OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2003 September 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code used for creating, destroying, and populating |
| 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 #include "vdbeInt.h" |
| 17 |
| 18 /* |
| 19 ** Create a new virtual database engine. |
| 20 */ |
| 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ |
| 22 sqlite3 *db = pParse->db; |
| 23 Vdbe *p; |
| 24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); |
| 25 if( p==0 ) return 0; |
| 26 p->db = db; |
| 27 if( db->pVdbe ){ |
| 28 db->pVdbe->pPrev = p; |
| 29 } |
| 30 p->pNext = db->pVdbe; |
| 31 p->pPrev = 0; |
| 32 db->pVdbe = p; |
| 33 p->magic = VDBE_MAGIC_INIT; |
| 34 p->pParse = pParse; |
| 35 assert( pParse->aLabel==0 ); |
| 36 assert( pParse->nLabel==0 ); |
| 37 assert( pParse->nOpAlloc==0 ); |
| 38 return p; |
| 39 } |
| 40 |
| 41 /* |
| 42 ** Remember the SQL string for a prepared statement. |
| 43 */ |
| 44 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ |
| 45 assert( isPrepareV2==1 || isPrepareV2==0 ); |
| 46 if( p==0 ) return; |
| 47 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) |
| 48 if( !isPrepareV2 ) return; |
| 49 #endif |
| 50 assert( p->zSql==0 ); |
| 51 p->zSql = sqlite3DbStrNDup(p->db, z, n); |
| 52 p->isPrepareV2 = (u8)isPrepareV2; |
| 53 } |
| 54 |
| 55 /* |
| 56 ** Return the SQL associated with a prepared statement |
| 57 */ |
| 58 const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
| 59 Vdbe *p = (Vdbe *)pStmt; |
| 60 return (p && p->isPrepareV2) ? p->zSql : 0; |
| 61 } |
| 62 |
| 63 /* |
| 64 ** Swap all content between two VDBE structures. |
| 65 */ |
| 66 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
| 67 Vdbe tmp, *pTmp; |
| 68 char *zTmp; |
| 69 tmp = *pA; |
| 70 *pA = *pB; |
| 71 *pB = tmp; |
| 72 pTmp = pA->pNext; |
| 73 pA->pNext = pB->pNext; |
| 74 pB->pNext = pTmp; |
| 75 pTmp = pA->pPrev; |
| 76 pA->pPrev = pB->pPrev; |
| 77 pB->pPrev = pTmp; |
| 78 zTmp = pA->zSql; |
| 79 pA->zSql = pB->zSql; |
| 80 pB->zSql = zTmp; |
| 81 pB->isPrepareV2 = pA->isPrepareV2; |
| 82 } |
| 83 |
| 84 /* |
| 85 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger |
| 86 ** than its current size. nOp is guaranteed to be less than or equal |
| 87 ** to 1024/sizeof(Op). |
| 88 ** |
| 89 ** If an out-of-memory error occurs while resizing the array, return |
| 90 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain |
| 91 ** unchanged (this is so that any opcodes already allocated can be |
| 92 ** correctly deallocated along with the rest of the Vdbe). |
| 93 */ |
| 94 static int growOpArray(Vdbe *v, int nOp){ |
| 95 VdbeOp *pNew; |
| 96 Parse *p = v->pParse; |
| 97 |
| 98 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force |
| 99 ** more frequent reallocs and hence provide more opportunities for |
| 100 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used |
| 101 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array |
| 102 ** by the minimum* amount required until the size reaches 512. Normal |
| 103 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current |
| 104 ** size of the op array or add 1KB of space, whichever is smaller. */ |
| 105 #ifdef SQLITE_TEST_REALLOC_STRESS |
| 106 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); |
| 107 #else |
| 108 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
| 109 UNUSED_PARAMETER(nOp); |
| 110 #endif |
| 111 |
| 112 assert( nOp<=(1024/sizeof(Op)) ); |
| 113 assert( nNew>=(p->nOpAlloc+nOp) ); |
| 114 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); |
| 115 if( pNew ){ |
| 116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); |
| 117 v->aOp = pNew; |
| 118 } |
| 119 return (pNew ? SQLITE_OK : SQLITE_NOMEM); |
| 120 } |
| 121 |
| 122 #ifdef SQLITE_DEBUG |
| 123 /* This routine is just a convenient place to set a breakpoint that will |
| 124 ** fire after each opcode is inserted and displayed using |
| 125 ** "PRAGMA vdbe_addoptrace=on". |
| 126 */ |
| 127 static void test_addop_breakpoint(void){ |
| 128 static int n = 0; |
| 129 n++; |
| 130 } |
| 131 #endif |
| 132 |
| 133 /* |
| 134 ** Add a new instruction to the list of instructions current in the |
| 135 ** VDBE. Return the address of the new instruction. |
| 136 ** |
| 137 ** Parameters: |
| 138 ** |
| 139 ** p Pointer to the VDBE |
| 140 ** |
| 141 ** op The opcode for this instruction |
| 142 ** |
| 143 ** p1, p2, p3 Operands |
| 144 ** |
| 145 ** Use the sqlite3VdbeResolveLabel() function to fix an address and |
| 146 ** the sqlite3VdbeChangeP4() function to change the value of the P4 |
| 147 ** operand. |
| 148 */ |
| 149 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| 150 int i; |
| 151 VdbeOp *pOp; |
| 152 |
| 153 i = p->nOp; |
| 154 assert( p->magic==VDBE_MAGIC_INIT ); |
| 155 assert( op>0 && op<0xff ); |
| 156 if( p->pParse->nOpAlloc<=i ){ |
| 157 if( growOpArray(p, 1) ){ |
| 158 return 1; |
| 159 } |
| 160 } |
| 161 p->nOp++; |
| 162 pOp = &p->aOp[i]; |
| 163 pOp->opcode = (u8)op; |
| 164 pOp->p5 = 0; |
| 165 pOp->p1 = p1; |
| 166 pOp->p2 = p2; |
| 167 pOp->p3 = p3; |
| 168 pOp->p4.p = 0; |
| 169 pOp->p4type = P4_NOTUSED; |
| 170 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 171 pOp->zComment = 0; |
| 172 #endif |
| 173 #ifdef SQLITE_DEBUG |
| 174 if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| 175 int jj, kk; |
| 176 Parse *pParse = p->pParse; |
| 177 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){ |
| 178 struct yColCache *x = pParse->aColCache + jj; |
| 179 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue; |
| 180 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); |
| 181 kk++; |
| 182 } |
| 183 if( kk ) printf("\n"); |
| 184 sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
| 185 test_addop_breakpoint(); |
| 186 } |
| 187 #endif |
| 188 #ifdef VDBE_PROFILE |
| 189 pOp->cycles = 0; |
| 190 pOp->cnt = 0; |
| 191 #endif |
| 192 #ifdef SQLITE_VDBE_COVERAGE |
| 193 pOp->iSrcLine = 0; |
| 194 #endif |
| 195 return i; |
| 196 } |
| 197 int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
| 198 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
| 199 } |
| 200 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
| 201 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
| 202 } |
| 203 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
| 204 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
| 205 } |
| 206 |
| 207 |
| 208 /* |
| 209 ** Add an opcode that includes the p4 value as a pointer. |
| 210 */ |
| 211 int sqlite3VdbeAddOp4( |
| 212 Vdbe *p, /* Add the opcode to this VM */ |
| 213 int op, /* The new opcode */ |
| 214 int p1, /* The P1 operand */ |
| 215 int p2, /* The P2 operand */ |
| 216 int p3, /* The P3 operand */ |
| 217 const char *zP4, /* The P4 operand */ |
| 218 int p4type /* P4 operand type */ |
| 219 ){ |
| 220 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 221 sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
| 222 return addr; |
| 223 } |
| 224 |
| 225 /* |
| 226 ** Add an OP_ParseSchema opcode. This routine is broken out from |
| 227 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees |
| 228 ** as having been used. |
| 229 ** |
| 230 ** The zWhere string must have been obtained from sqlite3_malloc(). |
| 231 ** This routine will take ownership of the allocated memory. |
| 232 */ |
| 233 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ |
| 234 int j; |
| 235 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0); |
| 236 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC); |
| 237 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
| 238 } |
| 239 |
| 240 /* |
| 241 ** Add an opcode that includes the p4 value as an integer. |
| 242 */ |
| 243 int sqlite3VdbeAddOp4Int( |
| 244 Vdbe *p, /* Add the opcode to this VM */ |
| 245 int op, /* The new opcode */ |
| 246 int p1, /* The P1 operand */ |
| 247 int p2, /* The P2 operand */ |
| 248 int p3, /* The P3 operand */ |
| 249 int p4 /* The P4 operand as an integer */ |
| 250 ){ |
| 251 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 252 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); |
| 253 return addr; |
| 254 } |
| 255 |
| 256 /* |
| 257 ** Create a new symbolic label for an instruction that has yet to be |
| 258 ** coded. The symbolic label is really just a negative number. The |
| 259 ** label can be used as the P2 value of an operation. Later, when |
| 260 ** the label is resolved to a specific address, the VDBE will scan |
| 261 ** through its operation list and change all values of P2 which match |
| 262 ** the label into the resolved address. |
| 263 ** |
| 264 ** The VDBE knows that a P2 value is a label because labels are |
| 265 ** always negative and P2 values are suppose to be non-negative. |
| 266 ** Hence, a negative P2 value is a label that has yet to be resolved. |
| 267 ** |
| 268 ** Zero is returned if a malloc() fails. |
| 269 */ |
| 270 int sqlite3VdbeMakeLabel(Vdbe *v){ |
| 271 Parse *p = v->pParse; |
| 272 int i = p->nLabel++; |
| 273 assert( v->magic==VDBE_MAGIC_INIT ); |
| 274 if( (i & (i-1))==0 ){ |
| 275 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
| 276 (i*2+1)*sizeof(p->aLabel[0])); |
| 277 } |
| 278 if( p->aLabel ){ |
| 279 p->aLabel[i] = -1; |
| 280 } |
| 281 return -1-i; |
| 282 } |
| 283 |
| 284 /* |
| 285 ** Resolve label "x" to be the address of the next instruction to |
| 286 ** be inserted. The parameter "x" must have been obtained from |
| 287 ** a prior call to sqlite3VdbeMakeLabel(). |
| 288 */ |
| 289 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ |
| 290 Parse *p = v->pParse; |
| 291 int j = -1-x; |
| 292 assert( v->magic==VDBE_MAGIC_INIT ); |
| 293 assert( j<p->nLabel ); |
| 294 if( ALWAYS(j>=0) && p->aLabel ){ |
| 295 p->aLabel[j] = v->nOp; |
| 296 } |
| 297 p->iFixedOp = v->nOp - 1; |
| 298 } |
| 299 |
| 300 /* |
| 301 ** Mark the VDBE as one that can only be run one time. |
| 302 */ |
| 303 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
| 304 p->runOnlyOnce = 1; |
| 305 } |
| 306 |
| 307 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
| 308 |
| 309 /* |
| 310 ** The following type and function are used to iterate through all opcodes |
| 311 ** in a Vdbe main program and each of the sub-programs (triggers) it may |
| 312 ** invoke directly or indirectly. It should be used as follows: |
| 313 ** |
| 314 ** Op *pOp; |
| 315 ** VdbeOpIter sIter; |
| 316 ** |
| 317 ** memset(&sIter, 0, sizeof(sIter)); |
| 318 ** sIter.v = v; // v is of type Vdbe* |
| 319 ** while( (pOp = opIterNext(&sIter)) ){ |
| 320 ** // Do something with pOp |
| 321 ** } |
| 322 ** sqlite3DbFree(v->db, sIter.apSub); |
| 323 ** |
| 324 */ |
| 325 typedef struct VdbeOpIter VdbeOpIter; |
| 326 struct VdbeOpIter { |
| 327 Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
| 328 SubProgram **apSub; /* Array of subprograms */ |
| 329 int nSub; /* Number of entries in apSub */ |
| 330 int iAddr; /* Address of next instruction to return */ |
| 331 int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
| 332 }; |
| 333 static Op *opIterNext(VdbeOpIter *p){ |
| 334 Vdbe *v = p->v; |
| 335 Op *pRet = 0; |
| 336 Op *aOp; |
| 337 int nOp; |
| 338 |
| 339 if( p->iSub<=p->nSub ){ |
| 340 |
| 341 if( p->iSub==0 ){ |
| 342 aOp = v->aOp; |
| 343 nOp = v->nOp; |
| 344 }else{ |
| 345 aOp = p->apSub[p->iSub-1]->aOp; |
| 346 nOp = p->apSub[p->iSub-1]->nOp; |
| 347 } |
| 348 assert( p->iAddr<nOp ); |
| 349 |
| 350 pRet = &aOp[p->iAddr]; |
| 351 p->iAddr++; |
| 352 if( p->iAddr==nOp ){ |
| 353 p->iSub++; |
| 354 p->iAddr = 0; |
| 355 } |
| 356 |
| 357 if( pRet->p4type==P4_SUBPROGRAM ){ |
| 358 int nByte = (p->nSub+1)*sizeof(SubProgram*); |
| 359 int j; |
| 360 for(j=0; j<p->nSub; j++){ |
| 361 if( p->apSub[j]==pRet->p4.pProgram ) break; |
| 362 } |
| 363 if( j==p->nSub ){ |
| 364 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
| 365 if( !p->apSub ){ |
| 366 pRet = 0; |
| 367 }else{ |
| 368 p->apSub[p->nSub++] = pRet->p4.pProgram; |
| 369 } |
| 370 } |
| 371 } |
| 372 } |
| 373 |
| 374 return pRet; |
| 375 } |
| 376 |
| 377 /* |
| 378 ** Check if the program stored in the VM associated with pParse may |
| 379 ** throw an ABORT exception (causing the statement, but not entire transaction |
| 380 ** to be rolled back). This condition is true if the main program or any |
| 381 ** sub-programs contains any of the following: |
| 382 ** |
| 383 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 384 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 385 ** * OP_Destroy |
| 386 ** * OP_VUpdate |
| 387 ** * OP_VRename |
| 388 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
| 389 ** |
| 390 ** Then check that the value of Parse.mayAbort is true if an |
| 391 ** ABORT may be thrown, or false otherwise. Return true if it does |
| 392 ** match, or false otherwise. This function is intended to be used as |
| 393 ** part of an assert statement in the compiler. Similar to: |
| 394 ** |
| 395 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
| 396 */ |
| 397 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
| 398 int hasAbort = 0; |
| 399 Op *pOp; |
| 400 VdbeOpIter sIter; |
| 401 memset(&sIter, 0, sizeof(sIter)); |
| 402 sIter.v = v; |
| 403 |
| 404 while( (pOp = opIterNext(&sIter))!=0 ){ |
| 405 int opcode = pOp->opcode; |
| 406 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
| 407 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 408 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) |
| 409 #endif |
| 410 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
| 411 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) |
| 412 ){ |
| 413 hasAbort = 1; |
| 414 break; |
| 415 } |
| 416 } |
| 417 sqlite3DbFree(v->db, sIter.apSub); |
| 418 |
| 419 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. |
| 420 ** If malloc failed, then the while() loop above may not have iterated |
| 421 ** through all opcodes and hasAbort may be set incorrectly. Return |
| 422 ** true for this case to prevent the assert() in the callers frame |
| 423 ** from failing. */ |
| 424 return ( v->db->mallocFailed || hasAbort==mayAbort ); |
| 425 } |
| 426 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
| 427 |
| 428 /* |
| 429 ** Loop through the program looking for P2 values that are negative |
| 430 ** on jump instructions. Each such value is a label. Resolve the |
| 431 ** label by setting the P2 value to its correct non-zero value. |
| 432 ** |
| 433 ** This routine is called once after all opcodes have been inserted. |
| 434 ** |
| 435 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument |
| 436 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by |
| 437 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. |
| 438 ** |
| 439 ** The Op.opflags field is set on all opcodes. |
| 440 */ |
| 441 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
| 442 int i; |
| 443 int nMaxArgs = *pMaxFuncArgs; |
| 444 Op *pOp; |
| 445 Parse *pParse = p->pParse; |
| 446 int *aLabel = pParse->aLabel; |
| 447 p->readOnly = 1; |
| 448 p->bIsReader = 0; |
| 449 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
| 450 u8 opcode = pOp->opcode; |
| 451 |
| 452 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing |
| 453 ** cases from this switch! */ |
| 454 switch( opcode ){ |
| 455 case OP_Function: |
| 456 case OP_AggStep: { |
| 457 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; |
| 458 break; |
| 459 } |
| 460 case OP_Transaction: { |
| 461 if( pOp->p2!=0 ) p->readOnly = 0; |
| 462 /* fall thru */ |
| 463 } |
| 464 case OP_AutoCommit: |
| 465 case OP_Savepoint: { |
| 466 p->bIsReader = 1; |
| 467 break; |
| 468 } |
| 469 #ifndef SQLITE_OMIT_WAL |
| 470 case OP_Checkpoint: |
| 471 #endif |
| 472 case OP_Vacuum: |
| 473 case OP_JournalMode: { |
| 474 p->readOnly = 0; |
| 475 p->bIsReader = 1; |
| 476 break; |
| 477 } |
| 478 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 479 case OP_VUpdate: { |
| 480 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
| 481 break; |
| 482 } |
| 483 case OP_VFilter: { |
| 484 int n; |
| 485 assert( p->nOp - i >= 3 ); |
| 486 assert( pOp[-1].opcode==OP_Integer ); |
| 487 n = pOp[-1].p1; |
| 488 if( n>nMaxArgs ) nMaxArgs = n; |
| 489 break; |
| 490 } |
| 491 #endif |
| 492 case OP_Next: |
| 493 case OP_NextIfOpen: |
| 494 case OP_SorterNext: { |
| 495 pOp->p4.xAdvance = sqlite3BtreeNext; |
| 496 pOp->p4type = P4_ADVANCE; |
| 497 break; |
| 498 } |
| 499 case OP_Prev: |
| 500 case OP_PrevIfOpen: { |
| 501 pOp->p4.xAdvance = sqlite3BtreePrevious; |
| 502 pOp->p4type = P4_ADVANCE; |
| 503 break; |
| 504 } |
| 505 } |
| 506 |
| 507 pOp->opflags = sqlite3OpcodeProperty[opcode]; |
| 508 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ |
| 509 assert( -1-pOp->p2<pParse->nLabel ); |
| 510 pOp->p2 = aLabel[-1-pOp->p2]; |
| 511 } |
| 512 } |
| 513 sqlite3DbFree(p->db, pParse->aLabel); |
| 514 pParse->aLabel = 0; |
| 515 pParse->nLabel = 0; |
| 516 *pMaxFuncArgs = nMaxArgs; |
| 517 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); |
| 518 } |
| 519 |
| 520 /* |
| 521 ** Return the address of the next instruction to be inserted. |
| 522 */ |
| 523 int sqlite3VdbeCurrentAddr(Vdbe *p){ |
| 524 assert( p->magic==VDBE_MAGIC_INIT ); |
| 525 return p->nOp; |
| 526 } |
| 527 |
| 528 /* |
| 529 ** This function returns a pointer to the array of opcodes associated with |
| 530 ** the Vdbe passed as the first argument. It is the callers responsibility |
| 531 ** to arrange for the returned array to be eventually freed using the |
| 532 ** vdbeFreeOpArray() function. |
| 533 ** |
| 534 ** Before returning, *pnOp is set to the number of entries in the returned |
| 535 ** array. Also, *pnMaxArg is set to the larger of its current value and |
| 536 ** the number of entries in the Vdbe.apArg[] array required to execute the |
| 537 ** returned program. |
| 538 */ |
| 539 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
| 540 VdbeOp *aOp = p->aOp; |
| 541 assert( aOp && !p->db->mallocFailed ); |
| 542 |
| 543 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
| 544 assert( DbMaskAllZero(p->btreeMask) ); |
| 545 |
| 546 resolveP2Values(p, pnMaxArg); |
| 547 *pnOp = p->nOp; |
| 548 p->aOp = 0; |
| 549 return aOp; |
| 550 } |
| 551 |
| 552 /* |
| 553 ** Add a whole list of operations to the operation stack. Return the |
| 554 ** address of the first operation added. |
| 555 */ |
| 556 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){ |
