| OLD | NEW |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 19 matching lines...) Expand all Loading... |
| 30 #if V8_OS_POSIX | 30 #if V8_OS_POSIX |
| 31 #include <sys/time.h> | 31 #include <sys/time.h> |
| 32 #endif | 32 #endif |
| 33 #if V8_OS_MACOSX | 33 #if V8_OS_MACOSX |
| 34 #include <mach/mach_time.h> | 34 #include <mach/mach_time.h> |
| 35 #endif | 35 #endif |
| 36 | 36 |
| 37 #include <cstring> | 37 #include <cstring> |
| 38 | 38 |
| 39 #include "checks.h" | 39 #include "checks.h" |
| 40 #include "cpu.h" | |
| 41 #include "platform.h" | 40 #include "platform.h" |
| 41 #include "v8.h" |
| 42 #if V8_OS_WIN | 42 #if V8_OS_WIN |
| 43 #include "win32-headers.h" | 43 #include "win32-headers.h" |
| 44 #endif | 44 #endif |
| 45 | 45 |
| 46 namespace v8 { | 46 namespace v8 { |
| 47 namespace internal { | 47 namespace internal { |
| 48 | 48 |
| 49 TimeDelta TimeDelta::FromDays(int days) { | 49 TimeDelta TimeDelta::FromDays(int days) { |
| 50 return TimeDelta(days * Time::kMicrosecondsPerDay); | 50 return TimeDelta(days * Time::kMicrosecondsPerDay); |
| 51 } | 51 } |
| (...skipping 101 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 153 struct timespec TimeDelta::ToTimespec() const { | 153 struct timespec TimeDelta::ToTimespec() const { |
| 154 struct timespec ts; | 154 struct timespec ts; |
| 155 ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond; | 155 ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond; |
| 156 ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * | 156 ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * |
| 157 Time::kNanosecondsPerMicrosecond; | 157 Time::kNanosecondsPerMicrosecond; |
| 158 return ts; | 158 return ts; |
| 159 } | 159 } |
| 160 | 160 |
| 161 #endif // V8_OS_POSIX | 161 #endif // V8_OS_POSIX |
| 162 | 162 |
| 163 | |
| 164 #if V8_OS_WIN | |
| 165 | |
| 166 // We implement time using the high-resolution timers so that we can get | |
| 167 // timeouts which are smaller than 10-15ms. To avoid any drift, we | |
| 168 // periodically resync the internal clock to the system clock. | |
| 169 class Clock V8_FINAL { | |
| 170 public: | |
| 171 Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} | |
| 172 | |
| 173 Time Now() { | |
| 174 // Time between resampling the un-granular clock for this API (1 minute). | |
| 175 const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); | |
| 176 | |
| 177 LockGuard<Mutex> lock_guard(&mutex_); | |
| 178 | |
| 179 // Determine current time and ticks. | |
| 180 TimeTicks ticks = GetSystemTicks(); | |
| 181 Time time = GetSystemTime(); | |
| 182 | |
| 183 // Check if we need to synchronize with the system clock due to a backwards | |
| 184 // time change or the amount of time elapsed. | |
| 185 TimeDelta elapsed = ticks - initial_ticks_; | |
| 186 if (time < initial_time_ || elapsed > kMaxElapsedTime) { | |
| 187 initial_ticks_ = ticks; | |
| 188 initial_time_ = time; | |
| 189 return time; | |
| 190 } | |
| 191 | |
| 192 return initial_time_ + elapsed; | |
| 193 } | |
| 194 | |
| 195 Time NowFromSystemTime() { | |
| 196 LockGuard<Mutex> lock_guard(&mutex_); | |
| 197 initial_ticks_ = GetSystemTicks(); | |
| 198 initial_time_ = GetSystemTime(); | |
| 199 return initial_time_; | |
| 200 } | |
| 201 | |
| 202 private: | |
| 203 static TimeTicks GetSystemTicks() { | |
| 204 return TimeTicks::Now(); | |
