Index: third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c b/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..c0018bb71cae5d486e5e94f90963d3ce509dc16e |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c |
@@ -0,0 +1,4079 @@ |
+/* |
+** 2003 September 6 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains code used for creating, destroying, and populating |
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) |
+*/ |
+#include "sqliteInt.h" |
+#include "vdbeInt.h" |
+ |
+/* |
+** Create a new virtual database engine. |
+*/ |
+Vdbe *sqlite3VdbeCreate(Parse *pParse){ |
+ sqlite3 *db = pParse->db; |
+ Vdbe *p; |
+ p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); |
+ if( p==0 ) return 0; |
+ p->db = db; |
+ if( db->pVdbe ){ |
+ db->pVdbe->pPrev = p; |
+ } |
+ p->pNext = db->pVdbe; |
+ p->pPrev = 0; |
+ db->pVdbe = p; |
+ p->magic = VDBE_MAGIC_INIT; |
+ p->pParse = pParse; |
+ assert( pParse->aLabel==0 ); |
+ assert( pParse->nLabel==0 ); |
+ assert( pParse->nOpAlloc==0 ); |
+ return p; |
+} |
+ |
+/* |
+** Remember the SQL string for a prepared statement. |
+*/ |
+void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ |
+ assert( isPrepareV2==1 || isPrepareV2==0 ); |
+ if( p==0 ) return; |
+#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) |
+ if( !isPrepareV2 ) return; |
+#endif |
+ assert( p->zSql==0 ); |
+ p->zSql = sqlite3DbStrNDup(p->db, z, n); |
+ p->isPrepareV2 = (u8)isPrepareV2; |
+} |
+ |
+/* |
+** Return the SQL associated with a prepared statement |
+*/ |
+const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
+ Vdbe *p = (Vdbe *)pStmt; |
+ return (p && p->isPrepareV2) ? p->zSql : 0; |
+} |
+ |
+/* |
+** Swap all content between two VDBE structures. |
+*/ |
+void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
+ Vdbe tmp, *pTmp; |
+ char *zTmp; |
+ tmp = *pA; |
+ *pA = *pB; |
+ *pB = tmp; |
+ pTmp = pA->pNext; |
+ pA->pNext = pB->pNext; |
+ pB->pNext = pTmp; |
+ pTmp = pA->pPrev; |
+ pA->pPrev = pB->pPrev; |
+ pB->pPrev = pTmp; |
+ zTmp = pA->zSql; |
+ pA->zSql = pB->zSql; |
+ pB->zSql = zTmp; |
+ pB->isPrepareV2 = pA->isPrepareV2; |
+} |
+ |
+/* |
+** Resize the Vdbe.aOp array so that it is at least nOp elements larger |
+** than its current size. nOp is guaranteed to be less than or equal |
+** to 1024/sizeof(Op). |
+** |
+** If an out-of-memory error occurs while resizing the array, return |
+** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain |
+** unchanged (this is so that any opcodes already allocated can be |
+** correctly deallocated along with the rest of the Vdbe). |
+*/ |
+static int growOpArray(Vdbe *v, int nOp){ |
+ VdbeOp *pNew; |
+ Parse *p = v->pParse; |
+ |
+ /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force |
+ ** more frequent reallocs and hence provide more opportunities for |
+ ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used |
+ ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array |
+ ** by the minimum* amount required until the size reaches 512. Normal |
+ ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current |
+ ** size of the op array or add 1KB of space, whichever is smaller. */ |
+#ifdef SQLITE_TEST_REALLOC_STRESS |
+ int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); |
+#else |
+ int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
+ UNUSED_PARAMETER(nOp); |
+#endif |
+ |
+ assert( nOp<=(1024/sizeof(Op)) ); |
+ assert( nNew>=(p->nOpAlloc+nOp) ); |
+ pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); |
+ if( pNew ){ |
+ p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); |
+ v->aOp = pNew; |
+ } |
+ return (pNew ? SQLITE_OK : SQLITE_NOMEM); |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* This routine is just a convenient place to set a breakpoint that will |
+** fire after each opcode is inserted and displayed using |
+** "PRAGMA vdbe_addoptrace=on". |
+*/ |
+static void test_addop_breakpoint(void){ |
+ static int n = 0; |
+ n++; |
+} |
+#endif |
+ |
+/* |
+** Add a new instruction to the list of instructions current in the |
+** VDBE. Return the address of the new instruction. |
+** |
+** Parameters: |
+** |
+** p Pointer to the VDBE |
+** |
+** op The opcode for this instruction |
+** |
+** p1, p2, p3 Operands |
+** |
+** Use the sqlite3VdbeResolveLabel() function to fix an address and |
+** the sqlite3VdbeChangeP4() function to change the value of the P4 |
+** operand. |
+*/ |
+int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
+ int i; |
+ VdbeOp *pOp; |
+ |
+ i = p->nOp; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ assert( op>0 && op<0xff ); |
+ if( p->pParse->nOpAlloc<=i ){ |
+ if( growOpArray(p, 1) ){ |
+ return 1; |
+ } |
+ } |
+ p->nOp++; |
+ pOp = &p->aOp[i]; |
+ pOp->opcode = (u8)op; |
+ pOp->p5 = 0; |
+ pOp->p1 = p1; |
+ pOp->p2 = p2; |
+ pOp->p3 = p3; |
+ pOp->p4.p = 0; |
+ pOp->p4type = P4_NOTUSED; |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ pOp->zComment = 0; |
+#endif |
+#ifdef SQLITE_DEBUG |
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
+ int jj, kk; |
+ Parse *pParse = p->pParse; |
+ for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ |
+ struct yColCache *x = pParse->aColCache + jj; |
+ if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; |
+ printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); |
+ kk++; |
+ } |
+ if( kk ) printf("\n"); |
+ sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
+ test_addop_breakpoint(); |
+ } |
+#endif |
+#ifdef VDBE_PROFILE |
+ pOp->cycles = 0; |
+ pOp->cnt = 0; |
+#endif |
+#ifdef SQLITE_VDBE_COVERAGE |
+ pOp->iSrcLine = 0; |
+#endif |
+ return i; |
+} |
+int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
+} |
+int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
+} |
+int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
+} |
+ |
+ |
+/* |
+** Add an opcode that includes the p4 value as a pointer. |
+*/ |
+int sqlite3VdbeAddOp4( |
+ Vdbe *p, /* Add the opcode to this VM */ |
+ int op, /* The new opcode */ |
+ int p1, /* The P1 operand */ |
+ int p2, /* The P2 operand */ |
+ int p3, /* The P3 operand */ |
+ const char *zP4, /* The P4 operand */ |
+ int p4type /* P4 operand type */ |
+){ |
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
+ return addr; |
+} |
+ |
+/* |
+** Add an OP_ParseSchema opcode. This routine is broken out from |
+** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees |
+** as having been used. |
+** |
+** The zWhere string must have been obtained from sqlite3_malloc(). |
+** This routine will take ownership of the allocated memory. |
+*/ |
+void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ |
+ int j; |
+ int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); |
+ sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); |
+ for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
+} |
+ |
+/* |
+** Add an opcode that includes the p4 value as an integer. |
+*/ |
+int sqlite3VdbeAddOp4Int( |
+ Vdbe *p, /* Add the opcode to this VM */ |
+ int op, /* The new opcode */ |
+ int p1, /* The P1 operand */ |
+ int p2, /* The P2 operand */ |
+ int p3, /* The P3 operand */ |
+ int p4 /* The P4 operand as an integer */ |
+){ |
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
+ sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); |
+ return addr; |
+} |
+ |
+/* |
+** Create a new symbolic label for an instruction that has yet to be |
+** coded. The symbolic label is really just a negative number. The |
+** label can be used as the P2 value of an operation. Later, when |
+** the label is resolved to a specific address, the VDBE will scan |
+** through its operation list and change all values of P2 which match |
+** the label into the resolved address. |
+** |
+** The VDBE knows that a P2 value is a label because labels are |
+** always negative and P2 values are suppose to be non-negative. |
+** Hence, a negative P2 value is a label that has yet to be resolved. |
+** |
+** Zero is returned if a malloc() fails. |
+*/ |
+int sqlite3VdbeMakeLabel(Vdbe *v){ |
+ Parse *p = v->pParse; |
+ int i = p->nLabel++; |
+ assert( v->magic==VDBE_MAGIC_INIT ); |
+ if( (i & (i-1))==0 ){ |
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
+ (i*2+1)*sizeof(p->aLabel[0])); |
+ } |
+ if( p->aLabel ){ |
+ p->aLabel[i] = -1; |
+ } |
+ return -1-i; |
+} |
+ |
+/* |
+** Resolve label "x" to be the address of the next instruction to |
+** be inserted. The parameter "x" must have been obtained from |
+** a prior call to sqlite3VdbeMakeLabel(). |
+*/ |
+void sqlite3VdbeResolveLabel(Vdbe *v, int x){ |
+ Parse *p = v->pParse; |
+ int j = -1-x; |
+ assert( v->magic==VDBE_MAGIC_INIT ); |
+ assert( j<p->nLabel ); |
+ if( ALWAYS(j>=0) && p->aLabel ){ |
+ p->aLabel[j] = v->nOp; |
+ } |
+ p->iFixedOp = v->nOp - 1; |
+} |
+ |
+/* |
+** Mark the VDBE as one that can only be run one time. |
+*/ |
+void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
+ p->runOnlyOnce = 1; |
+} |
+ |
+#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
+ |
+/* |
+** The following type and function are used to iterate through all opcodes |
+** in a Vdbe main program and each of the sub-programs (triggers) it may |
+** invoke directly or indirectly. It should be used as follows: |
+** |
+** Op *pOp; |
+** VdbeOpIter sIter; |
+** |
+** memset(&sIter, 0, sizeof(sIter)); |
+** sIter.v = v; // v is of type Vdbe* |
+** while( (pOp = opIterNext(&sIter)) ){ |
+** // Do something with pOp |
+** } |
+** sqlite3DbFree(v->db, sIter.apSub); |
+** |
+*/ |
+typedef struct VdbeOpIter VdbeOpIter; |
+struct VdbeOpIter { |
+ Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
+ SubProgram **apSub; /* Array of subprograms */ |
+ int nSub; /* Number of entries in apSub */ |
+ int iAddr; /* Address of next instruction to return */ |
+ int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
+}; |
+static Op *opIterNext(VdbeOpIter *p){ |
+ Vdbe *v = p->v; |
+ Op *pRet = 0; |
+ Op *aOp; |
+ int nOp; |
+ |
+ if( p->iSub<=p->nSub ){ |
+ |
+ if( p->iSub==0 ){ |
+ aOp = v->aOp; |
+ nOp = v->nOp; |
+ }else{ |
+ aOp = p->apSub[p->iSub-1]->aOp; |
+ nOp = p->apSub[p->iSub-1]->nOp; |
+ } |
+ assert( p->iAddr<nOp ); |
+ |
+ pRet = &aOp[p->iAddr]; |
+ p->iAddr++; |
+ if( p->iAddr==nOp ){ |
+ p->iSub++; |
+ p->iAddr = 0; |
+ } |
+ |
+ if( pRet->p4type==P4_SUBPROGRAM ){ |
+ int nByte = (p->nSub+1)*sizeof(SubProgram*); |
+ int j; |
+ for(j=0; j<p->nSub; j++){ |
+ if( p->apSub[j]==pRet->p4.pProgram ) break; |
+ } |
+ if( j==p->nSub ){ |
+ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
+ if( !p->apSub ){ |
+ pRet = 0; |
+ }else{ |
+ p->apSub[p->nSub++] = pRet->p4.pProgram; |
+ } |
+ } |
+ } |
+ } |
+ |
+ return pRet; |
+} |
+ |
+/* |
+** Check if the program stored in the VM associated with pParse may |
+** throw an ABORT exception (causing the statement, but not entire transaction |
+** to be rolled back). This condition is true if the main program or any |
+** sub-programs contains any of the following: |
+** |
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
+** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
+** * OP_Destroy |
+** * OP_VUpdate |
+** * OP_VRename |
+** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
+** |
+** Then check that the value of Parse.mayAbort is true if an |
+** ABORT may be thrown, or false otherwise. Return true if it does |
+** match, or false otherwise. This function is intended to be used as |
+** part of an assert statement in the compiler. Similar to: |
+** |
+** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
+*/ |
+int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
+ int hasAbort = 0; |
+ Op *pOp; |
+ VdbeOpIter sIter; |
+ memset(&sIter, 0, sizeof(sIter)); |
+ sIter.v = v; |
+ |
+ while( (pOp = opIterNext(&sIter))!=0 ){ |
+ int opcode = pOp->opcode; |
+ if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) |
+#endif |
+ || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
+ && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) |
+ ){ |
+ hasAbort = 1; |
+ break; |
+ } |
+ } |
+ sqlite3DbFree(v->db, sIter.apSub); |
+ |
+ /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. |
+ ** If malloc failed, then the while() loop above may not have iterated |
+ ** through all opcodes and hasAbort may be set incorrectly. Return |
+ ** true for this case to prevent the assert() in the callers frame |
+ ** from failing. */ |
+ return ( v->db->mallocFailed || hasAbort==mayAbort ); |
+} |
+#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
+ |
+/* |
+** Loop through the program looking for P2 values that are negative |
+** on jump instructions. Each such value is a label. Resolve the |
+** label by setting the P2 value to its correct non-zero value. |
+** |
+** This routine is called once after all opcodes have been inserted. |
+** |
+** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument |
+** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by |
+** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. |
+** |
+** The Op.opflags field is set on all opcodes. |
+*/ |
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
+ int i; |
+ int nMaxArgs = *pMaxFuncArgs; |
+ Op *pOp; |
+ Parse *pParse = p->pParse; |
+ int *aLabel = pParse->aLabel; |
+ p->readOnly = 1; |
+ p->bIsReader = 0; |
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
+ u8 opcode = pOp->opcode; |
+ |
+ /* NOTE: Be sure to update mkopcodeh.awk when adding or removing |
+ ** cases from this switch! */ |
+ switch( opcode ){ |
+ case OP_Function: |
+ case OP_AggStep: { |
+ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; |
+ break; |
+ } |
+ case OP_Transaction: { |
+ if( pOp->p2!=0 ) p->readOnly = 0; |
+ /* fall thru */ |
+ } |
+ case OP_AutoCommit: |
+ case OP_Savepoint: { |
+ p->bIsReader = 1; |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_WAL |
+ case OP_Checkpoint: |
+#endif |
+ case OP_Vacuum: |
+ case OP_JournalMode: { |
+ p->readOnly = 0; |
+ p->bIsReader = 1; |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ case OP_VUpdate: { |
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
+ break; |
+ } |
+ case OP_VFilter: { |
+ int n; |
+ assert( p->nOp - i >= 3 ); |
+ assert( pOp[-1].opcode==OP_Integer ); |
+ n = pOp[-1].p1; |
+ if( n>nMaxArgs ) nMaxArgs = n; |
+ break; |
+ } |
+#endif |
+ case OP_Next: |
+ case OP_NextIfOpen: |
+ case OP_SorterNext: { |
+ pOp->p4.xAdvance = sqlite3BtreeNext; |
+ pOp->p4type = P4_ADVANCE; |
+ break; |
+ } |
+ case OP_Prev: |
+ case OP_PrevIfOpen: { |
+ pOp->p4.xAdvance = sqlite3BtreePrevious; |
+ pOp->p4type = P4_ADVANCE; |
+ break; |
+ } |
+ } |
+ |
+ pOp->opflags = sqlite3OpcodeProperty[opcode]; |
+ if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ |
+ assert( -1-pOp->p2<pParse->nLabel ); |
+ pOp->p2 = aLabel[-1-pOp->p2]; |
+ } |
+ } |
+ sqlite3DbFree(p->db, pParse->aLabel); |
+ pParse->aLabel = 0; |
+ pParse->nLabel = 0; |
+ *pMaxFuncArgs = nMaxArgs; |
+ assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); |
+} |
+ |
+/* |
+** Return the address of the next instruction to be inserted. |
+*/ |
+int sqlite3VdbeCurrentAddr(Vdbe *p){ |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ return p->nOp; |
+} |
+ |
+/* |
+** This function returns a pointer to the array of opcodes associated with |
+** the Vdbe passed as the first argument. It is the callers responsibility |
+** to arrange for the returned array to be eventually freed using the |
+** vdbeFreeOpArray() function. |
+** |
+** Before returning, *pnOp is set to the number of entries in the returned |
+** array. Also, *pnMaxArg is set to the larger of its current value and |
+** the number of entries in the Vdbe.apArg[] array required to execute the |
+** returned program. |
+*/ |
+VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
+ VdbeOp *aOp = p->aOp; |
+ assert( aOp && !p->db->mallocFailed ); |
+ |
+ /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
+ assert( DbMaskAllZero(p->btreeMask) ); |
+ |
+ resolveP2Values(p, pnMaxArg); |
+ *pnOp = p->nOp; |
+ p->aOp = 0; |
+ return aOp; |
+} |
+ |
+/* |
+** Add a whole list of operations to the operation stack. Return the |
+** address of the first operation added. |
+*/ |
+int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ |
+ int addr; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ |
+ return 0; |
+ } |
+ addr = p->nOp; |
+ if( ALWAYS(nOp>0) ){ |
+ int i; |
+ VdbeOpList const *pIn = aOp; |
+ for(i=0; i<nOp; i++, pIn++){ |
+ int p2 = pIn->p2; |
+ VdbeOp *pOut = &p->aOp[i+addr]; |
+ pOut->opcode = pIn->opcode; |
+ pOut->p1 = pIn->p1; |
+ if( p2<0 ){ |
+ assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); |
+ pOut->p2 = addr + ADDR(p2); |
+ }else{ |
+ pOut->p2 = p2; |
+ } |
+ pOut->p3 = pIn->p3; |
+ pOut->p4type = P4_NOTUSED; |
+ pOut->p4.p = 0; |
+ pOut->p5 = 0; |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ pOut->zComment = 0; |
+#endif |
+#ifdef SQLITE_VDBE_COVERAGE |
+ pOut->iSrcLine = iLineno+i; |
+#else |
+ (void)iLineno; |
+#endif |
+#ifdef SQLITE_DEBUG |
+ if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
+ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); |
+ } |
+#endif |
+ } |
+ p->nOp += nOp; |
+ } |
+ return addr; |
+} |
+ |
+/* |
+** Change the value of the P1 operand for a specific instruction. |
+** This routine is useful when a large program is loaded from a |
+** static array using sqlite3VdbeAddOpList but we want to make a |
+** few minor changes to the program. |
+*/ |
+void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ |
+ assert( p!=0 ); |
+ if( ((u32)p->nOp)>addr ){ |
+ p->aOp[addr].p1 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P2 operand for a specific instruction. |
+** This routine is useful for setting a jump destination. |
+*/ |
+void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ |
+ assert( p!=0 ); |
+ if( ((u32)p->nOp)>addr ){ |
+ p->aOp[addr].p2 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P3 operand for a specific instruction. |
+*/ |
+void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ |
+ assert( p!=0 ); |
+ if( ((u32)p->nOp)>addr ){ |
+ p->aOp[addr].p3 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P5 operand for the most recently |
+** added operation. |
+*/ |
+void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ |
+ assert( p!=0 ); |
+ if( p->aOp ){ |
+ assert( p->nOp>0 ); |
+ p->aOp[p->nOp-1].p5 = val; |
+ } |
+} |
+ |
+/* |
+** Change the P2 operand of instruction addr so that it points to |
+** the address of the next instruction to be coded. |
+*/ |
+void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
+ sqlite3VdbeChangeP2(p, addr, p->nOp); |
+ p->pParse->iFixedOp = p->nOp - 1; |
+} |
+ |
+ |
+/* |
+** If the input FuncDef structure is ephemeral, then free it. If |
+** the FuncDef is not ephermal, then do nothing. |
+*/ |
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
+ if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ |
+ sqlite3DbFree(db, pDef); |
+ } |
+} |
+ |
+static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
+ |
+/* |
+** Delete a P4 value if necessary. |
+*/ |
+static void freeP4(sqlite3 *db, int p4type, void *p4){ |
+ if( p4 ){ |
+ assert( db ); |
+ switch( p4type ){ |
+ case P4_REAL: |
+ case P4_INT64: |
+ case P4_DYNAMIC: |
+ case P4_INTARRAY: { |
+ sqlite3DbFree(db, p4); |
+ break; |
+ } |
+ case P4_KEYINFO: { |
+ if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); |
+ break; |
+ } |
+ case P4_MPRINTF: { |
+ if( db->pnBytesFreed==0 ) sqlite3_free(p4); |
+ break; |
+ } |
+ case P4_FUNCDEF: { |
+ freeEphemeralFunction(db, (FuncDef*)p4); |
+ break; |
+ } |
+ case P4_MEM: { |
+ if( db->pnBytesFreed==0 ){ |
+ sqlite3ValueFree((sqlite3_value*)p4); |
+ }else{ |
+ Mem *p = (Mem*)p4; |
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
+ sqlite3DbFree(db, p); |
+ } |
+ break; |
+ } |
+ case P4_VTAB : { |
+ if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Free the space allocated for aOp and any p4 values allocated for the |
+** opcodes contained within. If aOp is not NULL it is assumed to contain |
+** nOp entries. |
+*/ |
+static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
+ if( aOp ){ |
+ Op *pOp; |
+ for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ sqlite3DbFree(db, pOp->zComment); |
+#endif |
+ } |
+ } |
+ sqlite3DbFree(db, aOp); |
+} |
+ |
+/* |
+** Link the SubProgram object passed as the second argument into the linked |
+** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
+** objects when the VM is no longer required. |
+*/ |
+void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
+ p->pNext = pVdbe->pProgram; |
+ pVdbe->pProgram = p; |
+} |
+ |
+/* |
+** Change the opcode at addr into OP_Noop |
+*/ |
+void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ |
+ if( addr<p->nOp ){ |
+ VdbeOp *pOp = &p->aOp[addr]; |
+ sqlite3 *db = p->db; |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+ memset(pOp, 0, sizeof(pOp[0])); |
+ pOp->opcode = OP_Noop; |
+ if( addr==p->nOp-1 ) p->nOp--; |
+ } |
+} |
+ |
+/* |
+** If the last opcode is "op" and it is not a jump destination, |
+** then remove it. Return true if and only if an opcode was removed. |
+*/ |
+int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ |
+ if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ |
+ sqlite3VdbeChangeToNoop(p, p->nOp-1); |
+ return 1; |
+ }else{ |
+ return 0; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P4 operand for a specific instruction. |
+** This routine is useful when a large program is loaded from a |
+** static array using sqlite3VdbeAddOpList but we want to make a |
+** few minor changes to the program. |
+** |
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
+** the string is made into memory obtained from sqlite3_malloc(). |
+** A value of n==0 means copy bytes of zP4 up to and including the |
+** first null byte. If n>0 then copy n+1 bytes of zP4. |
+** |
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
+** to a string or structure that is guaranteed to exist for the lifetime of |
+** the Vdbe. In these cases we can just copy the pointer. |
+** |
+** If addr<0 then change P4 on the most recently inserted instruction. |
+*/ |
+void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
+ Op *pOp; |
+ sqlite3 *db; |
+ assert( p!=0 ); |
+ db = p->db; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( p->aOp==0 || db->mallocFailed ){ |
+ if( n!=P4_VTAB ){ |
+ freeP4(db, n, (void*)*(char**)&zP4); |
+ } |
+ return; |
+ } |
+ assert( p->nOp>0 ); |
+ assert( addr<p->nOp ); |
+ if( addr<0 ){ |
+ addr = p->nOp - 1; |
+ } |
+ pOp = &p->aOp[addr]; |
+ assert( pOp->p4type==P4_NOTUSED |
+ || pOp->p4type==P4_INT32 |
+ || pOp->p4type==P4_KEYINFO ); |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+ pOp->p4.p = 0; |
+ if( n==P4_INT32 ){ |
+ /* Note: this cast is safe, because the origin data point was an int |
+ ** that was cast to a (const char *). */ |
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
+ pOp->p4type = P4_INT32; |
+ }else if( zP4==0 ){ |
+ pOp->p4.p = 0; |
+ pOp->p4type = P4_NOTUSED; |
+ }else if( n==P4_KEYINFO ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = P4_KEYINFO; |
+ }else if( n==P4_VTAB ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = P4_VTAB; |
+ sqlite3VtabLock((VTable *)zP4); |
+ assert( ((VTable *)zP4)->db==p->db ); |
+ }else if( n<0 ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = (signed char)n; |
+ }else{ |
+ if( n==0 ) n = sqlite3Strlen30(zP4); |
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
+ pOp->p4type = P4_DYNAMIC; |
+ } |
+} |
+ |
+/* |
+** Set the P4 on the most recently added opcode to the KeyInfo for the |
+** index given. |
+*/ |
+void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ |
+ Vdbe *v = pParse->pVdbe; |
+ assert( v!=0 ); |
+ assert( pIdx!=0 ); |
+ sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), |
+ P4_KEYINFO); |
+} |
+ |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+/* |
+** Change the comment on the most recently coded instruction. Or |
+** insert a No-op and add the comment to that new instruction. This |
+** makes the code easier to read during debugging. None of this happens |
+** in a production build. |
+*/ |
+static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ |
+ assert( p->nOp>0 || p->aOp==0 ); |
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
+ if( p->nOp ){ |
+ assert( p->aOp ); |
+ sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); |
+ p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); |
+ } |
+} |
+void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
+ va_list ap; |
+ if( p ){ |
+ va_start(ap, zFormat); |
+ vdbeVComment(p, zFormat, ap); |
+ va_end(ap); |
+ } |
+} |
+void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
+ va_list ap; |
+ if( p ){ |
+ sqlite3VdbeAddOp0(p, OP_Noop); |
+ va_start(ap, zFormat); |
+ vdbeVComment(p, zFormat, ap); |
+ va_end(ap); |
+ } |
+} |
+#endif /* NDEBUG */ |
+ |
+#ifdef SQLITE_VDBE_COVERAGE |
+/* |
+** Set the value if the iSrcLine field for the previously coded instruction. |
+*/ |
+void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ |
+ sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; |
+} |
+#endif /* SQLITE_VDBE_COVERAGE */ |
+ |
+/* |
+** Return the opcode for a given address. If the address is -1, then |
+** return the most recently inserted opcode. |
+** |
+** If a memory allocation error has occurred prior to the calling of this |
+** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
+** is readable but not writable, though it is cast to a writable value. |
+** The return of a dummy opcode allows the call to continue functioning |
+** after an OOM fault without having to check to see if the return from |
+** this routine is a valid pointer. But because the dummy.opcode is 0, |
+** dummy will never be written to. This is verified by code inspection and |
+** by running with Valgrind. |
+*/ |
+VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
+ /* C89 specifies that the constant "dummy" will be initialized to all |
+ ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
+ static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( addr<0 ){ |
+ addr = p->nOp - 1; |
+ } |
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
+ if( p->db->mallocFailed ){ |
+ return (VdbeOp*)&dummy; |
+ }else{ |
+ return &p->aOp[addr]; |
+ } |
+} |
+ |
+#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) |
+/* |
+** Return an integer value for one of the parameters to the opcode pOp |
+** determined by character c. |
+*/ |
+static int translateP(char c, const Op *pOp){ |
+ if( c=='1' ) return pOp->p1; |
+ if( c=='2' ) return pOp->p2; |
+ if( c=='3' ) return pOp->p3; |
+ if( c=='4' ) return pOp->p4.i; |
+ return pOp->p5; |
+} |
+ |
+/* |
+** Compute a string for the "comment" field of a VDBE opcode listing. |
+** |
+** The Synopsis: field in comments in the vdbe.c source file gets converted |
+** to an extra string that is appended to the sqlite3OpcodeName(). In the |
+** absence of other comments, this synopsis becomes the comment on the opcode. |
+** Some translation occurs: |
+** |
+** "PX" -> "r[X]" |
+** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 |
+** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 |
+** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x |
+*/ |
+static int displayComment( |
+ const Op *pOp, /* The opcode to be commented */ |
+ const char *zP4, /* Previously obtained value for P4 */ |
+ char *zTemp, /* Write result here */ |
+ int nTemp /* Space available in zTemp[] */ |
+){ |
+ const char *zOpName; |
+ const char *zSynopsis; |
+ int nOpName; |
+ int ii, jj; |
+ zOpName = sqlite3OpcodeName(pOp->opcode); |
+ nOpName = sqlite3Strlen30(zOpName); |
+ if( zOpName[nOpName+1] ){ |
+ int seenCom = 0; |
+ char c; |
+ zSynopsis = zOpName += nOpName + 1; |
+ for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ |
+ if( c=='P' ){ |
+ c = zSynopsis[++ii]; |
+ if( c=='4' ){ |
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); |
+ }else if( c=='X' ){ |
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); |
+ seenCom = 1; |
+ }else{ |
+ int v1 = translateP(c, pOp); |
+ int v2; |
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); |
+ if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ |
+ ii += 3; |
+ jj += sqlite3Strlen30(zTemp+jj); |
+ v2 = translateP(zSynopsis[ii], pOp); |
+ if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ |
+ ii += 2; |
+ v2++; |
+ } |
+ if( v2>1 ){ |
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); |
+ } |
+ }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ |
+ ii += 4; |
+ } |
+ } |
+ jj += sqlite3Strlen30(zTemp+jj); |
+ }else{ |
+ zTemp[jj++] = c; |
+ } |
+ } |
+ if( !seenCom && jj<nTemp-5 && pOp->zComment ){ |
+ sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); |
+ jj += sqlite3Strlen30(zTemp+jj); |
+ } |
+ if( jj<nTemp ) zTemp[jj] = 0; |
+ }else if( pOp->zComment ){ |
+ sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); |
+ jj = sqlite3Strlen30(zTemp); |
+ }else{ |
+ zTemp[0] = 0; |
+ jj = 0; |
+ } |
+ return jj; |
+} |
+#endif /* SQLITE_DEBUG */ |
+ |
+ |
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ |
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
+/* |
+** Compute a string that describes the P4 parameter for an opcode. |
+** Use zTemp for any required temporary buffer space. |
+*/ |
+static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
+ char *zP4 = zTemp; |
+ assert( nTemp>=20 ); |
+ switch( pOp->p4type ){ |
+ case P4_KEYINFO: { |
+ int i, j; |
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
+ assert( pKeyInfo->aSortOrder!=0 ); |
+ sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); |
+ i = sqlite3Strlen30(zTemp); |
+ for(j=0; j<pKeyInfo->nField; j++){ |
+ CollSeq *pColl = pKeyInfo->aColl[j]; |
+ const char *zColl = pColl ? pColl->zName : "nil"; |
+ int n = sqlite3Strlen30(zColl); |
+ if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ |
+ zColl = "B"; |
+ n = 1; |
+ } |
+ if( i+n>nTemp-6 ){ |
+ memcpy(&zTemp[i],",...",4); |
+ break; |
+ } |
+ zTemp[i++] = ','; |
+ if( pKeyInfo->aSortOrder[j] ){ |
+ zTemp[i++] = '-'; |
+ } |
+ memcpy(&zTemp[i], zColl, n+1); |
+ i += n; |
+ } |
+ zTemp[i++] = ')'; |
+ zTemp[i] = 0; |
+ assert( i<nTemp ); |
+ break; |
+ } |
+ case P4_COLLSEQ: { |
+ CollSeq *pColl = pOp->p4.pColl; |
+ sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); |
+ break; |
+ } |
+ case P4_FUNCDEF: { |
+ FuncDef *pDef = pOp->p4.pFunc; |
+ sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); |
+ break; |
+ } |
+ case P4_INT64: { |
+ sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); |
+ break; |
+ } |
+ case P4_INT32: { |
+ sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
+ break; |
+ } |
+ case P4_REAL: { |
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); |
+ break; |
+ } |
+ case P4_MEM: { |
+ Mem *pMem = pOp->p4.pMem; |
+ if( pMem->flags & MEM_Str ){ |
+ zP4 = pMem->z; |
+ }else if( pMem->flags & MEM_Int ){ |
+ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); |
+ }else if( pMem->flags & MEM_Real ){ |
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); |
+ }else if( pMem->flags & MEM_Null ){ |
+ sqlite3_snprintf(nTemp, zTemp, "NULL"); |
+ }else{ |
+ assert( pMem->flags & MEM_Blob ); |
+ zP4 = "(blob)"; |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ case P4_VTAB: { |
+ sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
+ sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); |
+ break; |
+ } |
+#endif |
+ case P4_INTARRAY: { |
+ sqlite3_snprintf(nTemp, zTemp, "intarray"); |
+ break; |
+ } |
+ case P4_SUBPROGRAM: { |
+ sqlite3_snprintf(nTemp, zTemp, "program"); |
+ break; |
+ } |
+ case P4_ADVANCE: { |
+ zTemp[0] = 0; |
+ break; |
+ } |
+ default: { |
+ zP4 = pOp->p4.z; |
+ if( zP4==0 ){ |
+ zP4 = zTemp; |
+ zTemp[0] = 0; |
+ } |
+ } |
+ } |
+ assert( zP4!=0 ); |
+ return zP4; |
+} |
+#endif |
+ |
+/* |
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
+** |
+** The prepared statements need to know in advance the complete set of |
+** attached databases that will be use. A mask of these databases |
+** is maintained in p->btreeMask. The p->lockMask value is the subset of |
+** p->btreeMask of databases that will require a lock. |
+*/ |
+void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
+ assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
+ assert( i<(int)sizeof(p->btreeMask)*8 ); |
+ DbMaskSet(p->btreeMask, i); |
+ if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
+ DbMaskSet(p->lockMask, i); |
+ } |
+} |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
+/* |
+** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
+** this routine obtains the mutex associated with each BtShared structure |
+** that may be accessed by the VM passed as an argument. In doing so it also |
+** sets the BtShared.db member of each of the BtShared structures, ensuring |
+** that the correct busy-handler callback is invoked if required. |
+** |
+** If SQLite is not threadsafe but does support shared-cache mode, then |
+** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
+** of all of BtShared structures accessible via the database handle |
+** associated with the VM. |
+** |
+** If SQLite is not threadsafe and does not support shared-cache mode, this |
+** function is a no-op. |
+** |
+** The p->btreeMask field is a bitmask of all btrees that the prepared |
+** statement p will ever use. Let N be the number of bits in p->btreeMask |
+** corresponding to btrees that use shared cache. Then the runtime of |
+** this routine is N*N. But as N is rarely more than 1, this should not |
+** be a problem. |
+*/ |
+void sqlite3VdbeEnter(Vdbe *p){ |
+ int i; |
+ sqlite3 *db; |
+ Db *aDb; |
+ int nDb; |
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
+ db = p->db; |
+ aDb = db->aDb; |
+ nDb = db->nDb; |
+ for(i=0; i<nDb; i++){ |
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
+ sqlite3BtreeEnter(aDb[i].pBt); |
+ } |
+ } |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
+/* |
+** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
+*/ |
+void sqlite3VdbeLeave(Vdbe *p){ |
+ int i; |
+ sqlite3 *db; |
+ Db *aDb; |
+ int nDb; |
+ if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
+ db = p->db; |
+ aDb = db->aDb; |
+ nDb = db->nDb; |
+ for(i=0; i<nDb; i++){ |
+ if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
+ sqlite3BtreeLeave(aDb[i].pBt); |
+ } |
+ } |
+} |
+#endif |
+ |
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
+/* |
+** Print a single opcode. This routine is used for debugging only. |
+*/ |
+void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
+ char *zP4; |
+ char zPtr[50]; |
+ char zCom[100]; |
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; |
+ if( pOut==0 ) pOut = stdout; |
+ zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ displayComment(pOp, zP4, zCom, sizeof(zCom)); |
+#else |
+ zCom[0] = 0; |
+#endif |
+ /* NB: The sqlite3OpcodeName() function is implemented by code created |
+ ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the |
+ ** information from the vdbe.c source text */ |
+ fprintf(pOut, zFormat1, pc, |
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
+ zCom |
+ ); |
+ fflush(pOut); |
+} |
+#endif |
+ |
+/* |
+** Release an array of N Mem elements |
+*/ |
+static void releaseMemArray(Mem *p, int N){ |
+ if( p && N ){ |
+ Mem *pEnd = &p[N]; |
+ sqlite3 *db = p->db; |
+ u8 malloc_failed = db->mallocFailed; |
+ if( db->pnBytesFreed ){ |
+ do{ |
+ if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
+ }while( (++p)<pEnd ); |
+ return; |
+ } |
+ do{ |
+ assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
+ assert( sqlite3VdbeCheckMemInvariants(p) ); |
+ |
+ /* This block is really an inlined version of sqlite3VdbeMemRelease() |
+ ** that takes advantage of the fact that the memory cell value is |
+ ** being set to NULL after releasing any dynamic resources. |
+ ** |
+ ** The justification for duplicating code is that according to |
+ ** callgrind, this causes a certain test case to hit the CPU 4.7 |
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps |
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table |
+ ** with no indexes using a single prepared INSERT statement, bind() |
+ ** and reset(). Inserts are grouped into a transaction. |
+ */ |
+ testcase( p->flags & MEM_Agg ); |
+ testcase( p->flags & MEM_Dyn ); |
+ testcase( p->flags & MEM_Frame ); |
+ testcase( p->flags & MEM_RowSet ); |
+ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ |
+ sqlite3VdbeMemRelease(p); |
+ }else if( p->szMalloc ){ |
+ sqlite3DbFree(db, p->zMalloc); |
+ p->szMalloc = 0; |
+ } |
+ |
+ p->flags = MEM_Undefined; |
+ }while( (++p)<pEnd ); |
+ db->mallocFailed = malloc_failed; |
+ } |
+} |
+ |
+/* |
+** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
+** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
+*/ |
+void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
+ int i; |
+ Mem *aMem = VdbeFrameMem(p); |
+ VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
+ for(i=0; i<p->nChildCsr; i++){ |
+ sqlite3VdbeFreeCursor(p->v, apCsr[i]); |
+ } |
+ releaseMemArray(aMem, p->nChildMem); |
+ sqlite3DbFree(p->v->db, p); |
+} |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+/* |
+** Give a listing of the program in the virtual machine. |
+** |
+** The interface is the same as sqlite3VdbeExec(). But instead of |
+** running the code, it invokes the callback once for each instruction. |
+** This feature is used to implement "EXPLAIN". |
+** |
+** When p->explain==1, each instruction is listed. When |
+** p->explain==2, only OP_Explain instructions are listed and these |
+** are shown in a different format. p->explain==2 is used to implement |
+** EXPLAIN QUERY PLAN. |
+** |
+** When p->explain==1, first the main program is listed, then each of |
+** the trigger subprograms are listed one by one. |
+*/ |
+int sqlite3VdbeList( |
+ Vdbe *p /* The VDBE */ |
+){ |
+ int nRow; /* Stop when row count reaches this */ |
+ int nSub = 0; /* Number of sub-vdbes seen so far */ |
+ SubProgram **apSub = 0; /* Array of sub-vdbes */ |
+ Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
+ sqlite3 *db = p->db; /* The database connection */ |
+ int i; /* Loop counter */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Mem *pMem = &p->aMem[1]; /* First Mem of result set */ |
+ |
+ assert( p->explain ); |
+ assert( p->magic==VDBE_MAGIC_RUN ); |
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
+ |
+ /* Even though this opcode does not use dynamic strings for |
+ ** the result, result columns may become dynamic if the user calls |
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
+ */ |
+ releaseMemArray(pMem, 8); |
+ p->pResultSet = 0; |
+ |
+ if( p->rc==SQLITE_NOMEM ){ |
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or |
+ ** sqlite3_column_text16() failed. */ |
+ db->mallocFailed = 1; |
+ return SQLITE_ERROR; |
+ } |
+ |
+ /* When the number of output rows reaches nRow, that means the |
+ ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
+ ** nRow is the sum of the number of rows in the main program, plus |
+ ** the sum of the number of rows in all trigger subprograms encountered |
+ ** so far. The nRow value will increase as new trigger subprograms are |
+ ** encountered, but p->pc will eventually catch up to nRow. |
+ */ |
+ nRow = p->nOp; |
+ if( p->explain==1 ){ |
+ /* The first 8 memory cells are used for the result set. So we will |
+ ** commandeer the 9th cell to use as storage for an array of pointers |
+ ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
+ ** cells. */ |
+ assert( p->nMem>9 ); |
+ pSub = &p->aMem[9]; |
+ if( pSub->flags&MEM_Blob ){ |
+ /* On the first call to sqlite3_step(), pSub will hold a NULL. It is |
+ ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ |
+ nSub = pSub->n/sizeof(Vdbe*); |
+ apSub = (SubProgram **)pSub->z; |
+ } |
+ for(i=0; i<nSub; i++){ |
+ nRow += apSub[i]->nOp; |
+ } |
+ } |
+ |
+ do{ |
+ i = p->pc++; |
+ }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
+ if( i>=nRow ){ |
+ p->rc = SQLITE_OK; |
+ rc = SQLITE_DONE; |
+ }else if( db->u1.isInterrupted ){ |
+ p->rc = SQLITE_INTERRUPT; |
+ rc = SQLITE_ERROR; |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); |
+ }else{ |
+ char *zP4; |
+ Op *pOp; |
+ if( i<p->nOp ){ |
+ /* The output line number is small enough that we are still in the |
+ ** main program. */ |
+ pOp = &p->aOp[i]; |
+ }else{ |
+ /* We are currently listing subprograms. Figure out which one and |
+ ** pick up the appropriate opcode. */ |
+ int j; |
+ i -= p->nOp; |
+ for(j=0; i>=apSub[j]->nOp; j++){ |
+ i -= apSub[j]->nOp; |
+ } |
+ pOp = &apSub[j]->aOp[i]; |
+ } |
+ if( p->explain==1 ){ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = i; /* Program counter */ |
+ pMem++; |
+ |
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
+ assert( pMem->z!=0 ); |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->enc = SQLITE_UTF8; |
+ pMem++; |
+ |
+ /* When an OP_Program opcode is encounter (the only opcode that has |
+ ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
+ ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
+ ** has not already been seen. |
+ */ |
+ if( pOp->p4type==P4_SUBPROGRAM ){ |
+ int nByte = (nSub+1)*sizeof(SubProgram*); |
+ int j; |
+ for(j=0; j<nSub; j++){ |
+ if( apSub[j]==pOp->p4.pProgram ) break; |
+ } |
+ if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ |
+ apSub = (SubProgram **)pSub->z; |
+ apSub[nSub++] = pOp->p4.pProgram; |
+ pSub->flags |= MEM_Blob; |
+ pSub->n = nSub*sizeof(SubProgram*); |
+ } |
+ } |
+ } |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p1; /* P1 */ |
+ pMem++; |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p2; /* P2 */ |
+ pMem++; |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p3; /* P3 */ |
+ pMem++; |
+ |
+ if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */ |
+ assert( p->db->mallocFailed ); |
+ return SQLITE_ERROR; |
+ } |
+ pMem->flags = MEM_Str|MEM_Term; |
+ zP4 = displayP4(pOp, pMem->z, 32); |
+ if( zP4!=pMem->z ){ |
+ sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); |
+ }else{ |
+ assert( pMem->z!=0 ); |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->enc = SQLITE_UTF8; |
+ } |
+ pMem++; |
+ |
+ if( p->explain==1 ){ |
+ if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ |
+ assert( p->db->mallocFailed ); |
+ return SQLITE_ERROR; |
+ } |
+ pMem->flags = MEM_Str|MEM_Term; |
+ pMem->n = 2; |
+ sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
+ pMem->enc = SQLITE_UTF8; |
+ pMem++; |
+ |
+#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
+ if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ |
+ assert( p->db->mallocFailed ); |
+ return SQLITE_ERROR; |
+ } |
+ pMem->flags = MEM_Str|MEM_Term; |
+ pMem->n = displayComment(pOp, zP4, pMem->z, 500); |
+ pMem->enc = SQLITE_UTF8; |
+#else |
+ pMem->flags = MEM_Null; /* Comment */ |
+#endif |
+ } |
+ |
+ p->nResColumn = 8 - 4*(p->explain-1); |
+ p->pResultSet = &p->aMem[1]; |
+ p->rc = SQLITE_OK; |
+ rc = SQLITE_ROW; |
+ } |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_EXPLAIN */ |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Print the SQL that was used to generate a VDBE program. |
+*/ |
+void sqlite3VdbePrintSql(Vdbe *p){ |
+ const char *z = 0; |
+ if( p->zSql ){ |
+ z = p->zSql; |
+ }else if( p->nOp>=1 ){ |
+ const VdbeOp *pOp = &p->aOp[0]; |
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
+ z = pOp->p4.z; |
+ while( sqlite3Isspace(*z) ) z++; |
+ } |
+ } |
+ if( z ) printf("SQL: [%s]\n", z); |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
+/* |
+** Print an IOTRACE message showing SQL content. |
+*/ |
+void sqlite3VdbeIOTraceSql(Vdbe *p){ |
+ int nOp = p->nOp; |
+ VdbeOp *pOp; |
+ if( sqlite3IoTrace==0 ) return; |
+ if( nOp<1 ) return; |
+ pOp = &p->aOp[0]; |
+ if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
+ int i, j; |
+ char z[1000]; |
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
+ for(i=0; sqlite3Isspace(z[i]); i++){} |
+ for(j=0; z[i]; i++){ |
+ if( sqlite3Isspace(z[i]) ){ |
+ if( z[i-1]!=' ' ){ |
+ z[j++] = ' '; |
+ } |
+ }else{ |
+ z[j++] = z[i]; |
+ } |
+ } |
+ z[j] = 0; |
+ sqlite3IoTrace("SQL %s\n", z); |
+ } |
+} |
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
+ |
+/* |
+** Allocate space from a fixed size buffer and return a pointer to |
+** that space. If insufficient space is available, return NULL. |
+** |
+** The pBuf parameter is the initial value of a pointer which will |
+** receive the new memory. pBuf is normally NULL. If pBuf is not |
+** NULL, it means that memory space has already been allocated and that |
+** this routine should not allocate any new memory. When pBuf is not |
+** NULL simply return pBuf. Only allocate new memory space when pBuf |
+** is NULL. |
+** |
+** nByte is the number of bytes of space needed. |
+** |
+** *ppFrom points to available space and pEnd points to the end of the |
+** available space. When space is allocated, *ppFrom is advanced past |
+** the end of the allocated space. |
+** |
+** *pnByte is a counter of the number of bytes of space that have failed |
+** to allocate. If there is insufficient space in *ppFrom to satisfy the |
+** request, then increment *pnByte by the amount of the request. |
+*/ |
+static void *allocSpace( |
+ void *pBuf, /* Where return pointer will be stored */ |
+ int nByte, /* Number of bytes to allocate */ |
+ u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ |
+ u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ |
+ int *pnByte /* If allocation cannot be made, increment *pnByte */ |
+){ |
+ assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); |
+ if( pBuf ) return pBuf; |
+ nByte = ROUND8(nByte); |
+ if( &(*ppFrom)[nByte] <= pEnd ){ |
+ pBuf = (void*)*ppFrom; |
+ *ppFrom += nByte; |
+ }else{ |
+ *pnByte += nByte; |
+ } |
+ return pBuf; |
+} |
+ |
+/* |
+** Rewind the VDBE back to the beginning in preparation for |
+** running it. |
+*/ |
+void sqlite3VdbeRewind(Vdbe *p){ |
+#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
+ int i; |
+#endif |
+ assert( p!=0 ); |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ |
+ /* There should be at least one opcode. |
+ */ |
+ assert( p->nOp>0 ); |
+ |
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
+ p->magic = VDBE_MAGIC_RUN; |
+ |
+#ifdef SQLITE_DEBUG |
+ for(i=1; i<p->nMem; i++){ |
+ assert( p->aMem[i].db==p->db ); |
+ } |
+#endif |
+ p->pc = -1; |
+ p->rc = SQLITE_OK; |
+ p->errorAction = OE_Abort; |
+ p->magic = VDBE_MAGIC_RUN; |
+ p->nChange = 0; |
+ p->cacheCtr = 1; |
+ p->minWriteFileFormat = 255; |
+ p->iStatement = 0; |
+ p->nFkConstraint = 0; |
+#ifdef VDBE_PROFILE |
+ for(i=0; i<p->nOp; i++){ |
+ p->aOp[i].cnt = 0; |
+ p->aOp[i].cycles = 0; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Prepare a virtual machine for execution for the first time after |
+** creating the virtual machine. This involves things such |
+** as allocating registers and initializing the program counter. |