| 557 int addr; |
| 558 assert( p->magic==VDBE_MAGIC_INIT ); |
| 559 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ |
| 560 return 0; |
| 561 } |
| 562 addr = p->nOp; |
| 563 if( ALWAYS(nOp>0) ){ |
| 564 int i; |
| 565 VdbeOpList const *pIn = aOp; |
| 566 for(i=0; i<nOp; i++, pIn++){ |
| 567 int p2 = pIn->p2; |
| 568 VdbeOp *pOut = &p->aOp[i+addr]; |
| 569 pOut->opcode = pIn->opcode; |
| 570 pOut->p1 = pIn->p1; |
| 571 if( p2<0 ){ |
| 572 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP ); |
| 573 pOut->p2 = addr + ADDR(p2); |
| 574 }else{ |
| 575 pOut->p2 = p2; |
| 576 } |
| 577 pOut->p3 = pIn->p3; |
| 578 pOut->p4type = P4_NOTUSED; |
| 579 pOut->p4.p = 0; |
| 580 pOut->p5 = 0; |
| 581 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 582 pOut->zComment = 0; |
| 583 #endif |
| 584 #ifdef SQLITE_VDBE_COVERAGE |
| 585 pOut->iSrcLine = iLineno+i; |
| 586 #else |
| 587 (void)iLineno; |
| 588 #endif |
| 589 #ifdef SQLITE_DEBUG |
| 590 if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| 591 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); |
| 592 } |
| 593 #endif |
| 594 } |
| 595 p->nOp += nOp; |
| 596 } |
| 597 return addr; |
| 598 } |
| 599 |
| 600 /* |
| 601 ** Change the value of the P1 operand for a specific instruction. |
| 602 ** This routine is useful when a large program is loaded from a |
| 603 ** static array using sqlite3VdbeAddOpList but we want to make a |
| 604 ** few minor changes to the program. |
| 605 */ |
| 606 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ |
| 607 assert( p!=0 ); |
| 608 if( ((u32)p->nOp)>addr ){ |
| 609 p->aOp[addr].p1 = val; |
| 610 } |
| 611 } |
| 612 |
| 613 /* |
| 614 ** Change the value of the P2 operand for a specific instruction. |
| 615 ** This routine is useful for setting a jump destination. |
| 616 */ |
| 617 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ |
| 618 assert( p!=0 ); |
| 619 if( ((u32)p->nOp)>addr ){ |
| 620 p->aOp[addr].p2 = val; |
| 621 } |
| 622 } |
| 623 |
| 624 /* |
| 625 ** Change the value of the P3 operand for a specific instruction. |
| 626 */ |
| 627 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ |
| 628 assert( p!=0 ); |
| 629 if( ((u32)p->nOp)>addr ){ |
| 630 p->aOp[addr].p3 = val; |
| 631 } |
| 632 } |
| 633 |
| 634 /* |
| 635 ** Change the value of the P5 operand for the most recently |
| 636 ** added operation. |
| 637 */ |
| 638 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ |
| 639 assert( p!=0 ); |
| 640 if( p->aOp ){ |
| 641 assert( p->nOp>0 ); |
| 642 p->aOp[p->nOp-1].p5 = val; |
| 643 } |
| 644 } |
| 645 |
| 646 /* |
| 647 ** Change the P2 operand of instruction addr so that it points to |
| 648 ** the address of the next instruction to be coded. |
| 649 */ |
| 650 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
| 651 sqlite3VdbeChangeP2(p, addr, p->nOp); |
| 652 p->pParse->iFixedOp = p->nOp - 1; |
| 653 } |
| 654 |
| 655 |
| 656 /* |
| 657 ** If the input FuncDef structure is ephemeral, then free it. If |
| 658 ** the FuncDef is not ephermal, then do nothing. |
| 659 */ |
| 660 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
| 661 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ |
| 662 sqlite3DbFree(db, pDef); |
| 663 } |
| 664 } |
| 665 |
| 666 static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
| 667 |
| 668 /* |
| 669 ** Delete a P4 value if necessary. |
| 670 */ |
| 671 static void freeP4(sqlite3 *db, int p4type, void *p4){ |
| 672 if( p4 ){ |
| 673 assert( db ); |
| 674 switch( p4type ){ |
| 675 case P4_REAL: |
| 676 case P4_INT64: |
| 677 case P4_DYNAMIC: |
| 678 case P4_INTARRAY: { |
| 679 sqlite3DbFree(db, p4); |
| 680 break; |
| 681 } |
| 682 case P4_KEYINFO: { |
| 683 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); |
| 684 break; |
| 685 } |
| 686 case P4_MPRINTF: { |
| 687 if( db->pnBytesFreed==0 ) sqlite3_free(p4); |
| 688 break; |
| 689 } |
| 690 case P4_FUNCDEF: { |
| 691 freeEphemeralFunction(db, (FuncDef*)p4); |
| 692 break; |
| 693 } |
| 694 case P4_MEM: { |
| 695 if( db->pnBytesFreed==0 ){ |
| 696 sqlite3ValueFree((sqlite3_value*)p4); |
| 697 }else{ |
| 698 Mem *p = (Mem*)p4; |
| 699 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| 700 sqlite3DbFree(db, p); |
| 701 } |
| 702 break; |
| 703 } |
| 704 case P4_VTAB : { |
| 705 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
| 706 break; |
| 707 } |
| 708 } |
| 709 } |
| 710 } |
| 711 |
| 712 /* |
| 713 ** Free the space allocated for aOp and any p4 values allocated for the |
| 714 ** opcodes contained within. If aOp is not NULL it is assumed to contain |
| 715 ** nOp entries. |
| 716 */ |
| 717 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
| 718 if( aOp ){ |
| 719 Op *pOp; |
| 720 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ |
| 721 freeP4(db, pOp->p4type, pOp->p4.p); |
| 722 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 723 sqlite3DbFree(db, pOp->zComment); |
| 724 #endif |
| 725 } |
| 726 } |
| 727 sqlite3DbFree(db, aOp); |
| 728 } |
| 729 |
| 730 /* |
| 731 ** Link the SubProgram object passed as the second argument into the linked |
| 732 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
| 733 ** objects when the VM is no longer required. |
| 734 */ |
| 735 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
| 736 p->pNext = pVdbe->pProgram; |
| 737 pVdbe->pProgram = p; |
| 738 } |
| 739 |
| 740 /* |
| 741 ** Change the opcode at addr into OP_Noop |
| 742 */ |
| 743 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ |
| 744 if( addr<p->nOp ){ |
| 745 VdbeOp *pOp = &p->aOp[addr]; |
| 746 sqlite3 *db = p->db; |
| 747 freeP4(db, pOp->p4type, pOp->p4.p); |
| 748 memset(pOp, 0, sizeof(pOp[0])); |
| 749 pOp->opcode = OP_Noop; |
| 750 if( addr==p->nOp-1 ) p->nOp--; |
| 751 } |
| 752 } |
| 753 |
| 754 /* |
| 755 ** If the last opcode is "op" and it is not a jump destination, |
| 756 ** then remove it. Return true if and only if an opcode was removed. |
| 757 */ |
| 758 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ |
| 759 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){ |
| 760 sqlite3VdbeChangeToNoop(p, p->nOp-1); |
| 761 return 1; |
| 762 }else{ |
| 763 return 0; |
| 764 } |
| 765 } |
| 766 |
| 767 /* |
| 768 ** Change the value of the P4 operand for a specific instruction. |
| 769 ** This routine is useful when a large program is loaded from a |
| 770 ** static array using sqlite3VdbeAddOpList but we want to make a |
| 771 ** few minor changes to the program. |
| 772 ** |
| 773 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
| 774 ** the string is made into memory obtained from sqlite3_malloc(). |
| 775 ** A value of n==0 means copy bytes of zP4 up to and including the |
| 776 ** first null byte. If n>0 then copy n+1 bytes of zP4. |
| 777 ** |
| 778 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
| 779 ** to a string or structure that is guaranteed to exist for the lifetime of |
| 780 ** the Vdbe. In these cases we can just copy the pointer. |
| 781 ** |
| 782 ** If addr<0 then change P4 on the most recently inserted instruction. |
| 783 */ |
| 784 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
| 785 Op *pOp; |
| 786 sqlite3 *db; |
| 787 assert( p!=0 ); |
| 788 db = p->db; |
| 789 assert( p->magic==VDBE_MAGIC_INIT ); |
| 790 if( p->aOp==0 || db->mallocFailed ){ |
| 791 if( n!=P4_VTAB ){ |
| 792 freeP4(db, n, (void*)*(char**)&zP4); |
| 793 } |
| 794 return; |
| 795 } |
| 796 assert( p->nOp>0 ); |
| 797 assert( addr<p->nOp ); |
| 798 if( addr<0 ){ |
| 799 addr = p->nOp - 1; |
| 800 } |
| 801 pOp = &p->aOp[addr]; |
| 802 assert( pOp->p4type==P4_NOTUSED |
| 803 || pOp->p4type==P4_INT32 |
| 804 || pOp->p4type==P4_KEYINFO ); |
| 805 freeP4(db, pOp->p4type, pOp->p4.p); |
| 806 pOp->p4.p = 0; |
| 807 if( n==P4_INT32 ){ |
| 808 /* Note: this cast is safe, because the origin data point was an int |
| 809 ** that was cast to a (const char *). */ |
| 810 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
| 811 pOp->p4type = P4_INT32; |
| 812 }else if( zP4==0 ){ |
| 813 pOp->p4.p = 0; |
| 814 pOp->p4type = P4_NOTUSED; |
| 815 }else if( n==P4_KEYINFO ){ |
| 816 pOp->p4.p = (void*)zP4; |
| 817 pOp->p4type = P4_KEYINFO; |
| 818 }else if( n==P4_VTAB ){ |
| 819 pOp->p4.p = (void*)zP4; |
| 820 pOp->p4type = P4_VTAB; |
| 821 sqlite3VtabLock((VTable *)zP4); |
| 822 assert( ((VTable *)zP4)->db==p->db ); |
| 823 }else if( n<0 ){ |
| 824 pOp->p4.p = (void*)zP4; |
| 825 pOp->p4type = (signed char)n; |
| 826 }else{ |
| 827 if( n==0 ) n = sqlite3Strlen30(zP4); |
| 828 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
| 829 pOp->p4type = P4_DYNAMIC; |
| 830 } |
| 831 } |
| 832 |
| 833 /* |
| 834 ** Set the P4 on the most recently added opcode to the KeyInfo for the |
| 835 ** index given. |
| 836 */ |
| 837 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ |
| 838 Vdbe *v = pParse->pVdbe; |
| 839 assert( v!=0 ); |
| 840 assert( pIdx!=0 ); |
| 841 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx), |
| 842 P4_KEYINFO); |
| 843 } |
| 844 |
| 845 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 846 /* |
| 847 ** Change the comment on the most recently coded instruction. Or |
| 848 ** insert a No-op and add the comment to that new instruction. This |
| 849 ** makes the code easier to read during debugging. None of this happens |
| 850 ** in a production build. |
| 851 */ |
| 852 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ |
| 853 assert( p->nOp>0 || p->aOp==0 ); |
| 854 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| 855 if( p->nOp ){ |
| 856 assert( p->aOp ); |
| 857 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); |
| 858 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); |
| 859 } |
| 860 } |
| 861 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
| 862 va_list ap; |
| 863 if( p ){ |
| 864 va_start(ap, zFormat); |
| 865 vdbeVComment(p, zFormat, ap); |
| 866 va_end(ap); |
| 867 } |
| 868 } |
| 869 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
| 870 va_list ap; |
| 871 if( p ){ |
| 872 sqlite3VdbeAddOp0(p, OP_Noop); |
| 873 va_start(ap, zFormat); |
| 874 vdbeVComment(p, zFormat, ap); |
| 875 va_end(ap); |
| 876 } |
| 877 } |
| 878 #endif /* NDEBUG */ |
| 879 |
| 880 #ifdef SQLITE_VDBE_COVERAGE |
| 881 /* |
| 882 ** Set the value if the iSrcLine field for the previously coded instruction. |
| 883 */ |
| 884 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ |
| 885 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; |
| 886 } |
| 887 #endif /* SQLITE_VDBE_COVERAGE */ |
| 888 |
| 889 /* |
| 890 ** Return the opcode for a given address. If the address is -1, then |
| 891 ** return the most recently inserted opcode. |
| 892 ** |
| 893 ** If a memory allocation error has occurred prior to the calling of this |
| 894 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
| 895 ** is readable but not writable, though it is cast to a writable value. |
| 896 ** The return of a dummy opcode allows the call to continue functioning |
| 897 ** after an OOM fault without having to check to see if the return from |
| 898 ** this routine is a valid pointer. But because the dummy.opcode is 0, |
| 899 ** dummy will never be written to. This is verified by code inspection and |
| 900 ** by running with Valgrind. |
| 901 */ |
| 902 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
| 903 /* C89 specifies that the constant "dummy" will be initialized to all |
| 904 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
| 905 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
| 906 assert( p->magic==VDBE_MAGIC_INIT ); |
| 907 if( addr<0 ){ |
| 908 addr = p->nOp - 1; |
| 909 } |
| 910 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
| 911 if( p->db->mallocFailed ){ |
| 912 return (VdbeOp*)&dummy; |
| 913 }else{ |
| 914 return &p->aOp[addr]; |
| 915 } |
| 916 } |
| 917 |
| 918 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) |
| 919 /* |
| 920 ** Return an integer value for one of the parameters to the opcode pOp |
| 921 ** determined by character c. |
| 922 */ |
| 923 static int translateP(char c, const Op *pOp){ |
| 924 if( c=='1' ) return pOp->p1; |
| 925 if( c=='2' ) return pOp->p2; |
| 926 if( c=='3' ) return pOp->p3; |
| 927 if( c=='4' ) return pOp->p4.i; |
| 928 return pOp->p5; |
| 929 } |
| 930 |
| 931 /* |
| 932 ** Compute a string for the "comment" field of a VDBE opcode listing. |
| 933 ** |
| 934 ** The Synopsis: field in comments in the vdbe.c source file gets converted |
| 935 ** to an extra string that is appended to the sqlite3OpcodeName(). In the |
| 936 ** absence of other comments, this synopsis becomes the comment on the opcode. |
| 937 ** Some translation occurs: |
| 938 ** |
| 939 ** "PX" -> "r[X]" |
| 940 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 |
| 941 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 |
| 942 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x |
| 943 */ |
| 944 static int displayComment( |
| 945 const Op *pOp, /* The opcode to be commented */ |
| 946 const char *zP4, /* Previously obtained value for P4 */ |
| 947 char *zTemp, /* Write result here */ |
| 948 int nTemp /* Space available in zTemp[] */ |
| 949 ){ |
| 950 const char *zOpName; |
| 951 const char *zSynopsis; |
| 952 int nOpName; |
| 953 int ii, jj; |
| 954 zOpName = sqlite3OpcodeName(pOp->opcode); |
| 955 nOpName = sqlite3Strlen30(zOpName); |
| 956 if( zOpName[nOpName+1] ){ |
| 957 int seenCom = 0; |
| 958 char c; |
| 959 zSynopsis = zOpName += nOpName + 1; |
| 960 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ |
| 961 if( c=='P' ){ |
| 962 c = zSynopsis[++ii]; |
| 963 if( c=='4' ){ |
| 964 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); |
| 965 }else if( c=='X' ){ |
| 966 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); |
| 967 seenCom = 1; |
| 968 }else{ |
| 969 int v1 = translateP(c, pOp); |
| 970 int v2; |
| 971 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); |
| 972 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ |
| 973 ii += 3; |
| 974 jj += sqlite3Strlen30(zTemp+jj); |
| 975 v2 = translateP(zSynopsis[ii], pOp); |
| 976 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ |
| 977 ii += 2; |
| 978 v2++; |
| 979 } |
| 980 if( v2>1 ){ |
| 981 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); |
| 982 } |
| 983 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ |
| 984 ii += 4; |
| 985 } |
| 986 } |
| 987 jj += sqlite3Strlen30(zTemp+jj); |
| 988 }else{ |
| 989 zTemp[jj++] = c; |
| 990 } |
| 991 } |
| 992 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ |
| 993 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); |
| 994 jj += sqlite3Strlen30(zTemp+jj); |
| 995 } |
| 996 if( jj<nTemp ) zTemp[jj] = 0; |
| 997 }else if( pOp->zComment ){ |
| 998 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); |
| 999 jj = sqlite3Strlen30(zTemp); |
| 1000 }else{ |
| 1001 zTemp[0] = 0; |
| 1002 jj = 0; |
| 1003 } |
| 1004 return jj; |
| 1005 } |
| 1006 #endif /* SQLITE_DEBUG */ |
| 1007 |
| 1008 |
| 1009 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ |
| 1010 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| 1011 /* |
| 1012 ** Compute a string that describes the P4 parameter for an opcode. |
| 1013 ** Use zTemp for any required temporary buffer space. |
| 1014 */ |
| 1015 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
| 1016 char *zP4 = zTemp; |
| 1017 assert( nTemp>=20 ); |
| 1018 switch( pOp->p4type ){ |
| 1019 case P4_KEYINFO: { |
| 1020 int i, j; |
| 1021 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
| 1022 assert( pKeyInfo->aSortOrder!=0 ); |
| 1023 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField); |
| 1024 i = sqlite3Strlen30(zTemp); |
| 1025 for(j=0; j<pKeyInfo->nField; j++){ |
| 1026 CollSeq *pColl = pKeyInfo->aColl[j]; |
| 1027 const char *zColl = pColl ? pColl->zName : "nil"; |
| 1028 int n = sqlite3Strlen30(zColl); |
| 1029 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){ |
| 1030 zColl = "B"; |
| 1031 n = 1; |
| 1032 } |
| 1033 if( i+n>nTemp-6 ){ |
| 1034 memcpy(&zTemp[i],",...",4); |
| 1035 break; |
| 1036 } |
| 1037 zTemp[i++] = ','; |
| 1038 if( pKeyInfo->aSortOrder[j] ){ |
| 1039 zTemp[i++] = '-'; |
| 1040 } |
| 1041 memcpy(&zTemp[i], zColl, n+1); |
| 1042 i += n; |
| 1043 } |
| 1044 zTemp[i++] = ')'; |
| 1045 zTemp[i] = 0; |
| 1046 assert( i<nTemp ); |
| 1047 break; |
| 1048 } |
| 1049 case P4_COLLSEQ: { |
| 1050 CollSeq *pColl = pOp->p4.pColl; |
| 1051 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName); |
| 1052 break; |
| 1053 } |
| 1054 case P4_FUNCDEF: { |
| 1055 FuncDef *pDef = pOp->p4.pFunc; |
| 1056 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); |
| 1057 break; |
| 1058 } |
| 1059 case P4_INT64: { |
| 1060 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); |
| 1061 break; |
| 1062 } |
| 1063 case P4_INT32: { |
| 1064 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
| 1065 break; |
| 1066 } |
| 1067 case P4_REAL: { |
| 1068 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); |
| 1069 break; |
| 1070 } |
| 1071 case P4_MEM: { |
| 1072 Mem *pMem = pOp->p4.pMem; |
| 1073 if( pMem->flags & MEM_Str ){ |
| 1074 zP4 = pMem->z; |
| 1075 }else if( pMem->flags & MEM_Int ){ |
| 1076 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); |
| 1077 }else if( pMem->flags & MEM_Real ){ |
| 1078 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r); |
| 1079 }else if( pMem->flags & MEM_Null ){ |
| 1080 sqlite3_snprintf(nTemp, zTemp, "NULL"); |
| 1081 }else{ |
| 1082 assert( pMem->flags & MEM_Blob ); |
| 1083 zP4 = "(blob)"; |
| 1084 } |
| 1085 break; |
| 1086 } |
| 1087 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1088 case P4_VTAB: { |
| 1089 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
| 1090 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); |
| 1091 break; |
| 1092 } |
| 1093 #endif |
| 1094 case P4_INTARRAY: { |
| 1095 sqlite3_snprintf(nTemp, zTemp, "intarray"); |
| 1096 break; |
| 1097 } |
| 1098 case P4_SUBPROGRAM: { |
| 1099 sqlite3_snprintf(nTemp, zTemp, "program"); |
| 1100 break; |
| 1101 } |
| 1102 case P4_ADVANCE: { |
| 1103 zTemp[0] = 0; |
| 1104 break; |
| 1105 } |
| 1106 default: { |
| 1107 zP4 = pOp->p4.z; |
| 1108 if( zP4==0 ){ |
| 1109 zP4 = zTemp; |
| 1110 zTemp[0] = 0; |
| 1111 } |
| 1112 } |
| 1113 } |
| 1114 assert( zP4!=0 ); |
| 1115 return zP4; |
| 1116 } |
| 1117 #endif |
| 1118 |
| 1119 /* |
| 1120 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
| 1121 ** |