| 205 } | |
| 206 | |
| 207 static Time GetSystemTime() { | |
| 208 FILETIME ft; | |
| 209 ::GetSystemTimeAsFileTime(&ft); | |
| 210 return Time::FromFiletime(ft); | |
| 211 } | |
| 212 | |
| 213 TimeTicks initial_ticks_; | |
| 214 Time initial_time_; | |
| 215 Mutex mutex_; | |
| 216 }; | |
| 217 | |
| 218 | |
| 219 static LazyStaticInstance<Clock, | |
| 220 DefaultConstructTrait<Clock>, | |
| 221 ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER; | |
| 222 | |
| 223 | |
| 224 Time Time::Now() { | 163 Time Time::Now() { |
| 225 return clock.Pointer()->Now(); | 164 return Time(V8::GetCurrentPlatform()->CurrentTime()); |
| 226 } | 165 } |
| 227 | 166 |
| 228 | 167 |
| 229 Time Time::NowFromSystemTime() { | 168 Time Time::NowFromSystemTime() { |
| 230 return clock.Pointer()->NowFromSystemTime(); | 169 return Time(V8::GetCurrentPlatform()->CurrentTimeFromSystemTime()); |
| 231 } | 170 } |
| 232 | 171 |
| 172 #if V8_OS_WIN |
| 233 | 173 |
| 234 // Time between windows epoch and standard epoch. | 174 // Time between windows epoch and standard epoch. |
| 235 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); | 175 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000); |
| 236 | 176 |
| 237 | 177 |
| 238 Time Time::FromFiletime(FILETIME ft) { | 178 Time Time::FromFiletime(FILETIME ft) { |
| 239 if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { | 179 if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { |
| 240 return Time(); | 180 return Time(); |
| 241 } | 181 } |
| 242 if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && | 182 if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && |
| (...skipping 20 matching lines...) Expand all Loading... |
| 263 return ft; | 203 return ft; |
| 264 } | 204 } |
| 265 uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; | 205 uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; |
| 266 ft.dwLowDateTime = static_cast<DWORD>(us); | 206 ft.dwLowDateTime = static_cast<DWORD>(us); |
| 267 ft.dwHighDateTime = static_cast<DWORD>(us >> 32); | 207 ft.dwHighDateTime = static_cast<DWORD>(us >> 32); |
| 268 return ft; | 208 return ft; |
| 269 } | 209 } |
| 270 | 210 |
| 271 #elif V8_OS_POSIX | 211 #elif V8_OS_POSIX |
| 272 | 212 |
| 273 Time Time::Now() { | |
| 274 struct timeval tv; | |
| 275 int result = gettimeofday(&tv, NULL); | |
| 276 ASSERT_EQ(0, result); | |
| 277 USE(result); | |
| 278 return FromTimeval(tv); | |
| 279 } | |
| 280 | |
| 281 | |
| 282 Time Time::NowFromSystemTime() { | |
| 283 return Now(); | |
| 284 } | |
| 285 | |
| 286 | |
| 287 Time Time::FromTimespec(struct timespec ts) { | 213 Time Time::FromTimespec(struct timespec ts) { |
| 288 ASSERT(ts.tv_nsec >= 0); | 214 ASSERT(ts.tv_nsec >= 0); |
| 289 ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT | 215 ASSERT(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT |
| 290 if (ts.tv_nsec == 0 && ts.tv_sec == 0) { | 216 if (ts.tv_nsec == 0 && ts.tv_sec == 0) { |
| 291 return Time(); | 217 return Time(); |
| 292 } | 218 } |
| 293 if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT | 219 if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT |
| 294 ts.tv_sec == std::numeric_limits<time_t>::max()) { | 220 ts.tv_sec == std::numeric_limits<time_t>::max()) { |
| 295 return Max(); | 221 return Max(); |
| 296 } | 222 } |