+** After the VDBE has be prepped, it can be executed by one or more |
+** calls to sqlite3VdbeExec(). |
+** |
+** This function may be called exactly once on each virtual machine. |
+** After this routine is called the VM has been "packaged" and is ready |
+** to run. After this routine is called, further calls to |
+** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects |
+** the Vdbe from the Parse object that helped generate it so that the |
+** the Vdbe becomes an independent entity and the Parse object can be |
+** destroyed. |
+** |
+** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back |
+** to its initial state after it has been run. |
+*/ |
+void sqlite3VdbeMakeReady( |
+ Vdbe *p, /* The VDBE */ |
+ Parse *pParse /* Parsing context */ |
+){ |
+ sqlite3 *db; /* The database connection */ |
+ int nVar; /* Number of parameters */ |
+ int nMem; /* Number of VM memory registers */ |
+ int nCursor; /* Number of cursors required */ |
+ int nArg; /* Number of arguments in subprograms */ |
+ int nOnce; /* Number of OP_Once instructions */ |
+ int n; /* Loop counter */ |
+ u8 *zCsr; /* Memory available for allocation */ |
+ u8 *zEnd; /* First byte past allocated memory */ |
+ int nByte; /* How much extra memory is needed */ |
+ |
+ assert( p!=0 ); |
+ assert( p->nOp>0 ); |
+ assert( pParse!=0 ); |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ assert( pParse==p->pParse ); |
+ db = p->db; |
+ assert( db->mallocFailed==0 ); |
+ nVar = pParse->nVar; |
+ nMem = pParse->nMem; |
+ nCursor = pParse->nTab; |
+ nArg = pParse->nMaxArg; |
+ nOnce = pParse->nOnce; |
+ if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ |
+ |
+ /* For each cursor required, also allocate a memory cell. Memory |
+ ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by |
+ ** the vdbe program. Instead they are used to allocate space for |
+ ** VdbeCursor/BtCursor structures. The blob of memory associated with |
+ ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) |
+ ** stores the blob of memory associated with cursor 1, etc. |
+ ** |
+ ** See also: allocateCursor(). |
+ */ |
+ nMem += nCursor; |
+ |
+ /* Allocate space for memory registers, SQL variables, VDBE cursors and |
+ ** an array to marshal SQL function arguments in. |
+ */ |
+ zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ |
+ zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */ |
+ |
+ resolveP2Values(p, &nArg); |
+ p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); |
+ if( pParse->explain && nMem<10 ){ |
+ nMem = 10; |
+ } |
+ memset(zCsr, 0, zEnd-zCsr); |
+ zCsr += (zCsr - (u8*)0)&7; |
+ assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); |
+ p->expired = 0; |
+ |
+ /* Memory for registers, parameters, cursor, etc, is allocated in two |
+ ** passes. On the first pass, we try to reuse unused space at the |
+ ** end of the opcode array. If we are unable to satisfy all memory |
+ ** requirements by reusing the opcode array tail, then the second |
+ ** pass will fill in the rest using a fresh allocation. |
+ ** |
+ ** This two-pass approach that reuses as much memory as possible from |
+ ** the leftover space at the end of the opcode array can significantly |
+ ** reduce the amount of memory held by a prepared statement. |
+ */ |
+ do { |
+ nByte = 0; |
+ p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); |
+ p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); |
+ p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); |
+ p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); |
+ p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), |
+ &zCsr, zEnd, &nByte); |
+ p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); |
+ if( nByte ){ |
+ p->pFree = sqlite3DbMallocZero(db, nByte); |
+ } |
+ zCsr = p->pFree; |
+ zEnd = &zCsr[nByte]; |
+ }while( nByte && !db->mallocFailed ); |
+ |
+ p->nCursor = nCursor; |
+ p->nOnceFlag = nOnce; |
+ if( p->aVar ){ |
+ p->nVar = (ynVar)nVar; |
+ for(n=0; n<nVar; n++){ |
+ p->aVar[n].flags = MEM_Null; |
+ p->aVar[n].db = db; |
+ } |
+ } |
+ if( p->azVar ){ |
+ p->nzVar = pParse->nzVar; |
+ memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); |
+ memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); |
+ } |
+ if( p->aMem ){ |
+ p->aMem--; /* aMem[] goes from 1..nMem */ |
+ p->nMem = nMem; /* not from 0..nMem-1 */ |
+ for(n=1; n<=nMem; n++){ |
+ p->aMem[n].flags = MEM_Undefined; |
+ p->aMem[n].db = db; |
+ } |
+ } |
+ p->explain = pParse->explain; |
+ sqlite3VdbeRewind(p); |
+} |
+ |
+/* |
+** Close a VDBE cursor and release all the resources that cursor |
+** happens to hold. |
+*/ |
+void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
+ if( pCx==0 ){ |
+ return; |
+ } |
+ sqlite3VdbeSorterClose(p->db, pCx); |
+ if( pCx->pBt ){ |
+ sqlite3BtreeClose(pCx->pBt); |
+ /* The pCx->pCursor will be close automatically, if it exists, by |
+ ** the call above. */ |
+ }else if( pCx->pCursor ){ |
+ sqlite3BtreeCloseCursor(pCx->pCursor); |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ else if( pCx->pVtabCursor ){ |
+ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; |
+ const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; |
+ p->inVtabMethod = 1; |
+ pModule->xClose(pVtabCursor); |
+ p->inVtabMethod = 0; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
+** is used, for example, when a trigger sub-program is halted to restore |
+** control to the main program. |
+*/ |
+int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
+ Vdbe *v = pFrame->v; |
+ v->aOnceFlag = pFrame->aOnceFlag; |
+ v->nOnceFlag = pFrame->nOnceFlag; |
+ v->aOp = pFrame->aOp; |
+ v->nOp = pFrame->nOp; |
+ v->aMem = pFrame->aMem; |
+ v->nMem = pFrame->nMem; |
+ v->apCsr = pFrame->apCsr; |
+ v->nCursor = pFrame->nCursor; |
+ v->db->lastRowid = pFrame->lastRowid; |
+ v->nChange = pFrame->nChange; |
+ return pFrame->pc; |
+} |
+ |
+/* |
+** Close all cursors. |
+** |
+** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
+** cell array. This is necessary as the memory cell array may contain |
+** pointers to VdbeFrame objects, which may in turn contain pointers to |
+** open cursors. |
+*/ |
+static void closeAllCursors(Vdbe *p){ |
+ if( p->pFrame ){ |
+ VdbeFrame *pFrame; |
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
+ sqlite3VdbeFrameRestore(pFrame); |
+ p->pFrame = 0; |
+ p->nFrame = 0; |
+ } |
+ assert( p->nFrame==0 ); |
+ |
+ if( p->apCsr ){ |
+ int i; |
+ for(i=0; i<p->nCursor; i++){ |
+ VdbeCursor *pC = p->apCsr[i]; |
+ if( pC ){ |
+ sqlite3VdbeFreeCursor(p, pC); |
+ p->apCsr[i] = 0; |
+ } |
+ } |
+ } |
+ if( p->aMem ){ |
+ releaseMemArray(&p->aMem[1], p->nMem); |
+ } |
+ while( p->pDelFrame ){ |
+ VdbeFrame *pDel = p->pDelFrame; |
+ p->pDelFrame = pDel->pParent; |
+ sqlite3VdbeFrameDelete(pDel); |
+ } |
+ |
+ /* Delete any auxdata allocations made by the VM */ |
+ if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); |
+ assert( p->pAuxData==0 ); |
+} |
+ |
+/* |
+** Clean up the VM after a single run. |
+*/ |
+static void Cleanup(Vdbe *p){ |
+ sqlite3 *db = p->db; |
+ |
+#ifdef SQLITE_DEBUG |
+ /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
+ ** Vdbe.aMem[] arrays have already been cleaned up. */ |
+ int i; |
+ if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); |
+ if( p->aMem ){ |
+ for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); |
+ } |
+#endif |
+ |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ p->pResultSet = 0; |
+} |
+ |
+/* |
+** Set the number of result columns that will be returned by this SQL |
+** statement. This is now set at compile time, rather than during |
+** execution of the vdbe program so that sqlite3_column_count() can |
+** be called on an SQL statement before sqlite3_step(). |
+*/ |
+void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
+ Mem *pColName; |
+ int n; |
+ sqlite3 *db = p->db; |
+ |
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
+ sqlite3DbFree(db, p->aColName); |
+ n = nResColumn*COLNAME_N; |
+ p->nResColumn = (u16)nResColumn; |
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); |
+ if( p->aColName==0 ) return; |
+ while( n-- > 0 ){ |
+ pColName->flags = MEM_Null; |
+ pColName->db = p->db; |
+ pColName++; |
+ } |
+} |
+ |
+/* |
+** Set the name of the idx'th column to be returned by the SQL statement. |
+** zName must be a pointer to a nul terminated string. |
+** |
+** This call must be made after a call to sqlite3VdbeSetNumCols(). |
+** |
+** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
+** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
+** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
+*/ |
+int sqlite3VdbeSetColName( |
+ Vdbe *p, /* Vdbe being configured */ |
+ int idx, /* Index of column zName applies to */ |
+ int var, /* One of the COLNAME_* constants */ |
+ const char *zName, /* Pointer to buffer containing name */ |
+ void (*xDel)(void*) /* Memory management strategy for zName */ |
+){ |
+ int rc; |
+ Mem *pColName; |
+ assert( idx<p->nResColumn ); |
+ assert( var<COLNAME_N ); |
+ if( p->db->mallocFailed ){ |
+ assert( !zName || xDel!=SQLITE_DYNAMIC ); |
+ return SQLITE_NOMEM; |
+ } |
+ assert( p->aColName!=0 ); |
+ pColName = &(p->aColName[idx+var*p->nResColumn]); |
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
+ assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
+ return rc; |
+} |
+ |
+/* |
+** A read or write transaction may or may not be active on database handle |
+** db. If a transaction is active, commit it. If there is a |
+** write-transaction spanning more than one database file, this routine |
+** takes care of the master journal trickery. |
+*/ |
+static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
+ int i; |
+ int nTrans = 0; /* Number of databases with an active write-transaction */ |
+ int rc = SQLITE_OK; |
+ int needXcommit = 0; |
+ |
+#ifdef SQLITE_OMIT_VIRTUALTABLE |
+ /* With this option, sqlite3VtabSync() is defined to be simply |
+ ** SQLITE_OK so p is not used. |
+ */ |
+ UNUSED_PARAMETER(p); |
+#endif |
+ |
+ /* Before doing anything else, call the xSync() callback for any |
+ ** virtual module tables written in this transaction. This has to |
+ ** be done before determining whether a master journal file is |
+ ** required, as an xSync() callback may add an attached database |
+ ** to the transaction. |
+ */ |
+ rc = sqlite3VtabSync(db, p); |
+ |
+ /* This loop determines (a) if the commit hook should be invoked and |
+ ** (b) how many database files have open write transactions, not |
+ ** including the temp database. (b) is important because if more than |
+ ** one database file has an open write transaction, a master journal |
+ ** file is required for an atomic commit. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( sqlite3BtreeIsInTrans(pBt) ){ |
+ needXcommit = 1; |
+ if( i!=1 ) nTrans++; |
+ sqlite3BtreeEnter(pBt); |
+ rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); |
+ sqlite3BtreeLeave(pBt); |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* If there are any write-transactions at all, invoke the commit hook */ |
+ if( needXcommit && db->xCommitCallback ){ |
+ rc = db->xCommitCallback(db->pCommitArg); |
+ if( rc ){ |
+ return SQLITE_CONSTRAINT_COMMITHOOK; |
+ } |
+ } |
+ |
+ /* The simple case - no more than one database file (not counting the |
+ ** TEMP database) has a transaction active. There is no need for the |
+ ** master-journal. |
+ ** |
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length |
+ ** string, it means the main database is :memory: or a temp file. In |
+ ** that case we do not support atomic multi-file commits, so use the |
+ ** simple case then too. |
+ */ |
+ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
+ || nTrans<=1 |
+ ){ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
+ } |
+ } |
+ |
+ /* Do the commit only if all databases successfully complete phase 1. |
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
+ ** IO error while deleting or truncating a journal file. It is unlikely, |
+ ** but could happen. In this case abandon processing and return the error. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3VtabCommit(db); |
+ } |
+ } |
+ |
+ /* The complex case - There is a multi-file write-transaction active. |
+ ** This requires a master journal file to ensure the transaction is |
+ ** committed atomically. |
+ */ |
+#ifndef SQLITE_OMIT_DISKIO |
+ else{ |
+ sqlite3_vfs *pVfs = db->pVfs; |
+ int needSync = 0; |
+ char *zMaster = 0; /* File-name for the master journal */ |
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
+ sqlite3_file *pMaster = 0; |
+ i64 offset = 0; |
+ int res; |
+ int retryCount = 0; |
+ int nMainFile; |
+ |
+ /* Select a master journal file name */ |
+ nMainFile = sqlite3Strlen30(zMainFile); |
+ zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); |
+ if( zMaster==0 ) return SQLITE_NOMEM; |
+ do { |
+ u32 iRandom; |
+ if( retryCount ){ |
+ if( retryCount>100 ){ |
+ sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); |
+ sqlite3OsDelete(pVfs, zMaster, 0); |
+ break; |
+ }else if( retryCount==1 ){ |
+ sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); |
+ } |
+ } |
+ retryCount++; |
+ sqlite3_randomness(sizeof(iRandom), &iRandom); |
+ sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", |
+ (iRandom>>8)&0xffffff, iRandom&0xff); |
+ /* The antipenultimate character of the master journal name must |
+ ** be "9" to avoid name collisions when using 8+3 filenames. */ |
+ assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); |
+ sqlite3FileSuffix3(zMainFile, zMaster); |
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
+ }while( rc==SQLITE_OK && res ); |
+ if( rc==SQLITE_OK ){ |
+ /* Open the master journal. */ |
+ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
+ ); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Write the name of each database file in the transaction into the new |
+ ** master journal file. If an error occurs at this point close |
+ ** and delete the master journal file. All the individual journal files |
+ ** still have 'null' as the master journal pointer, so they will roll |
+ ** back independently if a failure occurs. |
+ */ |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( sqlite3BtreeIsInTrans(pBt) ){ |
+ char const *zFile = sqlite3BtreeGetJournalname(pBt); |
+ if( zFile==0 ){ |
+ continue; /* Ignore TEMP and :memory: databases */ |
+ } |
+ assert( zFile[0]!=0 ); |
+ if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ |
+ needSync = 1; |
+ } |
+ rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); |
+ offset += sqlite3Strlen30(zFile)+1; |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3OsCloseFree(pMaster); |
+ sqlite3OsDelete(pVfs, zMaster, 0); |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ } |
+ } |
+ |
+ /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
+ ** flag is set this is not required. |
+ */ |
+ if( needSync |
+ && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) |
+ && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) |
+ ){ |
+ sqlite3OsCloseFree(pMaster); |
+ sqlite3OsDelete(pVfs, zMaster, 0); |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Sync all the db files involved in the transaction. The same call |
+ ** sets the master journal pointer in each individual journal. If |
+ ** an error occurs here, do not delete the master journal file. |
+ ** |
+ ** If the error occurs during the first call to |
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
+ ** master journal file will be orphaned. But we cannot delete it, |
+ ** in case the master journal file name was written into the journal |
+ ** file before the failure occurred. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