| 1122 ** The prepared statements need to know in advance the complete set of |
| 1123 ** attached databases that will be use. A mask of these databases |
| 1124 ** is maintained in p->btreeMask. The p->lockMask value is the subset of |
| 1125 ** p->btreeMask of databases that will require a lock. |
| 1126 */ |
| 1127 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
| 1128 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
| 1129 assert( i<(int)sizeof(p->btreeMask)*8 ); |
| 1130 DbMaskSet(p->btreeMask, i); |
| 1131 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
| 1132 DbMaskSet(p->lockMask, i); |
| 1133 } |
| 1134 } |
| 1135 |
| 1136 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| 1137 /* |
| 1138 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
| 1139 ** this routine obtains the mutex associated with each BtShared structure |
| 1140 ** that may be accessed by the VM passed as an argument. In doing so it also |
| 1141 ** sets the BtShared.db member of each of the BtShared structures, ensuring |
| 1142 ** that the correct busy-handler callback is invoked if required. |
| 1143 ** |
| 1144 ** If SQLite is not threadsafe but does support shared-cache mode, then |
| 1145 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
| 1146 ** of all of BtShared structures accessible via the database handle |
| 1147 ** associated with the VM. |
| 1148 ** |
| 1149 ** If SQLite is not threadsafe and does not support shared-cache mode, this |
| 1150 ** function is a no-op. |
| 1151 ** |
| 1152 ** The p->btreeMask field is a bitmask of all btrees that the prepared |
| 1153 ** statement p will ever use. Let N be the number of bits in p->btreeMask |
| 1154 ** corresponding to btrees that use shared cache. Then the runtime of |
| 1155 ** this routine is N*N. But as N is rarely more than 1, this should not |
| 1156 ** be a problem. |
| 1157 */ |
| 1158 void sqlite3VdbeEnter(Vdbe *p){ |
| 1159 int i; |
| 1160 sqlite3 *db; |
| 1161 Db *aDb; |
| 1162 int nDb; |
| 1163 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| 1164 db = p->db; |
| 1165 aDb = db->aDb; |
| 1166 nDb = db->nDb; |
| 1167 for(i=0; i<nDb; i++){ |
| 1168 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| 1169 sqlite3BtreeEnter(aDb[i].pBt); |
| 1170 } |
| 1171 } |
| 1172 } |
| 1173 #endif |
| 1174 |
| 1175 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| 1176 /* |
| 1177 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
| 1178 */ |
| 1179 void sqlite3VdbeLeave(Vdbe *p){ |
| 1180 int i; |
| 1181 sqlite3 *db; |
| 1182 Db *aDb; |
| 1183 int nDb; |
| 1184 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| 1185 db = p->db; |
| 1186 aDb = db->aDb; |
| 1187 nDb = db->nDb; |
| 1188 for(i=0; i<nDb; i++){ |
| 1189 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| 1190 sqlite3BtreeLeave(aDb[i].pBt); |
| 1191 } |
| 1192 } |
| 1193 } |
| 1194 #endif |
| 1195 |
| 1196 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| 1197 /* |
| 1198 ** Print a single opcode. This routine is used for debugging only. |
| 1199 */ |
| 1200 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
| 1201 char *zP4; |
| 1202 char zPtr[50]; |
| 1203 char zCom[100]; |
| 1204 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; |
| 1205 if( pOut==0 ) pOut = stdout; |
| 1206 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
| 1207 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1208 displayComment(pOp, zP4, zCom, sizeof(zCom)); |
| 1209 #else |
| 1210 zCom[0] = 0; |
| 1211 #endif |
| 1212 /* NB: The sqlite3OpcodeName() function is implemented by code created |
| 1213 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the |
| 1214 ** information from the vdbe.c source text */ |
| 1215 fprintf(pOut, zFormat1, pc, |
| 1216 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
| 1217 zCom |
| 1218 ); |
| 1219 fflush(pOut); |
| 1220 } |
| 1221 #endif |
| 1222 |
| 1223 /* |
| 1224 ** Release an array of N Mem elements |
| 1225 */ |
| 1226 static void releaseMemArray(Mem *p, int N){ |
| 1227 if( p && N ){ |
| 1228 Mem *pEnd = &p[N]; |
| 1229 sqlite3 *db = p->db; |
| 1230 u8 malloc_failed = db->mallocFailed; |
| 1231 if( db->pnBytesFreed ){ |
| 1232 do{ |
| 1233 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| 1234 }while( (++p)<pEnd ); |
| 1235 return; |
| 1236 } |
| 1237 do{ |
| 1238 assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
| 1239 assert( sqlite3VdbeCheckMemInvariants(p) ); |
| 1240 |
| 1241 /* This block is really an inlined version of sqlite3VdbeMemRelease() |
| 1242 ** that takes advantage of the fact that the memory cell value is |
| 1243 ** being set to NULL after releasing any dynamic resources. |
| 1244 ** |
| 1245 ** The justification for duplicating code is that according to |
| 1246 ** callgrind, this causes a certain test case to hit the CPU 4.7 |
| 1247 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
| 1248 ** sqlite3MemRelease() were called from here. With -O2, this jumps |
| 1249 ** to 6.6 percent. The test case is inserting 1000 rows into a table |
| 1250 ** with no indexes using a single prepared INSERT statement, bind() |
| 1251 ** and reset(). Inserts are grouped into a transaction. |
| 1252 */ |
| 1253 testcase( p->flags & MEM_Agg ); |
| 1254 testcase( p->flags & MEM_Dyn ); |
| 1255 testcase( p->flags & MEM_Frame ); |
| 1256 testcase( p->flags & MEM_RowSet ); |
| 1257 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ |
| 1258 sqlite3VdbeMemRelease(p); |
| 1259 }else if( p->szMalloc ){ |
| 1260 sqlite3DbFree(db, p->zMalloc); |
| 1261 p->szMalloc = 0; |
| 1262 } |
| 1263 |
| 1264 p->flags = MEM_Undefined; |
| 1265 }while( (++p)<pEnd ); |
| 1266 db->mallocFailed = malloc_failed; |
| 1267 } |
| 1268 } |
| 1269 |
| 1270 /* |
| 1271 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
| 1272 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
| 1273 */ |
| 1274 void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
| 1275 int i; |
| 1276 Mem *aMem = VdbeFrameMem(p); |
| 1277 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
| 1278 for(i=0; i<p->nChildCsr; i++){ |
| 1279 sqlite3VdbeFreeCursor(p->v, apCsr[i]); |
| 1280 } |
| 1281 releaseMemArray(aMem, p->nChildMem); |
| 1282 sqlite3DbFree(p->v->db, p); |
| 1283 } |
| 1284 |
| 1285 #ifndef SQLITE_OMIT_EXPLAIN |
| 1286 /* |
| 1287 ** Give a listing of the program in the virtual machine. |
| 1288 ** |
| 1289 ** The interface is the same as sqlite3VdbeExec(). But instead of |
| 1290 ** running the code, it invokes the callback once for each instruction. |
| 1291 ** This feature is used to implement "EXPLAIN". |
| 1292 ** |
| 1293 ** When p->explain==1, each instruction is listed. When |
| 1294 ** p->explain==2, only OP_Explain instructions are listed and these |
| 1295 ** are shown in a different format. p->explain==2 is used to implement |
| 1296 ** EXPLAIN QUERY PLAN. |
| 1297 ** |
| 1298 ** When p->explain==1, first the main program is listed, then each of |
| 1299 ** the trigger subprograms are listed one by one. |
| 1300 */ |
| 1301 int sqlite3VdbeList( |
| 1302 Vdbe *p /* The VDBE */ |
| 1303 ){ |
| 1304 int nRow; /* Stop when row count reaches this */ |
| 1305 int nSub = 0; /* Number of sub-vdbes seen so far */ |
| 1306 SubProgram **apSub = 0; /* Array of sub-vdbes */ |
| 1307 Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
| 1308 sqlite3 *db = p->db; /* The database connection */ |
| 1309 int i; /* Loop counter */ |
| 1310 int rc = SQLITE_OK; /* Return code */ |
| 1311 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ |
| 1312 |
| 1313 assert( p->explain ); |
| 1314 assert( p->magic==VDBE_MAGIC_RUN ); |
| 1315 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
| 1316 |
| 1317 /* Even though this opcode does not use dynamic strings for |
| 1318 ** the result, result columns may become dynamic if the user calls |
| 1319 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
| 1320 */ |
| 1321 releaseMemArray(pMem, 8); |
| 1322 p->pResultSet = 0; |
| 1323 |
| 1324 if( p->rc==SQLITE_NOMEM ){ |
| 1325 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| 1326 ** sqlite3_column_text16() failed. */ |
| 1327 db->mallocFailed = 1; |
| 1328 return SQLITE_ERROR; |
| 1329 } |
| 1330 |
| 1331 /* When the number of output rows reaches nRow, that means the |
| 1332 ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
| 1333 ** nRow is the sum of the number of rows in the main program, plus |
| 1334 ** the sum of the number of rows in all trigger subprograms encountered |
| 1335 ** so far. The nRow value will increase as new trigger subprograms are |
| 1336 ** encountered, but p->pc will eventually catch up to nRow. |
| 1337 */ |
| 1338 nRow = p->nOp; |
| 1339 if( p->explain==1 ){ |
| 1340 /* The first 8 memory cells are used for the result set. So we will |
| 1341 ** commandeer the 9th cell to use as storage for an array of pointers |
| 1342 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
| 1343 ** cells. */ |
| 1344 assert( p->nMem>9 ); |
| 1345 pSub = &p->aMem[9]; |
| 1346 if( pSub->flags&MEM_Blob ){ |
| 1347 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is |
| 1348 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ |
| 1349 nSub = pSub->n/sizeof(Vdbe*); |
| 1350 apSub = (SubProgram **)pSub->z; |
| 1351 } |
| 1352 for(i=0; i<nSub; i++){ |
| 1353 nRow += apSub[i]->nOp; |
| 1354 } |
| 1355 } |
| 1356 |
| 1357 do{ |
| 1358 i = p->pc++; |
| 1359 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
| 1360 if( i>=nRow ){ |
| 1361 p->rc = SQLITE_OK; |
| 1362 rc = SQLITE_DONE; |
| 1363 }else if( db->u1.isInterrupted ){ |
| 1364 p->rc = SQLITE_INTERRUPT; |
| 1365 rc = SQLITE_ERROR; |
| 1366 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); |
| 1367 }else{ |
| 1368 char *zP4; |
| 1369 Op *pOp; |
| 1370 if( i<p->nOp ){ |
| 1371 /* The output line number is small enough that we are still in the |
| 1372 ** main program. */ |
| 1373 pOp = &p->aOp[i]; |
| 1374 }else{ |
| 1375 /* We are currently listing subprograms. Figure out which one and |
| 1376 ** pick up the appropriate opcode. */ |
| 1377 int j; |
| 1378 i -= p->nOp; |
| 1379 for(j=0; i>=apSub[j]->nOp; j++){ |
| 1380 i -= apSub[j]->nOp; |
| 1381 } |
| 1382 pOp = &apSub[j]->aOp[i]; |
| 1383 } |
| 1384 if( p->explain==1 ){ |
| 1385 pMem->flags = MEM_Int; |
| 1386 pMem->u.i = i; /* Program counter */ |
| 1387 pMem++; |
| 1388 |
| 1389 pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
| 1390 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
| 1391 assert( pMem->z!=0 ); |
| 1392 pMem->n = sqlite3Strlen30(pMem->z); |
| 1393 pMem->enc = SQLITE_UTF8; |
| 1394 pMem++; |
| 1395 |
| 1396 /* When an OP_Program opcode is encounter (the only opcode that has |
| 1397 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
| 1398 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
| 1399 ** has not already been seen. |
| 1400 */ |
| 1401 if( pOp->p4type==P4_SUBPROGRAM ){ |
| 1402 int nByte = (nSub+1)*sizeof(SubProgram*); |
| 1403 int j; |
| 1404 for(j=0; j<nSub; j++){ |
| 1405 if( apSub[j]==pOp->p4.pProgram ) break; |
| 1406 } |
| 1407 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ |
| 1408 apSub = (SubProgram **)pSub->z; |
| 1409 apSub[nSub++] = pOp->p4.pProgram; |
| 1410 pSub->flags |= MEM_Blob; |
| 1411 pSub->n = nSub*sizeof(SubProgram*); |
| 1412 } |
| 1413 } |
| 1414 } |
| 1415 |
| 1416 pMem->flags = MEM_Int; |
| 1417 pMem->u.i = pOp->p1; /* P1 */ |
| 1418 pMem++; |
| 1419 |
| 1420 pMem->flags = MEM_Int; |
| 1421 pMem->u.i = pOp->p2; /* P2 */ |
| 1422 pMem++; |
| 1423 |
| 1424 pMem->flags = MEM_Int; |
| 1425 pMem->u.i = pOp->p3; /* P3 */ |
| 1426 pMem++; |
| 1427 |
| 1428 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */ |
| 1429 assert( p->db->mallocFailed ); |
| 1430 return SQLITE_ERROR; |
| 1431 } |
| 1432 pMem->flags = MEM_Str|MEM_Term; |
| 1433 zP4 = displayP4(pOp, pMem->z, 32); |
| 1434 if( zP4!=pMem->z ){ |
| 1435 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); |
| 1436 }else{ |
| 1437 assert( pMem->z!=0 ); |
| 1438 pMem->n = sqlite3Strlen30(pMem->z); |
| 1439 pMem->enc = SQLITE_UTF8; |
| 1440 } |
| 1441 pMem++; |
| 1442 |
| 1443 if( p->explain==1 ){ |
| 1444 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ |
| 1445 assert( p->db->mallocFailed ); |
| 1446 return SQLITE_ERROR; |
| 1447 } |
| 1448 pMem->flags = MEM_Str|MEM_Term; |
| 1449 pMem->n = 2; |
| 1450 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
| 1451 pMem->enc = SQLITE_UTF8; |
| 1452 pMem++; |
| 1453 |
| 1454 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1455 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ |
| 1456 assert( p->db->mallocFailed ); |
| 1457 return SQLITE_ERROR; |
| 1458 } |
| 1459 pMem->flags = MEM_Str|MEM_Term; |
| 1460 pMem->n = displayComment(pOp, zP4, pMem->z, 500); |
| 1461 pMem->enc = SQLITE_UTF8; |
| 1462 #else |
| 1463 pMem->flags = MEM_Null; /* Comment */ |
| 1464 #endif |
| 1465 } |
| 1466 |
| 1467 p->nResColumn = 8 - 4*(p->explain-1); |
| 1468 p->pResultSet = &p->aMem[1]; |
| 1469 p->rc = SQLITE_OK; |
| 1470 rc = SQLITE_ROW; |
| 1471 } |
| 1472 return rc; |
| 1473 } |
| 1474 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 1475 |
| 1476 #ifdef SQLITE_DEBUG |
| 1477 /* |
| 1478 ** Print the SQL that was used to generate a VDBE program. |
| 1479 */ |
| 1480 void sqlite3VdbePrintSql(Vdbe *p){ |
| 1481 const char *z = 0; |
| 1482 if( p->zSql ){ |
| 1483 z = p->zSql; |
| 1484 }else if( p->nOp>=1 ){ |
| 1485 const VdbeOp *pOp = &p->aOp[0]; |
| 1486 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| 1487 z = pOp->p4.z; |
| 1488 while( sqlite3Isspace(*z) ) z++; |
| 1489 } |
| 1490 } |
| 1491 if( z ) printf("SQL: [%s]\n", z); |
| 1492 } |
| 1493 #endif |
| 1494 |
| 1495 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
| 1496 /* |
| 1497 ** Print an IOTRACE message showing SQL content. |
| 1498 */ |
| 1499 void sqlite3VdbeIOTraceSql(Vdbe *p){ |
| 1500 int nOp = p->nOp; |
| 1501 VdbeOp *pOp; |
| 1502 if( sqlite3IoTrace==0 ) return; |
| 1503 if( nOp<1 ) return; |
| 1504 pOp = &p->aOp[0]; |
| 1505 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| 1506 int i, j; |
| 1507 char z[1000]; |
| 1508 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
| 1509 for(i=0; sqlite3Isspace(z[i]); i++){} |
| 1510 for(j=0; z[i]; i++){ |
| 1511 if( sqlite3Isspace(z[i]) ){ |
| 1512 if( z[i-1]!=' ' ){ |
| 1513 z[j++] = ' '; |
| 1514 } |
| 1515 }else{ |
| 1516 z[j++] = z[i]; |
| 1517 } |
| 1518 } |
| 1519 z[j] = 0; |
| 1520 sqlite3IoTrace("SQL %s\n", z); |
| 1521 } |
| 1522 } |
| 1523 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
| 1524 |
| 1525 /* |
| 1526 ** Allocate space from a fixed size buffer and return a pointer to |
| 1527 ** that space. If insufficient space is available, return NULL. |
| 1528 ** |
| 1529 ** The pBuf parameter is the initial value of a pointer which will |
| 1530 ** receive the new memory. pBuf is normally NULL. If pBuf is not |
| 1531 ** NULL, it means that memory space has already been allocated and that |
| 1532 ** this routine should not allocate any new memory. When pBuf is not |
| 1533 ** NULL simply return pBuf. Only allocate new memory space when pBuf |
| 1534 ** is NULL. |
| 1535 ** |
| 1536 ** nByte is the number of bytes of space needed. |
| 1537 ** |
| 1538 ** *ppFrom points to available space and pEnd points to the end of the |
| 1539 ** available space. When space is allocated, *ppFrom is advanced past |
| 1540 ** the end of the allocated space. |
| 1541 ** |
| 1542 ** *pnByte is a counter of the number of bytes of space that have failed |
| 1543 ** to allocate. If there is insufficient space in *ppFrom to satisfy the |
| 1544 ** request, then increment *pnByte by the amount of the request. |
| 1545 */ |
| 1546 static void *allocSpace( |
| 1547 void *pBuf, /* Where return pointer will be stored */ |
| 1548 int nByte, /* Number of bytes to allocate */ |
| 1549 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ |
| 1550 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ |
| 1551 int *pnByte /* If allocation cannot be made, increment *pnByte */ |
| 1552 ){ |
| 1553 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); |
| 1554 if( pBuf ) return pBuf; |
| 1555 nByte = ROUND8(nByte); |
| 1556 if( &(*ppFrom)[nByte] <= pEnd ){ |
| 1557 pBuf = (void*)*ppFrom; |
| 1558 *ppFrom += nByte; |
| 1559 }else{ |
| 1560 *pnByte += nByte; |
| 1561 } |
| 1562 return pBuf; |
| 1563 } |
| 1564 |
| 1565 /* |
| 1566 ** Rewind the VDBE back to the beginning in preparation for |
| 1567 ** running it. |
| 1568 */ |
| 1569 void sqlite3VdbeRewind(Vdbe *p){ |
| 1570 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 1571 int i; |
| 1572 #endif |
| 1573 assert( p!=0 ); |
| 1574 assert( p->magic==VDBE_MAGIC_INIT ); |
| 1575 |
| 1576 /* There should be at least one opcode. |
| 1577 */ |
| 1578 assert( p->nOp>0 ); |
| 1579 |
| 1580 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
| 1581 p->magic = VDBE_MAGIC_RUN; |
| 1582 |
| 1583 #ifdef SQLITE_DEBUG |
| 1584 for(i=1; i<p->nMem; i++){ |
| 1585 assert( p->aMem[i].db==p->db ); |
| 1586 } |
| 1587 #endif |
| 1588 p->pc = -1; |
| 1589 p->rc = SQLITE_OK; |
| 1590 p->errorAction = OE_Abort; |
| 1591 p->magic = VDBE_MAGIC_RUN; |
| 1592 p->nChange = 0; |
| 1593 p->cacheCtr = 1; |
| 1594 p->minWriteFileFormat = 255; |
| 1595 p->iStatement = 0; |
| 1596 p->nFkConstraint = 0; |
| 1597 #ifdef VDBE_PROFILE |
| 1598 for(i=0; i<p->nOp; i++){ |
| 1599 p->aOp[i].cnt = 0; |
| 1600 p->aOp[i].cycles = 0; |
| 1601 } |
| 1602 #endif |
| 1603 } |
| 1604 |
| 1605 /* |
| 1606 ** Prepare a virtual machine for execution for the first time after |
| 1607 ** creating the virtual machine. This involves things such |
| 1608 ** as allocating registers and initializing the program counter. |
| 1609 ** After the VDBE has be prepped, it can be executed by one or more |
| 1610 ** calls to sqlite3VdbeExec(). |
| 1611 ** |
| 1612 ** This function may be called exactly once on each virtual machine. |
| 1613 ** After this routine is called the VM has been "packaged" and is ready |
| 1614 ** to run. After this routine is called, further calls to |
| 1615 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects |
| 1616 ** the Vdbe from the Parse object that helped generate it so that the |
| 1617 ** the Vdbe becomes an independent entity and the Parse object can be |
| 1618 ** destroyed. |
| 1619 ** |
| 1620 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back |
| 1621 ** to its initial state after it has been run. |
| 1622 */ |
| 1623 void sqlite3VdbeMakeReady( |
| 1624 Vdbe *p, /* The VDBE */ |
| 1625 Parse *pParse /* Parsing context */ |
| 1626 ){ |
| 1627 sqlite3 *db; /* The database connection */ |
| 1628 int nVar; /* Number of parameters */ |
| 1629 int nMem; /* Number of VM memory registers */ |
| 1630 int nCursor; /* Number of cursors required */ |
| 1631 int nArg; /* Number of arguments in subprograms */ |
| 1632 int nOnce; /* Number of OP_Once instructions */ |
| 1633 int n; /* Loop counter */ |
| 1634 u8 *zCsr; /* Memory available for allocation */ |
| 1635 u8 *zEnd; /* First byte past allocated memory */ |
| 1636 int nByte; /* How much extra memory is needed */ |
| 1637 |
| 1638 assert( p!=0 ); |
| 1639 assert( p->nOp>0 ); |
| 1640 assert( pParse!=0 ); |
| 1641 assert( p->magic==VDBE_MAGIC_INIT ); |
| 1642 assert( pParse==p->pParse ); |
| 1643 db = p->db; |
| 1644 assert( db->mallocFailed==0 ); |
| 1645 nVar = pParse->nVar; |
| 1646 nMem = pParse->nMem; |
| 1647 nCursor = pParse->nTab; |
| 1648 nArg = pParse->nMaxArg; |
| 1649 nOnce = pParse->nOnce; |
| 1650 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */ |
| 1651 |
| 1652 /* For each cursor required, also allocate a memory cell. Memory |
| 1653 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by |
| 1654 ** the vdbe program. Instead they are used to allocate space for |
| 1655 ** VdbeCursor/BtCursor structures. The blob of memory associated with |
| 1656 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) |
| 1657 ** stores the blob of memory associated with cursor 1, etc. |
| 1658 ** |
| 1659 ** See also: allocateCursor(). |
| 1660 */ |
| 1661 nMem += nCursor; |
| 1662 |
| 1663 /* Allocate space for memory registers, SQL variables, VDBE cursors and |
| 1664 ** an array to marshal SQL function arguments in. |
| 1665 */ |
| 1666 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */ |
| 1667 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */ |
| 1668 |
| 1669 resolveP2Values(p, &nArg); |
| 1670 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); |
| 1671 if( pParse->explain && nMem<10 ){ |
| 1672 nMem = 10; |
| 1673 } |
| 1674 memset(zCsr, 0, zEnd-zCsr); |
| 1675 zCsr += (zCsr - (u8*)0)&7; |
| 1676 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); |
| 1677 p->expired = 0; |
| 1678 |
| 1679 /* Memory for registers, parameters, cursor, etc, is allocated in two |
| 1680 ** passes. On the first pass, we try to reuse unused space at the |
| 1681 ** end of the opcode array. If we are unable to satisfy all memory |
| 1682 ** requirements by reusing the opcode array tail, then the second |
| 1683 ** pass will fill in the rest using a fresh allocation. |
| 1684 ** |
| 1685 ** This two-pass approach that reuses as much memory as possible from |
| 1686 ** the leftover space at the end of the opcode array can significantly |
| 1687 ** reduce the amount of memory held by a prepared statement. |
| 1688 */ |
| 1689 do { |
| 1690 nByte = 0; |
| 1691 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); |
| 1692 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); |
| 1693 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); |
| 1694 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); |
| 1695 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), |
| 1696 &zCsr, zEnd, &nByte); |
| 1697 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte); |
| 1698 if( nByte ){ |
| 1699 p->pFree = sqlite3DbMallocZero(db, nByte); |
| 1700 } |
| 1701 zCsr = p->pFree; |
| 1702 zEnd = &zCsr[nByte]; |
| 1703 }while( nByte && !db->mallocFailed ); |
| 1704 |
| 1705 p->nCursor = nCursor; |
| 1706 p->nOnceFlag = nOnce; |
| 1707 if( p->aVar ){ |
| 1708 p->nVar = (ynVar)nVar; |
| 1709 for(n=0; n<nVar; n++){ |
| 1710 p->aVar[n].flags = MEM_Null; |
| 1711 p->aVar[n].db = db; |
| 1712 } |
| 1713 } |
| 1714 if( p->azVar ){ |
| 1715 p->nzVar = pParse->nzVar; |
| 1716 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); |
| 1717 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); |
| 1718 } |
| 1719 if( p->aMem ){ |
| 1720 p->aMem--; /* aMem[] goes from 1..nMem */ |
| 1721 p->nMem = nMem; /* not from 0..nMem-1 */ |
| 1722 for(n=1; n<=nMem; n++){ |
| 1723 p->aMem[n].flags = MEM_Undefined; |
| 1724 p->aMem[n].db = db; |
| 1725 } |
| 1726 } |
| 1727 p->explain = pParse->explain; |
| 1728 sqlite3VdbeRewind(p); |
| 1729 } |
| 1730 |
| 1731 /* |
| 1732 ** Close a VDBE cursor and release all the resources that cursor |
| 1733 ** happens to hold. |
| 1734 */ |
| 1735 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
| 1736 if( pCx==0 ){ |
| 1737 return; |
| 1738 } |
| 1739 sqlite3VdbeSorterClose(p->db, pCx); |
| 1740 if( pCx->pBt ){ |
| 1741 sqlite3BtreeClose(pCx->pBt); |
| 1742 /* The pCx->pCursor will be close automatically, if it exists, by |
| 1743 ** the call above. */ |
| 1744 }else if( pCx->pCursor ){ |
| 1745 sqlite3BtreeCloseCursor(pCx->pCursor); |
| 1746 } |
| 1747 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1748 else if( pCx->pVtabCursor ){ |
| 1749 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; |
| 1750 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule; |
| 1751 p->inVtabMethod = 1; |
| 1752 pModule->xClose(pVtabCursor); |
| 1753 p->inVtabMethod = 0; |
| 1754 } |
| 1755 #endif |
| 1756 } |
| 1757 |
| 1758 /* |
| 1759 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
| 1760 ** is used, for example, when a trigger sub-program is halted to restore |
| 1761 ** control to the main program. |
| 1762 */ |
| 1763 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
| 1764 Vdbe *v = pFrame->v; |
| 1765 v->aOnceFlag = pFrame->aOnceFlag; |
| 1766 v->nOnceFlag = pFrame->nOnceFlag; |
| 1767 v->aOp = pFrame->aOp; |
| 1768 v->nOp = pFrame->nOp; |
| 1769 v->aMem = pFrame->aMem; |
| 1770 v->nMem = pFrame->nMem; |
| 1771 v->apCsr = pFrame->apCsr; |
| 1772 v->nCursor = pFrame->nCursor; |
| 1773 v->db->lastRowid = pFrame->lastRowid; |
| 1774 v->nChange = pFrame->nChange; |
| 1775 return pFrame->pc; |
| 1776 } |
| 1777 |
| 1778 /* |
| 1779 ** Close all cursors. |
| 1780 ** |
| 1781 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
| 1782 ** cell array. This is necessary as the memory cell array may contain |
| 1783 ** pointers to VdbeFrame objects, which may in turn contain pointers to |
| 1784 ** open cursors. |
| 1785 */ |
| 1786 static void closeAllCursors(Vdbe *p){ |
| 1787 if( p->pFrame ){ |
| 1788 VdbeFrame *pFrame; |
| 1789 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 1790 sqlite3VdbeFrameRestore(pFrame); |
| 1791 p->pFrame = 0; |
| 1792 p->nFrame = 0; |
| 1793 } |
| 1794 assert( p->nFrame==0 ); |
| 1795 |
| 1796 if( p->apCsr ){ |
| 1797 int i; |
| 1798 for(i=0; i<p->nCursor; i++){ |
| 1799 VdbeCursor *pC = p->apCsr[i]; |
| 1800 if( pC ){ |
| 1801 sqlite3VdbeFreeCursor(p, pC); |
| 1802 p->apCsr[i] = 0; |
| 1803 } |
| 1804 } |
| 1805 } |
| 1806 if( p->aMem ){ |
| 1807 releaseMemArray(&p->aMem[1], p->nMem); |
| 1808 } |
| 1809 while( p->pDelFrame ){ |
| 1810 VdbeFrame *pDel = p->pDelFrame; |
| 1811 p->pDelFrame = pDel->pParent; |
| 1812 sqlite3VdbeFrameDelete(pDel); |
| 1813 } |
| 1814 |
| 1815 /* Delete any auxdata allocations made by the VM */ |
| 1816 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0); |
| 1817 assert( p->pAuxData==0 ); |
| 1818 } |
| 1819 |
| 1820 /* |
| 1821 ** Clean up the VM after a single run. |
| 1822 */ |
| 1823 static void Cleanup(Vdbe *p){ |
| 1824 sqlite3 *db = p->db; |
| 1825 |
| 1826 #ifdef SQLITE_DEBUG |
| 1827 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
| 1828 ** Vdbe.aMem[] arrays have already been cleaned up. */ |
| 1829 int i; |
| 1830 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); |
| 1831 if( p->aMem ){ |
| 1832 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); |
| 1833 } |
| 1834 #endif |
| 1835 |
| 1836 sqlite3DbFree(db, p->zErrMsg); |
| 1837 p->zErrMsg = 0; |
| 1838 p->pResultSet = 0; |
| 1839 } |
| 1840 |
| 1841 /* |
| 1842 ** Set the number of result columns that will be returned by this SQL |
| 1843 ** statement. This is now set at compile time, rather than during |
| 1844 ** execution of the vdbe program so that sqlite3_column_count() can |
| 1845 ** be called on an SQL statement before sqlite3_step(). |
| 1846 */ |
| 1847 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
| 1848 Mem *pColName; |
| 1849 int n; |
| 1850 sqlite3 *db = p->db; |
| 1851 |
| 1852 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 1853 sqlite3DbFree(db, p->aColName); |
| 1854 n = nResColumn*COLNAME_N; |
| 1855 p->nResColumn = (u16)nResColumn; |
| 1856 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); |
| 1857 if( p->aColName==0 ) return; |
| 1858 while( n-- > 0 ){ |
| 1859 pColName->flags = MEM_Null; |
| 1860 pColName->db = p->db; |
| 1861 pColName++; |
| 1862 } |
| 1863 } |
| 1864 |
| 1865 /* |
| 1866 ** Set the name of the idx'th column to be returned by the SQL statement. |
| 1867 ** zName must be a pointer to a nul terminated string. |
| 1868 ** |
| 1869 ** This call must be made after a call to sqlite3VdbeSetNumCols(). |
| 1870 ** |
| 1871 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
| 1872 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
| 1873 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
| 1874 */ |
| 1875 int sqlite3VdbeSetColName( |
| 1876 Vdbe *p, /* Vdbe being configured */ |
| 1877 int idx, /* Index of column zName applies to */ |
| 1878 int var, /* One of the COLNAME_* constants */ |
| 1879 const char *zName, /* Pointer to buffer containing name */ |
| 1880 void (*xDel)(void*) /* Memory management strategy for zName */ |
| 1881 ){ |
| 1882 int rc; |
| 1883 Mem *pColName; |
| 1884 assert( idx<p->nResColumn ); |
| 1885 assert( var<COLNAME_N ); |
| 1886 if( p->db->mallocFailed ){ |
| 1887 assert( !zName || xDel!=SQLITE_DYNAMIC ); |
| 1888 return SQLITE_NOMEM; |
| 1889 } |
| 1890 assert( p->aColName!=0 ); |
| 1891 pColName = &(p->aColName[idx+var*p->nResColumn]); |
| 1892 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
| 1893 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
| 1894 return rc; |
| 1895 } |
| 1896 |
| 1897 /* |
| 1898 ** A read or write transaction may or may not be active on database handle |
| 1899 ** db. If a transaction is active, commit it. If there is a |
| 1900 ** write-transaction spanning more than one database file, this routine |
| 1901 ** takes care of the master journal trickery. |
| 1902 */ |
| 1903 static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
| 1904 int i; |
| 1905 int nTrans = 0; /* Number of databases with an active write-transaction */ |
| 1906 int rc = SQLITE_OK; |
| 1907 int needXcommit = 0; |
| 1908 |
| 1909 #ifdef SQLITE_OMIT_VIRTUALTABLE |
| 1910 /* With this option, sqlite3VtabSync() is defined to be simply |
| 1911 ** SQLITE_OK so p is not used. |
| 1912 */ |
| 1913 UNUSED_PARAMETER(p); |
| 1914 #endif |
| 1915 |
| 1916 /* Before doing anything else, call the xSync() callback for any |
| 1917 ** virtual module tables written in this transaction. This has to |
| 1918 ** be done before determining whether a master journal file is |
| 1919 ** required, as an xSync() callback may add an attached database |
| 1920 ** to the transaction. |
| 1921 */ |
| 1922 rc = sqlite3VtabSync(db, p); |
| 1923 |
| 1924 /* This loop determines (a) if the commit hook should be invoked and |
| 1925 ** (b) how many database files have open write transactions, not |
| 1926 ** including the temp database. (b) is important because if more than |
| 1927 ** one database file has an open write transaction, a master journal |
| 1928 ** file is required for an atomic commit. |
| 1929 */ |
| 1930 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1931 Btree *pBt = db->aDb[i].pBt; |
| 1932 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 1933 needXcommit = 1; |
| 1934 if( i!=1 ) nTrans++; |
| 1935 sqlite3BtreeEnter(pBt); |
| 1936 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); |
| 1937 sqlite3BtreeLeave(pBt); |
| 1938 } |
| 1939 } |
| 1940 if( rc!=SQLITE_OK ){ |
| 1941 return rc; |
| 1942 } |
| 1943 |
| 1944 /* If there are any write-transactions at all, invoke the commit hook */ |
| 1945 if( needXcommit && db->xCommitCallback ){ |
| 1946 rc = db->xCommitCallback(db->pCommitArg); |
| 1947 if( rc ){ |
| 1948 return SQLITE_CONSTRAINT_COMMITHOOK; |
| 1949 } |
| 1950 } |
| 1951 |
| 1952 /* The simple case - no more than one database file (not counting the |
| 1953 ** TEMP database) has a transaction active. There is no need for the |
| 1954 ** master-journal. |
| 1955 ** |
| 1956 ** If the return value of sqlite3BtreeGetFilename() is a zero length |
| 1957 ** string, it means the main database is :memory: or a temp file. In |
| 1958 ** that case we do not support atomic multi-file commits, so use the |
| 1959 ** simple case then too. |
| 1960 */ |
| 1961 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
| 1962 || nTrans<=1 |
| 1963 ){ |
| 1964 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1965 Btree *pBt = db->aDb[i].pBt; |
| 1966 if( pBt ){ |
| 1967 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
| 1968 } |
| 1969 } |
| 1970 |
| 1971 /* Do the commit only if all databases successfully complete phase 1. |
| 1972 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
| 1973 ** IO error while deleting or truncating a journal file. It is unlikely, |
| 1974 ** but could happen. In this case abandon processing and return the error. |
| 1975 */ |
| 1976 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1977 Btree *pBt = db->aDb[i].pBt; |
| 1978 if( pBt ){ |
| 1979 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
| 1980 } |
| 1981 } |
| 1982 if( rc==SQLITE_OK ){ |
| 1983 sqlite3VtabCommit(db); |
| 1984 } |
| 1985 } |
| 1986 |
| 1987 /* The complex case - There is a multi-file write-transaction active. |
| 1988 ** This requires a master journal file to ensure the transaction is |
| 1989 ** committed atomically. |
| 1990 */ |
| 1991 #ifndef SQLITE_OMIT_DISKIO |
| 1992 else{ |
| 1993 sqlite3_vfs *pVfs = db->pVfs; |
| 1994 int needSync = 0; |
| 1995 char *zMaster = 0; /* File-name for the master journal */ |
| 1996 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
| 1997 sqlite3_file *pMaster = 0; |
| 1998 i64 offset = 0; |
| 1999 int res; |
| 2000 int retryCount = 0; |
| 2001 int nMainFile; |
| 2002 |
| 2003 /* Select a master journal file name */ |
| 2004 nMainFile = sqlite3Strlen30(zMainFile); |
| 2005 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); |
| 2006 if( zMaster==0 ) return SQLITE_NOMEM; |
| 2007 do { |
| 2008 u32 iRandom; |
| 2009 if( retryCount ){ |
| 2010 if( retryCount>100 ){ |
| 2011 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); |
| 2012 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2013 break; |
| 2014 }else if( retryCount==1 ){ |
| 2015 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); |
| 2016 } |
| 2017 } |
| 2018 retryCount++; |
| 2019 sqlite3_randomness(sizeof(iRandom), &iRandom); |
| 2020 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", |
| 2021 (iRandom>>8)&0xffffff, iRandom&0xff); |
| 2022 /* The antipenultimate character of the master journal name must |
| 2023 ** be "9" to avoid name collisions when using 8+3 filenames. */ |
| 2024 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); |
| 2025 sqlite3FileSuffix3(zMainFile, zMaster); |
| 2026 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
| 2027 }while( rc==SQLITE_OK && res ); |
| 2028 if( rc==SQLITE_OK ){ |
| 2029 /* Open the master journal. */ |
| 2030 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
| 2031 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
| 2032 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
| 2033 ); |
| 2034 } |
| 2035 if( rc!=SQLITE_OK ){ |
| 2036 sqlite3DbFree(db, zMaster); |
| 2037 return rc; |
| 2038 } |
| 2039 |
| 2040 /* Write the name of each database file in the transaction into the new |
| 2041 ** master journal file. If an error occurs at this point close |
| 2042 ** and delete the master journal file. All the individual journal files |
| 2043 ** still have 'null' as the master journal pointer, so they will roll |
| 2044 ** back independently if a failure occurs. |
| 2045 */ |
| 2046 for(i=0; i<db->nDb; i++){ |
| 2047 Btree *pBt = db->aDb[i].pBt; |
| 2048 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 2049 char const *zFile = sqlite3BtreeGetJournalname(pBt); |
| 2050 if( zFile==0 ){ |
| 2051 continue; /* Ignore TEMP and :memory: databases */ |
| 2052 } |
| 2053 assert( zFile[0]!=0 ); |
| 2054 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ |
| 2055 needSync = 1; |
| 2056 } |
| 2057 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); |
| 2058 offset += sqlite3Strlen30(zFile)+1; |
| 2059 if( rc!=SQLITE_OK ){ |
| 2060 sqlite3OsCloseFree(pMaster); |
| 2061 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2062 sqlite3DbFree(db, zMaster); |
| 2063 return rc; |
| 2064 } |
| 2065 } |
| 2066 } |
| 2067 |
| 2068 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
| 2069 ** flag is set this is not required. |
| 2070 */ |
| 2071 if( needSync |
| 2072 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) |
| 2073 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) |
| 2074 ){ |
| 2075 sqlite3OsCloseFree(pMaster); |
| 2076 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2077 sqlite3DbFree(db, zMaster); |
| 2078 return rc; |
| 2079 } |
| 2080 |
| 2081 /* Sync all the db files involved in the transaction. The same call |
| 2082 ** sets the master journal pointer in each individual journal. If |
| 2083 ** an error occurs here, do not delete the master journal file. |
| 2084 ** |
| 2085 ** If the error occurs during the first call to |
| 2086 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
| 2087 ** master journal file will be orphaned. But we cannot delete it, |
| 2088 ** in case the master journal file name was written into the journal |
| 2089 ** file before the failure occurred. |
| 2090 */ |
| 2091 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 2092 Btree *pBt = db->aDb[i].pBt; |
| 2093 if( pBt ){ |
| 2094 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
| 2095 } |
| 2096 } |
| 2097 sqlite3OsCloseFree(pMaster); |
| 2098 assert( rc!=SQLITE_BUSY ); |
| 2099 if( rc!=SQLITE_OK ){ |
| 2100 sqlite3DbFree(db, zMaster); |
| 2101 return rc; |
| 2102 } |
| 2103 |
| 2104 /* Delete the master journal file. This commits the transaction. After |
| 2105 ** doing this the directory is synced again before any individual |
| 2106 ** transaction files are deleted. |
| 2107 */ |
| 2108 rc = sqlite3OsDelete(pVfs, zMaster, 1); |
| 2109 sqlite3DbFree(db, zMaster); |
| 2110 zMaster = 0; |
| 2111 if( rc ){ |
| 2112 return rc; |
| 2113 } |
| 2114 |
| 2115 /* All files and directories have already been synced, so the following |
| 2116 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
| 2117 ** deleting or truncating journals. If something goes wrong while |
| 2118 ** this is happening we don't really care. The integrity of the |
| 2119 ** transaction is already guaranteed, but some stray 'cold' journals |
| 2120 ** may be lying around. Returning an error code won't help matters. |
| 2121 */ |
| 2122 disable_simulated_io_errors(); |
| 2123 sqlite3BeginBenignMalloc(); |
| 2124 for(i=0; i<db->nDb; i++){ |
| 2125 Btree *pBt = db->aDb[i].pBt; |
| 2126 if( pBt ){ |
| 2127 sqlite3BtreeCommitPhaseTwo(pBt, 1); |
| 2128 } |
| 2129 } |
| 2130 sqlite3EndBenignMalloc(); |
| 2131 enable_simulated_io_errors(); |
| 2132 |
| 2133 sqlite3VtabCommit(db); |
| 2134 } |
| 2135 #endif |
| 2136 |
| 2137 return rc; |
| 2138 } |
| 2139 |
| 2140 /* |
| 2141 ** This routine checks that the sqlite3.nVdbeActive count variable |
| 2142 ** matches the number of vdbe's in the list sqlite3.pVdbe that are |
| 2143 ** currently active. An assertion fails if the two counts do not match. |
| 2144 ** This is an internal self-check only - it is not an essential processing |
| 2145 ** step. |
| 2146 ** |
| 2147 ** This is a no-op if NDEBUG is defined. |
| 2148 */ |
| 2149 #ifndef NDEBUG |
| 2150 static void checkActiveVdbeCnt(sqlite3 *db){ |
| 2151 Vdbe *p; |
| 2152 int cnt = 0; |
| 2153 int nWrite = 0; |
| 2154 int nRead = 0; |
| 2155 p = db->pVdbe; |
| 2156 while( p ){ |
| 2157 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ |
| 2158 cnt++; |
| 2159 if( p->readOnly==0 ) nWrite++; |
| 2160 if( p->bIsReader ) nRead++; |
| 2161 } |
| 2162 p = p->pNext; |
| 2163 } |
| 2164 assert( cnt==db->nVdbeActive ); |
| 2165 assert( nWrite==db->nVdbeWrite ); |
| 2166 assert( nRead==db->nVdbeRead ); |
| 2167 } |
| 2168 #else |
| 2169 #define checkActiveVdbeCnt(x) |
| 2170 #endif |
| 2171 |
| 2172 /* |
| 2173 ** If the Vdbe passed as the first argument opened a statement-transaction, |
| 2174 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
| 2175 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
| 2176 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
| 2177 ** statement transaction is committed. |
| 2178 ** |
| 2179 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
| 2180 ** Otherwise SQLITE_OK. |
| 2181 */ |
| 2182 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
| 2183 sqlite3 *const db = p->db; |
| 2184 int rc = SQLITE_OK; |
| 2185 |
| 2186 /* If p->iStatement is greater than zero, then this Vdbe opened a |
| 2187 ** statement transaction that should be closed here. The only exception |
| 2188 ** is that an IO error may have occurred, causing an emergency rollback. |
| 2189 ** In this case (db->nStatement==0), and there is nothing to do. |
| 2190 */ |
| 2191 if( db->nStatement && p->iStatement ){ |
| 2192 int i; |
| 2193 const int iSavepoint = p->iStatement-1; |
| 2194 |
| 2195 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
| 2196 assert( db->nStatement>0 ); |
| 2197 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
| 2198 |
| 2199 for(i=0; i<db->nDb; i++){ |
| 2200 int rc2 = SQLITE_OK; |
| 2201 Btree *pBt = db->aDb[i].pBt; |
| 2202 if( pBt ){ |
| 2203 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2204 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
| 2205 } |
| 2206 if( rc2==SQLITE_OK ){ |
| 2207 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
| 2208 } |
| 2209 if( rc==SQLITE_OK ){ |
| 2210 rc = rc2; |
| 2211 } |
| 2212 } |
| 2213 } |
| 2214 db->nStatement--; |
| 2215 p->iStatement = 0; |
| 2216 |
| 2217 if( rc==SQLITE_OK ){ |
| 2218 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2219 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); |
| 2220 } |
| 2221 if( rc==SQLITE_OK ){ |
| 2222 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); |
| 2223 } |
| 2224 } |
| 2225 |
| 2226 /* If the statement transaction is being rolled back, also restore the |
| 2227 ** database handles deferred constraint counter to the value it had when |
| 2228 ** the statement transaction was opened. */ |
| 2229 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2230 db->nDeferredCons = p->nStmtDefCons; |
| 2231 db->nDeferredImmCons = p->nStmtDefImmCons; |
| 2232 } |
| 2233 } |
| 2234 return rc; |
| 2235 } |
| 2236 |
| 2237 /* |
| 2238 ** This function is called when a transaction opened by the database |
| 2239 ** handle associated with the VM passed as an argument is about to be |
| 2240 ** committed. If there are outstanding deferred foreign key constraint |
| 2241 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
| 2242 ** |
| 2243 ** If there are outstanding FK violations and this function returns |
| 2244 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY |
| 2245 ** and write an error message to it. Then return SQLITE_ERROR. |
| 2246 */ |
| 2247 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2248 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
| 2249 sqlite3 *db = p->db; |
| 2250 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) |
| 2251 || (!deferred && p->nFkConstraint>0) |
| 2252 ){ |
| 2253 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| 2254 p->errorAction = OE_Abort; |
| 2255 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed"); |
| 2256 return SQLITE_ERROR; |
| 2257 } |
| 2258 return SQLITE_OK; |
| 2259 } |
| 2260 #endif |
| 2261 |
| 2262 /* |
| 2263 ** This routine is called the when a VDBE tries to halt. If the VDBE |
| 2264 ** has made changes and is in autocommit mode, then commit those |
| 2265 ** changes. If a rollback is needed, then do the rollback. |
| 2266 ** |
| 2267 ** This routine is the only way to move the state of a VM from |
| 2268 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
| 2269 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
| 2270 ** |
| 2271 ** Return an error code. If the commit could not complete because of |
| 2272 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
| 2273 ** means the close did not happen and needs to be repeated. |
| 2274 */ |
| 2275 int sqlite3VdbeHalt(Vdbe *p){ |
| 2276 int rc; /* Used to store transient return codes */ |
| 2277 sqlite3 *db = p->db; |
| 2278 |
| 2279 /* This function contains the logic that determines if a statement or |
| 2280 ** transaction will be committed or rolled back as a result of the |
| 2281 ** execution of this virtual machine. |
| 2282 ** |
| 2283 ** If any of the following errors occur: |
| 2284 ** |
| 2285 ** SQLITE_NOMEM |
| 2286 ** SQLITE_IOERR |
| 2287 ** SQLITE_FULL |
| 2288 ** SQLITE_INTERRUPT |
| 2289 ** |
| 2290 ** Then the internal cache might have been left in an inconsistent |
| 2291 ** state. We need to rollback the statement transaction, if there is |
| 2292 ** one, or the complete transaction if there is no statement transaction. |
| 2293 */ |
| 2294 |
| 2295 if( p->db->mallocFailed ){ |
| 2296 p->rc = SQLITE_NOMEM; |
| 2297 } |
| 2298 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); |
| 2299 closeAllCursors(p); |
| 2300 if( p->magic!=VDBE_MAGIC_RUN ){ |
| 2301 return SQLITE_OK; |
| 2302 } |
| 2303 checkActiveVdbeCnt(db); |
| 2304 |
| 2305 /* No commit or rollback needed if the program never started or if the |
| 2306 ** SQL statement does not read or write a database file. */ |
| 2307 if( p->pc>=0 && p->bIsReader ){ |
| 2308 int mrc; /* Primary error code from p->rc */ |
| 2309 int eStatementOp = 0; |
| 2310 int isSpecialError; /* Set to true if a 'special' error */ |
| 2311 |
| 2312 /* Lock all btrees used by the statement */ |
| 2313 sqlite3VdbeEnter(p); |
| 2314 |
| 2315 /* Check for one of the special errors */ |
| 2316 mrc = p->rc & 0xff; |
| 2317 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
| 2318 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
| 2319 if( isSpecialError ){ |
| 2320 /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
| 2321 ** no rollback is necessary. Otherwise, at least a savepoint |
| 2322 ** transaction must be rolled back to restore the database to a |
| 2323 ** consistent state. |
| 2324 ** |
| 2325 ** Even if the statement is read-only, it is important to perform |
| 2326 ** a statement or transaction rollback operation. If the error |
| 2327 ** occurred while writing to the journal, sub-journal or database |
| 2328 ** file as part of an effort to free up cache space (see function |
| 2329 ** pagerStress() in pager.c), the rollback is required to restore |
| 2330 ** the pager to a consistent state. |
| 2331 */ |
| 2332 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
| 2333 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
| 2334 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2335 }else{ |
| 2336 /* We are forced to roll back the active transaction. Before doing |
| 2337 ** so, abort any other statements this handle currently has active. |
| 2338 */ |
| 2339 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2340 sqlite3CloseSavepoints(db); |
| 2341 db->autoCommit = 1; |
| 2342 } |
| 2343 } |
| 2344 } |
| 2345 |
| 2346 /* Check for immediate foreign key violations. */ |
| 2347 if( p->rc==SQLITE_OK ){ |
| 2348 sqlite3VdbeCheckFk(p, 0); |
| 2349 } |
| 2350 |
| 2351 /* If the auto-commit flag is set and this is the only active writer |
| 2352 ** VM, then we do either a commit or rollback of the current transaction. |
| 2353 ** |
| 2354 ** Note: This block also runs if one of the special errors handled |
| 2355 ** above has occurred. |
| 2356 */ |
| 2357 if( !sqlite3VtabInSync(db) |
| 2358 && db->autoCommit |
| 2359 && db->nVdbeWrite==(p->readOnly==0) |
| 2360 ){ |
| 2361 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| 2362 rc = sqlite3VdbeCheckFk(p, 1); |
| 2363 if( rc!=SQLITE_OK ){ |
| 2364 if( NEVER(p->readOnly) ){ |
| 2365 sqlite3VdbeLeave(p); |
| 2366 return SQLITE_ERROR; |
| 2367 } |
| 2368 rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| 2369 }else{ |
| 2370 /* The auto-commit flag is true, the vdbe program was successful |
| 2371 ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
| 2372 ** key constraints to hold up the transaction. This means a commit |
| 2373 ** is required. */ |
| 2374 rc = vdbeCommit(db, p); |
| 2375 } |
| 2376 if( rc==SQLITE_BUSY && p->readOnly ){ |
| 2377 sqlite3VdbeLeave(p); |
| 2378 return SQLITE_BUSY; |
| 2379 }else if( rc!=SQLITE_OK ){ |
| 2380 p->rc = rc; |
| 2381 sqlite3RollbackAll(db, SQLITE_OK); |
| 2382 }else{ |
| 2383 db->nDeferredCons = 0; |
| 2384 db->nDeferredImmCons = 0; |
| 2385 db->flags &= ~SQLITE_DeferFKs; |
| 2386 sqlite3CommitInternalChanges(db); |
| 2387 } |
| 2388 }else{ |
| 2389 sqlite3RollbackAll(db, SQLITE_OK); |
| 2390 } |
| 2391 db->nStatement = 0; |
| 2392 }else if( eStatementOp==0 ){ |
| 2393 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
| 2394 eStatementOp = SAVEPOINT_RELEASE; |
| 2395 }else if( p->errorAction==OE_Abort ){ |
| 2396 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2397 }else{ |
| 2398 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2399 sqlite3CloseSavepoints(db); |
| 2400 db->autoCommit = 1; |
| 2401 } |
| 2402 } |
| 2403 |
| 2404 /* If eStatementOp is non-zero, then a statement transaction needs to |
| 2405 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
| 2406 ** do so. If this operation returns an error, and the current statement |
| 2407 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
| 2408 ** current statement error code. |
| 2409 */ |
| 2410 if( eStatementOp ){ |
| 2411 rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
| 2412 if( rc ){ |
| 2413 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ |
| 2414 p->rc = rc; |
| 2415 sqlite3DbFree(db, p->zErrMsg); |
| 2416 p->zErrMsg = 0; |
| 2417 } |
| 2418 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2419 sqlite3CloseSavepoints(db); |
| 2420 db->autoCommit = 1; |
| 2421 } |
| 2422 } |
| 2423 |
| 2424 /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
| 2425 ** has been rolled back, update the database connection change-counter. |
| 2426 */ |
| 2427 if( p->changeCntOn ){ |
| 2428 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
| 2429 sqlite3VdbeSetChanges(db, p->nChange); |
| 2430 }else{ |
| 2431 sqlite3VdbeSetChanges(db, 0); |
| 2432 } |
| 2433 p->nChange = 0; |
| 2434 } |
| 2435 |
| 2436 /* Release the locks */ |
| 2437 sqlite3VdbeLeave(p); |
| 2438 } |
| 2439 |
| 2440 /* We have successfully halted and closed the VM. Record this fact. */ |
| 2441 if( p->pc>=0 ){ |
| 2442 db->nVdbeActive--; |
| 2443 if( !p->readOnly ) db->nVdbeWrite--; |
| 2444 if( p->bIsReader ) db->nVdbeRead--; |
| 2445 assert( db->nVdbeActive>=db->nVdbeRead ); |
| 2446 assert( db->nVdbeRead>=db->nVdbeWrite ); |
| 2447 assert( db->nVdbeWrite>=0 ); |
| 2448 } |
| 2449 p->magic = VDBE_MAGIC_HALT; |
| 2450 checkActiveVdbeCnt(db); |
| 2451 if( p->db->mallocFailed ){ |
| 2452 p->rc = SQLITE_NOMEM; |
| 2453 } |
| 2454 |
| 2455 /* If the auto-commit flag is set to true, then any locks that were held |
| 2456 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
| 2457 ** to invoke any required unlock-notify callbacks. |
| 2458 */ |
| 2459 if( db->autoCommit ){ |
| 2460 sqlite3ConnectionUnlocked(db); |
| 2461 } |
| 2462 |
| 2463 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); |
| 2464 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
| 2465 } |
| 2466 |
| 2467 |
| 2468 /* |
| 2469 ** Each VDBE holds the result of the most recent sqlite3_step() call |
| 2470 ** in p->rc. This routine sets that result back to SQLITE_OK. |
| 2471 */ |
| 2472 void sqlite3VdbeResetStepResult(Vdbe *p){ |
| 2473 p->rc = SQLITE_OK; |
| 2474 } |
| 2475 |
| 2476 /* |
| 2477 ** Copy the error code and error message belonging to the VDBE passed |
| 2478 ** as the first argument to its database handle (so that they will be |
| 2479 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). |
| 2480 ** |
| 2481 ** This function does not clear the VDBE error code or message, just |
| 2482 ** copies them to the database handle. |
| 2483 */ |
| 2484 int sqlite3VdbeTransferError(Vdbe *p){ |
| 2485 sqlite3 *db = p->db; |
| 2486 int rc = p->rc; |
| 2487 if( p->zErrMsg ){ |
| 2488 u8 mallocFailed = db->mallocFailed; |
| 2489 sqlite3BeginBenignMalloc(); |
| 2490 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); |
| 2491 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
| 2492 sqlite3EndBenignMalloc(); |
| 2493 db->mallocFailed = mallocFailed; |
| 2494 db->errCode = rc; |
| 2495 }else{ |
| 2496 sqlite3Error(db, rc); |
| 2497 } |
| 2498 return rc; |
| 2499 } |
| 2500 |
| 2501 #ifdef SQLITE_ENABLE_SQLLOG |
| 2502 /* |
| 2503 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, |
| 2504 ** invoke it. |
| 2505 */ |
| 2506 static void vdbeInvokeSqllog(Vdbe *v){ |
| 2507 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ |
| 2508 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); |
| 2509 assert( v->db->init.busy==0 ); |
| 2510 if( zExpanded ){ |
| 2511 sqlite3GlobalConfig.xSqllog( |
| 2512 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 |
| 2513 ); |
| 2514 sqlite3DbFree(v->db, zExpanded); |
| 2515 } |
| 2516 } |
| 2517 } |
| 2518 #else |
| 2519 # define vdbeInvokeSqllog(x) |
| 2520 #endif |
| 2521 |
| 2522 /* |
| 2523 ** Clean up a VDBE after execution but do not delete the VDBE just yet. |
| 2524 ** Write any error messages into *pzErrMsg. Return the result code. |
| 2525 ** |
| 2526 ** After this routine is run, the VDBE should be ready to be executed |
| 2527 ** again. |
| 2528 ** |
| 2529 ** To look at it another way, this routine resets the state of the |
| 2530 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
| 2531 ** VDBE_MAGIC_INIT. |
| 2532 */ |
| 2533 int sqlite3VdbeReset(Vdbe *p){ |
| 2534 sqlite3 *db; |
| 2535 db = p->db; |
| 2536 |
| 2537 /* If the VM did not run to completion or if it encountered an |
| 2538 ** error, then it might not have been halted properly. So halt |
| 2539 ** it now. |
| 2540 */ |
| 2541 sqlite3VdbeHalt(p); |
| 2542 |
| 2543 /* If the VDBE has be run even partially, then transfer the error code |
| 2544 ** and error message from the VDBE into the main database structure. But |
| 2545 ** if the VDBE has just been set to run but has not actually executed any |
| 2546 ** instructions yet, leave the main database error information unchanged. |
| 2547 */ |
| 2548 if( p->pc>=0 ){ |
| 2549 vdbeInvokeSqllog(p); |
| 2550 sqlite3VdbeTransferError(p); |
| 2551 sqlite3DbFree(db, p->zErrMsg); |
| 2552 p->zErrMsg = 0; |
| 2553 if( p->runOnlyOnce ) p->expired = 1; |
| 2554 }else if( p->rc && p->expired ){ |
| 2555 /* The expired flag was set on the VDBE before the first call |
| 2556 ** to sqlite3_step(). For consistency (since sqlite3_step() was |
| 2557 ** called), set the database error in this case as well. |
| 2558 */ |
| 2559 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); |
| 2560 sqlite3DbFree(db, p->zErrMsg); |
| 2561 p->zErrMsg = 0; |
| 2562 } |
| 2563 |
| 2564 /* Reclaim all memory used by the VDBE |
| 2565 */ |
| 2566 Cleanup(p); |
| 2567 |
| 2568 /* Save profiling information from this VDBE run. |
| 2569 */ |
| 2570 #ifdef VDBE_PROFILE |
| 2571 { |
| 2572 FILE *out = fopen("vdbe_profile.out", "a"); |
| 2573 if( out ){ |
| 2574 int i; |
| 2575 fprintf(out, "---- "); |
| 2576 for(i=0; i<p->nOp; i++){ |
| 2577 fprintf(out, "%02x", p->aOp[i].opcode); |
| 2578 } |
| 2579 fprintf(out, "\n"); |
| 2580 if( p->zSql ){ |
| 2581 char c, pc = 0; |
| 2582 fprintf(out, "-- "); |
| 2583 for(i=0; (c = p->zSql[i])!=0; i++){ |
| 2584 if( pc=='\n' ) fprintf(out, "-- "); |
| 2585 putc(c, out); |
| 2586 pc = c; |
| 2587 } |
| 2588 if( pc!='\n' ) fprintf(out, "\n"); |
| 2589 } |
| 2590 for(i=0; i<p->nOp; i++){ |
| 2591 char zHdr[100]; |
| 2592 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", |
| 2593 p->aOp[i].cnt, |
| 2594 p->aOp[i].cycles, |
| 2595 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
| 2596 ); |
| 2597 fprintf(out, "%s", zHdr); |
| 2598 sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
| 2599 } |
| 2600 fclose(out); |
| 2601 } |
| 2602 } |
| 2603 #endif |
| 2604 p->iCurrentTime = 0; |
| 2605 p->magic = VDBE_MAGIC_INIT; |
| 2606 return p->rc & db->errMask; |
| 2607 } |
| 2608 |
| 2609 /* |
| 2610 ** Clean up and delete a VDBE after execution. Return an integer which is |
| 2611 ** the result code. Write any error message text into *pzErrMsg. |
| 2612 */ |
| 2613 int sqlite3VdbeFinalize(Vdbe *p){ |
| 2614 int rc = SQLITE_OK; |
| 2615 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
| 2616 rc = sqlite3VdbeReset(p); |
| 2617 assert( (rc & p->db->errMask)==rc ); |
| 2618 } |
| 2619 sqlite3VdbeDelete(p); |
| 2620 return rc; |
| 2621 } |
| 2622 |
| 2623 /* |
| 2624 ** If parameter iOp is less than zero, then invoke the destructor for |
| 2625 ** all auxiliary data pointers currently cached by the VM passed as |
| 2626 ** the first argument. |
| 2627 ** |
| 2628 ** Or, if iOp is greater than or equal to zero, then the destructor is |
| 2629 ** only invoked for those auxiliary data pointers created by the user |
| 2630 ** function invoked by the OP_Function opcode at instruction iOp of |
| 2631 ** VM pVdbe, and only then if: |
| 2632 ** |
| 2633 ** * the associated function parameter is the 32nd or later (counting |
| 2634 ** from left to right), or |
| 2635 ** |
| 2636 ** * the corresponding bit in argument mask is clear (where the first |
| 2637 ** function parameter corresponds to bit 0 etc.). |
| 2638 */ |
| 2639 void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ |
| 2640 AuxData **pp = &pVdbe->pAuxData; |
| 2641 while( *pp ){ |
| 2642 AuxData *pAux = *pp; |
| 2643 if( (iOp<0) |
| 2644 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) |
| 2645 ){ |
| 2646 testcase( pAux->iArg==31 ); |
| 2647 if( pAux->xDelete ){ |
| 2648 pAux->xDelete(pAux->pAux); |
| 2649 } |
| 2650 *pp = pAux->pNext; |
| 2651 sqlite3DbFree(pVdbe->db, pAux); |
| 2652 }else{ |
| 2653 pp= &pAux->pNext; |
| 2654 } |
| 2655 } |
| 2656 } |
| 2657 |
| 2658 /* |
| 2659 ** Free all memory associated with the Vdbe passed as the second argument, |
| 2660 ** except for object itself, which is preserved. |
| 2661 ** |
| 2662 ** The difference between this function and sqlite3VdbeDelete() is that |
| 2663 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
| 2664 ** the database connection and frees the object itself. |
| 2665 */ |
| 2666 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ |
| 2667 SubProgram *pSub, *pNext; |
| 2668 int i; |
| 2669 assert( p->db==0 || p->db==db ); |
| 2670 releaseMemArray(p->aVar, p->nVar); |
| 2671 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 2672 for(pSub=p->pProgram; pSub; pSub=pNext){ |
| 2673 pNext = pSub->pNext; |
| 2674 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
| 2675 sqlite3DbFree(db, pSub); |
| 2676 } |
| 2677 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]); |
| 2678 vdbeFreeOpArray(db, p->aOp, p->nOp); |
| 2679 sqlite3DbFree(db, p->aColName); |
| 2680 sqlite3DbFree(db, p->zSql); |
| 2681 sqlite3DbFree(db, p->pFree); |
| 2682 } |
| 2683 |
| 2684 /* |
| 2685 ** Delete an entire VDBE. |
| 2686 */ |
| 2687 void sqlite3VdbeDelete(Vdbe *p){ |
| 2688 sqlite3 *db; |
| 2689 |
| 2690 if( NEVER(p==0) ) return; |
| 2691 db = p->db; |
| 2692 assert( sqlite3_mutex_held(db->mutex) ); |
| 2693 sqlite3VdbeClearObject(db, p); |
| 2694 if( p->pPrev ){ |
| 2695 p->pPrev->pNext = p->pNext; |
| 2696 }else{ |
| 2697 assert( db->pVdbe==p ); |
| 2698 db->pVdbe = p->pNext; |
| 2699 } |
| 2700 if( p->pNext ){ |
| 2701 p->pNext->pPrev = p->pPrev; |
| 2702 } |
| 2703 p->magic = VDBE_MAGIC_DEAD; |
| 2704 p->db = 0; |
| 2705 sqlite3DbFree(db, p); |
| 2706 } |
| 2707 |
| 2708 /* |
| 2709 ** The cursor "p" has a pending seek operation that has not yet been |
| 2710 ** carried out. Seek the cursor now. If an error occurs, return |
| 2711 ** the appropriate error code. |
| 2712 */ |
| 2713 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ |
| 2714 int res, rc; |
| 2715 #ifdef SQLITE_TEST |
| 2716 extern int sqlite3_search_count; |
| 2717 #endif |
| 2718 assert( p->deferredMoveto ); |
| 2719 assert( p->isTable ); |
| 2720 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); |
| 2721 if( rc ) return rc; |
| 2722 if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
| 2723 #ifdef SQLITE_TEST |
| 2724 sqlite3_search_count++; |
| 2725 #endif |
| 2726 p->deferredMoveto = 0; |
| 2727 p->cacheStatus = CACHE_STALE; |
| 2728 return SQLITE_OK; |
| 2729 } |
| 2730 |
| 2731 /* |
| 2732 ** Something has moved cursor "p" out of place. Maybe the row it was |
| 2733 ** pointed to was deleted out from under it. Or maybe the btree was |
| 2734 ** rebalanced. Whatever the cause, try to restore "p" to the place it |
| 2735 ** is supposed to be pointing. If the row was deleted out from under the |
| 2736 ** cursor, set the cursor to point to a NULL row. |
| 2737 */ |
| 2738 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ |
| 2739 int isDifferentRow, rc; |
| 2740 assert( p->pCursor!=0 ); |
| 2741 assert( sqlite3BtreeCursorHasMoved(p->pCursor) ); |
| 2742 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow); |
| 2743 p->cacheStatus = CACHE_STALE; |
| 2744 if( isDifferentRow ) p->nullRow = 1; |
| 2745 return rc; |
| 2746 } |
| 2747 |
| 2748 /* |
| 2749 ** Check to ensure that the cursor is valid. Restore the cursor |
| 2750 ** if need be. Return any I/O error from the restore operation. |
| 2751 */ |
| 2752 int sqlite3VdbeCursorRestore(VdbeCursor *p){ |
| 2753 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){ |
| 2754 return handleMovedCursor(p); |
| 2755 } |
| 2756 return SQLITE_OK; |
| 2757 } |
| 2758 |
| 2759 /* |
| 2760 ** Make sure the cursor p is ready to read or write the row to which it |
| 2761 ** was last positioned. Return an error code if an OOM fault or I/O error |
| 2762 ** prevents us from positioning the cursor to its correct position. |
| 2763 ** |
| 2764 ** If a MoveTo operation is pending on the given cursor, then do that |
| 2765 ** MoveTo now. If no move is pending, check to see if the row has been |
| 2766 ** deleted out from under the cursor and if it has, mark the row as |
| 2767 ** a NULL row. |
| 2768 ** |
| 2769 ** If the cursor is already pointing to the correct row and that row has |
| 2770 ** not been deleted out from under the cursor, then this routine is a no-op. |
| 2771 */ |
| 2772 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ |
| 2773 if( p->deferredMoveto ){ |
| 2774 return handleDeferredMoveto(p); |
| 2775 } |
| 2776 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){ |
| 2777 return handleMovedCursor(p); |
| 2778 } |
| 2779 return SQLITE_OK; |
| 2780 } |
| 2781 |
| 2782 /* |
| 2783 ** The following functions: |
| 2784 ** |
| 2785 ** sqlite3VdbeSerialType() |
| 2786 ** sqlite3VdbeSerialTypeLen() |
| 2787 ** sqlite3VdbeSerialLen() |
| 2788 ** sqlite3VdbeSerialPut() |
| 2789 ** sqlite3VdbeSerialGet() |
| 2790 ** |
| 2791 ** encapsulate the code that serializes values for storage in SQLite |
| 2792 ** data and index records. Each serialized value consists of a |
| 2793 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
| 2794 ** integer, stored as a varint. |
| 2795 ** |
| 2796 ** In an SQLite index record, the serial type is stored directly before |
| 2797 ** the blob of data that it corresponds to. In a table record, all serial |
| 2798 ** types are stored at the start of the record, and the blobs of data at |
| 2799 ** the end. Hence these functions allow the caller to handle the |
| 2800 ** serial-type and data blob separately. |
| 2801 ** |
| 2802 ** The following table describes the various storage classes for data: |
| 2803 ** |
| 2804 ** serial type bytes of data type |
| 2805 ** -------------- --------------- --------------- |
| 2806 ** 0 0 NULL |
| 2807 ** 1 1 signed integer |
| 2808 ** 2 2 signed integer |
| 2809 ** 3 3 signed integer |
| 2810 ** 4 4 signed integer |
| 2811 ** 5 6 signed integer |
| 2812 ** 6 8 signed integer |
| 2813 ** 7 8 IEEE float |
| 2814 ** 8 0 Integer constant 0 |
| 2815 ** 9 0 Integer constant 1 |
| 2816 ** 10,11 reserved for expansion |
| 2817 ** N>=12 and even (N-12)/2 BLOB |
| 2818 ** N>=13 and odd (N-13)/2 text |
| 2819 ** |
| 2820 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
| 2821 ** of SQLite will not understand those serial types. |
| 2822 */ |
| 2823 |
| 2824 /* |
| 2825 ** Return the serial-type for the value stored in pMem. |
| 2826 */ |
| 2827 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ |
| 2828 int flags = pMem->flags; |
| 2829 u32 n; |
| 2830 |
| 2831 if( flags&MEM_Null ){ |
| 2832 return 0; |
| 2833 } |
| 2834 if( flags&MEM_Int ){ |
| 2835 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
| 2836 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
| 2837 i64 i = pMem->u.i; |
| 2838 u64 u; |
| 2839 if( i<0 ){ |
| 2840 if( i<(-MAX_6BYTE) ) return 6; |
| 2841 /* Previous test prevents: u = -(-9223372036854775808) */ |
| 2842 u = -i; |
| 2843 }else{ |
| 2844 u = i; |
| 2845 } |
| 2846 if( u<=127 ){ |
| 2847 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1; |
| 2848 } |
| 2849 if( u<=32767 ) return 2; |
| 2850 if( u<=8388607 ) return 3; |
| 2851 if( u<=2147483647 ) return 4; |
| 2852 if( u<=MAX_6BYTE ) return 5; |
| 2853 return 6; |
| 2854 } |
| 2855 if( flags&MEM_Real ){ |
| 2856 return 7; |
| 2857 } |
| 2858 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
| 2859 assert( pMem->n>=0 ); |
| 2860 n = (u32)pMem->n; |
| 2861 if( flags & MEM_Zero ){ |
| 2862 n += pMem->u.nZero; |
| 2863 } |
| 2864 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
| 2865 } |
| 2866 |
| 2867 /* |
| 2868 ** Return the length of the data corresponding to the supplied serial-type. |
| 2869 */ |
| 2870 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
| 2871 if( serial_type>=12 ){ |
| 2872 return (serial_type-12)/2; |
| 2873 }else{ |
| 2874 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; |
| 2875 return aSize[serial_type]; |
| 2876 } |
| 2877 } |
| 2878 |
| 2879 /* |
| 2880 ** If we are on an architecture with mixed-endian floating |
| 2881 ** points (ex: ARM7) then swap the lower 4 bytes with the |
| 2882 ** upper 4 bytes. Return the result. |
| 2883 ** |
| 2884 ** For most architectures, this is a no-op. |
| 2885 ** |
| 2886 ** (later): It is reported to me that the mixed-endian problem |
| 2887 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
| 2888 ** that early versions of GCC stored the two words of a 64-bit |
| 2889 ** float in the wrong order. And that error has been propagated |
| 2890 ** ever since. The blame is not necessarily with GCC, though. |
| 2891 ** GCC might have just copying the problem from a prior compiler. |
| 2892 ** I am also told that newer versions of GCC that follow a different |
| 2893 ** ABI get the byte order right. |
| 2894 ** |
| 2895 ** Developers using SQLite on an ARM7 should compile and run their |
| 2896 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
| 2897 ** enabled, some asserts below will ensure that the byte order of |
| 2898 ** floating point values is correct. |
| 2899 ** |
| 2900 ** (2007-08-30) Frank van Vugt has studied this problem closely |
| 2901 ** and has send his findings to the SQLite developers. Frank |
| 2902 ** writes that some Linux kernels offer floating point hardware |
| 2903 ** emulation that uses only 32-bit mantissas instead of a full |
| 2904 ** 48-bits as required by the IEEE standard. (This is the |
| 2905 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
| 2906 ** byte swapping becomes very complicated. To avoid problems, |
| 2907 ** the necessary byte swapping is carried out using a 64-bit integer |
| 2908 ** rather than a 64-bit float. Frank assures us that the code here |
| 2909 ** works for him. We, the developers, have no way to independently |
| 2910 ** verify this, but Frank seems to know what he is talking about |
| 2911 ** so we trust him. |
| 2912 */ |
| 2913 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
| 2914 static u64 floatSwap(u64 in){ |
| 2915 union { |
| 2916 u64 r; |
| 2917 u32 i[2]; |
| 2918 } u; |
| 2919 u32 t; |
| 2920 |
| 2921 u.r = in; |
| 2922 t = u.i[0]; |
| 2923 u.i[0] = u.i[1]; |
| 2924 u.i[1] = t; |
| 2925 return u.r; |
| 2926 } |
| 2927 # define swapMixedEndianFloat(X) X = floatSwap(X) |
| 2928 #else |
| 2929 # define swapMixedEndianFloat(X) |
| 2930 #endif |
| 2931 |
| 2932 /* |
| 2933 ** Write the serialized data blob for the value stored in pMem into |
| 2934 ** buf. It is assumed that the caller has allocated sufficient space. |
| 2935 ** Return the number of bytes written. |
| 2936 ** |
| 2937 ** nBuf is the amount of space left in buf[]. The caller is responsible |
| 2938 ** for allocating enough space to buf[] to hold the entire field, exclusive |
| 2939 ** of the pMem->u.nZero bytes for a MEM_Zero value. |
| 2940 ** |
| 2941 ** Return the number of bytes actually written into buf[]. The number |
| 2942 ** of bytes in the zero-filled tail is included in the return value only |
| 2943 ** if those bytes were zeroed in buf[]. |
| 2944 */ |
| 2945 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ |
| 2946 u32 len; |
| 2947 |
| 2948 /* Integer and Real */ |
| 2949 if( serial_type<=7 && serial_type>0 ){ |
| 2950 u64 v; |
| 2951 u32 i; |
| 2952 if( serial_type==7 ){ |
| 2953 assert( sizeof(v)==sizeof(pMem->u.r) ); |
| 2954 memcpy(&v, &pMem->u.r, sizeof(v)); |
| 2955 swapMixedEndianFloat(v); |
| 2956 }else{ |
| 2957 v = pMem->u.i; |
| 2958 } |
| 2959 len = i = sqlite3VdbeSerialTypeLen(serial_type); |
| 2960 assert( i>0 ); |
| 2961 do{ |
| 2962 buf[--i] = (u8)(v&0xFF); |
| 2963 v >>= 8; |
| 2964 }while( i ); |
| 2965 return len; |
| 2966 } |
| 2967 |
| 2968 /* String or blob */ |
| 2969 if( serial_type>=12 ){ |
| 2970 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) |
| 2971 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); |
| 2972 len = pMem->n; |
| 2973 memcpy(buf, pMem->z, len); |
| 2974 return len; |
| 2975 } |
| 2976 |
| 2977 /* NULL or constants 0 or 1 */ |
| 2978 return 0; |
| 2979 } |
| 2980 |
| 2981 /* Input "x" is a sequence of unsigned characters that represent a |
| 2982 ** big-endian integer. Return the equivalent native integer |
| 2983 */ |
| 2984 #define ONE_BYTE_INT(x) ((i8)(x)[0]) |
| 2985 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) |
| 2986 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) |
| 2987 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| 2988 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| 2989 |
| 2990 /* |
| 2991 ** Deserialize the data blob pointed to by buf as serial type serial_type |
| 2992 ** and store the result in pMem. Return the number of bytes read. |
| 2993 ** |
| 2994 ** This function is implemented as two separate routines for performance. |
| 2995 ** The few cases that require local variables are broken out into a separate |
| 2996 ** routine so that in most cases the overhead of moving the stack pointer |
| 2997 ** is avoided. |
| 2998 */ |
| 2999 static u32 SQLITE_NOINLINE serialGet( |
| 3000 const unsigned char *buf, /* Buffer to deserialize from */ |
| 3001 u32 serial_type, /* Serial type to deserialize */ |
| 3002 Mem *pMem /* Memory cell to write value into */ |
| 3003 ){ |
| 3004 u64 x = FOUR_BYTE_UINT(buf); |
| 3005 u32 y = FOUR_BYTE_UINT(buf+4); |
| 3006 x = (x<<32) + y; |
| 3007 if( serial_type==6 ){ |
| 3008 pMem->u.i = *(i64*)&x; |
| 3009 pMem->flags = MEM_Int; |
| 3010 testcase( pMem->u.i<0 ); |
| 3011 }else{ |
| 3012 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
| 3013 /* Verify that integers and floating point values use the same |
| 3014 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
| 3015 ** defined that 64-bit floating point values really are mixed |
| 3016 ** endian. |
| 3017 */ |
| 3018 static const u64 t1 = ((u64)0x3ff00000)<<32; |
| 3019 static const double r1 = 1.0; |
| 3020 u64 t2 = t1; |
| 3021 swapMixedEndianFloat(t2); |
| 3022 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
| 3023 #endif |
| 3024 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); |
| 3025 swapMixedEndianFloat(x); |
| 3026 memcpy(&pMem->u.r, &x, sizeof(x)); |
| 3027 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; |
| 3028 } |
| 3029 return 8; |
| 3030 } |
| 3031 u32 sqlite3VdbeSerialGet( |
| 3032 const unsigned char *buf, /* Buffer to deserialize from */ |
| 3033 u32 serial_type, /* Serial type to deserialize */ |
| 3034 Mem *pMem /* Memory cell to write value into */ |
| 3035 ){ |
| 3036 switch( serial_type ){ |
| 3037 case 10: /* Reserved for future use */ |
| 3038 case 11: /* Reserved for future use */ |
| 3039 case 0: { /* NULL */ |
| 3040 pMem->flags = MEM_Null; |
| 3041 break; |
| 3042 } |
| 3043 case 1: { /* 1-byte signed integer */ |
| 3044 pMem->u.i = ONE_BYTE_INT(buf); |
| 3045 pMem->flags = MEM_Int; |
| 3046 testcase( pMem->u.i<0 ); |
| 3047 return 1; |
| 3048 } |
| 3049 case 2: { /* 2-byte signed integer */ |
| 3050 pMem->u.i = TWO_BYTE_INT(buf); |
| 3051 pMem->flags = MEM_Int; |
| 3052 testcase( pMem->u.i<0 ); |
| 3053 return 2; |
| 3054 } |
| 3055 case 3: { /* 3-byte signed integer */ |
| 3056 pMem->u.i = THREE_BYTE_INT(buf); |
| 3057 pMem->flags = MEM_Int; |
| 3058 testcase( pMem->u.i<0 ); |
| 3059 return 3; |
| 3060 } |
| 3061 case 4: { /* 4-byte signed integer */ |
| 3062 pMem->u.i = FOUR_BYTE_INT(buf); |
| 3063 pMem->flags = MEM_Int; |
| 3064 testcase( pMem->u.i<0 ); |
| 3065 return 4; |
| 3066 } |
| 3067 case 5: { /* 6-byte signed integer */ |
| 3068 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); |
| 3069 pMem->flags = MEM_Int; |
| 3070 testcase( pMem->u.i<0 ); |
| 3071 return 6; |
| 3072 } |
| 3073 case 6: /* 8-byte signed integer */ |
| 3074 case 7: { /* IEEE floating point */ |
| 3075 /* These use local variables, so do them in a separate routine |
| 3076 ** to avoid having to move the frame pointer in the common case */ |
| 3077 return serialGet(buf,serial_type,pMem); |
| 3078 } |
| 3079 case 8: /* Integer 0 */ |
| 3080 case 9: { /* Integer 1 */ |
| 3081 pMem->u.i = serial_type-8; |
| 3082 pMem->flags = MEM_Int; |
| 3083 return 0; |
| 3084 } |
| 3085 default: { |
| 3086 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; |
| 3087 pMem->z = (char *)buf; |
| 3088 pMem->n = (serial_type-12)/2; |
| 3089 pMem->flags = aFlag[serial_type&1]; |
| 3090 return pMem->n; |
| 3091 } |
| 3092 } |
| 3093 return 0; |
| 3094 } |
| 3095 /* |
| 3096 ** This routine is used to allocate sufficient space for an UnpackedRecord |
| 3097 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if |
| 3098 ** the first argument is a pointer to KeyInfo structure pKeyInfo. |
| 3099 ** |
| 3100 ** The space is either allocated using sqlite3DbMallocRaw() or from within |
| 3101 ** the unaligned buffer passed via the second and third arguments (presumably |
| 3102 ** stack space). If the former, then *ppFree is set to a pointer that should |
| 3103 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the |
| 3104 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL |
| 3105 ** before returning. |
| 3106 ** |
| 3107 ** If an OOM error occurs, NULL is returned. |
| 3108 */ |
| 3109 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( |
| 3110 KeyInfo *pKeyInfo, /* Description of the record */ |
| 3111 char *pSpace, /* Unaligned space available */ |
| 3112 int szSpace, /* Size of pSpace[] in bytes */ |
| 3113 char **ppFree /* OUT: Caller should free this pointer */ |
| 3114 ){ |
| 3115 UnpackedRecord *p; /* Unpacked record to return */ |
| 3116 int nOff; /* Increment pSpace by nOff to align it */ |
| 3117 int nByte; /* Number of bytes required for *p */ |
| 3118 |
| 3119 /* We want to shift the pointer pSpace up such that it is 8-byte aligned. |
| 3120 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift |
| 3121 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. |
| 3122 */ |
| 3123 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; |
| 3124 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); |
| 3125 if( nByte>szSpace+nOff ){ |
| 3126 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
| 3127 *ppFree = (char *)p; |
| 3128 if( !p ) return 0; |
| 3129 }else{ |
| 3130 p = (UnpackedRecord*)&pSpace[nOff]; |
| 3131 *ppFree = 0; |
| 3132 } |
| 3133 |
| 3134 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; |
| 3135 assert( pKeyInfo->aSortOrder!=0 ); |
| 3136 p->pKeyInfo = pKeyInfo; |
| 3137 p->nField = pKeyInfo->nField + 1; |
| 3138 return p; |
| 3139 } |
| 3140 |
| 3141 /* |
| 3142 ** Given the nKey-byte encoding of a record in pKey[], populate the |
| 3143 ** UnpackedRecord structure indicated by the fourth argument with the |
| 3144 ** contents of the decoded record. |
| 3145 */ |
| 3146 void sqlite3VdbeRecordUnpack( |
| 3147 KeyInfo *pKeyInfo, /* Information about the record format */ |
| 3148 int nKey, /* Size of the binary record */ |
| 3149 const void *pKey, /* The binary record */ |
| 3150 UnpackedRecord *p /* Populate this structure before returning. */ |
| 3151 ){ |
| 3152 const unsigned char *aKey = (const unsigned char *)pKey; |
| 3153 int d; |
| 3154 u32 idx; /* Offset in aKey[] to read from */ |
| 3155 u16 u; /* Unsigned loop counter */ |
| 3156 u32 szHdr; |
| 3157 Mem *pMem = p->aMem; |
| 3158 |
| 3159 p->default_rc = 0; |
| 3160 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 3161 idx = getVarint32(aKey, szHdr); |
| 3162 d = szHdr; |
| 3163 u = 0; |
| 3164 while( idx<szHdr && d<=nKey ){ |
| 3165 u32 serial_type; |
| 3166 |
| 3167 idx += getVarint32(&aKey[idx], serial_type); |
| 3168 pMem->enc = pKeyInfo->enc; |
| 3169 pMem->db = pKeyInfo->db; |
| 3170 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ |
| 3171 pMem->szMalloc = 0; |
| 3172 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
| 3173 pMem++; |
| 3174 if( (++u)>=p->nField ) break; |
| 3175 } |
| 3176 assert( u<=pKeyInfo->nField + 1 ); |
| 3177 p->nField = u; |
| 3178 } |
| 3179 |
| 3180 #if SQLITE_DEBUG |
| 3181 /* |
| 3182 ** This function compares two index or table record keys in the same way |
| 3183 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), |
| 3184 ** this function deserializes and compares values using the |
| 3185 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used |
| 3186 ** in assert() statements to ensure that the optimized code in |
| 3187 ** sqlite3VdbeRecordCompare() returns results with these two primitives. |
| 3188 ** |
| 3189 ** Return true if the result of comparison is equivalent to desiredResult. |
| 3190 ** Return false if there is a disagreement. |
| 3191 */ |
| 3192 static int vdbeRecordCompareDebug( |
| 3193 int nKey1, const void *pKey1, /* Left key */ |
| 3194 const UnpackedRecord *pPKey2, /* Right key */ |
| 3195 int desiredResult /* Correct answer */ |
| 3196 ){ |
| 3197 u32 d1; /* Offset into aKey[] of next data element */ |
| 3198 u32 idx1; /* Offset into aKey[] of next header element */ |
| 3199 u32 szHdr1; /* Number of bytes in header */ |
| 3200 int i = 0; |
| 3201 int rc = 0; |
| 3202 const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| 3203 KeyInfo *pKeyInfo; |
| 3204 Mem mem1; |
| 3205 |
| 3206 pKeyInfo = pPKey2->pKeyInfo; |
| 3207 if( pKeyInfo->db==0 ) return 1; |
| 3208 mem1.enc = pKeyInfo->enc; |
| 3209 mem1.db = pKeyInfo->db; |
| 3210 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
| 3211 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| 3212 |
| 3213 /* Compilers may complain that mem1.u.i is potentially uninitialized. |
| 3214 ** We could initialize it, as shown here, to silence those complaints. |
| 3215 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing |
| 3216 ** the unnecessary initialization has a measurable negative performance |
| 3217 ** impact, since this routine is a very high runner. And so, we choose |
| 3218 ** to ignore the compiler warnings and leave this variable uninitialized. |
| 3219 */ |
| 3220 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
| 3221 |
| 3222 idx1 = getVarint32(aKey1, szHdr1); |
| 3223 d1 = szHdr1; |
| 3224 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); |
| 3225 assert( pKeyInfo->aSortOrder!=0 ); |
| 3226 assert( pKeyInfo->nField>0 ); |
| 3227 assert( idx1<=szHdr1 || CORRUPT_DB ); |
| 3228 do{ |
| 3229 u32 serial_type1; |
| 3230 |
| 3231 /* Read the serial types for the next element in each key. */ |
| 3232 idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
| 3233 |
| 3234 /* Verify that there is enough key space remaining to avoid |
| 3235 ** a buffer overread. The "d1+serial_type1+2" subexpression will |
| 3236 ** always be greater than or equal to the amount of required key space. |
| 3237 ** Use that approximation to avoid the more expensive call to |
| 3238 ** sqlite3VdbeSerialTypeLen() in the common case. |
| 3239 */ |
| 3240 if( d1+serial_type1+2>(u32)nKey1 |
| 3241 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 |
| 3242 ){ |
| 3243 break; |
| 3244 } |
| 3245 |
| 3246 /* Extract the values to be compared. |
| 3247 */ |
| 3248 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
| 3249 |
| 3250 /* Do the comparison |
| 3251 */ |
| 3252 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); |
| 3253 if( rc!=0 ){ |
| 3254 assert( mem1.szMalloc==0 ); /* See comment below */ |
| 3255 if( pKeyInfo->aSortOrder[i] ){ |
| 3256 rc = -rc; /* Invert the result for DESC sort order. */ |
| 3257 } |
| 3258 goto debugCompareEnd; |
| 3259 } |
| 3260 i++; |
| 3261 }while( idx1<szHdr1 && i<pPKey2->nField ); |
| 3262 |
| 3263 /* No memory allocation is ever used on mem1. Prove this using |
| 3264 ** the following assert(). If the assert() fails, it indicates a |
| 3265 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
| 3266 */ |
| 3267 assert( mem1.szMalloc==0 ); |
| 3268 |
| 3269 /* rc==0 here means that one of the keys ran out of fields and |
| 3270 ** all the fields up to that point were equal. Return the default_rc |
| 3271 ** value. */ |
| 3272 rc = pPKey2->default_rc; |
| 3273 |
| 3274 debugCompareEnd: |
| 3275 if( desiredResult==0 && rc==0 ) return 1; |
| 3276 if( desiredResult<0 && rc<0 ) return 1; |
| 3277 if( desiredResult>0 && rc>0 ) return 1; |
| 3278 if( CORRUPT_DB ) return 1; |
| 3279 if( pKeyInfo->db->mallocFailed ) return 1; |
| 3280 return 0; |
| 3281 } |
| 3282 #endif |
| 3283 |
| 3284 /* |
| 3285 ** Both *pMem1 and *pMem2 contain string values. Compare the two values |
| 3286 ** using the collation sequence pColl. As usual, return a negative , zero |
| 3287 ** or positive value if *pMem1 is less than, equal to or greater than |
| 3288 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". |
| 3289 */ |
| 3290 static int vdbeCompareMemString( |
| 3291 const Mem *pMem1, |
| 3292 const Mem *pMem2, |
| 3293 const CollSeq *pColl, |
| 3294 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ |
| 3295 ){ |
| 3296 if( pMem1->enc==pColl->enc ){ |
| 3297 /* The strings are already in the correct encoding. Call the |
| 3298 ** comparison function directly */ |
| 3299 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
| 3300 }else{ |
| 3301 int rc; |
| 3302 const void *v1, *v2; |
| 3303 int n1, n2; |
| 3304 Mem c1; |
| 3305 Mem c2; |
| 3306 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); |
| 3307 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); |
| 3308 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
| 3309 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
| 3310 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
| 3311 n1 = v1==0 ? 0 : c1.n; |
| 3312 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
| 3313 n2 = v2==0 ? 0 : c2.n; |
| 3314 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
| 3315 sqlite3VdbeMemRelease(&c1); |
| 3316 sqlite3VdbeMemRelease(&c2); |
| 3317 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM; |
| 3318 return rc; |
| 3319 } |
| 3320 } |
| 3321 |
| 3322 /* |
| 3323 ** Compare two blobs. Return negative, zero, or positive if the first |
| 3324 ** is less than, equal to, or greater than the second, respectively. |
| 3325 ** If one blob is a prefix of the other, then the shorter is the lessor. |
| 3326 */ |
| 3327 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ |
| 3328 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n); |
| 3329 if( c ) return c; |
| 3330 return pB1->n - pB2->n; |
| 3331 } |
| 3332 |
| 3333 |
| 3334 /* |
| 3335 ** Compare the values contained by the two memory cells, returning |
| 3336 ** negative, zero or positive if pMem1 is less than, equal to, or greater |
| 3337 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
| 3338 ** and reals) sorted numerically, followed by text ordered by the collating |
| 3339 ** sequence pColl and finally blob's ordered by memcmp(). |
| 3340 ** |
| 3341 ** Two NULL values are considered equal by this function. |
| 3342 */ |
| 3343 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
| 3344 int f1, f2; |
| 3345 int combined_flags; |
| 3346 |
| 3347 f1 = pMem1->flags; |
| 3348 f2 = pMem2->flags; |
| 3349 combined_flags = f1|f2; |
| 3350 assert( (combined_flags & MEM_RowSet)==0 ); |
| 3351 |
| 3352 /* If one value is NULL, it is less than the other. If both values |
| 3353 ** are NULL, return 0. |
| 3354 */ |
| 3355 if( combined_flags&MEM_Null ){ |
| 3356 return (f2&MEM_Null) - (f1&MEM_Null); |
| 3357 } |
| 3358 |
| 3359 /* If one value is a number and the other is not, the number is less. |
| 3360 ** If both are numbers, compare as reals if one is a real, or as integers |
| 3361 ** if both values are integers. |
| 3362 */ |
| 3363 if( combined_flags&(MEM_Int|MEM_Real) ){ |
| 3364 double r1, r2; |
| 3365 if( (f1 & f2 & MEM_Int)!=0 ){ |
| 3366 if( pMem1->u.i < pMem2->u.i ) return -1; |
| 3367 if( pMem1->u.i > pMem2->u.i ) return 1; |
| 3368 return 0; |
| 3369 } |
| 3370 if( (f1&MEM_Real)!=0 ){ |
| 3371 r1 = pMem1->u.r; |
| 3372 }else if( (f1&MEM_Int)!=0 ){ |
| 3373 r1 = (double)pMem1->u.i; |
| 3374 }else{ |
| 3375 return 1; |
| 3376 } |
| 3377 if( (f2&MEM_Real)!=0 ){ |
| 3378 r2 = pMem2->u.r; |
| 3379 }else if( (f2&MEM_Int)!=0 ){ |
| 3380 r2 = (double)pMem2->u.i; |
| 3381 }else{ |
| 3382 return -1; |
| 3383 } |
| 3384 if( r1<r2 ) return -1; |
| 3385 if( r1>r2 ) return 1; |
| 3386 return 0; |
| 3387 } |
| 3388 |
| 3389 /* If one value is a string and the other is a blob, the string is less. |
| 3390 ** If both are strings, compare using the collating functions. |
| 3391 */ |
| 3392 if( combined_flags&MEM_Str ){ |
| 3393 if( (f1 & MEM_Str)==0 ){ |
| 3394 return 1; |
| 3395 } |
| 3396 if( (f2 & MEM_Str)==0 ){ |
| 3397 return -1; |
| 3398 } |
| 3399 |
| 3400 assert( pMem1->enc==pMem2->enc ); |
| 3401 assert( pMem1->enc==SQLITE_UTF8 || |
| 3402 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
| 3403 |
| 3404 /* The collation sequence must be defined at this point, even if |
| 3405 ** the user deletes the collation sequence after the vdbe program is |
| 3406 ** compiled (this was not always the case). |
| 3407 */ |
| 3408 assert( !pColl || pColl->xCmp ); |
| 3409 |
| 3410 if( pColl ){ |
| 3411 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); |
| 3412 } |
| 3413 /* If a NULL pointer was passed as the collate function, fall through |
| 3414 ** to the blob case and use memcmp(). */ |
| 3415 } |
| 3416 |
| 3417 /* Both values must be blobs. Compare using memcmp(). */ |
| 3418 return sqlite3BlobCompare(pMem1, pMem2); |
| 3419 } |
| 3420 |
| 3421 |
| 3422 /* |
| 3423 ** The first argument passed to this function is a serial-type that |
| 3424 ** corresponds to an integer - all values between 1 and 9 inclusive |
| 3425 ** except 7. The second points to a buffer containing an integer value |
| 3426 ** serialized according to serial_type. This function deserializes |
| 3427 ** and returns the value. |
| 3428 */ |
| 3429 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ |
| 3430 u32 y; |
| 3431 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); |
| 3432 switch( serial_type ){ |
| 3433 case 0: |
| 3434 case 1: |
| 3435 testcase( aKey[0]&0x80 ); |
| 3436 return ONE_BYTE_INT(aKey); |
| 3437 case 2: |
| 3438 testcase( aKey[0]&0x80 ); |
| 3439 return TWO_BYTE_INT(aKey); |
| 3440 case 3: |
| 3441 testcase( aKey[0]&0x80 ); |
| 3442 return THREE_BYTE_INT(aKey); |
| 3443 case 4: { |
| 3444 testcase( aKey[0]&0x80 ); |
| 3445 y = FOUR_BYTE_UINT(aKey); |
| 3446 return (i64)*(int*)&y; |
| 3447 } |
| 3448 case 5: { |
| 3449 testcase( aKey[0]&0x80 ); |
| 3450 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| 3451 } |
| 3452 case 6: { |
| 3453 u64 x = FOUR_BYTE_UINT(aKey); |
| 3454 testcase( aKey[0]&0x80 ); |
| 3455 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| 3456 return (i64)*(i64*)&x; |
| 3457 } |
| 3458 } |
| 3459 |
| 3460 return (serial_type - 8); |
| 3461 } |
| 3462 |
| 3463 /* |
| 3464 ** This function compares the two table rows or index records |
| 3465 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
| 3466 ** or positive integer if key1 is less than, equal to or |
| 3467 ** greater than key2. The {nKey1, pKey1} key must be a blob |
| 3468 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 |
| 3469 ** key must be a parsed key such as obtained from |
| 3470 ** sqlite3VdbeParseRecord. |
| 3471 ** |
| 3472 ** If argument bSkip is non-zero, it is assumed that the caller has already |
| 3473 ** determined that the first fields of the keys are equal. |
| 3474 ** |
| 3475 ** Key1 and Key2 do not have to contain the same number of fields. If all |
| 3476 ** fields that appear in both keys are equal, then pPKey2->default_rc is |
| 3477 ** returned. |
| 3478 ** |
| 3479 ** If database corruption is discovered, set pPKey2->errCode to |
| 3480 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, |
| 3481 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the |
| 3482 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). |
| 3483 */ |
| 3484 static int vdbeRecordCompareWithSkip( |
| 3485 int nKey1, const void *pKey1, /* Left key */ |
| 3486 UnpackedRecord *pPKey2, /* Right key */ |
| 3487 int bSkip /* If true, skip the first field */ |
| 3488 ){ |
| 3489 u32 d1; /* Offset into aKey[] of next data element */ |
| 3490 int i; /* Index of next field to compare */ |
| 3491 u32 szHdr1; /* Size of record header in bytes */ |
| 3492 u32 idx1; /* Offset of first type in header */ |
| 3493 int rc = 0; /* Return value */ |
| 3494 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ |
| 3495 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; |
| 3496 const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| 3497 Mem mem1; |
| 3498 |
| 3499 /* If bSkip is true, then the caller has already determined that the first |
| 3500 ** two elements in the keys are equal. Fix the various stack variables so |
| 3501 ** that this routine begins comparing at the second field. */ |
| 3502 if( bSkip ){ |
| 3503 u32 s1; |
| 3504 idx1 = 1 + getVarint32(&aKey1[1], s1); |
| 3505 szHdr1 = aKey1[0]; |
| 3506 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); |
| 3507 i = 1; |
| 3508 pRhs++; |
| 3509 }else{ |
| 3510 idx1 = getVarint32(aKey1, szHdr1); |
| 3511 d1 = szHdr1; |
| 3512 if( d1>(unsigned)nKey1 ){ |
| 3513 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 3514 return 0; /* Corruption */ |
| 3515 } |
| 3516 i = 0; |
| 3517 } |
| 3518 |
| 3519 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| 3520 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField |
| 3521 || CORRUPT_DB ); |
| 3522 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); |
| 3523 assert( pPKey2->pKeyInfo->nField>0 ); |
| 3524 assert( idx1<=szHdr1 || CORRUPT_DB ); |
| 3525 do{ |
| 3526 u32 serial_type; |
| 3527 |
| 3528 /* RHS is an integer */ |
| 3529 if( pRhs->flags & MEM_Int ){ |
| 3530 serial_type = aKey1[idx1]; |
| 3531 testcase( serial_type==12 ); |
| 3532 if( serial_type>=12 ){ |
| 3533 rc = +1; |
| 3534 }else if( serial_type==0 ){ |
| 3535 rc = -1; |
| 3536 }else if( serial_type==7 ){ |
| 3537 double rhs = (double)pRhs->u.i; |
| 3538 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| 3539 if( mem1.u.r<rhs ){ |
| 3540 rc = -1; |
| 3541 }else if( mem1.u.r>rhs ){ |
| 3542 rc = +1; |
| 3543 } |
| 3544 }else{ |
| 3545 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); |
| 3546 i64 rhs = pRhs->u.i; |
| 3547 if( lhs<rhs ){ |
| 3548 rc = -1; |
| 3549 }else if( lhs>rhs ){ |
| 3550 rc = +1; |
| 3551 } |
| 3552 } |
| 3553 } |
| 3554 |
| 3555 /* RHS is real */ |
| 3556 else if( pRhs->flags & MEM_Real ){ |
| 3557 serial_type = aKey1[idx1]; |
| 3558 if( serial_type>=12 ){ |
| 3559 rc = +1; |
| 3560 }else if( serial_type==0 ){ |
| 3561 rc = -1; |
| 3562 }else{ |
| 3563 double rhs = pRhs->u.r; |
| 3564 double lhs; |
| 3565 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| 3566 if( serial_type==7 ){ |
| 3567 lhs = mem1.u.r; |
| 3568 }else{ |
| 3569 lhs = (double)mem1.u.i; |
| 3570 } |
| 3571 if( lhs<rhs ){ |
| 3572 rc = -1; |
| 3573 }else if( lhs>rhs ){ |
| 3574 rc = +1; |
| 3575 } |
| 3576 } |
| 3577 } |
| 3578 |
| 3579 /* RHS is a string */ |
| 3580 else if( pRhs->flags & MEM_Str ){ |
| 3581 getVarint32(&aKey1[idx1], serial_type); |
| 3582 testcase( serial_type==12 ); |