| (...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 368 return 0; | 294 return 0; |
| 369 } | 295 } |
| 370 if (IsMax()) { | 296 if (IsMax()) { |
| 371 // Preserve max without offset to prevent overflow. | 297 // Preserve max without offset to prevent overflow. |
| 372 return std::numeric_limits<double>::max(); | 298 return std::numeric_limits<double>::max(); |
| 373 } | 299 } |
| 374 return static_cast<double>(us_) / kMicrosecondsPerMillisecond; | 300 return static_cast<double>(us_) / kMicrosecondsPerMillisecond; |
| 375 } | 301 } |
| 376 | 302 |
| 377 | 303 |
| 378 #if V8_OS_WIN | |
| 379 | |
| 380 class TickClock { | |
| 381 public: | |
| 382 virtual ~TickClock() {} | |
| 383 virtual int64_t Now() = 0; | |
| 384 virtual bool IsHighResolution() = 0; | |
| 385 }; | |
| 386 | |
| 387 | |
| 388 // Overview of time counters: | |
| 389 // (1) CPU cycle counter. (Retrieved via RDTSC) | |
| 390 // The CPU counter provides the highest resolution time stamp and is the least | |
| 391 // expensive to retrieve. However, the CPU counter is unreliable and should not | |
| 392 // be used in production. Its biggest issue is that it is per processor and it | |
| 393 // is not synchronized between processors. Also, on some computers, the counters | |
| 394 // will change frequency due to thermal and power changes, and stop in some | |
| 395 // states. | |
| 396 // | |
| 397 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- | |
| 398 // resolution (100 nanoseconds) time stamp but is comparatively more expensive | |
| 399 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL. | |
| 400 // (with some help from ACPI). | |
| 401 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx | |
| 402 // in the worst case, it gets the counter from the rollover interrupt on the | |
| 403 // programmable interrupt timer. In best cases, the HAL may conclude that the | |
| 404 // RDTSC counter runs at a constant frequency, then it uses that instead. On | |
| 405 // multiprocessor machines, it will try to verify the values returned from | |
| 406 // RDTSC on each processor are consistent with each other, and apply a handful | |
| 407 // of workarounds for known buggy hardware. In other words, QPC is supposed to | |
| 408 // give consistent result on a multiprocessor computer, but it is unreliable in | |
| 409 // reality due to bugs in BIOS or HAL on some, especially old computers. | |
| 410 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but | |
| 411 // it should be used with caution. | |
| 412 // | |
| 413 // (3) System time. The system time provides a low-resolution (typically 10ms | |
| 414 // to 55 milliseconds) time stamp but is comparatively less expensive to | |
| 415 // retrieve and more reliable. | |
| 416 class HighResolutionTickClock V8_FINAL : public TickClock { | |
| 417 public: | |
| 418 explicit HighResolutionTickClock(int64_t ticks_per_second) | |
| 419 : ticks_per_second_(ticks_per_second) { | |
| 420 ASSERT_LT(0, ticks_per_second); | |
| 421 } | |
| 422 virtual ~HighResolutionTickClock() {} | |
| 423 | |
| 424 virtual int64_t Now() V8_OVERRIDE { | |
| 425 LARGE_INTEGER now; | |
| 426 BOOL result = QueryPerformanceCounter(&now); | |
| 427 ASSERT(result); | |
| 428 USE(result); | |
| 429 | |
| 430 // Intentionally calculate microseconds in a round about manner to avoid | |
| 431 // overflow and precision issues. Think twice before simplifying! | |