+ } |
+ } |
+ sqlite3OsCloseFree(pMaster); |
+ assert( rc!=SQLITE_BUSY ); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Delete the master journal file. This commits the transaction. After |
+ ** doing this the directory is synced again before any individual |
+ ** transaction files are deleted. |
+ */ |
+ rc = sqlite3OsDelete(pVfs, zMaster, 1); |
+ sqlite3DbFree(db, zMaster); |
+ zMaster = 0; |
+ if( rc ){ |
+ return rc; |
+ } |
+ |
+ /* All files and directories have already been synced, so the following |
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
+ ** deleting or truncating journals. If something goes wrong while |
+ ** this is happening we don't really care. The integrity of the |
+ ** transaction is already guaranteed, but some stray 'cold' journals |
+ ** may be lying around. Returning an error code won't help matters. |
+ */ |
+ disable_simulated_io_errors(); |
+ sqlite3BeginBenignMalloc(); |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ sqlite3BtreeCommitPhaseTwo(pBt, 1); |
+ } |
+ } |
+ sqlite3EndBenignMalloc(); |
+ enable_simulated_io_errors(); |
+ |
+ sqlite3VtabCommit(db); |
+ } |
+#endif |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This routine checks that the sqlite3.nVdbeActive count variable |
+** matches the number of vdbe's in the list sqlite3.pVdbe that are |
+** currently active. An assertion fails if the two counts do not match. |
+** This is an internal self-check only - it is not an essential processing |
+** step. |
+** |
+** This is a no-op if NDEBUG is defined. |
+*/ |
+#ifndef NDEBUG |
+static void checkActiveVdbeCnt(sqlite3 *db){ |
+ Vdbe *p; |
+ int cnt = 0; |
+ int nWrite = 0; |
+ int nRead = 0; |
+ p = db->pVdbe; |
+ while( p ){ |
+ if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ |
+ cnt++; |
+ if( p->readOnly==0 ) nWrite++; |
+ if( p->bIsReader ) nRead++; |
+ } |
+ p = p->pNext; |
+ } |
+ assert( cnt==db->nVdbeActive ); |
+ assert( nWrite==db->nVdbeWrite ); |
+ assert( nRead==db->nVdbeRead ); |
+} |
+#else |
+#define checkActiveVdbeCnt(x) |
+#endif |
+ |
+/* |
+** If the Vdbe passed as the first argument opened a statement-transaction, |
+** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
+** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
+** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
+** statement transaction is committed. |
+** |
+** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
+** Otherwise SQLITE_OK. |
+*/ |
+int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
+ sqlite3 *const db = p->db; |
+ int rc = SQLITE_OK; |
+ |
+ /* If p->iStatement is greater than zero, then this Vdbe opened a |
+ ** statement transaction that should be closed here. The only exception |
+ ** is that an IO error may have occurred, causing an emergency rollback. |
+ ** In this case (db->nStatement==0), and there is nothing to do. |
+ */ |
+ if( db->nStatement && p->iStatement ){ |
+ int i; |
+ const int iSavepoint = p->iStatement-1; |
+ |
+ assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
+ assert( db->nStatement>0 ); |
+ assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
+ |
+ for(i=0; i<db->nDb; i++){ |
+ int rc2 = SQLITE_OK; |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ if( eOp==SAVEPOINT_ROLLBACK ){ |
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
+ } |
+ if( rc2==SQLITE_OK ){ |
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ db->nStatement--; |
+ p->iStatement = 0; |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( eOp==SAVEPOINT_ROLLBACK ){ |
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); |
+ } |
+ } |
+ |
+ /* If the statement transaction is being rolled back, also restore the |
+ ** database handles deferred constraint counter to the value it had when |
+ ** the statement transaction was opened. */ |
+ if( eOp==SAVEPOINT_ROLLBACK ){ |
+ db->nDeferredCons = p->nStmtDefCons; |
+ db->nDeferredImmCons = p->nStmtDefImmCons; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called when a transaction opened by the database |
+** handle associated with the VM passed as an argument is about to be |
+** committed. If there are outstanding deferred foreign key constraint |
+** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
+** |
+** If there are outstanding FK violations and this function returns |
+** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY |
+** and write an error message to it. Then return SQLITE_ERROR. |
+*/ |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
+ sqlite3 *db = p->db; |
+ if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) |
+ || (!deferred && p->nFkConstraint>0) |
+ ){ |
+ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
+ p->errorAction = OE_Abort; |
+ sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed"); |
+ return SQLITE_ERROR; |
+ } |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+/* |
+** This routine is called the when a VDBE tries to halt. If the VDBE |
+** has made changes and is in autocommit mode, then commit those |
+** changes. If a rollback is needed, then do the rollback. |
+** |
+** This routine is the only way to move the state of a VM from |
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
+** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
+** |
+** Return an error code. If the commit could not complete because of |
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
+** means the close did not happen and needs to be repeated. |
+*/ |
+int sqlite3VdbeHalt(Vdbe *p){ |
+ int rc; /* Used to store transient return codes */ |
+ sqlite3 *db = p->db; |
+ |
+ /* This function contains the logic that determines if a statement or |
+ ** transaction will be committed or rolled back as a result of the |
+ ** execution of this virtual machine. |
+ ** |
+ ** If any of the following errors occur: |
+ ** |
+ ** SQLITE_NOMEM |
+ ** SQLITE_IOERR |
+ ** SQLITE_FULL |
+ ** SQLITE_INTERRUPT |
+ ** |
+ ** Then the internal cache might have been left in an inconsistent |
+ ** state. We need to rollback the statement transaction, if there is |
+ ** one, or the complete transaction if there is no statement transaction. |
+ */ |
+ |
+ if( p->db->mallocFailed ){ |
+ p->rc = SQLITE_NOMEM; |
+ } |
+ if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); |
+ closeAllCursors(p); |
+ if( p->magic!=VDBE_MAGIC_RUN ){ |
+ return SQLITE_OK; |
+ } |
+ checkActiveVdbeCnt(db); |
+ |
+ /* No commit or rollback needed if the program never started or if the |
+ ** SQL statement does not read or write a database file. */ |
+ if( p->pc>=0 && p->bIsReader ){ |
+ int mrc; /* Primary error code from p->rc */ |
+ int eStatementOp = 0; |
+ int isSpecialError; /* Set to true if a 'special' error */ |
+ |
+ /* Lock all btrees used by the statement */ |
+ sqlite3VdbeEnter(p); |
+ |
+ /* Check for one of the special errors */ |
+ mrc = p->rc & 0xff; |
+ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
+ || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
+ if( isSpecialError ){ |
+ /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
+ ** no rollback is necessary. Otherwise, at least a savepoint |
+ ** transaction must be rolled back to restore the database to a |
+ ** consistent state. |
+ ** |
+ ** Even if the statement is read-only, it is important to perform |
+ ** a statement or transaction rollback operation. If the error |
+ ** occurred while writing to the journal, sub-journal or database |
+ ** file as part of an effort to free up cache space (see function |
+ ** pagerStress() in pager.c), the rollback is required to restore |
+ ** the pager to a consistent state. |
+ */ |
+ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
+ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
+ eStatementOp = SAVEPOINT_ROLLBACK; |
+ }else{ |
+ /* We are forced to roll back the active transaction. Before doing |
+ ** so, abort any other statements this handle currently has active. |
+ */ |
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ } |
+ |
+ /* Check for immediate foreign key violations. */ |
+ if( p->rc==SQLITE_OK ){ |
+ sqlite3VdbeCheckFk(p, 0); |
+ } |
+ |
+ /* If the auto-commit flag is set and this is the only active writer |
+ ** VM, then we do either a commit or rollback of the current transaction. |
+ ** |
+ ** Note: This block also runs if one of the special errors handled |
+ ** above has occurred. |
+ */ |
+ if( !sqlite3VtabInSync(db) |
+ && db->autoCommit |
+ && db->nVdbeWrite==(p->readOnly==0) |
+ ){ |
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
+ rc = sqlite3VdbeCheckFk(p, 1); |
+ if( rc!=SQLITE_OK ){ |
+ if( NEVER(p->readOnly) ){ |
+ sqlite3VdbeLeave(p); |
+ return SQLITE_ERROR; |
+ } |
+ rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
+ }else{ |
+ /* The auto-commit flag is true, the vdbe program was successful |
+ ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
+ ** key constraints to hold up the transaction. This means a commit |
+ ** is required. */ |
+ rc = vdbeCommit(db, p); |
+ } |
+ if( rc==SQLITE_BUSY && p->readOnly ){ |
+ sqlite3VdbeLeave(p); |
+ return SQLITE_BUSY; |
+ }else if( rc!=SQLITE_OK ){ |
+ p->rc = rc; |
+ sqlite3RollbackAll(db, SQLITE_OK); |
+ }else{ |
+ db->nDeferredCons = 0; |
+ db->nDeferredImmCons = 0; |
+ db->flags &= ~SQLITE_DeferFKs; |
+ sqlite3CommitInternalChanges(db); |
+ } |
+ }else{ |
+ sqlite3RollbackAll(db, SQLITE_OK); |
+ } |
+ db->nStatement = 0; |
+ }else if( eStatementOp==0 ){ |
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
+ eStatementOp = SAVEPOINT_RELEASE; |
+ }else if( p->errorAction==OE_Abort ){ |
+ eStatementOp = SAVEPOINT_ROLLBACK; |
+ }else{ |
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ |
+ /* If eStatementOp is non-zero, then a statement transaction needs to |
+ ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
+ ** do so. If this operation returns an error, and the current statement |
+ ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
+ ** current statement error code. |
+ */ |
+ if( eStatementOp ){ |
+ rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
+ if( rc ){ |
+ if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ |
+ p->rc = rc; |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ } |
+ sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ |
+ /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
+ ** has been rolled back, update the database connection change-counter. |
+ */ |
+ if( p->changeCntOn ){ |
+ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
+ sqlite3VdbeSetChanges(db, p->nChange); |
+ }else{ |
+ sqlite3VdbeSetChanges(db, 0); |
+ } |
+ p->nChange = 0; |
+ } |
+ |
+ /* Release the locks */ |
+ sqlite3VdbeLeave(p); |
+ } |
+ |
+ /* We have successfully halted and closed the VM. Record this fact. */ |
+ if( p->pc>=0 ){ |
+ db->nVdbeActive--; |
+ if( !p->readOnly ) db->nVdbeWrite--; |
+ if( p->bIsReader ) db->nVdbeRead--; |
+ assert( db->nVdbeActive>=db->nVdbeRead ); |
+ assert( db->nVdbeRead>=db->nVdbeWrite ); |
+ assert( db->nVdbeWrite>=0 ); |
+ } |
+ p->magic = VDBE_MAGIC_HALT; |
+ checkActiveVdbeCnt(db); |
+ if( p->db->mallocFailed ){ |
+ p->rc = SQLITE_NOMEM; |
+ } |
+ |
+ /* If the auto-commit flag is set to true, then any locks that were held |
+ ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
+ ** to invoke any required unlock-notify callbacks. |
+ */ |
+ if( db->autoCommit ){ |
+ sqlite3ConnectionUnlocked(db); |
+ } |
+ |
+ assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); |
+ return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
+} |
+ |
+ |
+/* |
+** Each VDBE holds the result of the most recent sqlite3_step() call |
+** in p->rc. This routine sets that result back to SQLITE_OK. |
+*/ |
+void sqlite3VdbeResetStepResult(Vdbe *p){ |
+ p->rc = SQLITE_OK; |
+} |
+ |
+/* |
+** Copy the error code and error message belonging to the VDBE passed |
+** as the first argument to its database handle (so that they will be |
+** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). |
+** |
+** This function does not clear the VDBE error code or message, just |
+** copies them to the database handle. |
+*/ |
+int sqlite3VdbeTransferError(Vdbe *p){ |
+ sqlite3 *db = p->db; |
+ int rc = p->rc; |
+ if( p->zErrMsg ){ |
+ u8 mallocFailed = db->mallocFailed; |
+ sqlite3BeginBenignMalloc(); |
+ if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); |
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
+ sqlite3EndBenignMalloc(); |
+ db->mallocFailed = mallocFailed; |
+ db->errCode = rc; |
+ }else{ |
+ sqlite3Error(db, rc); |
+ } |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_ENABLE_SQLLOG |
+/* |
+** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, |
+** invoke it. |
+*/ |
+static void vdbeInvokeSqllog(Vdbe *v){ |
+ if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ |
+ char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); |
+ assert( v->db->init.busy==0 ); |
+ if( zExpanded ){ |
+ sqlite3GlobalConfig.xSqllog( |
+ sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 |
+ ); |
+ sqlite3DbFree(v->db, zExpanded); |
+ } |
+ } |
+} |
+#else |
+# define vdbeInvokeSqllog(x) |
+#endif |
+ |
+/* |
+** Clean up a VDBE after execution but do not delete the VDBE just yet. |
+** Write any error messages into *pzErrMsg. Return the result code. |
+** |
+** After this routine is run, the VDBE should be ready to be executed |
+** again. |
+** |
+** To look at it another way, this routine resets the state of the |
+** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
+** VDBE_MAGIC_INIT. |
+*/ |
+int sqlite3VdbeReset(Vdbe *p){ |
+ sqlite3 *db; |
+ db = p->db; |
+ |
+ /* If the VM did not run to completion or if it encountered an |
+ ** error, then it might not have been halted properly. So halt |
+ ** it now. |
+ */ |
+ sqlite3VdbeHalt(p); |
+ |
+ /* If the VDBE has be run even partially, then transfer the error code |
+ ** and error message from the VDBE into the main database structure. But |
+ ** if the VDBE has just been set to run but has not actually executed any |
+ ** instructions yet, leave the main database error information unchanged. |
+ */ |
+ if( p->pc>=0 ){ |
+ vdbeInvokeSqllog(p); |
+ sqlite3VdbeTransferError(p); |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ if( p->runOnlyOnce ) p->expired = 1; |
+ }else if( p->rc && p->expired ){ |
+ /* The expired flag was set on the VDBE before the first call |
+ ** to sqlite3_step(). For consistency (since sqlite3_step() was |
+ ** called), set the database error in this case as well. |
+ */ |
+ sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ } |
+ |
+ /* Reclaim all memory used by the VDBE |
+ */ |
+ Cleanup(p); |
+ |
+ /* Save profiling information from this VDBE run. |
+ */ |
+#ifdef VDBE_PROFILE |
+ { |
+ FILE *out = fopen("vdbe_profile.out", "a"); |
+ if( out ){ |
+ int i; |
+ fprintf(out, "---- "); |
+ for(i=0; i<p->nOp; i++){ |
+ fprintf(out, "%02x", p->aOp[i].opcode); |
+ } |
+ fprintf(out, "\n"); |
+ if( p->zSql ){ |
+ char c, pc = 0; |
+ fprintf(out, "-- "); |
+ for(i=0; (c = p->zSql[i])!=0; i++){ |
+ if( pc=='\n' ) fprintf(out, "-- "); |
+ putc(c, out); |
+ pc = c; |
+ } |
+ if( pc!='\n' ) fprintf(out, "\n"); |
+ } |
+ for(i=0; i<p->nOp; i++){ |
+ char zHdr[100]; |
+ sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", |
+ p->aOp[i].cnt, |
+ p->aOp[i].cycles, |
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
+ ); |
+ fprintf(out, "%s", zHdr); |
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
+ } |
+ fclose(out); |
+ } |
+ } |
+#endif |
+ p->iCurrentTime = 0; |
+ p->magic = VDBE_MAGIC_INIT; |
+ return p->rc & db->errMask; |
+} |
+ |
+/* |
+** Clean up and delete a VDBE after execution. Return an integer which is |
