| Index: src/platform/time.cc
|
| diff --git a/src/platform/time.cc b/src/platform/time.cc
|
| index de0ca16473f6b5106485508653cfe797f6632c37..667ec854745cb0cc8d65d51a30d22f5e4cd7116d 100644
|
| --- a/src/platform/time.cc
|
| +++ b/src/platform/time.cc
|
| @@ -37,8 +37,8 @@
|
| #include <cstring>
|
|
|
| #include "checks.h"
|
| -#include "cpu.h"
|
| #include "platform.h"
|
| +#include "v8.h"
|
| #if V8_OS_WIN
|
| #include "win32-headers.h"
|
| #endif
|
| @@ -160,76 +160,16 @@ struct timespec TimeDelta::ToTimespec() const {
|
|
|
| #endif // V8_OS_POSIX
|
|
|
| -
|
| -#if V8_OS_WIN
|
| -
|
| -// We implement time using the high-resolution timers so that we can get
|
| -// timeouts which are smaller than 10-15ms. To avoid any drift, we
|
| -// periodically resync the internal clock to the system clock.
|
| -class Clock V8_FINAL {
|
| - public:
|
| - Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
|
| -
|
| - Time Now() {
|
| - // Time between resampling the un-granular clock for this API (1 minute).
|
| - const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
|
| -
|
| - LockGuard<Mutex> lock_guard(&mutex_);
|
| -
|
| - // Determine current time and ticks.
|
| - TimeTicks ticks = GetSystemTicks();
|
| - Time time = GetSystemTime();
|
| -
|
| - // Check if we need to synchronize with the system clock due to a backwards
|
| - // time change or the amount of time elapsed.
|
| - TimeDelta elapsed = ticks - initial_ticks_;
|
| - if (time < initial_time_ || elapsed > kMaxElapsedTime) {
|
| - initial_ticks_ = ticks;
|
| - initial_time_ = time;
|
| - return time;
|
| - }
|
| -
|
| - return initial_time_ + elapsed;
|
| - }
|
| -
|
| - Time NowFromSystemTime() {
|
| - LockGuard<Mutex> lock_guard(&mutex_);
|
| - initial_ticks_ = GetSystemTicks();
|
| - initial_time_ = GetSystemTime();
|
| - return initial_time_;
|
| - }
|
| -
|
| - private:
|
| - static TimeTicks GetSystemTicks() {
|
| - return TimeTicks::Now();
|
| - }
|
| -
|
| - static Time GetSystemTime() {
|
| - FILETIME ft;
|
| - ::GetSystemTimeAsFileTime(&ft);
|
| - return Time::FromFiletime(ft);
|
| - }
|
| -
|
| - TimeTicks initial_ticks_;
|
| - Time initial_time_;
|
| - Mutex mutex_;
|
| -};
|
| -
|
| -
|
| -static LazyStaticInstance<Clock,
|
| - DefaultConstructTrait<Clock>,
|
| - ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER;
|
| -
|
| -
|
| Time Time::Now() {
|
| - return clock.Pointer()->Now();
|
| + return Time(V8::GetCurrentPlatform()->CurrentTime());
|
| }
|
|
|
|
|
| Time Time::NowFromSystemTime() {
|
| - return clock.Pointer()->NowFromSystemTime();
|
| + return Time(V8::GetCurrentPlatform()->CurrentTimeFromSystemTime());
|
| }
|
|
|
| +#if V8_OS_WIN
|
|
|
| // Time between windows epoch and standard epoch.
|
| static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
|
| @@ -270,20 +210,6 @@ FILETIME Time::ToFiletime() const {
|
|
|
| #elif V8_OS_POSIX
|
|
|
| -Time Time::Now() {
|
| - struct timeval tv;
|
| - int result = gettimeofday(&tv, NULL);
|
| - ASSERT_EQ(0, result);
|
| - USE(result);
|
| - return FromTimeval(tv);
|
| -}
|
| -
|
| -
|
| -Time Time::NowFromSystemTime() {
|
| - return Now();
|
| -}
|
| -
|
| -
|
| Time Time::FromTimespec(struct timespec ts) {
|
| ASSERT(ts.tv_nsec >= 0);
|
| ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT
|
| @@ -375,160 +301,18 @@ double Time::ToJsTime() const {
|
| }
|
|
|
|
|
| -#if V8_OS_WIN
|
| -
|
| -class TickClock {
|
| - public:
|
| - virtual ~TickClock() {}
|
| - virtual int64_t Now() = 0;
|
| - virtual bool IsHighResolution() = 0;
|
| -};
|
| -
|
| -
|
| -// Overview of time counters:
|
| -// (1) CPU cycle counter. (Retrieved via RDTSC)
|
| -// The CPU counter provides the highest resolution time stamp and is the least
|
| -// expensive to retrieve. However, the CPU counter is unreliable and should not
|
| -// be used in production. Its biggest issue is that it is per processor and it
|
| -// is not synchronized between processors. Also, on some computers, the counters
|
| -// will change frequency due to thermal and power changes, and stop in some
|
| -// states.
|
| -//
|
| -// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
|
| -// resolution (100 nanoseconds) time stamp but is comparatively more expensive
|
| -// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
|
| -// (with some help from ACPI).
|
| -// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
|
| -// in the worst case, it gets the counter from the rollover interrupt on the
|
| -// programmable interrupt timer. In best cases, the HAL may conclude that the
|
| -// RDTSC counter runs at a constant frequency, then it uses that instead. On
|
| -// multiprocessor machines, it will try to verify the values returned from
|
| -// RDTSC on each processor are consistent with each other, and apply a handful
|
| -// of workarounds for known buggy hardware. In other words, QPC is supposed to
|
| -// give consistent result on a multiprocessor computer, but it is unreliable in
|
| -// reality due to bugs in BIOS or HAL on some, especially old computers.
|
| -// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
|
| -// it should be used with caution.
|
| -//
|
| -// (3) System time. The system time provides a low-resolution (typically 10ms
|
| -// to 55 milliseconds) time stamp but is comparatively less expensive to
|
| -// retrieve and more reliable.
|
| -class HighResolutionTickClock V8_FINAL : public TickClock {
|
| - public:
|
| - explicit HighResolutionTickClock(int64_t ticks_per_second)
|
| - : ticks_per_second_(ticks_per_second) {
|
| - ASSERT_LT(0, ticks_per_second);
|
| - }
|
| - virtual ~HighResolutionTickClock() {}
|
| -
|
| - virtual int64_t Now() V8_OVERRIDE {
|
| - LARGE_INTEGER now;
|
| - BOOL result = QueryPerformanceCounter(&now);
|
| - ASSERT(result);
|
| - USE(result);
|
| -
|
| - // Intentionally calculate microseconds in a round about manner to avoid
|
| - // overflow and precision issues. Think twice before simplifying!
|
| - int64_t whole_seconds = now.QuadPart / ticks_per_second_;
|
| - int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
|
| - int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
|
| - ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
|
| -
|
| - // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
|
| - // will never return 0.
|
| - return ticks + 1;
|
| - }
|
| -
|
| - virtual bool IsHighResolution() V8_OVERRIDE {
|
| - return true;
|
| - }
|
| -
|
| - private:
|
| - int64_t ticks_per_second_;
|
| -};
|
| -
|
| -
|
| -class RolloverProtectedTickClock V8_FINAL : public TickClock {
|
| - public:
|
| - // We initialize rollover_ms_ to 1 to ensure that we will never
|
| - // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below.
|
| - RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {}
|
| - virtual ~RolloverProtectedTickClock() {}
|
| -
|
| - virtual int64_t Now() V8_OVERRIDE {
|
| - LockGuard<Mutex> lock_guard(&mutex_);
|
| - // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
|
| - // every ~49.7 days. We try to track rollover ourselves, which works if
|
| - // TimeTicks::Now() is called at least every 49 days.
|
| - // Note that we do not use GetTickCount() here, since timeGetTime() gives
|
| - // more predictable delta values, as described here:
|
| - // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
|
| - // timeGetTime() provides 1ms granularity when combined with
|
| - // timeBeginPeriod(). If the host application for V8 wants fast timers, it
|
| - // can use timeBeginPeriod() to increase the resolution.
|
| - DWORD now = timeGetTime();
|
| - if (now < last_seen_now_) {
|
| - rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days.
|
| - }
|
| - last_seen_now_ = now;
|
| - return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond;
|
| - }
|
| -
|
| - virtual bool IsHighResolution() V8_OVERRIDE {
|
| - return false;
|
| - }
|
| -
|
| - private:
|
| - Mutex mutex_;
|
| - DWORD last_seen_now_;
|
| - int64_t rollover_ms_;
|
| -};
|
| -
|
| -
|
| -static LazyStaticInstance<RolloverProtectedTickClock,
|
| - DefaultConstructTrait<RolloverProtectedTickClock>,
|
| - ThreadSafeInitOnceTrait>::type tick_clock =
|
| - LAZY_STATIC_INSTANCE_INITIALIZER;
|
| -
|
| -
|
| -struct CreateHighResTickClockTrait {
|
| - static TickClock* Create() {
|
| - // Check if the installed hardware supports a high-resolution performance
|
| - // counter, and if not fallback to the low-resolution tick clock.
|
| - LARGE_INTEGER ticks_per_second;
|
| - if (!QueryPerformanceFrequency(&ticks_per_second)) {
|
| - return tick_clock.Pointer();
|
| - }
|
| -
|
| - // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
|
| - // is unreliable, fallback to the low-resolution tick clock.
|
| - CPU cpu;
|
| - if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
|
| - return tick_clock.Pointer();
|
| - }
|
| -
|
| - return new HighResolutionTickClock(ticks_per_second.QuadPart);
|
| - }
|
| -};
|
| -
|
| -
|
| -static LazyDynamicInstance<TickClock,
|
| - CreateHighResTickClockTrait,
|
| - ThreadSafeInitOnceTrait>::type high_res_tick_clock =
|
| - LAZY_DYNAMIC_INSTANCE_INITIALIZER;
|
| -
|
| -
|
| TimeTicks TimeTicks::Now() {
|
| + TimeTicks ticks = TimeTicks(i::V8::GetCurrentPlatform()->TimeTicksNow());
|
| // Make sure we never return 0 here.
|
| - TimeTicks ticks(tick_clock.Pointer()->Now());
|
| ASSERT(!ticks.IsNull());
|
| return ticks;
|
| }
|
|
|
|
|
| TimeTicks TimeTicks::HighResolutionNow() {
|
| + TimeTicks ticks = TimeTicks(
|
| + i::V8::GetCurrentPlatform()->TimeTicksHighResNow());
|
| // Make sure we never return 0 here.
|
| - TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
|
| ASSERT(!ticks.IsNull());
|
| return ticks;
|
| }
|
| @@ -536,56 +320,7 @@ TimeTicks TimeTicks::HighResolutionNow() {
|
|
|
| // static
|
| bool TimeTicks::IsHighResolutionClockWorking() {
|
| - return high_res_tick_clock.Pointer()->IsHighResolution();
|
| + return i::V8::GetCurrentPlatform()->TimeTicksHasHighRes();
|
| }
|
|
|
| -#else // V8_OS_WIN
|
| -
|
| -TimeTicks TimeTicks::Now() {
|
| - return HighResolutionNow();
|
| -}
|
| -
|
| -
|
| -TimeTicks TimeTicks::HighResolutionNow() {
|
| - int64_t ticks;
|
| -#if V8_OS_MACOSX
|
| - static struct mach_timebase_info info;
|
| - if (info.denom == 0) {
|
| - kern_return_t result = mach_timebase_info(&info);
|
| - ASSERT_EQ(KERN_SUCCESS, result);
|
| - USE(result);
|
| - }
|
| - ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
|
| - info.numer / info.denom);
|
| -#elif V8_OS_SOLARIS
|
| - ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
|
| -#elif V8_LIBRT_NOT_AVAILABLE
|
| - // TODO(bmeurer): This is a temporary hack to support cross-compiling
|
| - // Chrome for Android in AOSP. Remove this once AOSP is fixed, also
|
| - // cleanup the tools/gyp/v8.gyp file.
|
| - struct timeval tv;
|
| - int result = gettimeofday(&tv, NULL);
|
| - ASSERT_EQ(0, result);
|
| - USE(result);
|
| - ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec);
|
| -#elif V8_OS_POSIX
|
| - struct timespec ts;
|
| - int result = clock_gettime(CLOCK_MONOTONIC, &ts);
|
| - ASSERT_EQ(0, result);
|
| - USE(result);
|
| - ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
|
| - ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
|
| -#endif // V8_OS_MACOSX
|
| - // Make sure we never return 0 here.
|
| - return TimeTicks(ticks + 1);
|
| -}
|
| -
|
| -
|
| -// static
|
| -bool TimeTicks::IsHighResolutionClockWorking() {
|
| - return true;
|
| -}
|
| -
|
| -#endif // V8_OS_WIN
|
| -
|
| } } // namespace v8::internal
|
|
|