| 432 int64_t whole_seconds = now.QuadPart / ticks_per_second_; | |
| 433 int64_t leftover_ticks = now.QuadPart % ticks_per_second_; | |
| 434 int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) + | |
| 435 ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_); | |
| 436 | |
| 437 // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow() | |
| 438 // will never return 0. | |
| 439 return ticks + 1; | |
| 440 } | |
| 441 | |
| 442 virtual bool IsHighResolution() V8_OVERRIDE { | |
| 443 return true; | |
| 444 } | |
| 445 | |
| 446 private: | |
| 447 int64_t ticks_per_second_; | |
| 448 }; | |
| 449 | |
| 450 | |
| 451 class RolloverProtectedTickClock V8_FINAL : public TickClock { | |
| 452 public: | |
| 453 // We initialize rollover_ms_ to 1 to ensure that we will never | |
| 454 // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below. | |
| 455 RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {} | |
| 456 virtual ~RolloverProtectedTickClock() {} | |
| 457 | |
| 458 virtual int64_t Now() V8_OVERRIDE { | |
| 459 LockGuard<Mutex> lock_guard(&mutex_); | |
| 460 // We use timeGetTime() to implement TimeTicks::Now(), which rolls over | |
| 461 // every ~49.7 days. We try to track rollover ourselves, which works if | |
| 462 // TimeTicks::Now() is called at least every 49 days. | |
| 463 // Note that we do not use GetTickCount() here, since timeGetTime() gives | |
| 464 // more predictable delta values, as described here: | |
| 465 // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-diffe
rence-between-gettickcount-and-timegettime.aspx | |
| 466 // timeGetTime() provides 1ms granularity when combined with | |
| 467 // timeBeginPeriod(). If the host application for V8 wants fast timers, it | |
| 468 // can use timeBeginPeriod() to increase the resolution. | |
| 469 DWORD now = timeGetTime(); | |
| 470 if (now < last_seen_now_) { | |
| 471 rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days. | |
| 472 } | |
| 473 last_seen_now_ = now; | |
| 474 return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond; | |
| 475 } | |
| 476 | |
| 477 virtual bool IsHighResolution() V8_OVERRIDE { | |
| 478 return false; | |
| 479 } | |
| 480 | |
| 481 private: | |
| 482 Mutex mutex_; | |
| 483 DWORD last_seen_now_; | |
| 484 int64_t rollover_ms_; | |
| 485 }; | |
| 486 | |
| 487 | |
| 488 static LazyStaticInstance<RolloverProtectedTickClock, | |
| 489 DefaultConstructTrait<RolloverProtectedTickClock>, | |
| 490 ThreadSafeInitOnceTrait>::type tick_clock = | |
| 491 LAZY_STATIC_INSTANCE_INITIALIZER; | |
| 492 | |
| 493 | |
| 494 struct CreateHighResTickClockTrait { | |
| 495 static TickClock* Create() { | |
| 496 // Check if the installed hardware supports a high-resolution performance | |
| 497 // counter, and if not fallback to the low-resolution tick clock. | |
| 498 LARGE_INTEGER ticks_per_second; | |
| 499 if (!QueryPerformanceFrequency(&ticks_per_second)) { | |
| 500 return tick_clock.Pointer(); | |
| 501 } | |
| 502 | |
| 503 // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter | |
| 504 // is unreliable, fallback to the low-resolution tick clock. | |
| 505 CPU cpu; | |
| 506 if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) { | |
| 507 return tick_clock.Pointer(); | |
| 508 } | |
| 509 | |
| 510 return new HighResolutionTickClock(ticks_per_second.QuadPart); | |
| 511 } | |
| 512 }; | |
| 513 | |
| 514 | |
| 515 static LazyDynamicInstance<TickClock, | |
| 516 CreateHighResTickClockTrait, | |
| 517 ThreadSafeInitOnceTrait>::type high_res_tick_clock = | |
| 518 LAZY_DYNAMIC_INSTANCE_INITIALIZER; | |
| 519 | |
| 520 | |
| 521 TimeTicks TimeTicks::Now() { | 304 TimeTicks TimeTicks::Now() { |
| 305 TimeTicks ticks = TimeTicks(i::V8::GetCurrentPlatform()->TimeTicksNow()); |
| 522 // Make sure we never return 0 here. | 306 // Make sure we never return 0 here. |
| 523 TimeTicks ticks(tick_clock.Pointer()->Now()); | |
| 524 ASSERT(!ticks.IsNull()); | 307 ASSERT(!ticks.IsNull()); |
| 525 return ticks; | 308 return ticks; |
| 526 } | 309 } |
| 527 | 310 |
| 528 | 311 |
| 529 TimeTicks TimeTicks::HighResolutionNow() { | 312 TimeTicks TimeTicks::HighResolutionNow() { |
| 313 TimeTicks ticks = TimeTicks( |
| 314 i::V8::GetCurrentPlatform()->TimeTicksHighResNow()); |
| 530 // Make sure we never return 0 here. | 315 // Make sure we never return 0 here. |
| 531 TimeTicks ticks(high_res_tick_clock.Pointer()->Now()); | |
| 532 ASSERT(!ticks.IsNull()); | 316 ASSERT(!ticks.IsNull()); |
| 533 return ticks; | 317 return ticks; |
| 534 } | 318 } |
| 535 | 319 |
| 536 | 320 |
| 537 // static | 321 // static |
| 538 bool TimeTicks::IsHighResolutionClockWorking() { | 322 bool TimeTicks::IsHighResolutionClockWorking() { |
| 539 return high_res_tick_clock.Pointer()->IsHighResolution(); | 323 return i::V8::GetCurrentPlatform()->TimeTicksHasHighRes(); |
| 540 } | 324 } |
| 541 | 325 |
| 542 #else // V8_OS_WIN | |
| 543 | |
| 544 TimeTicks TimeTicks::Now() { | |
| 545 return HighResolutionNow(); | |
| 546 } | |
| 547 | |
| 548 | |
| 549 TimeTicks TimeTicks::HighResolutionNow() { | |
| 550 int64_t ticks; | |
| 551 #if V8_OS_MACOSX | |
| 552 static struct mach_timebase_info info; | |
| 553 if (info.denom == 0) { | |
| 554 kern_return_t result = mach_timebase_info(&info); | |
| 555 ASSERT_EQ(KERN_SUCCESS, result); | |
| 556 USE(result); | |
| 557 } | |
| 558 ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * | |
| 559 info.numer / info.denom); | |
| 560 #elif V8_OS_SOLARIS | |
| 561 ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); | |
| 562 #elif V8_LIBRT_NOT_AVAILABLE | |
| 563 // TODO(bmeurer): This is a temporary hack to support cross-compiling | |
| 564 // Chrome for Android in AOSP. Remove this once AOSP is fixed, also | |
| 565 // cleanup the tools/gyp/v8.gyp file. | |
| 566 struct timeval tv; | |
| 567 int result = gettimeofday(&tv, NULL); | |
| 568 ASSERT_EQ(0, result); | |
| 569 USE(result); | |
| 570 ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec); | |
| 571 #elif V8_OS_POSIX | |
| 572 struct timespec ts; | |
| 573 int result = clock_gettime(CLOCK_MONOTONIC, &ts); | |
| 574 ASSERT_EQ(0, result); | |
| 575 USE(result); | |
| 576 ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond + | |
| 577 ts.tv_nsec / Time::kNanosecondsPerMicrosecond); | |
| 578 #endif // V8_OS_MACOSX | |
| 579 // Make sure we never return 0 here. | |
| 580 return TimeTicks(ticks + 1); | |
| 581 } | |
| 582 | |
| 583 | |
| 584 // static | |
| 585 bool TimeTicks::IsHighResolutionClockWorking() { | |
| 586 return true; | |
| 587 } | |
| 588 | |
| 589 #endif // V8_OS_WIN | |
| 590 | |
| 591 } } // namespace v8::internal | 326 } } // namespace v8::internal |
| OLD | NEW |