+** the result code. Write any error message text into *pzErrMsg. |
+*/ |
+int sqlite3VdbeFinalize(Vdbe *p){ |
+ int rc = SQLITE_OK; |
+ if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
+ rc = sqlite3VdbeReset(p); |
+ assert( (rc & p->db->errMask)==rc ); |
+ } |
+ sqlite3VdbeDelete(p); |
+ return rc; |
+} |
+ |
+/* |
+** If parameter iOp is less than zero, then invoke the destructor for |
+** all auxiliary data pointers currently cached by the VM passed as |
+** the first argument. |
+** |
+** Or, if iOp is greater than or equal to zero, then the destructor is |
+** only invoked for those auxiliary data pointers created by the user |
+** function invoked by the OP_Function opcode at instruction iOp of |
+** VM pVdbe, and only then if: |
+** |
+** * the associated function parameter is the 32nd or later (counting |
+** from left to right), or |
+** |
+** * the corresponding bit in argument mask is clear (where the first |
+** function parameter corresponds to bit 0 etc.). |
+*/ |
+void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ |
+ AuxData **pp = &pVdbe->pAuxData; |
+ while( *pp ){ |
+ AuxData *pAux = *pp; |
+ if( (iOp<0) |
+ || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) |
+ ){ |
+ testcase( pAux->iArg==31 ); |
+ if( pAux->xDelete ){ |
+ pAux->xDelete(pAux->pAux); |
+ } |
+ *pp = pAux->pNext; |
+ sqlite3DbFree(pVdbe->db, pAux); |
+ }else{ |
+ pp= &pAux->pNext; |
+ } |
+ } |
+} |
+ |
+/* |
+** Free all memory associated with the Vdbe passed as the second argument, |
+** except for object itself, which is preserved. |
+** |
+** The difference between this function and sqlite3VdbeDelete() is that |
+** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
+** the database connection and frees the object itself. |
+*/ |
+void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ |
+ SubProgram *pSub, *pNext; |
+ int i; |
+ assert( p->db==0 || p->db==db ); |
+ releaseMemArray(p->aVar, p->nVar); |
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
+ for(pSub=p->pProgram; pSub; pSub=pNext){ |
+ pNext = pSub->pNext; |
+ vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
+ sqlite3DbFree(db, pSub); |
+ } |
+ for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); |
+ vdbeFreeOpArray(db, p->aOp, p->nOp); |
+ sqlite3DbFree(db, p->aColName); |
+ sqlite3DbFree(db, p->zSql); |
+ sqlite3DbFree(db, p->pFree); |
+} |
+ |
+/* |
+** Delete an entire VDBE. |
+*/ |
+void sqlite3VdbeDelete(Vdbe *p){ |
+ sqlite3 *db; |
+ |
+ if( NEVER(p==0) ) return; |
+ db = p->db; |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ sqlite3VdbeClearObject(db, p); |
+ if( p->pPrev ){ |
+ p->pPrev->pNext = p->pNext; |
+ }else{ |
+ assert( db->pVdbe==p ); |
+ db->pVdbe = p->pNext; |
+ } |
+ if( p->pNext ){ |
+ p->pNext->pPrev = p->pPrev; |
+ } |
+ p->magic = VDBE_MAGIC_DEAD; |
+ p->db = 0; |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** The cursor "p" has a pending seek operation that has not yet been |
+** carried out. Seek the cursor now. If an error occurs, return |
+** the appropriate error code. |
+*/ |
+static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ |
+ int res, rc; |
+#ifdef SQLITE_TEST |
+ extern int sqlite3_search_count; |
+#endif |
+ assert( p->deferredMoveto ); |
+ assert( p->isTable ); |
+ rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); |
+ if( rc ) return rc; |
+ if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
+#ifdef SQLITE_TEST |
+ sqlite3_search_count++; |
+#endif |
+ p->deferredMoveto = 0; |
+ p->cacheStatus = CACHE_STALE; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Something has moved cursor "p" out of place. Maybe the row it was |
+** pointed to was deleted out from under it. Or maybe the btree was |
+** rebalanced. Whatever the cause, try to restore "p" to the place it |
+** is supposed to be pointing. If the row was deleted out from under the |
+** cursor, set the cursor to point to a NULL row. |
+*/ |
+static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ |
+ int isDifferentRow, rc; |
+ assert( p->pCursor!=0 ); |
+ assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); |
+ rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); |
+ p->cacheStatus = CACHE_STALE; |
+ if( isDifferentRow ) p->nullRow = 1; |
+ return rc; |
+} |
+ |
+/* |
+** Check to ensure that the cursor is valid. Restore the cursor |
+** if need be. Return any I/O error from the restore operation. |
+*/ |
+int sqlite3VdbeCursorRestore(VdbeCursor *p){ |
+ if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ |
+ return handleMovedCursor(p); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Make sure the cursor p is ready to read or write the row to which it |
+** was last positioned. Return an error code if an OOM fault or I/O error |
+** prevents us from positioning the cursor to its correct position. |
+** |
+** If a MoveTo operation is pending on the given cursor, then do that |
+** MoveTo now. If no move is pending, check to see if the row has been |
+** deleted out from under the cursor and if it has, mark the row as |
+** a NULL row. |
+** |
+** If the cursor is already pointing to the correct row and that row has |
+** not been deleted out from under the cursor, then this routine is a no-op. |
+*/ |
+int sqlite3VdbeCursorMoveto(VdbeCursor *p){ |
+ if( p->deferredMoveto ){ |
+ return handleDeferredMoveto(p); |
+ } |
+ if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ |
+ return handleMovedCursor(p); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The following functions: |
+** |
+** sqlite3VdbeSerialType() |
+** sqlite3VdbeSerialTypeLen() |
+** sqlite3VdbeSerialLen() |
+** sqlite3VdbeSerialPut() |
+** sqlite3VdbeSerialGet() |
+** |
+** encapsulate the code that serializes values for storage in SQLite |
+** data and index records. Each serialized value consists of a |
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
+** integer, stored as a varint. |
+** |
+** In an SQLite index record, the serial type is stored directly before |
+** the blob of data that it corresponds to. In a table record, all serial |
+** types are stored at the start of the record, and the blobs of data at |
+** the end. Hence these functions allow the caller to handle the |
+** serial-type and data blob separately. |
+** |
+** The following table describes the various storage classes for data: |
+** |
+** serial type bytes of data type |
+** -------------- --------------- --------------- |
+** 0 0 NULL |
+** 1 1 signed integer |
+** 2 2 signed integer |
+** 3 3 signed integer |
+** 4 4 signed integer |
+** 5 6 signed integer |
+** 6 8 signed integer |
+** 7 8 IEEE float |
+** 8 0 Integer constant 0 |
+** 9 0 Integer constant 1 |
+** 10,11 reserved for expansion |
+** N>=12 and even (N-12)/2 BLOB |
+** N>=13 and odd (N-13)/2 text |
+** |
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
+** of SQLite will not understand those serial types. |
+*/ |
+ |
+/* |
+** Return the serial-type for the value stored in pMem. |
+*/ |
+u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ |
+ int flags = pMem->flags; |
+ u32 n; |
+ |
+ if( flags&MEM_Null ){ |
+ return 0; |
+ } |
+ if( flags&MEM_Int ){ |
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
+ i64 i = pMem->u.i; |
+ u64 u; |
+ if( i<0 ){ |
+ if( i<(-MAX_6BYTE) ) return 6; |
+ /* Previous test prevents: u = -(-9223372036854775808) */ |
+ u = -i; |
+ }else{ |
+ u = i; |
+ } |
+ if( u<=127 ){ |
+ return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; |
+ } |
+ if( u<=32767 ) return 2; |
+ if( u<=8388607 ) return 3; |
+ if( u<=2147483647 ) return 4; |
+ if( u<=MAX_6BYTE ) return 5; |
+ return 6; |
+ } |
+ if( flags&MEM_Real ){ |
+ return 7; |
+ } |
+ assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
+ assert( pMem->n>=0 ); |
+ n = (u32)pMem->n; |
+ if( flags & MEM_Zero ){ |
+ n += pMem->u.nZero; |
+ } |
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
+} |
+ |
+/* |
+** Return the length of the data corresponding to the supplied serial-type. |
+*/ |
+u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
+ if( serial_type>=12 ){ |
+ return (serial_type-12)/2; |
+ }else{ |
+ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; |
+ return aSize[serial_type]; |
+ } |
+} |
+ |
+/* |
+** If we are on an architecture with mixed-endian floating |
+** points (ex: ARM7) then swap the lower 4 bytes with the |
+** upper 4 bytes. Return the result. |
+** |
+** For most architectures, this is a no-op. |
+** |
+** (later): It is reported to me that the mixed-endian problem |
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
+** that early versions of GCC stored the two words of a 64-bit |
+** float in the wrong order. And that error has been propagated |
+** ever since. The blame is not necessarily with GCC, though. |
+** GCC might have just copying the problem from a prior compiler. |
+** I am also told that newer versions of GCC that follow a different |
+** ABI get the byte order right. |
+** |
+** Developers using SQLite on an ARM7 should compile and run their |
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
+** enabled, some asserts below will ensure that the byte order of |
+** floating point values is correct. |
+** |
+** (2007-08-30) Frank van Vugt has studied this problem closely |
+** and has send his findings to the SQLite developers. Frank |
+** writes that some Linux kernels offer floating point hardware |
+** emulation that uses only 32-bit mantissas instead of a full |
+** 48-bits as required by the IEEE standard. (This is the |
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
+** byte swapping becomes very complicated. To avoid problems, |
+** the necessary byte swapping is carried out using a 64-bit integer |
+** rather than a 64-bit float. Frank assures us that the code here |
+** works for him. We, the developers, have no way to independently |
+** verify this, but Frank seems to know what he is talking about |
+** so we trust him. |
+*/ |
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
+static u64 floatSwap(u64 in){ |
+ union { |
+ u64 r; |
+ u32 i[2]; |
+ } u; |
+ u32 t; |
+ |
+ u.r = in; |
+ t = u.i[0]; |
+ u.i[0] = u.i[1]; |
+ u.i[1] = t; |
+ return u.r; |
+} |
+# define swapMixedEndianFloat(X) X = floatSwap(X) |
+#else |
+# define swapMixedEndianFloat(X) |
+#endif |
+ |
+/* |
+** Write the serialized data blob for the value stored in pMem into |
+** buf. It is assumed that the caller has allocated sufficient space. |
+** Return the number of bytes written. |
+** |
+** nBuf is the amount of space left in buf[]. The caller is responsible |
+** for allocating enough space to buf[] to hold the entire field, exclusive |
+** of the pMem->u.nZero bytes for a MEM_Zero value. |
+** |
+** Return the number of bytes actually written into buf[]. The number |
+** of bytes in the zero-filled tail is included in the return value only |
+** if those bytes were zeroed in buf[]. |
+*/ |
+u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ |
+ u32 len; |
+ |
+ /* Integer and Real */ |
+ if( serial_type<=7 && serial_type>0 ){ |
+ u64 v; |
+ u32 i; |
+ if( serial_type==7 ){ |
+ assert( sizeof(v)==sizeof(pMem->u.r) ); |
+ memcpy(&v, &pMem->u.r, sizeof(v)); |
+ swapMixedEndianFloat(v); |
+ }else{ |
+ v = pMem->u.i; |
+ } |
+ len = i = sqlite3VdbeSerialTypeLen(serial_type); |
+ assert( i>0 ); |
+ do{ |
+ buf[--i] = (u8)(v&0xFF); |
+ v >>= 8; |
+ }while( i ); |
+ return len; |
+ } |
+ |
+ /* String or blob */ |
+ if( serial_type>=12 ){ |
+ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) |
+ == (int)sqlite3VdbeSerialTypeLen(serial_type) ); |
+ len = pMem->n; |
+ memcpy(buf, pMem->z, len); |
+ return len; |
+ } |
+ |
+ /* NULL or constants 0 or 1 */ |
+ return 0; |
+} |
+ |
+/* Input "x" is a sequence of unsigned characters that represent a |
+** big-endian integer. Return the equivalent native integer |
+*/ |
+#define ONE_BYTE_INT(x) ((i8)(x)[0]) |
+#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) |
+#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) |
+#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
+#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
+ |
+/* |
+** Deserialize the data blob pointed to by buf as serial type serial_type |
+** and store the result in pMem. Return the number of bytes read. |
+** |
+** This function is implemented as two separate routines for performance. |
+** The few cases that require local variables are broken out into a separate |
+** routine so that in most cases the overhead of moving the stack pointer |
+** is avoided. |
+*/ |
+static u32 SQLITE_NOINLINE serialGet( |
+ const unsigned char *buf, /* Buffer to deserialize from */ |
+ u32 serial_type, /* Serial type to deserialize */ |
+ Mem *pMem /* Memory cell to write value into */ |
+){ |
+ u64 x = FOUR_BYTE_UINT(buf); |
+ u32 y = FOUR_BYTE_UINT(buf+4); |
+ x = (x<<32) + y; |
+ if( serial_type==6 ){ |
+ pMem->u.i = *(i64*)&x; |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ }else{ |
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
+ /* Verify that integers and floating point values use the same |
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
+ ** defined that 64-bit floating point values really are mixed |
+ ** endian. |
+ */ |
+ static const u64 t1 = ((u64)0x3ff00000)<<32; |
+ static const double r1 = 1.0; |
+ u64 t2 = t1; |
+ swapMixedEndianFloat(t2); |
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
+#endif |
+ assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); |
+ swapMixedEndianFloat(x); |
+ memcpy(&pMem->u.r, &x, sizeof(x)); |
+ pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; |
+ } |
+ return 8; |
+} |
+u32 sqlite3VdbeSerialGet( |
+ const unsigned char *buf, /* Buffer to deserialize from */ |
+ u32 serial_type, /* Serial type to deserialize */ |
+ Mem *pMem /* Memory cell to write value into */ |
+){ |
+ switch( serial_type ){ |
+ case 10: /* Reserved for future use */ |
+ case 11: /* Reserved for future use */ |
+ case 0: { /* NULL */ |
+ pMem->flags = MEM_Null; |
+ break; |
+ } |
+ case 1: { /* 1-byte signed integer */ |
+ pMem->u.i = ONE_BYTE_INT(buf); |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ return 1; |
+ } |
+ case 2: { /* 2-byte signed integer */ |
+ pMem->u.i = TWO_BYTE_INT(buf); |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ return 2; |
+ } |
+ case 3: { /* 3-byte signed integer */ |
+ pMem->u.i = THREE_BYTE_INT(buf); |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ return 3; |
+ } |
+ case 4: { /* 4-byte signed integer */ |
+ pMem->u.i = FOUR_BYTE_INT(buf); |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ return 4; |
+ } |
+ case 5: { /* 6-byte signed integer */ |
+ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); |
+ pMem->flags = MEM_Int; |
+ testcase( pMem->u.i<0 ); |
+ return 6; |
+ } |
+ case 6: /* 8-byte signed integer */ |
+ case 7: { /* IEEE floating point */ |
+ /* These use local variables, so do them in a separate routine |
+ ** to avoid having to move the frame pointer in the common case */ |
+ return serialGet(buf,serial_type,pMem); |
+ } |
+ case 8: /* Integer 0 */ |
+ case 9: { /* Integer 1 */ |
+ pMem->u.i = serial_type-8; |
+ pMem->flags = MEM_Int; |
+ return 0; |
+ } |
+ default: { |
+ static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; |
+ pMem->z = (char *)buf; |
+ pMem->n = (serial_type-12)/2; |
+ pMem->flags = aFlag[serial_type&1]; |
+ return pMem->n; |
+ } |
+ } |
+ return 0; |
+} |
+/* |
+** This routine is used to allocate sufficient space for an UnpackedRecord |
+** structure large enough to be used with sqlite3VdbeRecordUnpack() if |
+** the first argument is a pointer to KeyInfo structure pKeyInfo. |
