset > m_data->size())
|
| - return InsufficientData;
|
| -
|
| - if (!inRLE)
|
| - numPixels = m_parent->size().width();
|
| -
|
| - // Fail if we're being asked to decode more pixels than remain in the row.
|
| - const int endX = m_coord.x() + numPixels;
|
| - if (endX > m_parent->size().width())
|
| - return Failure;
|
| -
|
| - // Determine how many bytes of data the requested number of pixels
|
| - // requires.
|
| - const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount;
|
| - const size_t bytesPerPixel = m_infoHeader.biBitCount / 8;
|
| - const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel);
|
| - // RLE runs are zero-padded at the end to a multiple of 16 bits. Non-RLE
|
| - // data is in rows and is zero-padded to a multiple of 32 bits.
|
| - const size_t alignBits = inRLE ? 1 : 3;
|
| - const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits;
|
| -
|
| - // Decode as many rows as we can. (For RLE, where we only want to decode
|
| - // one row, we've already checked that this condition is true.)
|
| - while (!pastEndOfImage(0)) {
|
| - // Bail if we don't have enough data for the desired number of pixels.
|
| - if ((m_data->size() - m_decodedOffset) < paddedNumBytes)
|
| - return InsufficientData;
|
| -
|
| - if (m_infoHeader.biBitCount < 16) {
|
| - // Paletted data. Pixels are stored little-endian within bytes.
|
| - // Decode pixels one byte at a time, left to right (so, starting at
|
| - // the most significant bits in the byte).
|
| - const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1;
|
| - for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) {
|
| - uint8_t pixelData = m_data->data()[m_decodedOffset + byte];
|
| - for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) {
|
| - const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask;
|
| - if (m_andMaskState == Decoding) {
|
| - // There's no way to accurately represent an AND + XOR
|
| - // operation as an RGBA image, so where the AND values
|
| - // are 1, we simply set the framebuffer pixels to fully
|
| - // transparent, on the assumption that most ICOs on the
|
| - // web will not be doing a lot of inverting.
|
| - if (colorIndex) {
|
| - setRGBA(0, 0, 0, 0);
|
| - m_buffer->setHasAlpha(true);
|
| - } else
|
| - m_coord.move(1, 0);
|
| - } else {
|
| - if (colorIndex >= m_infoHeader.biClrUsed)
|
| - return Failure;
|
| - setI(colorIndex);
|
| - }
|
| - pixelData <<= m_infoHeader.biBitCount;
|
| - }
|
| - }
|
| - } else {
|
| - // RGB data. Decode pixels one at a time, left to right.
|
| - while (m_coord.x() < endX) {
|
| - const uint32_t pixel = readCurrentPixel(bytesPerPixel);
|
| -
|
| - // Some BMPs specify an alpha channel but don't actually use it
|
| - // (it contains all 0s). To avoid displaying these images as
|
| - // fully-transparent, decode as if images are fully opaque
|
| - // until we actually see a non-zero alpha value; at that point,
|
| - // reset any previously-decoded pixels to fully transparent and
|
| - // continue decoding based on the real alpha channel values.
|
| - // As an optimization, avoid setting "hasAlpha" to true for
|
| - // images where all alpha values are 255; opaque images are
|
| - // faster to draw.
|
| - int alpha = getAlpha(pixel);
|
| - if (!m_seenNonZeroAlphaPixel && !alpha) {
|
| - m_seenZeroAlphaPixel = true;
|
| - alpha = 255;
|
| - } else {
|
| - m_seenNonZeroAlphaPixel = true;
|
| - if (m_seenZeroAlphaPixel) {
|
| - m_buffer->zeroFillPixelData();
|
| - m_seenZeroAlphaPixel = false;
|
| - } else if (alpha != 255)
|
| - m_buffer->setHasAlpha(true);
|
| - }
|
| -
|
| - setRGBA(getComponent(pixel, 0), getComponent(pixel, 1),
|
| - getComponent(pixel, 2), alpha);
|
| - }
|
| - }
|
| -
|
| - // Success, keep going.
|
| - m_decodedOffset += paddedNumBytes;
|
| - if (inRLE)
|
| - return Success;
|
| - moveBufferToNextRow();
|
| - }
|
| -
|
| - // Finished decoding whole image.
|
| - return Success;
|
| -}
|
| -
|
| -void BMPImageReader::moveBufferToNextRow()
|
| -{
|
| - m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1);
|
| -}
|
| -
|
| -} // namespace WebCore
|
|
|