| 3583 if( serial_type<12 ){ |
| 3584 rc = -1; |
| 3585 }else if( !(serial_type & 0x01) ){ |
| 3586 rc = +1; |
| 3587 }else{ |
| 3588 mem1.n = (serial_type - 12) / 2; |
| 3589 testcase( (d1+mem1.n)==(unsigned)nKey1 ); |
| 3590 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); |
| 3591 if( (d1+mem1.n) > (unsigned)nKey1 ){ |
| 3592 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 3593 return 0; /* Corruption */ |
| 3594 }else if( pKeyInfo->aColl[i] ){ |
| 3595 mem1.enc = pKeyInfo->enc; |
| 3596 mem1.db = pKeyInfo->db; |
| 3597 mem1.flags = MEM_Str; |
| 3598 mem1.z = (char*)&aKey1[d1]; |
| 3599 rc = vdbeCompareMemString( |
| 3600 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode |
| 3601 ); |
| 3602 }else{ |
| 3603 int nCmp = MIN(mem1.n, pRhs->n); |
| 3604 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| 3605 if( rc==0 ) rc = mem1.n - pRhs->n; |
| 3606 } |
| 3607 } |
| 3608 } |
| 3609 |
| 3610 /* RHS is a blob */ |
| 3611 else if( pRhs->flags & MEM_Blob ){ |
| 3612 getVarint32(&aKey1[idx1], serial_type); |
| 3613 testcase( serial_type==12 ); |
| 3614 if( serial_type<12 || (serial_type & 0x01) ){ |
| 3615 rc = -1; |
| 3616 }else{ |
| 3617 int nStr = (serial_type - 12) / 2; |
| 3618 testcase( (d1+nStr)==(unsigned)nKey1 ); |
| 3619 testcase( (d1+nStr+1)==(unsigned)nKey1 ); |
| 3620 if( (d1+nStr) > (unsigned)nKey1 ){ |
| 3621 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 3622 return 0; /* Corruption */ |
| 3623 }else{ |
| 3624 int nCmp = MIN(nStr, pRhs->n); |
| 3625 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| 3626 if( rc==0 ) rc = nStr - pRhs->n; |
| 3627 } |
| 3628 } |
| 3629 } |
| 3630 |
| 3631 /* RHS is null */ |
| 3632 else{ |
| 3633 serial_type = aKey1[idx1]; |
| 3634 rc = (serial_type!=0); |
| 3635 } |
| 3636 |
| 3637 if( rc!=0 ){ |
| 3638 if( pKeyInfo->aSortOrder[i] ){ |
| 3639 rc = -rc; |
| 3640 } |
| 3641 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); |
| 3642 assert( mem1.szMalloc==0 ); /* See comment below */ |
| 3643 return rc; |
| 3644 } |
| 3645 |
| 3646 i++; |
| 3647 pRhs++; |
| 3648 d1 += sqlite3VdbeSerialTypeLen(serial_type); |
| 3649 idx1 += sqlite3VarintLen(serial_type); |
| 3650 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); |
| 3651 |
| 3652 /* No memory allocation is ever used on mem1. Prove this using |
| 3653 ** the following assert(). If the assert() fails, it indicates a |
| 3654 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ |
| 3655 assert( mem1.szMalloc==0 ); |
| 3656 |
| 3657 /* rc==0 here means that one or both of the keys ran out of fields and |
| 3658 ** all the fields up to that point were equal. Return the default_rc |
| 3659 ** value. */ |
| 3660 assert( CORRUPT_DB |
| 3661 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) |
| 3662 || pKeyInfo->db->mallocFailed |
| 3663 ); |
| 3664 return pPKey2->default_rc; |
| 3665 } |
| 3666 int sqlite3VdbeRecordCompare( |
| 3667 int nKey1, const void *pKey1, /* Left key */ |
| 3668 UnpackedRecord *pPKey2 /* Right key */ |
| 3669 ){ |
| 3670 return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); |
| 3671 } |
| 3672 |
| 3673 |
| 3674 /* |
| 3675 ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| 3676 ** that (a) the first field of pPKey2 is an integer, and (b) the |
| 3677 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single |
| 3678 ** byte (i.e. is less than 128). |
| 3679 ** |
| 3680 ** To avoid concerns about buffer overreads, this routine is only used |
| 3681 ** on schemas where the maximum valid header size is 63 bytes or less. |
| 3682 */ |
| 3683 static int vdbeRecordCompareInt( |
| 3684 int nKey1, const void *pKey1, /* Left key */ |
| 3685 UnpackedRecord *pPKey2 /* Right key */ |
| 3686 ){ |
| 3687 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; |
| 3688 int serial_type = ((const u8*)pKey1)[1]; |
| 3689 int res; |
| 3690 u32 y; |
| 3691 u64 x; |
| 3692 i64 v = pPKey2->aMem[0].u.i; |
| 3693 i64 lhs; |
| 3694 |
| 3695 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); |
| 3696 switch( serial_type ){ |
| 3697 case 1: { /* 1-byte signed integer */ |
| 3698 lhs = ONE_BYTE_INT(aKey); |
| 3699 testcase( lhs<0 ); |
| 3700 break; |
| 3701 } |
| 3702 case 2: { /* 2-byte signed integer */ |
| 3703 lhs = TWO_BYTE_INT(aKey); |
| 3704 testcase( lhs<0 ); |
| 3705 break; |
| 3706 } |
| 3707 case 3: { /* 3-byte signed integer */ |
| 3708 lhs = THREE_BYTE_INT(aKey); |
| 3709 testcase( lhs<0 ); |
| 3710 break; |
| 3711 } |
| 3712 case 4: { /* 4-byte signed integer */ |
| 3713 y = FOUR_BYTE_UINT(aKey); |
| 3714 lhs = (i64)*(int*)&y; |
| 3715 testcase( lhs<0 ); |
| 3716 break; |
| 3717 } |
| 3718 case 5: { /* 6-byte signed integer */ |
| 3719 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| 3720 testcase( lhs<0 ); |
| 3721 break; |
| 3722 } |
| 3723 case 6: { /* 8-byte signed integer */ |
| 3724 x = FOUR_BYTE_UINT(aKey); |
| 3725 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| 3726 lhs = *(i64*)&x; |
| 3727 testcase( lhs<0 ); |
| 3728 break; |
| 3729 } |
| 3730 case 8: |
| 3731 lhs = 0; |
| 3732 break; |
| 3733 case 9: |
| 3734 lhs = 1; |
| 3735 break; |
| 3736 |
| 3737 /* This case could be removed without changing the results of running |
| 3738 ** this code. Including it causes gcc to generate a faster switch |
| 3739 ** statement (since the range of switch targets now starts at zero and |
| 3740 ** is contiguous) but does not cause any duplicate code to be generated |
| 3741 ** (as gcc is clever enough to combine the two like cases). Other |
| 3742 ** compilers might be similar. */ |
| 3743 case 0: case 7: |
| 3744 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| 3745 |
| 3746 default: |
| 3747 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| 3748 } |
| 3749 |
| 3750 if( v>lhs ){ |
| 3751 res = pPKey2->r1; |
| 3752 }else if( v<lhs ){ |
| 3753 res = pPKey2->r2; |
| 3754 }else if( pPKey2->nField>1 ){ |
| 3755 /* The first fields of the two keys are equal. Compare the trailing |
| 3756 ** fields. */ |
| 3757 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| 3758 }else{ |
| 3759 /* The first fields of the two keys are equal and there are no trailing |
| 3760 ** fields. Return pPKey2->default_rc in this case. */ |
| 3761 res = pPKey2->default_rc; |
| 3762 } |
| 3763 |
| 3764 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); |
| 3765 return res; |
| 3766 } |
| 3767 |
| 3768 /* |
| 3769 ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| 3770 ** that (a) the first field of pPKey2 is a string, that (b) the first field |
| 3771 ** uses the collation sequence BINARY and (c) that the size-of-header varint |
| 3772 ** at the start of (pKey1/nKey1) fits in a single byte. |
| 3773 */ |
| 3774 static int vdbeRecordCompareString( |
| 3775 int nKey1, const void *pKey1, /* Left key */ |
| 3776 UnpackedRecord *pPKey2 /* Right key */ |
| 3777 ){ |
| 3778 const u8 *aKey1 = (const u8*)pKey1; |
| 3779 int serial_type; |
| 3780 int res; |
| 3781 |
| 3782 getVarint32(&aKey1[1], serial_type); |
| 3783 if( serial_type<12 ){ |
| 3784 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ |
| 3785 }else if( !(serial_type & 0x01) ){ |
| 3786 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ |
| 3787 }else{ |
| 3788 int nCmp; |
| 3789 int nStr; |
| 3790 int szHdr = aKey1[0]; |
| 3791 |
| 3792 nStr = (serial_type-12) / 2; |
| 3793 if( (szHdr + nStr) > nKey1 ){ |
| 3794 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 3795 return 0; /* Corruption */ |
| 3796 } |
| 3797 nCmp = MIN( pPKey2->aMem[0].n, nStr ); |
| 3798 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); |
| 3799 |
| 3800 if( res==0 ){ |
| 3801 res = nStr - pPKey2->aMem[0].n; |
| 3802 if( res==0 ){ |
| 3803 if( pPKey2->nField>1 ){ |
| 3804 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| 3805 }else{ |
| 3806 res = pPKey2->default_rc; |
| 3807 } |
| 3808 }else if( res>0 ){ |
| 3809 res = pPKey2->r2; |
| 3810 }else{ |
| 3811 res = pPKey2->r1; |
| 3812 } |
| 3813 }else if( res>0 ){ |
| 3814 res = pPKey2->r2; |
| 3815 }else{ |
| 3816 res = pPKey2->r1; |
| 3817 } |
| 3818 } |
| 3819 |
| 3820 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) |
| 3821 || CORRUPT_DB |
| 3822 || pPKey2->pKeyInfo->db->mallocFailed |
| 3823 ); |
| 3824 return res; |
| 3825 } |
| 3826 |
| 3827 /* |
| 3828 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function |
| 3829 ** suitable for comparing serialized records to the unpacked record passed |
| 3830 ** as the only argument. |
| 3831 */ |
| 3832 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ |
| 3833 /* varintRecordCompareInt() and varintRecordCompareString() both assume |
| 3834 ** that the size-of-header varint that occurs at the start of each record |
| 3835 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() |
| 3836 ** also assumes that it is safe to overread a buffer by at least the |
| 3837 ** maximum possible legal header size plus 8 bytes. Because there is |
| 3838 ** guaranteed to be at least 74 (but not 136) bytes of padding following each |
| 3839 ** buffer passed to varintRecordCompareInt() this makes it convenient to |
| 3840 ** limit the size of the header to 64 bytes in cases where the first field |
| 3841 ** is an integer. |
| 3842 ** |
| 3843 ** The easiest way to enforce this limit is to consider only records with |
| 3844 ** 13 fields or less. If the first field is an integer, the maximum legal |
| 3845 ** header size is (12*5 + 1 + 1) bytes. */ |
| 3846 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ |
| 3847 int flags = p->aMem[0].flags; |
| 3848 if( p->pKeyInfo->aSortOrder[0] ){ |
| 3849 p->r1 = 1; |
| 3850 p->r2 = -1; |
| 3851 }else{ |
| 3852 p->r1 = -1; |
| 3853 p->r2 = 1; |
| 3854 } |
| 3855 if( (flags & MEM_Int) ){ |
| 3856 return vdbeRecordCompareInt; |
| 3857 } |
| 3858 testcase( flags & MEM_Real ); |
| 3859 testcase( flags & MEM_Null ); |
| 3860 testcase( flags & MEM_Blob ); |
| 3861 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ |
| 3862 assert( flags & MEM_Str ); |
| 3863 return vdbeRecordCompareString; |
| 3864 } |
| 3865 } |
| 3866 |
| 3867 return sqlite3VdbeRecordCompare; |
| 3868 } |
| 3869 |
| 3870 /* |
| 3871 ** pCur points at an index entry created using the OP_MakeRecord opcode. |
| 3872 ** Read the rowid (the last field in the record) and store it in *rowid. |
| 3873 ** Return SQLITE_OK if everything works, or an error code otherwise. |
| 3874 ** |
| 3875 ** pCur might be pointing to text obtained from a corrupt database file. |
| 3876 ** So the content cannot be trusted. Do appropriate checks on the content. |
| 3877 */ |
| 3878 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
| 3879 i64 nCellKey = 0; |
| 3880 int rc; |
| 3881 u32 szHdr; /* Size of the header */ |
| 3882 u32 typeRowid; /* Serial type of the rowid */ |
| 3883 u32 lenRowid; /* Size of the rowid */ |
| 3884 Mem m, v; |
| 3885 |
| 3886 /* Get the size of the index entry. Only indices entries of less |
| 3887 ** than 2GiB are support - anything large must be database corruption. |
| 3888 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
| 3889 ** this code can safely assume that nCellKey is 32-bits |
| 3890 */ |
| 3891 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 3892 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); |
| 3893 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
| 3894 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
| 3895 |
| 3896 /* Read in the complete content of the index entry */ |
| 3897 sqlite3VdbeMemInit(&m, db, 0); |
| 3898 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m); |
| 3899 if( rc ){ |
| 3900 return rc; |
| 3901 } |
| 3902 |
| 3903 /* The index entry must begin with a header size */ |
| 3904 (void)getVarint32((u8*)m.z, szHdr); |
| 3905 testcase( szHdr==3 ); |
| 3906 testcase( szHdr==m.n ); |
| 3907 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ |
| 3908 goto idx_rowid_corruption; |
| 3909 } |
| 3910 |
| 3911 /* The last field of the index should be an integer - the ROWID. |
| 3912 ** Verify that the last entry really is an integer. */ |
| 3913 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
| 3914 testcase( typeRowid==1 ); |
| 3915 testcase( typeRowid==2 ); |
| 3916 testcase( typeRowid==3 ); |
| 3917 testcase( typeRowid==4 ); |
| 3918 testcase( typeRowid==5 ); |
| 3919 testcase( typeRowid==6 ); |
| 3920 testcase( typeRowid==8 ); |
| 3921 testcase( typeRowid==9 ); |
| 3922 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
| 3923 goto idx_rowid_corruption; |
| 3924 } |
| 3925 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
| 3926 testcase( (u32)m.n==szHdr+lenRowid ); |
| 3927 if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
| 3928 goto idx_rowid_corruption; |
| 3929 } |
| 3930 |
| 3931 /* Fetch the integer off the end of the index record */ |
| 3932 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
| 3933 *rowid = v.u.i; |
| 3934 sqlite3VdbeMemRelease(&m); |
| 3935 return SQLITE_OK; |
| 3936 |
| 3937 /* Jump here if database corruption is detected after m has been |
| 3938 ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
| 3939 idx_rowid_corruption: |
| 3940 testcase( m.szMalloc!=0 ); |
| 3941 sqlite3VdbeMemRelease(&m); |
| 3942 return SQLITE_CORRUPT_BKPT; |
| 3943 } |
| 3944 |
| 3945 /* |
| 3946 ** Compare the key of the index entry that cursor pC is pointing to against |
| 3947 ** the key string in pUnpacked. Write into *pRes a number |
| 3948 ** that is negative, zero, or positive if pC is less than, equal to, |
| 3949 ** or greater than pUnpacked. Return SQLITE_OK on success. |
| 3950 ** |
| 3951 ** pUnpacked is either created without a rowid or is truncated so that it |
| 3952 ** omits the rowid at the end. The rowid at the end of the index entry |
| 3953 ** is ignored as well. Hence, this routine only compares the prefixes |
| 3954 ** of the keys prior to the final rowid, not the entire key. |
| 3955 */ |
| 3956 int sqlite3VdbeIdxKeyCompare( |
| 3957 sqlite3 *db, /* Database connection */ |
| 3958 VdbeCursor *pC, /* The cursor to compare against */ |
| 3959 UnpackedRecord *pUnpacked, /* Unpacked version of key */ |
| 3960 int *res /* Write the comparison result here */ |
| 3961 ){ |
| 3962 i64 nCellKey = 0; |
| 3963 int rc; |
| 3964 BtCursor *pCur = pC->pCursor; |
| 3965 Mem m; |
| 3966 |
| 3967 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 3968 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey); |
| 3969 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
| 3970 /* nCellKey will always be between 0 and 0xffffffff because of the way |
| 3971 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
| 3972 if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
| 3973 *res = 0; |
| 3974 return SQLITE_CORRUPT_BKPT; |
| 3975 } |
| 3976 sqlite3VdbeMemInit(&m, db, 0); |
| 3977 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m); |
| 3978 if( rc ){ |
| 3979 return rc; |
| 3980 } |
| 3981 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
| 3982 sqlite3VdbeMemRelease(&m); |
| 3983 return SQLITE_OK; |
| 3984 } |
| 3985 |
| 3986 /* |
| 3987 ** This routine sets the value to be returned by subsequent calls to |
| 3988 ** sqlite3_changes() on the database handle 'db'. |
| 3989 */ |
| 3990 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
| 3991 assert( sqlite3_mutex_held(db->mutex) ); |
| 3992 db->nChange = nChange; |
| 3993 db->nTotalChange += nChange; |
| 3994 } |
| 3995 |
| 3996 /* |
| 3997 ** Set a flag in the vdbe to update the change counter when it is finalised |
| 3998 ** or reset. |
| 3999 */ |
| 4000 void sqlite3VdbeCountChanges(Vdbe *v){ |
| 4001 v->changeCntOn = 1; |
| 4002 } |
| 4003 |
| 4004 /* |
| 4005 ** Mark every prepared statement associated with a database connection |
| 4006 ** as expired. |
| 4007 ** |
| 4008 ** An expired statement means that recompilation of the statement is |
| 4009 ** recommend. Statements expire when things happen that make their |
| 4010 ** programs obsolete. Removing user-defined functions or collating |
| 4011 ** sequences, or changing an authorization function are the types of |
| 4012 ** things that make prepared statements obsolete. |
| 4013 */ |
| 4014 void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
| 4015 Vdbe *p; |
| 4016 for(p = db->pVdbe; p; p=p->pNext){ |
| 4017 p->expired = 1; |
| 4018 } |
| 4019 } |
| 4020 |
| 4021 /* |
| 4022 ** Return the database associated with the Vdbe. |
| 4023 */ |
| 4024 sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
| 4025 return v->db; |
| 4026 } |
| 4027 |
| 4028 /* |
| 4029 ** Return a pointer to an sqlite3_value structure containing the value bound |
| 4030 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
| 4031 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
| 4032 ** constants) to the value before returning it. |
| 4033 ** |
| 4034 ** The returned value must be freed by the caller using sqlite3ValueFree(). |
| 4035 */ |
| 4036 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ |
| 4037 assert( iVar>0 ); |
| 4038 if( v ){ |
| 4039 Mem *pMem = &v->aVar[iVar-1]; |
| 4040 if( 0==(pMem->flags & MEM_Null) ){ |
| 4041 sqlite3_value *pRet = sqlite3ValueNew(v->db); |
| 4042 if( pRet ){ |
| 4043 sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
| 4044 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
| 4045 } |
| 4046 return pRet; |
| 4047 } |
| 4048 } |
| 4049 return 0; |
| 4050 } |
| 4051 |
| 4052 /* |
| 4053 ** Configure SQL variable iVar so that binding a new value to it signals |
| 4054 ** to sqlite3_reoptimize() that re-preparing the statement may result |
| 4055 ** in a better query plan. |
| 4056 */ |
| 4057 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
| 4058 assert( iVar>0 ); |
| 4059 if( iVar>32 ){ |
| 4060 v->expmask = 0xffffffff; |
| 4061 }else{ |
| 4062 v->expmask |= ((u32)1 << (iVar-1)); |
| 4063 } |
| 4064 } |
| 4065 |
| 4066 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4067 /* |
| 4068 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored |
| 4069 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored |
| 4070 ** in memory obtained from sqlite3DbMalloc). |
| 4071 */ |
| 4072 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ |
| 4073 sqlite3 *db = p->db; |
| 4074 sqlite3DbFree(db, p->zErrMsg); |
| 4075 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); |
| 4076 sqlite3_free(pVtab->zErrMsg); |
| 4077 pVtab->zErrMsg = 0; |
| 4078 } |
| 4079 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
OLD | NEW |