+** |
+** The space is either allocated using sqlite3DbMallocRaw() or from within |
+** the unaligned buffer passed via the second and third arguments (presumably |
+** stack space). If the former, then *ppFree is set to a pointer that should |
+** be eventually freed by the caller using sqlite3DbFree(). Or, if the |
+** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL |
+** before returning. |
+** |
+** If an OOM error occurs, NULL is returned. |
+*/ |
+UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( |
+ KeyInfo *pKeyInfo, /* Description of the record */ |
+ char *pSpace, /* Unaligned space available */ |
+ int szSpace, /* Size of pSpace[] in bytes */ |
+ char **ppFree /* OUT: Caller should free this pointer */ |
+){ |
+ UnpackedRecord *p; /* Unpacked record to return */ |
+ int nOff; /* Increment pSpace by nOff to align it */ |
+ int nByte; /* Number of bytes required for *p */ |
+ |
+ /* We want to shift the pointer pSpace up such that it is 8-byte aligned. |
+ ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift |
+ ** it by. If pSpace is already 8-byte aligned, nOff should be zero. |
+ */ |
+ nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; |
+ nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); |
+ if( nByte>szSpace+nOff ){ |
+ p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
+ *ppFree = (char *)p; |
+ if( !p ) return 0; |
+ }else{ |
+ p = (UnpackedRecord*)&pSpace[nOff]; |
+ *ppFree = 0; |
+ } |
+ |
+ p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; |
+ assert( pKeyInfo->aSortOrder!=0 ); |
+ p->pKeyInfo = pKeyInfo; |
+ p->nField = pKeyInfo->nField + 1; |
+ return p; |
+} |
+ |
+/* |
+** Given the nKey-byte encoding of a record in pKey[], populate the |
+** UnpackedRecord structure indicated by the fourth argument with the |
+** contents of the decoded record. |
+*/ |
+void sqlite3VdbeRecordUnpack( |
+ KeyInfo *pKeyInfo, /* Information about the record format */ |
+ int nKey, /* Size of the binary record */ |
+ const void *pKey, /* The binary record */ |
+ UnpackedRecord *p /* Populate this structure before returning. */ |
+){ |
+ const unsigned char *aKey = (const unsigned char *)pKey; |
+ int d; |
+ u32 idx; /* Offset in aKey[] to read from */ |
+ u16 u; /* Unsigned loop counter */ |
+ u32 szHdr; |
+ Mem *pMem = p->aMem; |
+ |
+ p->default_rc = 0; |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ idx = getVarint32(aKey, szHdr); |
+ d = szHdr; |
+ u = 0; |
+ while( idx<szHdr && d<=nKey ){ |
+ u32 serial_type; |
+ |
+ idx += getVarint32(&aKey[idx], serial_type); |
+ pMem->enc = pKeyInfo->enc; |
+ pMem->db = pKeyInfo->db; |
+ /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ |
+ pMem->szMalloc = 0; |
+ d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
+ pMem++; |
+ if( (++u)>=p->nField ) break; |
+ } |
+ assert( u<=pKeyInfo->nField + 1 ); |
+ p->nField = u; |
+} |
+ |
+#if SQLITE_DEBUG |
+/* |
+** This function compares two index or table record keys in the same way |
+** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), |
+** this function deserializes and compares values using the |
+** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used |
+** in assert() statements to ensure that the optimized code in |
+** sqlite3VdbeRecordCompare() returns results with these two primitives. |
+** |
+** Return true if the result of comparison is equivalent to desiredResult. |
+** Return false if there is a disagreement. |
+*/ |
+static int vdbeRecordCompareDebug( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ const UnpackedRecord *pPKey2, /* Right key */ |
+ int desiredResult /* Correct answer */ |
+){ |
+ u32 d1; /* Offset into aKey[] of next data element */ |
+ u32 idx1; /* Offset into aKey[] of next header element */ |
+ u32 szHdr1; /* Number of bytes in header */ |
+ int i = 0; |
+ int rc = 0; |
+ const unsigned char *aKey1 = (const unsigned char *)pKey1; |
+ KeyInfo *pKeyInfo; |
+ Mem mem1; |
+ |
+ pKeyInfo = pPKey2->pKeyInfo; |
+ if( pKeyInfo->db==0 ) return 1; |
+ mem1.enc = pKeyInfo->enc; |
+ mem1.db = pKeyInfo->db; |
+ /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
+ |
+ /* Compilers may complain that mem1.u.i is potentially uninitialized. |
+ ** We could initialize it, as shown here, to silence those complaints. |
+ ** But in fact, mem1.u.i will never actually be used uninitialized, and doing |
+ ** the unnecessary initialization has a measurable negative performance |
+ ** impact, since this routine is a very high runner. And so, we choose |
+ ** to ignore the compiler warnings and leave this variable uninitialized. |
+ */ |
+ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
+ |
+ idx1 = getVarint32(aKey1, szHdr1); |
+ d1 = szHdr1; |
+ assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); |
+ assert( pKeyInfo->aSortOrder!=0 ); |
+ assert( pKeyInfo->nField>0 ); |
+ assert( idx1<=szHdr1 || CORRUPT_DB ); |
+ do{ |
+ u32 serial_type1; |
+ |
+ /* Read the serial types for the next element in each key. */ |
+ idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
+ |
+ /* Verify that there is enough key space remaining to avoid |
+ ** a buffer overread. The "d1+serial_type1+2" subexpression will |
+ ** always be greater than or equal to the amount of required key space. |
+ ** Use that approximation to avoid the more expensive call to |
+ ** sqlite3VdbeSerialTypeLen() in the common case. |
+ */ |
+ if( d1+serial_type1+2>(u32)nKey1 |
+ && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 |
+ ){ |
+ break; |
+ } |
+ |
+ /* Extract the values to be compared. |
+ */ |
+ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
+ |
+ /* Do the comparison |
+ */ |
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); |
+ if( rc!=0 ){ |
+ assert( mem1.szMalloc==0 ); /* See comment below */ |
+ if( pKeyInfo->aSortOrder[i] ){ |
+ rc = -rc; /* Invert the result for DESC sort order. */ |
+ } |
+ goto debugCompareEnd; |
+ } |
+ i++; |
+ }while( idx1<szHdr1 && i<pPKey2->nField ); |
+ |
+ /* No memory allocation is ever used on mem1. Prove this using |
+ ** the following assert(). If the assert() fails, it indicates a |
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
+ */ |
+ assert( mem1.szMalloc==0 ); |
+ |
+ /* rc==0 here means that one of the keys ran out of fields and |
+ ** all the fields up to that point were equal. Return the default_rc |
+ ** value. */ |
+ rc = pPKey2->default_rc; |
+ |
+debugCompareEnd: |
+ if( desiredResult==0 && rc==0 ) return 1; |
+ if( desiredResult<0 && rc<0 ) return 1; |
+ if( desiredResult>0 && rc>0 ) return 1; |
+ if( CORRUPT_DB ) return 1; |
+ if( pKeyInfo->db->mallocFailed ) return 1; |
+ return 0; |
+} |
+#endif |
+ |
+/* |
+** Both *pMem1 and *pMem2 contain string values. Compare the two values |
+** using the collation sequence pColl. As usual, return a negative , zero |
+** or positive value if *pMem1 is less than, equal to or greater than |
+** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". |
+*/ |
+static int vdbeCompareMemString( |
+ const Mem *pMem1, |
+ const Mem *pMem2, |
+ const CollSeq *pColl, |
+ u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ |
+){ |
+ if( pMem1->enc==pColl->enc ){ |
+ /* The strings are already in the correct encoding. Call the |
+ ** comparison function directly */ |
+ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
+ }else{ |
+ int rc; |
+ const void *v1, *v2; |
+ int n1, n2; |
+ Mem c1; |
+ Mem c2; |
+ sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); |
+ sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); |
+ sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
+ sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
+ v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
+ n1 = v1==0 ? 0 : c1.n; |
+ v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
+ n2 = v2==0 ? 0 : c2.n; |
+ rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
+ sqlite3VdbeMemRelease(&c1); |
+ sqlite3VdbeMemRelease(&c2); |
+ if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; |
+ return rc; |
+ } |
+} |
+ |
+/* |
+** Compare two blobs. Return negative, zero, or positive if the first |
+** is less than, equal to, or greater than the second, respectively. |
+** If one blob is a prefix of the other, then the shorter is the lessor. |
+*/ |
+static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ |
+ int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); |
+ if( c ) return c; |
+ return pB1->n - pB2->n; |
+} |
+ |
+ |
+/* |
+** Compare the values contained by the two memory cells, returning |
+** negative, zero or positive if pMem1 is less than, equal to, or greater |
+** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
+** and reals) sorted numerically, followed by text ordered by the collating |
+** sequence pColl and finally blob's ordered by memcmp(). |
+** |
+** Two NULL values are considered equal by this function. |
+*/ |
+int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
+ int f1, f2; |
+ int combined_flags; |
+ |
+ f1 = pMem1->flags; |
+ f2 = pMem2->flags; |
+ combined_flags = f1|f2; |
+ assert( (combined_flags & MEM_RowSet)==0 ); |
+ |
+ /* If one value is NULL, it is less than the other. If both values |
+ ** are NULL, return 0. |
+ */ |
+ if( combined_flags&MEM_Null ){ |
+ return (f2&MEM_Null) - (f1&MEM_Null); |
+ } |
+ |
+ /* If one value is a number and the other is not, the number is less. |
+ ** If both are numbers, compare as reals if one is a real, or as integers |
+ ** if both values are integers. |
+ */ |
+ if( combined_flags&(MEM_Int|MEM_Real) ){ |
+ double r1, r2; |
+ if( (f1 & f2 & MEM_Int)!=0 ){ |
+ if( pMem1->u.i < pMem2->u.i ) return -1; |
+ if( pMem1->u.i > pMem2->u.i ) return 1; |
+ return 0; |
+ } |
+ if( (f1&MEM_Real)!=0 ){ |
+ r1 = pMem1->u.r; |
+ }else if( (f1&MEM_Int)!=0 ){ |
+ r1 = (double)pMem1->u.i; |
+ }else{ |
+ return 1; |
+ } |
+ if( (f2&MEM_Real)!=0 ){ |
+ r2 = pMem2->u.r; |
+ }else if( (f2&MEM_Int)!=0 ){ |
+ r2 = (double)pMem2->u.i; |
+ }else{ |
+ return -1; |
+ } |
+ if( r1<r2 ) return -1; |
+ if( r1>r2 ) return 1; |
+ return 0; |
+ } |
+ |
+ /* If one value is a string and the other is a blob, the string is less. |
+ ** If both are strings, compare using the collating functions. |
+ */ |
+ if( combined_flags&MEM_Str ){ |
+ if( (f1 & MEM_Str)==0 ){ |
+ return 1; |
+ } |
+ if( (f2 & MEM_Str)==0 ){ |
+ return -1; |
+ } |
+ |
+ assert( pMem1->enc==pMem2->enc ); |
+ assert( pMem1->enc==SQLITE_UTF8 || |
+ pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
+ |
+ /* The collation sequence must be defined at this point, even if |
+ ** the user deletes the collation sequence after the vdbe program is |
+ ** compiled (this was not always the case). |
+ */ |
+ assert( !pColl || pColl->xCmp ); |
+ |
+ if( pColl ){ |
+ return vdbeCompareMemString(pMem1, pMem2, pColl, 0); |
+ } |
+ /* If a NULL pointer was passed as the collate function, fall through |
+ ** to the blob case and use memcmp(). */ |
+ } |
+ |
+ /* Both values must be blobs. Compare using memcmp(). */ |
+ return sqlite3BlobCompare(pMem1, pMem2); |
+} |
+ |
+ |
+/* |
+** The first argument passed to this function is a serial-type that |
+** corresponds to an integer - all values between 1 and 9 inclusive |
+** except 7. The second points to a buffer containing an integer value |
+** serialized according to serial_type. This function deserializes |
+** and returns the value. |
+*/ |
+static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ |
+ u32 y; |
+ assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); |
+ switch( serial_type ){ |
+ case 0: |
+ case 1: |
+ testcase( aKey[0]&0x80 ); |
+ return ONE_BYTE_INT(aKey); |
+ case 2: |
+ testcase( aKey[0]&0x80 ); |
+ return TWO_BYTE_INT(aKey); |
+ case 3: |
+ testcase( aKey[0]&0x80 ); |
+ return THREE_BYTE_INT(aKey); |
+ case 4: { |
+ testcase( aKey[0]&0x80 ); |
+ y = FOUR_BYTE_UINT(aKey); |
+ return (i64)*(int*)&y; |
+ } |
+ case 5: { |
+ testcase( aKey[0]&0x80 ); |
+ return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
+ } |
+ case 6: { |
+ u64 x = FOUR_BYTE_UINT(aKey); |
+ testcase( aKey[0]&0x80 ); |
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
+ return (i64)*(i64*)&x; |
+ } |
+ } |
+ |
+ return (serial_type - 8); |
+} |
+ |
+/* |
+** This function compares the two table rows or index records |
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
+** or positive integer if key1 is less than, equal to or |
+** greater than key2. The {nKey1, pKey1} key must be a blob |
+** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 |
+** key must be a parsed key such as obtained from |
+** sqlite3VdbeParseRecord. |
+** |
+** If argument bSkip is non-zero, it is assumed that the caller has already |
+** determined that the first fields of the keys are equal. |
+** |
+** Key1 and Key2 do not have to contain the same number of fields. If all |
+** fields that appear in both keys are equal, then pPKey2->default_rc is |
+** returned. |
+** |
+** If database corruption is discovered, set pPKey2->errCode to |
+** SQLITE_CORRUPT and return 0. If an OOM error is encountered, |
+** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the |
+** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). |
+*/ |
+static int vdbeRecordCompareWithSkip( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ UnpackedRecord *pPKey2, /* Right key */ |
+ int bSkip /* If true, skip the first field */ |
+){ |
+ u32 d1; /* Offset into aKey[] of next data element */ |
+ int i; /* Index of next field to compare */ |
+ u32 szHdr1; /* Size of record header in bytes */ |
+ u32 idx1; /* Offset of first type in header */ |
+ int rc = 0; /* Return value */ |
+ Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ |
+ KeyInfo *pKeyInfo = pPKey2->pKeyInfo; |
+ const unsigned char *aKey1 = (const unsigned char *)pKey1; |
+ Mem mem1; |
+ |
+ /* If bSkip is true, then the caller has already determined that the first |
+ ** two elements in the keys are equal. Fix the various stack variables so |
+ ** that this routine begins comparing at the second field. */ |
+ if( bSkip ){ |
+ u32 s1; |
+ idx1 = 1 + getVarint32(&aKey1[1], s1); |
+ szHdr1 = aKey1[0]; |
+ d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); |
+ i = 1; |
+ pRhs++; |
+ }else{ |
+ idx1 = getVarint32(aKey1, szHdr1); |
+ d1 = szHdr1; |
+ if( d1>(unsigned)nKey1 ){ |
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
+ return 0; /* Corruption */ |
+ } |
+ i = 0; |
+ } |
+ |
+ VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
+ assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField |
+ || CORRUPT_DB ); |
+ assert( pPKey2->pKeyInfo->aSortOrder!=0 ); |
+ assert( pPKey2->pKeyInfo->nField>0 ); |
+ assert( idx1<=szHdr1 || CORRUPT_DB ); |
+ do{ |
+ u32 serial_type; |
+ |
+ /* RHS is an integer */ |
+ if( pRhs->flags & MEM_Int ){ |
+ serial_type = aKey1[idx1]; |
+ testcase( serial_type==12 ); |
+ if( serial_type>=12 ){ |
+ rc = +1; |
+ }else if( serial_type==0 ){ |
+ rc = -1; |
+ }else if( serial_type==7 ){ |
+ double rhs = (double)pRhs->u.i; |
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
+ if( mem1.u.r<rhs ){ |
+ rc = -1; |
+ }else if( mem1.u.r>rhs ){ |
+ rc = +1; |
+ } |
+ }else{ |
+ i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); |
+ i64 rhs = pRhs->u.i; |
+ if( lhs<rhs ){ |
+ rc = -1; |
+ }else if( lhs>rhs ){ |
+ rc = +1; |
+ } |
+ } |
+ } |
+ |
+ /* RHS is real */ |
+ else if( pRhs->flags & MEM_Real ){ |
+ serial_type = aKey1[idx1]; |
+ if( serial_type>=12 ){ |
+ rc = +1; |
+ }else if( serial_type==0 ){ |
+ rc = -1; |
+ }else{ |
+ double rhs = pRhs->u.r; |
+ double lhs; |
+ sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
+ if( serial_type==7 ){ |
+ lhs = mem1.u.r; |
+ }else{ |
+ lhs = (double)mem1.u.i; |
+ } |
+ if( lhs<rhs ){ |
+ rc = -1; |
+ }else if( lhs>rhs ){ |
+ rc = +1; |
+ } |
+ } |
+ } |
+ |
+ /* RHS is a string */ |
+ else if( pRhs->flags & MEM_Str ){ |
+ getVarint32(&aKey1[idx1], serial_type); |
+ testcase( serial_type==12 ); |
+ if( serial_type<12 ){ |
+ rc = -1; |
+ }else if( !(serial_type & 0x01) ){ |
+ rc = +1; |
+ }else{ |
+ mem1.n = (serial_type - 12) / 2; |
+ testcase( (d1+mem1.n)==(unsigned)nKey1 ); |
+ testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); |
+ if( (d1+mem1.n) > (unsigned)nKey1 ){ |
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
+ return 0; /* Corruption */ |
+ }else if( pKeyInfo->aColl[i] ){ |
+ mem1.enc = pKeyInfo->enc; |
+ mem1.db = pKeyInfo->db; |
+ mem1.flags = MEM_Str; |
+ mem1.z = (char*)&aKey1[d1]; |
+ rc = vdbeCompareMemString( |
+ &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode |
+ ); |
+ }else{ |
+ int nCmp = MIN(mem1.n, pRhs->n); |
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
+ if( rc==0 ) rc = mem1.n - pRhs->n; |
+ } |
+ } |
+ } |
+ |
+ /* RHS is a blob */ |
+ else if( pRhs->flags & MEM_Blob ){ |
+ getVarint32(&aKey1[idx1], serial_type); |
+ testcase( serial_type==12 ); |
+ if( serial_type<12 || (serial_type & 0x01) ){ |
+ rc = -1; |
+ }else{ |
+ int nStr = (serial_type - 12) / 2; |
+ testcase( (d1+nStr)==(unsigned)nKey1 ); |
+ testcase( (d1+nStr+1)==(unsigned)nKey1 ); |
+ if( (d1+nStr) > (unsigned)nKey1 ){ |
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
+ return 0; /* Corruption */ |
+ }else{ |
+ int nCmp = MIN(nStr, pRhs->n); |
+ rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
+ if( rc==0 ) rc = nStr - pRhs->n; |
+ } |
+ } |
+ } |
+ |
+ /* RHS is null */ |
+ else{ |
+ serial_type = aKey1[idx1]; |
+ rc = (serial_type!=0); |
+ } |
+ |
+ if( rc!=0 ){ |
+ if( pKeyInfo->aSortOrder[i] ){ |
+ rc = -rc; |
+ } |
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); |
+ assert( mem1.szMalloc==0 ); /* See comment below */ |
+ return rc; |
+ } |
+ |
+ i++; |
+ pRhs++; |
+ d1 += sqlite3VdbeSerialTypeLen(serial_type); |
+ idx1 += sqlite3VarintLen(serial_type); |
+ }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); |
+ |
+ /* No memory allocation is ever used on mem1. Prove this using |
+ ** the following assert(). If the assert() fails, it indicates a |
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ |
+ assert( mem1.szMalloc==0 ); |
+ |
+ /* rc==0 here means that one or both of the keys ran out of fields and |
+ ** all the fields up to that point were equal. Return the default_rc |
+ ** value. */ |
+ assert( CORRUPT_DB |
+ || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) |
+ || pKeyInfo->db->mallocFailed |
+ ); |
+ return pPKey2->default_rc; |
+} |
+int sqlite3VdbeRecordCompare( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ UnpackedRecord *pPKey2 /* Right key */ |
+){ |
+ return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); |
+} |
+ |
+ |
+/* |
+** This function is an optimized version of sqlite3VdbeRecordCompare() |
+** that (a) the first field of pPKey2 is an integer, and (b) the |
+** size-of-header varint at the start of (pKey1/nKey1) fits in a single |
+** byte (i.e. is less than 128). |
+** |
+** To avoid concerns about buffer overreads, this routine is only used |
+** on schemas where the maximum valid header size is 63 bytes or less. |
+*/ |
+static int vdbeRecordCompareInt( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ UnpackedRecord *pPKey2 /* Right key */ |
+){ |
+ const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; |
+ int serial_type = ((const u8*)pKey1)[1]; |
+ int res; |
+ u32 y; |
+ u64 x; |
+ i64 v = pPKey2->aMem[0].u.i; |
+ i64 lhs; |
+ |
+ assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); |
+ switch( serial_type ){ |
+ case 1: { /* 1-byte signed integer */ |
+ lhs = ONE_BYTE_INT(aKey); |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 2: { /* 2-byte signed integer */ |
+ lhs = TWO_BYTE_INT(aKey); |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 3: { /* 3-byte signed integer */ |
+ lhs = THREE_BYTE_INT(aKey); |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 4: { /* 4-byte signed integer */ |
+ y = FOUR_BYTE_UINT(aKey); |
+ lhs = (i64)*(int*)&y; |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 5: { /* 6-byte signed integer */ |
+ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 6: { /* 8-byte signed integer */ |
+ x = FOUR_BYTE_UINT(aKey); |
+ x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
+ lhs = *(i64*)&x; |
+ testcase( lhs<0 ); |
+ break; |
+ } |
+ case 8: |
+ lhs = 0; |
+ break; |
+ case 9: |
+ lhs = 1; |
+ break; |
+ |
+ /* This case could be removed without changing the results of running |
+ ** this code. Including it causes gcc to generate a faster switch |
+ ** statement (since the range of switch targets now starts at zero and |
+ ** is contiguous) but does not cause any duplicate code to be generated |
+ ** (as gcc is clever enough to combine the two like cases). Other |
+ ** compilers might be similar. */ |
+ case 0: case 7: |
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
+ |
+ default: |
+ return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
+ } |
+ |
+ if( v>lhs ){ |
+ res = pPKey2->r1; |
+ }else if( v<lhs ){ |
+ res = pPKey2->r2; |
+ }else if( pPKey2->nField>1 ){ |
+ /* The first fields of the two keys are equal. Compare the trailing |
+ ** fields. */ |
+ res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
+ }else{ |
+ /* The first fields of the two keys are equal and there are no trailing |
+ ** fields. Return pPKey2->default_rc in this case. */ |
+ res = pPKey2->default_rc; |
+ } |
+ |
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); |
+ return res; |
+} |
+ |
+/* |
+** This function is an optimized version of sqlite3VdbeRecordCompare() |
+** that (a) the first field of pPKey2 is a string, that (b) the first field |
+** uses the collation sequence BINARY and (c) that the size-of-header varint |
+** at the start of (pKey1/nKey1) fits in a single byte. |
+*/ |
+static int vdbeRecordCompareString( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ UnpackedRecord *pPKey2 /* Right key */ |
+){ |
+ const u8 *aKey1 = (const u8*)pKey1; |
+ int serial_type; |
+ int res; |
+ |
+ getVarint32(&aKey1[1], serial_type); |
+ if( serial_type<12 ){ |
+ res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ |
+ }else if( !(serial_type & 0x01) ){ |
+ res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ |
+ }else{ |
+ int nCmp; |
+ int nStr; |
+ int szHdr = aKey1[0]; |
+ |
+ nStr = (serial_type-12) / 2; |
+ if( (szHdr + nStr) > nKey1 ){ |
+ pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
+ return 0; /* Corruption */ |
+ } |
+ nCmp = MIN( pPKey2->aMem[0].n, nStr ); |
+ res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); |
+ |
+ if( res==0 ){ |
+ res = nStr - pPKey2->aMem[0].n; |
+ if( res==0 ){ |
+ if( pPKey2->nField>1 ){ |
+ res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
+ }else{ |
+ res = pPKey2->default_rc; |
+ } |
+ }else if( res>0 ){ |
+ res = pPKey2->r2; |
+ }else{ |
+ res = pPKey2->r1; |
+ } |
+ }else if( res>0 ){ |
+ res = pPKey2->r2; |
+ }else{ |
+ res = pPKey2->r1; |
+ } |
+ } |
+ |
+ assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) |
+ || CORRUPT_DB |
+ || pPKey2->pKeyInfo->db->mallocFailed |
+ ); |
+ return res; |
+} |
+ |
+/* |
+** Return a pointer to an sqlite3VdbeRecordCompare() compatible function |
+** suitable for comparing serialized records to the unpacked record passed |
+** as the only argument. |
+*/ |
+RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ |
+ /* varintRecordCompareInt() and varintRecordCompareString() both assume |
+ ** that the size-of-header varint that occurs at the start of each record |
+ ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() |
+ ** also assumes that it is safe to overread a buffer by at least the |
+ ** maximum possible legal header size plus 8 bytes. Because there is |
+ ** guaranteed to be at least 74 (but not 136) bytes of padding following each |
+ ** buffer passed to varintRecordCompareInt() this makes it convenient to |
+ ** limit the size of the header to 64 bytes in cases where the first field |
+ ** is an integer. |
+ ** |
+ ** The easiest way to enforce this limit is to consider only records with |
+ ** 13 fields or less. If the first field is an integer, the maximum legal |
+ ** header size is (12*5 + 1 + 1) bytes. */ |
+ if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ |
+ int flags = p->aMem[0].flags; |
+ if( p->pKeyInfo->aSortOrder[0] ){ |
+ p->r1 = 1; |
+ p->r2 = -1; |
+ }else{ |
+ p->r1 = -1; |
+ p->r2 = 1; |
+ } |
+ if( (flags & MEM_Int) ){ |
+ return vdbeRecordCompareInt; |
+ } |
+ testcase( flags & MEM_Real ); |
+ testcase( flags & MEM_Null ); |
+ testcase( flags & MEM_Blob ); |
+ if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ |
+ assert( flags & MEM_Str ); |
+ return vdbeRecordCompareString; |
+ } |
+ } |
+ |
+ return sqlite3VdbeRecordCompare; |
+} |
+ |
+/* |
+** pCur points at an index entry created using the OP_MakeRecord opcode. |
+** Read the rowid (the last field in the record) and store it in *rowid. |
+** Return SQLITE_OK if everything works, or an error code otherwise. |
+** |
+** pCur might be pointing to text obtained from a corrupt database file. |
+** So the content cannot be trusted. Do appropriate checks on the content. |
+*/ |
+int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
+ i64 nCellKey = 0; |
+ int rc; |
+ u32 szHdr; /* Size of the header */ |
+ u32 typeRowid; /* Serial type of the rowid */ |
+ u32 lenRowid; /* Size of the rowid */ |
+ Mem m, v; |
+ |
+ /* Get the size of the index entry. Only indices entries of less |
+ ** than 2GiB are support - anything large must be database corruption. |
+ ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
+ ** this code can safely assume that nCellKey is 32-bits |
+ */ |
+ assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); |
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
+ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
+ |
+ /* Read in the complete content of the index entry */ |
+ sqlite3VdbeMemInit(&m, db, 0); |
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); |
+ if( rc ){ |
+ return rc; |
+ } |
+ |
+ /* The index entry must begin with a header size */ |
+ (void)getVarint32((u8*)m.z, szHdr); |
+ testcase( szHdr==3 ); |
+ testcase( szHdr==m.n ); |
+ if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ |
+ /* The last field of the index should be an integer - the ROWID. |
+ ** Verify that the last entry really is an integer. */ |
+ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
+ testcase( typeRowid==1 ); |
+ testcase( typeRowid==2 ); |
+ testcase( typeRowid==3 ); |
+ testcase( typeRowid==4 ); |
+ testcase( typeRowid==5 ); |
+ testcase( typeRowid==6 ); |
+ testcase( typeRowid==8 ); |
+ testcase( typeRowid==9 ); |
+ if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
+ testcase( (u32)m.n==szHdr+lenRowid ); |
+ if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ |
+ /* Fetch the integer off the end of the index record */ |
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
+ *rowid = v.u.i; |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_OK; |
+ |
+ /* Jump here if database corruption is detected after m has been |
+ ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
+idx_rowid_corruption: |
+ testcase( m.szMalloc!=0 ); |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_CORRUPT_BKPT; |
+} |
+ |
+/* |
+** Compare the key of the index entry that cursor pC is pointing to against |
+** the key string in pUnpacked. Write into *pRes a number |
+** that is negative, zero, or positive if pC is less than, equal to, |
+** or greater than pUnpacked. Return SQLITE_OK on success. |
+** |
+** pUnpacked is either created without a rowid or is truncated so that it |
+** omits the rowid at the end. The rowid at the end of the index entry |
+** is ignored as well. Hence, this routine only compares the prefixes |
+** of the keys prior to the final rowid, not the entire key. |
+*/ |
+int sqlite3VdbeIdxKeyCompare( |
+ sqlite3 *db, /* Database connection */ |
+ VdbeCursor *pC, /* The cursor to compare against */ |
+ UnpackedRecord *pUnpacked, /* Unpacked version of key */ |
+ int *res /* Write the comparison result here */ |
+){ |
+ i64 nCellKey = 0; |
+ int rc; |
+ BtCursor *pCur = pC->pCursor; |
+ Mem m; |
+ |
+ assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); |
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
+ /* nCellKey will always be between 0 and 0xffffffff because of the way |
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
+ *res = 0; |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ sqlite3VdbeMemInit(&m, db, 0); |
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); |
+ if( rc ){ |
+ return rc; |
+ } |
+ *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This routine sets the value to be returned by subsequent calls to |
+** sqlite3_changes() on the database handle 'db'. |
+*/ |
+void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ db->nChange = nChange; |
+ db->nTotalChange += nChange; |
+} |
+ |
+/* |
+** Set a flag in the vdbe to update the change counter when it is finalised |
+** or reset. |
+*/ |
+void sqlite3VdbeCountChanges(Vdbe *v){ |
+ v->changeCntOn = 1; |
+} |
+ |
+/* |
+** Mark every prepared statement associated with a database connection |
+** as expired. |
+** |
+** An expired statement means that recompilation of the statement is |
+** recommend. Statements expire when things happen that make their |
+** programs obsolete. Removing user-defined functions or collating |
+** sequences, or changing an authorization function are the types of |
+** things that make prepared statements obsolete. |
+*/ |
+void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
+ Vdbe *p; |
+ for(p = db->pVdbe; p; p=p->pNext){ |
+ p->expired = 1; |
+ } |
+} |
+ |
+/* |
+** Return the database associated with the Vdbe. |
+*/ |
+sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
+ return v->db; |
+} |
+ |
+/* |
+** Return a pointer to an sqlite3_value structure containing the value bound |
+** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
+** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
+** constants) to the value before returning it. |
+** |
+** The returned value must be freed by the caller using sqlite3ValueFree(). |
+*/ |
+sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ |
+ assert( iVar>0 ); |
+ if( v ){ |
+ Mem *pMem = &v->aVar[iVar-1]; |
+ if( 0==(pMem->flags & MEM_Null) ){ |
+ sqlite3_value *pRet = sqlite3ValueNew(v->db); |
+ if( pRet ){ |
+ sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
+ sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
+ } |
+ return pRet; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Configure SQL variable iVar so that binding a new value to it signals |
+** to sqlite3_reoptimize() that re-preparing the statement may result |
+** in a better query plan. |
+*/ |
+void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
+ assert( iVar>0 ); |
+ if( iVar>32 ){ |
+ v->expmask = 0xffffffff; |
+ }else{ |
+ v->expmask |= ((u32)1 << (iVar-1)); |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored |
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored |
+** in memory obtained from sqlite3DbMalloc). |
+*/ |
+void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ |
+ sqlite3 *db = p->db; |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); |
+ sqlite3_free(pVtab->zErrMsg); |
+ pVtab->zErrMsg = 0; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |