| Index: third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
 | 
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c b/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..c0018bb71cae5d486e5e94f90963d3ce509dc16e
 | 
| --- /dev/null
 | 
| +++ b/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
 | 
| @@ -0,0 +1,4079 @@
 | 
| +/*
 | 
| +** 2003 September 6
 | 
| +**
 | 
| +** The author disclaims copyright to this source code.  In place of
 | 
| +** a legal notice, here is a blessing:
 | 
| +**
 | 
| +**    May you do good and not evil.
 | 
| +**    May you find forgiveness for yourself and forgive others.
 | 
| +**    May you share freely, never taking more than you give.
 | 
| +**
 | 
| +*************************************************************************
 | 
| +** This file contains code used for creating, destroying, and populating
 | 
| +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 
 | 
| +*/
 | 
| +#include "sqliteInt.h"
 | 
| +#include "vdbeInt.h"
 | 
| +
 | 
| +/*
 | 
| +** Create a new virtual database engine.
 | 
| +*/
 | 
| +Vdbe *sqlite3VdbeCreate(Parse *pParse){
 | 
| +  sqlite3 *db = pParse->db;
 | 
| +  Vdbe *p;
 | 
| +  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
 | 
| +  if( p==0 ) return 0;
 | 
| +  p->db = db;
 | 
| +  if( db->pVdbe ){
 | 
| +    db->pVdbe->pPrev = p;
 | 
| +  }
 | 
| +  p->pNext = db->pVdbe;
 | 
| +  p->pPrev = 0;
 | 
| +  db->pVdbe = p;
 | 
| +  p->magic = VDBE_MAGIC_INIT;
 | 
| +  p->pParse = pParse;
 | 
| +  assert( pParse->aLabel==0 );
 | 
| +  assert( pParse->nLabel==0 );
 | 
| +  assert( pParse->nOpAlloc==0 );
 | 
| +  return p;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Remember the SQL string for a prepared statement.
 | 
| +*/
 | 
| +void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
 | 
| +  assert( isPrepareV2==1 || isPrepareV2==0 );
 | 
| +  if( p==0 ) return;
 | 
| +#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
 | 
| +  if( !isPrepareV2 ) return;
 | 
| +#endif
 | 
| +  assert( p->zSql==0 );
 | 
| +  p->zSql = sqlite3DbStrNDup(p->db, z, n);
 | 
| +  p->isPrepareV2 = (u8)isPrepareV2;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return the SQL associated with a prepared statement
 | 
| +*/
 | 
| +const char *sqlite3_sql(sqlite3_stmt *pStmt){
 | 
| +  Vdbe *p = (Vdbe *)pStmt;
 | 
| +  return (p && p->isPrepareV2) ? p->zSql : 0;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Swap all content between two VDBE structures.
 | 
| +*/
 | 
| +void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
 | 
| +  Vdbe tmp, *pTmp;
 | 
| +  char *zTmp;
 | 
| +  tmp = *pA;
 | 
| +  *pA = *pB;
 | 
| +  *pB = tmp;
 | 
| +  pTmp = pA->pNext;
 | 
| +  pA->pNext = pB->pNext;
 | 
| +  pB->pNext = pTmp;
 | 
| +  pTmp = pA->pPrev;
 | 
| +  pA->pPrev = pB->pPrev;
 | 
| +  pB->pPrev = pTmp;
 | 
| +  zTmp = pA->zSql;
 | 
| +  pA->zSql = pB->zSql;
 | 
| +  pB->zSql = zTmp;
 | 
| +  pB->isPrepareV2 = pA->isPrepareV2;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Resize the Vdbe.aOp array so that it is at least nOp elements larger 
 | 
| +** than its current size. nOp is guaranteed to be less than or equal
 | 
| +** to 1024/sizeof(Op).
 | 
| +**
 | 
| +** If an out-of-memory error occurs while resizing the array, return
 | 
| +** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain 
 | 
| +** unchanged (this is so that any opcodes already allocated can be 
 | 
| +** correctly deallocated along with the rest of the Vdbe).
 | 
| +*/
 | 
| +static int growOpArray(Vdbe *v, int nOp){
 | 
| +  VdbeOp *pNew;
 | 
| +  Parse *p = v->pParse;
 | 
| +
 | 
| +  /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
 | 
| +  ** more frequent reallocs and hence provide more opportunities for 
 | 
| +  ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
 | 
| +  ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
 | 
| +  ** by the minimum* amount required until the size reaches 512.  Normal
 | 
| +  ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
 | 
| +  ** size of the op array or add 1KB of space, whichever is smaller. */
 | 
| +#ifdef SQLITE_TEST_REALLOC_STRESS
 | 
| +  int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
 | 
| +#else
 | 
| +  int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
 | 
| +  UNUSED_PARAMETER(nOp);
 | 
| +#endif
 | 
| +
 | 
| +  assert( nOp<=(1024/sizeof(Op)) );
 | 
| +  assert( nNew>=(p->nOpAlloc+nOp) );
 | 
| +  pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
 | 
| +  if( pNew ){
 | 
| +    p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
 | 
| +    v->aOp = pNew;
 | 
| +  }
 | 
| +  return (pNew ? SQLITE_OK : SQLITE_NOMEM);
 | 
| +}
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +/* This routine is just a convenient place to set a breakpoint that will
 | 
| +** fire after each opcode is inserted and displayed using
 | 
| +** "PRAGMA vdbe_addoptrace=on".
 | 
| +*/
 | 
| +static void test_addop_breakpoint(void){
 | 
| +  static int n = 0;
 | 
| +  n++;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Add a new instruction to the list of instructions current in the
 | 
| +** VDBE.  Return the address of the new instruction.
 | 
| +**
 | 
| +** Parameters:
 | 
| +**
 | 
| +**    p               Pointer to the VDBE
 | 
| +**
 | 
| +**    op              The opcode for this instruction
 | 
| +**
 | 
| +**    p1, p2, p3      Operands
 | 
| +**
 | 
| +** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | 
| +** the sqlite3VdbeChangeP4() function to change the value of the P4
 | 
| +** operand.
 | 
| +*/
 | 
| +int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
 | 
| +  int i;
 | 
| +  VdbeOp *pOp;
 | 
| +
 | 
| +  i = p->nOp;
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  assert( op>0 && op<0xff );
 | 
| +  if( p->pParse->nOpAlloc<=i ){
 | 
| +    if( growOpArray(p, 1) ){
 | 
| +      return 1;
 | 
| +    }
 | 
| +  }
 | 
| +  p->nOp++;
 | 
| +  pOp = &p->aOp[i];
 | 
| +  pOp->opcode = (u8)op;
 | 
| +  pOp->p5 = 0;
 | 
| +  pOp->p1 = p1;
 | 
| +  pOp->p2 = p2;
 | 
| +  pOp->p3 = p3;
 | 
| +  pOp->p4.p = 0;
 | 
| +  pOp->p4type = P4_NOTUSED;
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +  pOp->zComment = 0;
 | 
| +#endif
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  if( p->db->flags & SQLITE_VdbeAddopTrace ){
 | 
| +    int jj, kk;
 | 
| +    Parse *pParse = p->pParse;
 | 
| +    for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
 | 
| +      struct yColCache *x = pParse->aColCache + jj;
 | 
| +      if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
 | 
| +      printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
 | 
| +      kk++;
 | 
| +    }
 | 
| +    if( kk ) printf("\n");
 | 
| +    sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | 
| +    test_addop_breakpoint();
 | 
| +  }
 | 
| +#endif
 | 
| +#ifdef VDBE_PROFILE
 | 
| +  pOp->cycles = 0;
 | 
| +  pOp->cnt = 0;
 | 
| +#endif
 | 
| +#ifdef SQLITE_VDBE_COVERAGE
 | 
| +  pOp->iSrcLine = 0;
 | 
| +#endif
 | 
| +  return i;
 | 
| +}
 | 
| +int sqlite3VdbeAddOp0(Vdbe *p, int op){
 | 
| +  return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
 | 
| +}
 | 
| +int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
 | 
| +  return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
 | 
| +}
 | 
| +int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
 | 
| +  return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** Add an opcode that includes the p4 value as a pointer.
 | 
| +*/
 | 
| +int sqlite3VdbeAddOp4(
 | 
| +  Vdbe *p,            /* Add the opcode to this VM */
 | 
| +  int op,             /* The new opcode */
 | 
| +  int p1,             /* The P1 operand */
 | 
| +  int p2,             /* The P2 operand */
 | 
| +  int p3,             /* The P3 operand */
 | 
| +  const char *zP4,    /* The P4 operand */
 | 
| +  int p4type          /* P4 operand type */
 | 
| +){
 | 
| +  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | 
| +  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
 | 
| +  return addr;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Add an OP_ParseSchema opcode.  This routine is broken out from
 | 
| +** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
 | 
| +** as having been used.
 | 
| +**
 | 
| +** The zWhere string must have been obtained from sqlite3_malloc().
 | 
| +** This routine will take ownership of the allocated memory.
 | 
| +*/
 | 
| +void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
 | 
| +  int j;
 | 
| +  int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
 | 
| +  sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
 | 
| +  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Add an opcode that includes the p4 value as an integer.
 | 
| +*/
 | 
| +int sqlite3VdbeAddOp4Int(
 | 
| +  Vdbe *p,            /* Add the opcode to this VM */
 | 
| +  int op,             /* The new opcode */
 | 
| +  int p1,             /* The P1 operand */
 | 
| +  int p2,             /* The P2 operand */
 | 
| +  int p3,             /* The P3 operand */
 | 
| +  int p4              /* The P4 operand as an integer */
 | 
| +){
 | 
| +  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | 
| +  sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
 | 
| +  return addr;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Create a new symbolic label for an instruction that has yet to be
 | 
| +** coded.  The symbolic label is really just a negative number.  The
 | 
| +** label can be used as the P2 value of an operation.  Later, when
 | 
| +** the label is resolved to a specific address, the VDBE will scan
 | 
| +** through its operation list and change all values of P2 which match
 | 
| +** the label into the resolved address.
 | 
| +**
 | 
| +** The VDBE knows that a P2 value is a label because labels are
 | 
| +** always negative and P2 values are suppose to be non-negative.
 | 
| +** Hence, a negative P2 value is a label that has yet to be resolved.
 | 
| +**
 | 
| +** Zero is returned if a malloc() fails.
 | 
| +*/
 | 
| +int sqlite3VdbeMakeLabel(Vdbe *v){
 | 
| +  Parse *p = v->pParse;
 | 
| +  int i = p->nLabel++;
 | 
| +  assert( v->magic==VDBE_MAGIC_INIT );
 | 
| +  if( (i & (i-1))==0 ){
 | 
| +    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 
 | 
| +                                       (i*2+1)*sizeof(p->aLabel[0]));
 | 
| +  }
 | 
| +  if( p->aLabel ){
 | 
| +    p->aLabel[i] = -1;
 | 
| +  }
 | 
| +  return -1-i;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Resolve label "x" to be the address of the next instruction to
 | 
| +** be inserted.  The parameter "x" must have been obtained from
 | 
| +** a prior call to sqlite3VdbeMakeLabel().
 | 
| +*/
 | 
| +void sqlite3VdbeResolveLabel(Vdbe *v, int x){
 | 
| +  Parse *p = v->pParse;
 | 
| +  int j = -1-x;
 | 
| +  assert( v->magic==VDBE_MAGIC_INIT );
 | 
| +  assert( j<p->nLabel );
 | 
| +  if( ALWAYS(j>=0) && p->aLabel ){
 | 
| +    p->aLabel[j] = v->nOp;
 | 
| +  }
 | 
| +  p->iFixedOp = v->nOp - 1;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Mark the VDBE as one that can only be run one time.
 | 
| +*/
 | 
| +void sqlite3VdbeRunOnlyOnce(Vdbe *p){
 | 
| +  p->runOnlyOnce = 1;
 | 
| +}
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
 | 
| +
 | 
| +/*
 | 
| +** The following type and function are used to iterate through all opcodes
 | 
| +** in a Vdbe main program and each of the sub-programs (triggers) it may 
 | 
| +** invoke directly or indirectly. It should be used as follows:
 | 
| +**
 | 
| +**   Op *pOp;
 | 
| +**   VdbeOpIter sIter;
 | 
| +**
 | 
| +**   memset(&sIter, 0, sizeof(sIter));
 | 
| +**   sIter.v = v;                            // v is of type Vdbe* 
 | 
| +**   while( (pOp = opIterNext(&sIter)) ){
 | 
| +**     // Do something with pOp
 | 
| +**   }
 | 
| +**   sqlite3DbFree(v->db, sIter.apSub);
 | 
| +** 
 | 
| +*/
 | 
| +typedef struct VdbeOpIter VdbeOpIter;
 | 
| +struct VdbeOpIter {
 | 
| +  Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
 | 
| +  SubProgram **apSub;        /* Array of subprograms */
 | 
| +  int nSub;                  /* Number of entries in apSub */
 | 
| +  int iAddr;                 /* Address of next instruction to return */
 | 
| +  int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
 | 
| +};
 | 
| +static Op *opIterNext(VdbeOpIter *p){
 | 
| +  Vdbe *v = p->v;
 | 
| +  Op *pRet = 0;
 | 
| +  Op *aOp;
 | 
| +  int nOp;
 | 
| +
 | 
| +  if( p->iSub<=p->nSub ){
 | 
| +
 | 
| +    if( p->iSub==0 ){
 | 
| +      aOp = v->aOp;
 | 
| +      nOp = v->nOp;
 | 
| +    }else{
 | 
| +      aOp = p->apSub[p->iSub-1]->aOp;
 | 
| +      nOp = p->apSub[p->iSub-1]->nOp;
 | 
| +    }
 | 
| +    assert( p->iAddr<nOp );
 | 
| +
 | 
| +    pRet = &aOp[p->iAddr];
 | 
| +    p->iAddr++;
 | 
| +    if( p->iAddr==nOp ){
 | 
| +      p->iSub++;
 | 
| +      p->iAddr = 0;
 | 
| +    }
 | 
| +  
 | 
| +    if( pRet->p4type==P4_SUBPROGRAM ){
 | 
| +      int nByte = (p->nSub+1)*sizeof(SubProgram*);
 | 
| +      int j;
 | 
| +      for(j=0; j<p->nSub; j++){
 | 
| +        if( p->apSub[j]==pRet->p4.pProgram ) break;
 | 
| +      }
 | 
| +      if( j==p->nSub ){
 | 
| +        p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
 | 
| +        if( !p->apSub ){
 | 
| +          pRet = 0;
 | 
| +        }else{
 | 
| +          p->apSub[p->nSub++] = pRet->p4.pProgram;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  return pRet;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Check if the program stored in the VM associated with pParse may
 | 
| +** throw an ABORT exception (causing the statement, but not entire transaction
 | 
| +** to be rolled back). This condition is true if the main program or any
 | 
| +** sub-programs contains any of the following:
 | 
| +**
 | 
| +**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | 
| +**   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | 
| +**   *  OP_Destroy
 | 
| +**   *  OP_VUpdate
 | 
| +**   *  OP_VRename
 | 
| +**   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
 | 
| +**
 | 
| +** Then check that the value of Parse.mayAbort is true if an
 | 
| +** ABORT may be thrown, or false otherwise. Return true if it does
 | 
| +** match, or false otherwise. This function is intended to be used as
 | 
| +** part of an assert statement in the compiler. Similar to:
 | 
| +**
 | 
| +**   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
 | 
| +*/
 | 
| +int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
 | 
| +  int hasAbort = 0;
 | 
| +  Op *pOp;
 | 
| +  VdbeOpIter sIter;
 | 
| +  memset(&sIter, 0, sizeof(sIter));
 | 
| +  sIter.v = v;
 | 
| +
 | 
| +  while( (pOp = opIterNext(&sIter))!=0 ){
 | 
| +    int opcode = pOp->opcode;
 | 
| +    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
 | 
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
| +     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
 | 
| +#endif
 | 
| +     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
 | 
| +      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
 | 
| +    ){
 | 
| +      hasAbort = 1;
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +  sqlite3DbFree(v->db, sIter.apSub);
 | 
| +
 | 
| +  /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
 | 
| +  ** If malloc failed, then the while() loop above may not have iterated
 | 
| +  ** through all opcodes and hasAbort may be set incorrectly. Return
 | 
| +  ** true for this case to prevent the assert() in the callers frame
 | 
| +  ** from failing.  */
 | 
| +  return ( v->db->mallocFailed || hasAbort==mayAbort );
 | 
| +}
 | 
| +#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
 | 
| +
 | 
| +/*
 | 
| +** Loop through the program looking for P2 values that are negative
 | 
| +** on jump instructions.  Each such value is a label.  Resolve the
 | 
| +** label by setting the P2 value to its correct non-zero value.
 | 
| +**
 | 
| +** This routine is called once after all opcodes have been inserted.
 | 
| +**
 | 
| +** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
 | 
| +** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
 | 
| +** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
 | 
| +**
 | 
| +** The Op.opflags field is set on all opcodes.
 | 
| +*/
 | 
| +static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
 | 
| +  int i;
 | 
| +  int nMaxArgs = *pMaxFuncArgs;
 | 
| +  Op *pOp;
 | 
| +  Parse *pParse = p->pParse;
 | 
| +  int *aLabel = pParse->aLabel;
 | 
| +  p->readOnly = 1;
 | 
| +  p->bIsReader = 0;
 | 
| +  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | 
| +    u8 opcode = pOp->opcode;
 | 
| +
 | 
| +    /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
 | 
| +    ** cases from this switch! */
 | 
| +    switch( opcode ){
 | 
| +      case OP_Function:
 | 
| +      case OP_AggStep: {
 | 
| +        if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
 | 
| +        break;
 | 
| +      }
 | 
| +      case OP_Transaction: {
 | 
| +        if( pOp->p2!=0 ) p->readOnly = 0;
 | 
| +        /* fall thru */
 | 
| +      }
 | 
| +      case OP_AutoCommit:
 | 
| +      case OP_Savepoint: {
 | 
| +        p->bIsReader = 1;
 | 
| +        break;
 | 
| +      }
 | 
| +#ifndef SQLITE_OMIT_WAL
 | 
| +      case OP_Checkpoint:
 | 
| +#endif
 | 
| +      case OP_Vacuum:
 | 
| +      case OP_JournalMode: {
 | 
| +        p->readOnly = 0;
 | 
| +        p->bIsReader = 1;
 | 
| +        break;
 | 
| +      }
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +      case OP_VUpdate: {
 | 
| +        if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | 
| +        break;
 | 
| +      }
 | 
| +      case OP_VFilter: {
 | 
| +        int n;
 | 
| +        assert( p->nOp - i >= 3 );
 | 
| +        assert( pOp[-1].opcode==OP_Integer );
 | 
| +        n = pOp[-1].p1;
 | 
| +        if( n>nMaxArgs ) nMaxArgs = n;
 | 
| +        break;
 | 
| +      }
 | 
| +#endif
 | 
| +      case OP_Next:
 | 
| +      case OP_NextIfOpen:
 | 
| +      case OP_SorterNext: {
 | 
| +        pOp->p4.xAdvance = sqlite3BtreeNext;
 | 
| +        pOp->p4type = P4_ADVANCE;
 | 
| +        break;
 | 
| +      }
 | 
| +      case OP_Prev:
 | 
| +      case OP_PrevIfOpen: {
 | 
| +        pOp->p4.xAdvance = sqlite3BtreePrevious;
 | 
| +        pOp->p4type = P4_ADVANCE;
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    pOp->opflags = sqlite3OpcodeProperty[opcode];
 | 
| +    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
 | 
| +      assert( -1-pOp->p2<pParse->nLabel );
 | 
| +      pOp->p2 = aLabel[-1-pOp->p2];
 | 
| +    }
 | 
| +  }
 | 
| +  sqlite3DbFree(p->db, pParse->aLabel);
 | 
| +  pParse->aLabel = 0;
 | 
| +  pParse->nLabel = 0;
 | 
| +  *pMaxFuncArgs = nMaxArgs;
 | 
| +  assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return the address of the next instruction to be inserted.
 | 
| +*/
 | 
| +int sqlite3VdbeCurrentAddr(Vdbe *p){
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  return p->nOp;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** This function returns a pointer to the array of opcodes associated with
 | 
| +** the Vdbe passed as the first argument. It is the callers responsibility
 | 
| +** to arrange for the returned array to be eventually freed using the 
 | 
| +** vdbeFreeOpArray() function.
 | 
| +**
 | 
| +** Before returning, *pnOp is set to the number of entries in the returned
 | 
| +** array. Also, *pnMaxArg is set to the larger of its current value and 
 | 
| +** the number of entries in the Vdbe.apArg[] array required to execute the 
 | 
| +** returned program.
 | 
| +*/
 | 
| +VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
 | 
| +  VdbeOp *aOp = p->aOp;
 | 
| +  assert( aOp && !p->db->mallocFailed );
 | 
| +
 | 
| +  /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
 | 
| +  assert( DbMaskAllZero(p->btreeMask) );
 | 
| +
 | 
| +  resolveP2Values(p, pnMaxArg);
 | 
| +  *pnOp = p->nOp;
 | 
| +  p->aOp = 0;
 | 
| +  return aOp;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Add a whole list of operations to the operation stack.  Return the
 | 
| +** address of the first operation added.
 | 
| +*/
 | 
| +int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
 | 
| +  int addr;
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
 | 
| +    return 0;
 | 
| +  }
 | 
| +  addr = p->nOp;
 | 
| +  if( ALWAYS(nOp>0) ){
 | 
| +    int i;
 | 
| +    VdbeOpList const *pIn = aOp;
 | 
| +    for(i=0; i<nOp; i++, pIn++){
 | 
| +      int p2 = pIn->p2;
 | 
| +      VdbeOp *pOut = &p->aOp[i+addr];
 | 
| +      pOut->opcode = pIn->opcode;
 | 
| +      pOut->p1 = pIn->p1;
 | 
| +      if( p2<0 ){
 | 
| +        assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
 | 
| +        pOut->p2 = addr + ADDR(p2);
 | 
| +      }else{
 | 
| +        pOut->p2 = p2;
 | 
| +      }
 | 
| +      pOut->p3 = pIn->p3;
 | 
| +      pOut->p4type = P4_NOTUSED;
 | 
| +      pOut->p4.p = 0;
 | 
| +      pOut->p5 = 0;
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +      pOut->zComment = 0;
 | 
| +#endif
 | 
| +#ifdef SQLITE_VDBE_COVERAGE
 | 
| +      pOut->iSrcLine = iLineno+i;
 | 
| +#else
 | 
| +      (void)iLineno;
 | 
| +#endif
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +      if( p->db->flags & SQLITE_VdbeAddopTrace ){
 | 
| +        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
 | 
| +      }
 | 
| +#endif
 | 
| +    }
 | 
| +    p->nOp += nOp;
 | 
| +  }
 | 
| +  return addr;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the value of the P1 operand for a specific instruction.
 | 
| +** This routine is useful when a large program is loaded from a
 | 
| +** static array using sqlite3VdbeAddOpList but we want to make a
 | 
| +** few minor changes to the program.
 | 
| +*/
 | 
| +void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
 | 
| +  assert( p!=0 );
 | 
| +  if( ((u32)p->nOp)>addr ){
 | 
| +    p->aOp[addr].p1 = val;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the value of the P2 operand for a specific instruction.
 | 
| +** This routine is useful for setting a jump destination.
 | 
| +*/
 | 
| +void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
 | 
| +  assert( p!=0 );
 | 
| +  if( ((u32)p->nOp)>addr ){
 | 
| +    p->aOp[addr].p2 = val;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the value of the P3 operand for a specific instruction.
 | 
| +*/
 | 
| +void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
 | 
| +  assert( p!=0 );
 | 
| +  if( ((u32)p->nOp)>addr ){
 | 
| +    p->aOp[addr].p3 = val;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the value of the P5 operand for the most recently
 | 
| +** added operation.
 | 
| +*/
 | 
| +void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
 | 
| +  assert( p!=0 );
 | 
| +  if( p->aOp ){
 | 
| +    assert( p->nOp>0 );
 | 
| +    p->aOp[p->nOp-1].p5 = val;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the P2 operand of instruction addr so that it points to
 | 
| +** the address of the next instruction to be coded.
 | 
| +*/
 | 
| +void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | 
| +  sqlite3VdbeChangeP2(p, addr, p->nOp);
 | 
| +  p->pParse->iFixedOp = p->nOp - 1;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** If the input FuncDef structure is ephemeral, then free it.  If
 | 
| +** the FuncDef is not ephermal, then do nothing.
 | 
| +*/
 | 
| +static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
 | 
| +  if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
 | 
| +    sqlite3DbFree(db, pDef);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +static void vdbeFreeOpArray(sqlite3 *, Op *, int);
 | 
| +
 | 
| +/*
 | 
| +** Delete a P4 value if necessary.
 | 
| +*/
 | 
| +static void freeP4(sqlite3 *db, int p4type, void *p4){
 | 
| +  if( p4 ){
 | 
| +    assert( db );
 | 
| +    switch( p4type ){
 | 
| +      case P4_REAL:
 | 
| +      case P4_INT64:
 | 
| +      case P4_DYNAMIC:
 | 
| +      case P4_INTARRAY: {
 | 
| +        sqlite3DbFree(db, p4);
 | 
| +        break;
 | 
| +      }
 | 
| +      case P4_KEYINFO: {
 | 
| +        if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
 | 
| +        break;
 | 
| +      }
 | 
| +      case P4_MPRINTF: {
 | 
| +        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
 | 
| +        break;
 | 
| +      }
 | 
| +      case P4_FUNCDEF: {
 | 
| +        freeEphemeralFunction(db, (FuncDef*)p4);
 | 
| +        break;
 | 
| +      }
 | 
| +      case P4_MEM: {
 | 
| +        if( db->pnBytesFreed==0 ){
 | 
| +          sqlite3ValueFree((sqlite3_value*)p4);
 | 
| +        }else{
 | 
| +          Mem *p = (Mem*)p4;
 | 
| +          if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
 | 
| +          sqlite3DbFree(db, p);
 | 
| +        }
 | 
| +        break;
 | 
| +      }
 | 
| +      case P4_VTAB : {
 | 
| +        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Free the space allocated for aOp and any p4 values allocated for the
 | 
| +** opcodes contained within. If aOp is not NULL it is assumed to contain 
 | 
| +** nOp entries. 
 | 
| +*/
 | 
| +static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
 | 
| +  if( aOp ){
 | 
| +    Op *pOp;
 | 
| +    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
 | 
| +      freeP4(db, pOp->p4type, pOp->p4.p);
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +      sqlite3DbFree(db, pOp->zComment);
 | 
| +#endif     
 | 
| +    }
 | 
| +  }
 | 
| +  sqlite3DbFree(db, aOp);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Link the SubProgram object passed as the second argument into the linked
 | 
| +** list at Vdbe.pSubProgram. This list is used to delete all sub-program
 | 
| +** objects when the VM is no longer required.
 | 
| +*/
 | 
| +void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
 | 
| +  p->pNext = pVdbe->pProgram;
 | 
| +  pVdbe->pProgram = p;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the opcode at addr into OP_Noop
 | 
| +*/
 | 
| +void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
 | 
| +  if( addr<p->nOp ){
 | 
| +    VdbeOp *pOp = &p->aOp[addr];
 | 
| +    sqlite3 *db = p->db;
 | 
| +    freeP4(db, pOp->p4type, pOp->p4.p);
 | 
| +    memset(pOp, 0, sizeof(pOp[0]));
 | 
| +    pOp->opcode = OP_Noop;
 | 
| +    if( addr==p->nOp-1 ) p->nOp--;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** If the last opcode is "op" and it is not a jump destination,
 | 
| +** then remove it.  Return true if and only if an opcode was removed.
 | 
| +*/
 | 
| +int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
 | 
| +  if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
 | 
| +    sqlite3VdbeChangeToNoop(p, p->nOp-1);
 | 
| +    return 1;
 | 
| +  }else{
 | 
| +    return 0;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Change the value of the P4 operand for a specific instruction.
 | 
| +** This routine is useful when a large program is loaded from a
 | 
| +** static array using sqlite3VdbeAddOpList but we want to make a
 | 
| +** few minor changes to the program.
 | 
| +**
 | 
| +** If n>=0 then the P4 operand is dynamic, meaning that a copy of
 | 
| +** the string is made into memory obtained from sqlite3_malloc().
 | 
| +** A value of n==0 means copy bytes of zP4 up to and including the
 | 
| +** first null byte.  If n>0 then copy n+1 bytes of zP4.
 | 
| +** 
 | 
| +** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
 | 
| +** to a string or structure that is guaranteed to exist for the lifetime of
 | 
| +** the Vdbe. In these cases we can just copy the pointer.
 | 
| +**
 | 
| +** If addr<0 then change P4 on the most recently inserted instruction.
 | 
| +*/
 | 
| +void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
 | 
| +  Op *pOp;
 | 
| +  sqlite3 *db;
 | 
| +  assert( p!=0 );
 | 
| +  db = p->db;
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  if( p->aOp==0 || db->mallocFailed ){
 | 
| +    if( n!=P4_VTAB ){
 | 
| +      freeP4(db, n, (void*)*(char**)&zP4);
 | 
| +    }
 | 
| +    return;
 | 
| +  }
 | 
| +  assert( p->nOp>0 );
 | 
| +  assert( addr<p->nOp );
 | 
| +  if( addr<0 ){
 | 
| +    addr = p->nOp - 1;
 | 
| +  }
 | 
| +  pOp = &p->aOp[addr];
 | 
| +  assert( pOp->p4type==P4_NOTUSED
 | 
| +       || pOp->p4type==P4_INT32
 | 
| +       || pOp->p4type==P4_KEYINFO );
 | 
| +  freeP4(db, pOp->p4type, pOp->p4.p);
 | 
| +  pOp->p4.p = 0;
 | 
| +  if( n==P4_INT32 ){
 | 
| +    /* Note: this cast is safe, because the origin data point was an int
 | 
| +    ** that was cast to a (const char *). */
 | 
| +    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
 | 
| +    pOp->p4type = P4_INT32;
 | 
| +  }else if( zP4==0 ){
 | 
| +    pOp->p4.p = 0;
 | 
| +    pOp->p4type = P4_NOTUSED;
 | 
| +  }else if( n==P4_KEYINFO ){
 | 
| +    pOp->p4.p = (void*)zP4;
 | 
| +    pOp->p4type = P4_KEYINFO;
 | 
| +  }else if( n==P4_VTAB ){
 | 
| +    pOp->p4.p = (void*)zP4;
 | 
| +    pOp->p4type = P4_VTAB;
 | 
| +    sqlite3VtabLock((VTable *)zP4);
 | 
| +    assert( ((VTable *)zP4)->db==p->db );
 | 
| +  }else if( n<0 ){
 | 
| +    pOp->p4.p = (void*)zP4;
 | 
| +    pOp->p4type = (signed char)n;
 | 
| +  }else{
 | 
| +    if( n==0 ) n = sqlite3Strlen30(zP4);
 | 
| +    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
 | 
| +    pOp->p4type = P4_DYNAMIC;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Set the P4 on the most recently added opcode to the KeyInfo for the
 | 
| +** index given.
 | 
| +*/
 | 
| +void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
 | 
| +  Vdbe *v = pParse->pVdbe;
 | 
| +  assert( v!=0 );
 | 
| +  assert( pIdx!=0 );
 | 
| +  sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
 | 
| +                      P4_KEYINFO);
 | 
| +}
 | 
| +
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +/*
 | 
| +** Change the comment on the most recently coded instruction.  Or
 | 
| +** insert a No-op and add the comment to that new instruction.  This
 | 
| +** makes the code easier to read during debugging.  None of this happens
 | 
| +** in a production build.
 | 
| +*/
 | 
| +static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
 | 
| +  assert( p->nOp>0 || p->aOp==0 );
 | 
| +  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
 | 
| +  if( p->nOp ){
 | 
| +    assert( p->aOp );
 | 
| +    sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
 | 
| +    p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
 | 
| +  }
 | 
| +}
 | 
| +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | 
| +  va_list ap;
 | 
| +  if( p ){
 | 
| +    va_start(ap, zFormat);
 | 
| +    vdbeVComment(p, zFormat, ap);
 | 
| +    va_end(ap);
 | 
| +  }
 | 
| +}
 | 
| +void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
 | 
| +  va_list ap;
 | 
| +  if( p ){
 | 
| +    sqlite3VdbeAddOp0(p, OP_Noop);
 | 
| +    va_start(ap, zFormat);
 | 
| +    vdbeVComment(p, zFormat, ap);
 | 
| +    va_end(ap);
 | 
| +  }
 | 
| +}
 | 
| +#endif  /* NDEBUG */
 | 
| +
 | 
| +#ifdef SQLITE_VDBE_COVERAGE
 | 
| +/*
 | 
| +** Set the value if the iSrcLine field for the previously coded instruction.
 | 
| +*/
 | 
| +void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
 | 
| +  sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
 | 
| +}
 | 
| +#endif /* SQLITE_VDBE_COVERAGE */
 | 
| +
 | 
| +/*
 | 
| +** Return the opcode for a given address.  If the address is -1, then
 | 
| +** return the most recently inserted opcode.
 | 
| +**
 | 
| +** If a memory allocation error has occurred prior to the calling of this
 | 
| +** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
 | 
| +** is readable but not writable, though it is cast to a writable value.
 | 
| +** The return of a dummy opcode allows the call to continue functioning
 | 
| +** after an OOM fault without having to check to see if the return from 
 | 
| +** this routine is a valid pointer.  But because the dummy.opcode is 0,
 | 
| +** dummy will never be written to.  This is verified by code inspection and
 | 
| +** by running with Valgrind.
 | 
| +*/
 | 
| +VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | 
| +  /* C89 specifies that the constant "dummy" will be initialized to all
 | 
| +  ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
 | 
| +  static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  if( addr<0 ){
 | 
| +    addr = p->nOp - 1;
 | 
| +  }
 | 
| +  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
 | 
| +  if( p->db->mallocFailed ){
 | 
| +    return (VdbeOp*)&dummy;
 | 
| +  }else{
 | 
| +    return &p->aOp[addr];
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
 | 
| +/*
 | 
| +** Return an integer value for one of the parameters to the opcode pOp
 | 
| +** determined by character c.
 | 
| +*/
 | 
| +static int translateP(char c, const Op *pOp){
 | 
| +  if( c=='1' ) return pOp->p1;
 | 
| +  if( c=='2' ) return pOp->p2;
 | 
| +  if( c=='3' ) return pOp->p3;
 | 
| +  if( c=='4' ) return pOp->p4.i;
 | 
| +  return pOp->p5;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Compute a string for the "comment" field of a VDBE opcode listing.
 | 
| +**
 | 
| +** The Synopsis: field in comments in the vdbe.c source file gets converted
 | 
| +** to an extra string that is appended to the sqlite3OpcodeName().  In the
 | 
| +** absence of other comments, this synopsis becomes the comment on the opcode.
 | 
| +** Some translation occurs:
 | 
| +**
 | 
| +**       "PX"      ->  "r[X]"
 | 
| +**       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
 | 
| +**       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
 | 
| +**       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
 | 
| +*/
 | 
| +static int displayComment(
 | 
| +  const Op *pOp,     /* The opcode to be commented */
 | 
| +  const char *zP4,   /* Previously obtained value for P4 */
 | 
| +  char *zTemp,       /* Write result here */
 | 
| +  int nTemp          /* Space available in zTemp[] */
 | 
| +){
 | 
| +  const char *zOpName;
 | 
| +  const char *zSynopsis;
 | 
| +  int nOpName;
 | 
| +  int ii, jj;
 | 
| +  zOpName = sqlite3OpcodeName(pOp->opcode);
 | 
| +  nOpName = sqlite3Strlen30(zOpName);
 | 
| +  if( zOpName[nOpName+1] ){
 | 
| +    int seenCom = 0;
 | 
| +    char c;
 | 
| +    zSynopsis = zOpName += nOpName + 1;
 | 
| +    for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
 | 
| +      if( c=='P' ){
 | 
| +        c = zSynopsis[++ii];
 | 
| +        if( c=='4' ){
 | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
 | 
| +        }else if( c=='X' ){
 | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
 | 
| +          seenCom = 1;
 | 
| +        }else{
 | 
| +          int v1 = translateP(c, pOp);
 | 
| +          int v2;
 | 
| +          sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
 | 
| +          if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
 | 
| +            ii += 3;
 | 
| +            jj += sqlite3Strlen30(zTemp+jj);
 | 
| +            v2 = translateP(zSynopsis[ii], pOp);
 | 
| +            if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
 | 
| +              ii += 2;
 | 
| +              v2++;
 | 
| +            }
 | 
| +            if( v2>1 ){
 | 
| +              sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
 | 
| +            }
 | 
| +          }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
 | 
| +            ii += 4;
 | 
| +          }
 | 
| +        }
 | 
| +        jj += sqlite3Strlen30(zTemp+jj);
 | 
| +      }else{
 | 
| +        zTemp[jj++] = c;
 | 
| +      }
 | 
| +    }
 | 
| +    if( !seenCom && jj<nTemp-5 && pOp->zComment ){
 | 
| +      sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
 | 
| +      jj += sqlite3Strlen30(zTemp+jj);
 | 
| +    }
 | 
| +    if( jj<nTemp ) zTemp[jj] = 0;
 | 
| +  }else if( pOp->zComment ){
 | 
| +    sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
 | 
| +    jj = sqlite3Strlen30(zTemp);
 | 
| +  }else{
 | 
| +    zTemp[0] = 0;
 | 
| +    jj = 0;
 | 
| +  }
 | 
| +  return jj;
 | 
| +}
 | 
| +#endif /* SQLITE_DEBUG */
 | 
| +
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
 | 
| +     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
| +/*
 | 
| +** Compute a string that describes the P4 parameter for an opcode.
 | 
| +** Use zTemp for any required temporary buffer space.
 | 
| +*/
 | 
| +static char *displayP4(Op *pOp, char *zTemp, int nTemp){
 | 
| +  char *zP4 = zTemp;
 | 
| +  assert( nTemp>=20 );
 | 
| +  switch( pOp->p4type ){
 | 
| +    case P4_KEYINFO: {
 | 
| +      int i, j;
 | 
| +      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
 | 
| +      assert( pKeyInfo->aSortOrder!=0 );
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
 | 
| +      i = sqlite3Strlen30(zTemp);
 | 
| +      for(j=0; j<pKeyInfo->nField; j++){
 | 
| +        CollSeq *pColl = pKeyInfo->aColl[j];
 | 
| +        const char *zColl = pColl ? pColl->zName : "nil";
 | 
| +        int n = sqlite3Strlen30(zColl);
 | 
| +        if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
 | 
| +          zColl = "B";
 | 
| +          n = 1;
 | 
| +        }
 | 
| +        if( i+n>nTemp-6 ){
 | 
| +          memcpy(&zTemp[i],",...",4);
 | 
| +          break;
 | 
| +        }
 | 
| +        zTemp[i++] = ',';
 | 
| +        if( pKeyInfo->aSortOrder[j] ){
 | 
| +          zTemp[i++] = '-';
 | 
| +        }
 | 
| +        memcpy(&zTemp[i], zColl, n+1);
 | 
| +        i += n;
 | 
| +      }
 | 
| +      zTemp[i++] = ')';
 | 
| +      zTemp[i] = 0;
 | 
| +      assert( i<nTemp );
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_COLLSEQ: {
 | 
| +      CollSeq *pColl = pOp->p4.pColl;
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_FUNCDEF: {
 | 
| +      FuncDef *pDef = pOp->p4.pFunc;
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_INT64: {
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_INT32: {
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_REAL: {
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_MEM: {
 | 
| +      Mem *pMem = pOp->p4.pMem;
 | 
| +      if( pMem->flags & MEM_Str ){
 | 
| +        zP4 = pMem->z;
 | 
| +      }else if( pMem->flags & MEM_Int ){
 | 
| +        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
 | 
| +      }else if( pMem->flags & MEM_Real ){
 | 
| +        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
 | 
| +      }else if( pMem->flags & MEM_Null ){
 | 
| +        sqlite3_snprintf(nTemp, zTemp, "NULL");
 | 
| +      }else{
 | 
| +        assert( pMem->flags & MEM_Blob );
 | 
| +        zP4 = "(blob)";
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +    case P4_VTAB: {
 | 
| +      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
 | 
| +      break;
 | 
| +    }
 | 
| +#endif
 | 
| +    case P4_INTARRAY: {
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "intarray");
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_SUBPROGRAM: {
 | 
| +      sqlite3_snprintf(nTemp, zTemp, "program");
 | 
| +      break;
 | 
| +    }
 | 
| +    case P4_ADVANCE: {
 | 
| +      zTemp[0] = 0;
 | 
| +      break;
 | 
| +    }
 | 
| +    default: {
 | 
| +      zP4 = pOp->p4.z;
 | 
| +      if( zP4==0 ){
 | 
| +        zP4 = zTemp;
 | 
| +        zTemp[0] = 0;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +  assert( zP4!=0 );
 | 
| +  return zP4;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
 | 
| +**
 | 
| +** The prepared statements need to know in advance the complete set of
 | 
| +** attached databases that will be use.  A mask of these databases
 | 
| +** is maintained in p->btreeMask.  The p->lockMask value is the subset of
 | 
| +** p->btreeMask of databases that will require a lock.
 | 
| +*/
 | 
| +void sqlite3VdbeUsesBtree(Vdbe *p, int i){
 | 
| +  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
 | 
| +  assert( i<(int)sizeof(p->btreeMask)*8 );
 | 
| +  DbMaskSet(p->btreeMask, i);
 | 
| +  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
 | 
| +    DbMaskSet(p->lockMask, i);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
 | 
| +/*
 | 
| +** If SQLite is compiled to support shared-cache mode and to be threadsafe,
 | 
| +** this routine obtains the mutex associated with each BtShared structure
 | 
| +** that may be accessed by the VM passed as an argument. In doing so it also
 | 
| +** sets the BtShared.db member of each of the BtShared structures, ensuring
 | 
| +** that the correct busy-handler callback is invoked if required.
 | 
| +**
 | 
| +** If SQLite is not threadsafe but does support shared-cache mode, then
 | 
| +** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
 | 
| +** of all of BtShared structures accessible via the database handle 
 | 
| +** associated with the VM.
 | 
| +**
 | 
| +** If SQLite is not threadsafe and does not support shared-cache mode, this
 | 
| +** function is a no-op.
 | 
| +**
 | 
| +** The p->btreeMask field is a bitmask of all btrees that the prepared 
 | 
| +** statement p will ever use.  Let N be the number of bits in p->btreeMask
 | 
| +** corresponding to btrees that use shared cache.  Then the runtime of
 | 
| +** this routine is N*N.  But as N is rarely more than 1, this should not
 | 
| +** be a problem.
 | 
| +*/
 | 
| +void sqlite3VdbeEnter(Vdbe *p){
 | 
| +  int i;
 | 
| +  sqlite3 *db;
 | 
| +  Db *aDb;
 | 
| +  int nDb;
 | 
| +  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
 | 
| +  db = p->db;
 | 
| +  aDb = db->aDb;
 | 
| +  nDb = db->nDb;
 | 
| +  for(i=0; i<nDb; i++){
 | 
| +    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
 | 
| +      sqlite3BtreeEnter(aDb[i].pBt);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
 | 
| +/*
 | 
| +** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
 | 
| +*/
 | 
| +void sqlite3VdbeLeave(Vdbe *p){
 | 
| +  int i;
 | 
| +  sqlite3 *db;
 | 
| +  Db *aDb;
 | 
| +  int nDb;
 | 
| +  if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
 | 
| +  db = p->db;
 | 
| +  aDb = db->aDb;
 | 
| +  nDb = db->nDb;
 | 
| +  for(i=0; i<nDb; i++){
 | 
| +    if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
 | 
| +      sqlite3BtreeLeave(aDb[i].pBt);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | 
| +/*
 | 
| +** Print a single opcode.  This routine is used for debugging only.
 | 
| +*/
 | 
| +void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
 | 
| +  char *zP4;
 | 
| +  char zPtr[50];
 | 
| +  char zCom[100];
 | 
| +  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
 | 
| +  if( pOut==0 ) pOut = stdout;
 | 
| +  zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +  displayComment(pOp, zP4, zCom, sizeof(zCom));
 | 
| +#else
 | 
| +  zCom[0] = 0;
 | 
| +#endif
 | 
| +  /* NB:  The sqlite3OpcodeName() function is implemented by code created
 | 
| +  ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
 | 
| +  ** information from the vdbe.c source text */
 | 
| +  fprintf(pOut, zFormat1, pc, 
 | 
| +      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
 | 
| +      zCom
 | 
| +  );
 | 
| +  fflush(pOut);
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Release an array of N Mem elements
 | 
| +*/
 | 
| +static void releaseMemArray(Mem *p, int N){
 | 
| +  if( p && N ){
 | 
| +    Mem *pEnd = &p[N];
 | 
| +    sqlite3 *db = p->db;
 | 
| +    u8 malloc_failed = db->mallocFailed;
 | 
| +    if( db->pnBytesFreed ){
 | 
| +      do{
 | 
| +        if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
 | 
| +      }while( (++p)<pEnd );
 | 
| +      return;
 | 
| +    }
 | 
| +    do{
 | 
| +      assert( (&p[1])==pEnd || p[0].db==p[1].db );
 | 
| +      assert( sqlite3VdbeCheckMemInvariants(p) );
 | 
| +
 | 
| +      /* This block is really an inlined version of sqlite3VdbeMemRelease()
 | 
| +      ** that takes advantage of the fact that the memory cell value is 
 | 
| +      ** being set to NULL after releasing any dynamic resources.
 | 
| +      **
 | 
| +      ** The justification for duplicating code is that according to 
 | 
| +      ** callgrind, this causes a certain test case to hit the CPU 4.7 
 | 
| +      ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
 | 
| +      ** sqlite3MemRelease() were called from here. With -O2, this jumps
 | 
| +      ** to 6.6 percent. The test case is inserting 1000 rows into a table 
 | 
| +      ** with no indexes using a single prepared INSERT statement, bind() 
 | 
| +      ** and reset(). Inserts are grouped into a transaction.
 | 
| +      */
 | 
| +      testcase( p->flags & MEM_Agg );
 | 
| +      testcase( p->flags & MEM_Dyn );
 | 
| +      testcase( p->flags & MEM_Frame );
 | 
| +      testcase( p->flags & MEM_RowSet );
 | 
| +      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
 | 
| +        sqlite3VdbeMemRelease(p);
 | 
| +      }else if( p->szMalloc ){
 | 
| +        sqlite3DbFree(db, p->zMalloc);
 | 
| +        p->szMalloc = 0;
 | 
| +      }
 | 
| +
 | 
| +      p->flags = MEM_Undefined;
 | 
| +    }while( (++p)<pEnd );
 | 
| +    db->mallocFailed = malloc_failed;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Delete a VdbeFrame object and its contents. VdbeFrame objects are
 | 
| +** allocated by the OP_Program opcode in sqlite3VdbeExec().
 | 
| +*/
 | 
| +void sqlite3VdbeFrameDelete(VdbeFrame *p){
 | 
| +  int i;
 | 
| +  Mem *aMem = VdbeFrameMem(p);
 | 
| +  VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
 | 
| +  for(i=0; i<p->nChildCsr; i++){
 | 
| +    sqlite3VdbeFreeCursor(p->v, apCsr[i]);
 | 
| +  }
 | 
| +  releaseMemArray(aMem, p->nChildMem);
 | 
| +  sqlite3DbFree(p->v->db, p);
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_EXPLAIN
 | 
| +/*
 | 
| +** Give a listing of the program in the virtual machine.
 | 
| +**
 | 
| +** The interface is the same as sqlite3VdbeExec().  But instead of
 | 
| +** running the code, it invokes the callback once for each instruction.
 | 
| +** This feature is used to implement "EXPLAIN".
 | 
| +**
 | 
| +** When p->explain==1, each instruction is listed.  When
 | 
| +** p->explain==2, only OP_Explain instructions are listed and these
 | 
| +** are shown in a different format.  p->explain==2 is used to implement
 | 
| +** EXPLAIN QUERY PLAN.
 | 
| +**
 | 
| +** When p->explain==1, first the main program is listed, then each of
 | 
| +** the trigger subprograms are listed one by one.
 | 
| +*/
 | 
| +int sqlite3VdbeList(
 | 
| +  Vdbe *p                   /* The VDBE */
 | 
| +){
 | 
| +  int nRow;                            /* Stop when row count reaches this */
 | 
| +  int nSub = 0;                        /* Number of sub-vdbes seen so far */
 | 
| +  SubProgram **apSub = 0;              /* Array of sub-vdbes */
 | 
| +  Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
 | 
| +  sqlite3 *db = p->db;                 /* The database connection */
 | 
| +  int i;                               /* Loop counter */
 | 
| +  int rc = SQLITE_OK;                  /* Return code */
 | 
| +  Mem *pMem = &p->aMem[1];             /* First Mem of result set */
 | 
| +
 | 
| +  assert( p->explain );
 | 
| +  assert( p->magic==VDBE_MAGIC_RUN );
 | 
| +  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
 | 
| +
 | 
| +  /* Even though this opcode does not use dynamic strings for
 | 
| +  ** the result, result columns may become dynamic if the user calls
 | 
| +  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | 
| +  */
 | 
| +  releaseMemArray(pMem, 8);
 | 
| +  p->pResultSet = 0;
 | 
| +
 | 
| +  if( p->rc==SQLITE_NOMEM ){
 | 
| +    /* This happens if a malloc() inside a call to sqlite3_column_text() or
 | 
| +    ** sqlite3_column_text16() failed.  */
 | 
| +    db->mallocFailed = 1;
 | 
| +    return SQLITE_ERROR;
 | 
| +  }
 | 
| +
 | 
| +  /* When the number of output rows reaches nRow, that means the
 | 
| +  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
 | 
| +  ** nRow is the sum of the number of rows in the main program, plus
 | 
| +  ** the sum of the number of rows in all trigger subprograms encountered
 | 
| +  ** so far.  The nRow value will increase as new trigger subprograms are
 | 
| +  ** encountered, but p->pc will eventually catch up to nRow.
 | 
| +  */
 | 
| +  nRow = p->nOp;
 | 
| +  if( p->explain==1 ){
 | 
| +    /* The first 8 memory cells are used for the result set.  So we will
 | 
| +    ** commandeer the 9th cell to use as storage for an array of pointers
 | 
| +    ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
 | 
| +    ** cells.  */
 | 
| +    assert( p->nMem>9 );
 | 
| +    pSub = &p->aMem[9];
 | 
| +    if( pSub->flags&MEM_Blob ){
 | 
| +      /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
 | 
| +      ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
 | 
| +      nSub = pSub->n/sizeof(Vdbe*);
 | 
| +      apSub = (SubProgram **)pSub->z;
 | 
| +    }
 | 
| +    for(i=0; i<nSub; i++){
 | 
| +      nRow += apSub[i]->nOp;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  do{
 | 
| +    i = p->pc++;
 | 
| +  }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
 | 
| +  if( i>=nRow ){
 | 
| +    p->rc = SQLITE_OK;
 | 
| +    rc = SQLITE_DONE;
 | 
| +  }else if( db->u1.isInterrupted ){
 | 
| +    p->rc = SQLITE_INTERRUPT;
 | 
| +    rc = SQLITE_ERROR;
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
 | 
| +  }else{
 | 
| +    char *zP4;
 | 
| +    Op *pOp;
 | 
| +    if( i<p->nOp ){
 | 
| +      /* The output line number is small enough that we are still in the
 | 
| +      ** main program. */
 | 
| +      pOp = &p->aOp[i];
 | 
| +    }else{
 | 
| +      /* We are currently listing subprograms.  Figure out which one and
 | 
| +      ** pick up the appropriate opcode. */
 | 
| +      int j;
 | 
| +      i -= p->nOp;
 | 
| +      for(j=0; i>=apSub[j]->nOp; j++){
 | 
| +        i -= apSub[j]->nOp;
 | 
| +      }
 | 
| +      pOp = &apSub[j]->aOp[i];
 | 
| +    }
 | 
| +    if( p->explain==1 ){
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      pMem->u.i = i;                                /* Program counter */
 | 
| +      pMem++;
 | 
| +  
 | 
| +      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
 | 
| +      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
 | 
| +      assert( pMem->z!=0 );
 | 
| +      pMem->n = sqlite3Strlen30(pMem->z);
 | 
| +      pMem->enc = SQLITE_UTF8;
 | 
| +      pMem++;
 | 
| +
 | 
| +      /* When an OP_Program opcode is encounter (the only opcode that has
 | 
| +      ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
 | 
| +      ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
 | 
| +      ** has not already been seen.
 | 
| +      */
 | 
| +      if( pOp->p4type==P4_SUBPROGRAM ){
 | 
| +        int nByte = (nSub+1)*sizeof(SubProgram*);
 | 
| +        int j;
 | 
| +        for(j=0; j<nSub; j++){
 | 
| +          if( apSub[j]==pOp->p4.pProgram ) break;
 | 
| +        }
 | 
| +        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
 | 
| +          apSub = (SubProgram **)pSub->z;
 | 
| +          apSub[nSub++] = pOp->p4.pProgram;
 | 
| +          pSub->flags |= MEM_Blob;
 | 
| +          pSub->n = nSub*sizeof(SubProgram*);
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    pMem->flags = MEM_Int;
 | 
| +    pMem->u.i = pOp->p1;                          /* P1 */
 | 
| +    pMem++;
 | 
| +
 | 
| +    pMem->flags = MEM_Int;
 | 
| +    pMem->u.i = pOp->p2;                          /* P2 */
 | 
| +    pMem++;
 | 
| +
 | 
| +    pMem->flags = MEM_Int;
 | 
| +    pMem->u.i = pOp->p3;                          /* P3 */
 | 
| +    pMem++;
 | 
| +
 | 
| +    if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
 | 
| +      assert( p->db->mallocFailed );
 | 
| +      return SQLITE_ERROR;
 | 
| +    }
 | 
| +    pMem->flags = MEM_Str|MEM_Term;
 | 
| +    zP4 = displayP4(pOp, pMem->z, 32);
 | 
| +    if( zP4!=pMem->z ){
 | 
| +      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
 | 
| +    }else{
 | 
| +      assert( pMem->z!=0 );
 | 
| +      pMem->n = sqlite3Strlen30(pMem->z);
 | 
| +      pMem->enc = SQLITE_UTF8;
 | 
| +    }
 | 
| +    pMem++;
 | 
| +
 | 
| +    if( p->explain==1 ){
 | 
| +      if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
 | 
| +        assert( p->db->mallocFailed );
 | 
| +        return SQLITE_ERROR;
 | 
| +      }
 | 
| +      pMem->flags = MEM_Str|MEM_Term;
 | 
| +      pMem->n = 2;
 | 
| +      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
 | 
| +      pMem->enc = SQLITE_UTF8;
 | 
| +      pMem++;
 | 
| +  
 | 
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
 | 
| +      if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
 | 
| +        assert( p->db->mallocFailed );
 | 
| +        return SQLITE_ERROR;
 | 
| +      }
 | 
| +      pMem->flags = MEM_Str|MEM_Term;
 | 
| +      pMem->n = displayComment(pOp, zP4, pMem->z, 500);
 | 
| +      pMem->enc = SQLITE_UTF8;
 | 
| +#else
 | 
| +      pMem->flags = MEM_Null;                       /* Comment */
 | 
| +#endif
 | 
| +    }
 | 
| +
 | 
| +    p->nResColumn = 8 - 4*(p->explain-1);
 | 
| +    p->pResultSet = &p->aMem[1];
 | 
| +    p->rc = SQLITE_OK;
 | 
| +    rc = SQLITE_ROW;
 | 
| +  }
 | 
| +  return rc;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_EXPLAIN */
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +/*
 | 
| +** Print the SQL that was used to generate a VDBE program.
 | 
| +*/
 | 
| +void sqlite3VdbePrintSql(Vdbe *p){
 | 
| +  const char *z = 0;
 | 
| +  if( p->zSql ){
 | 
| +    z = p->zSql;
 | 
| +  }else if( p->nOp>=1 ){
 | 
| +    const VdbeOp *pOp = &p->aOp[0];
 | 
| +    if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
 | 
| +      z = pOp->p4.z;
 | 
| +      while( sqlite3Isspace(*z) ) z++;
 | 
| +    }
 | 
| +  }
 | 
| +  if( z ) printf("SQL: [%s]\n", z);
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
 | 
| +/*
 | 
| +** Print an IOTRACE message showing SQL content.
 | 
| +*/
 | 
| +void sqlite3VdbeIOTraceSql(Vdbe *p){
 | 
| +  int nOp = p->nOp;
 | 
| +  VdbeOp *pOp;
 | 
| +  if( sqlite3IoTrace==0 ) return;
 | 
| +  if( nOp<1 ) return;
 | 
| +  pOp = &p->aOp[0];
 | 
| +  if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
 | 
| +    int i, j;
 | 
| +    char z[1000];
 | 
| +    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
 | 
| +    for(i=0; sqlite3Isspace(z[i]); i++){}
 | 
| +    for(j=0; z[i]; i++){
 | 
| +      if( sqlite3Isspace(z[i]) ){
 | 
| +        if( z[i-1]!=' ' ){
 | 
| +          z[j++] = ' ';
 | 
| +        }
 | 
| +      }else{
 | 
| +        z[j++] = z[i];
 | 
| +      }
 | 
| +    }
 | 
| +    z[j] = 0;
 | 
| +    sqlite3IoTrace("SQL %s\n", z);
 | 
| +  }
 | 
| +}
 | 
| +#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
 | 
| +
 | 
| +/*
 | 
| +** Allocate space from a fixed size buffer and return a pointer to
 | 
| +** that space.  If insufficient space is available, return NULL.
 | 
| +**
 | 
| +** The pBuf parameter is the initial value of a pointer which will
 | 
| +** receive the new memory.  pBuf is normally NULL.  If pBuf is not
 | 
| +** NULL, it means that memory space has already been allocated and that
 | 
| +** this routine should not allocate any new memory.  When pBuf is not
 | 
| +** NULL simply return pBuf.  Only allocate new memory space when pBuf
 | 
| +** is NULL.
 | 
| +**
 | 
| +** nByte is the number of bytes of space needed.
 | 
| +**
 | 
| +** *ppFrom points to available space and pEnd points to the end of the
 | 
| +** available space.  When space is allocated, *ppFrom is advanced past
 | 
| +** the end of the allocated space.
 | 
| +**
 | 
| +** *pnByte is a counter of the number of bytes of space that have failed
 | 
| +** to allocate.  If there is insufficient space in *ppFrom to satisfy the
 | 
| +** request, then increment *pnByte by the amount of the request.
 | 
| +*/
 | 
| +static void *allocSpace(
 | 
| +  void *pBuf,          /* Where return pointer will be stored */
 | 
| +  int nByte,           /* Number of bytes to allocate */
 | 
| +  u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
 | 
| +  u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
 | 
| +  int *pnByte          /* If allocation cannot be made, increment *pnByte */
 | 
| +){
 | 
| +  assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
 | 
| +  if( pBuf ) return pBuf;
 | 
| +  nByte = ROUND8(nByte);
 | 
| +  if( &(*ppFrom)[nByte] <= pEnd ){
 | 
| +    pBuf = (void*)*ppFrom;
 | 
| +    *ppFrom += nByte;
 | 
| +  }else{
 | 
| +    *pnByte += nByte;
 | 
| +  }
 | 
| +  return pBuf;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Rewind the VDBE back to the beginning in preparation for
 | 
| +** running it.
 | 
| +*/
 | 
| +void sqlite3VdbeRewind(Vdbe *p){
 | 
| +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
 | 
| +  int i;
 | 
| +#endif
 | 
| +  assert( p!=0 );
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +
 | 
| +  /* There should be at least one opcode.
 | 
| +  */
 | 
| +  assert( p->nOp>0 );
 | 
| +
 | 
| +  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
 | 
| +  p->magic = VDBE_MAGIC_RUN;
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  for(i=1; i<p->nMem; i++){
 | 
| +    assert( p->aMem[i].db==p->db );
 | 
| +  }
 | 
| +#endif
 | 
| +  p->pc = -1;
 | 
| +  p->rc = SQLITE_OK;
 | 
| +  p->errorAction = OE_Abort;
 | 
| +  p->magic = VDBE_MAGIC_RUN;
 | 
| +  p->nChange = 0;
 | 
| +  p->cacheCtr = 1;
 | 
| +  p->minWriteFileFormat = 255;
 | 
| +  p->iStatement = 0;
 | 
| +  p->nFkConstraint = 0;
 | 
| +#ifdef VDBE_PROFILE
 | 
| +  for(i=0; i<p->nOp; i++){
 | 
| +    p->aOp[i].cnt = 0;
 | 
| +    p->aOp[i].cycles = 0;
 | 
| +  }
 | 
| +#endif
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Prepare a virtual machine for execution for the first time after
 | 
| +** creating the virtual machine.  This involves things such
 | 
| +** as allocating registers and initializing the program counter.
 | 
| +** After the VDBE has be prepped, it can be executed by one or more
 | 
| +** calls to sqlite3VdbeExec().  
 | 
| +**
 | 
| +** This function may be called exactly once on each virtual machine.
 | 
| +** After this routine is called the VM has been "packaged" and is ready
 | 
| +** to run.  After this routine is called, further calls to 
 | 
| +** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
 | 
| +** the Vdbe from the Parse object that helped generate it so that the
 | 
| +** the Vdbe becomes an independent entity and the Parse object can be
 | 
| +** destroyed.
 | 
| +**
 | 
| +** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
 | 
| +** to its initial state after it has been run.
 | 
| +*/
 | 
| +void sqlite3VdbeMakeReady(
 | 
| +  Vdbe *p,                       /* The VDBE */
 | 
| +  Parse *pParse                  /* Parsing context */
 | 
| +){
 | 
| +  sqlite3 *db;                   /* The database connection */
 | 
| +  int nVar;                      /* Number of parameters */
 | 
| +  int nMem;                      /* Number of VM memory registers */
 | 
| +  int nCursor;                   /* Number of cursors required */
 | 
| +  int nArg;                      /* Number of arguments in subprograms */
 | 
| +  int nOnce;                     /* Number of OP_Once instructions */
 | 
| +  int n;                         /* Loop counter */
 | 
| +  u8 *zCsr;                      /* Memory available for allocation */
 | 
| +  u8 *zEnd;                      /* First byte past allocated memory */
 | 
| +  int nByte;                     /* How much extra memory is needed */
 | 
| +
 | 
| +  assert( p!=0 );
 | 
| +  assert( p->nOp>0 );
 | 
| +  assert( pParse!=0 );
 | 
| +  assert( p->magic==VDBE_MAGIC_INIT );
 | 
| +  assert( pParse==p->pParse );
 | 
| +  db = p->db;
 | 
| +  assert( db->mallocFailed==0 );
 | 
| +  nVar = pParse->nVar;
 | 
| +  nMem = pParse->nMem;
 | 
| +  nCursor = pParse->nTab;
 | 
| +  nArg = pParse->nMaxArg;
 | 
| +  nOnce = pParse->nOnce;
 | 
| +  if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
 | 
| +  
 | 
| +  /* For each cursor required, also allocate a memory cell. Memory
 | 
| +  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
 | 
| +  ** the vdbe program. Instead they are used to allocate space for
 | 
| +  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
 | 
| +  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
 | 
| +  ** stores the blob of memory associated with cursor 1, etc.
 | 
| +  **
 | 
| +  ** See also: allocateCursor().
 | 
| +  */
 | 
| +  nMem += nCursor;
 | 
| +
 | 
| +  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
 | 
| +  ** an array to marshal SQL function arguments in.
 | 
| +  */
 | 
| +  zCsr = (u8*)&p->aOp[p->nOp];            /* Memory avaliable for allocation */
 | 
| +  zEnd = (u8*)&p->aOp[pParse->nOpAlloc];  /* First byte past end of zCsr[] */
 | 
| +
 | 
| +  resolveP2Values(p, &nArg);
 | 
| +  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
 | 
| +  if( pParse->explain && nMem<10 ){
 | 
| +    nMem = 10;
 | 
| +  }
 | 
| +  memset(zCsr, 0, zEnd-zCsr);
 | 
| +  zCsr += (zCsr - (u8*)0)&7;
 | 
| +  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
 | 
| +  p->expired = 0;
 | 
| +
 | 
| +  /* Memory for registers, parameters, cursor, etc, is allocated in two
 | 
| +  ** passes.  On the first pass, we try to reuse unused space at the 
 | 
| +  ** end of the opcode array.  If we are unable to satisfy all memory
 | 
| +  ** requirements by reusing the opcode array tail, then the second
 | 
| +  ** pass will fill in the rest using a fresh allocation.  
 | 
| +  **
 | 
| +  ** This two-pass approach that reuses as much memory as possible from
 | 
| +  ** the leftover space at the end of the opcode array can significantly
 | 
| +  ** reduce the amount of memory held by a prepared statement.
 | 
| +  */
 | 
| +  do {
 | 
| +    nByte = 0;
 | 
| +    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
 | 
| +    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
 | 
| +    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
 | 
| +    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
 | 
| +    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
 | 
| +                          &zCsr, zEnd, &nByte);
 | 
| +    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
 | 
| +    if( nByte ){
 | 
| +      p->pFree = sqlite3DbMallocZero(db, nByte);
 | 
| +    }
 | 
| +    zCsr = p->pFree;
 | 
| +    zEnd = &zCsr[nByte];
 | 
| +  }while( nByte && !db->mallocFailed );
 | 
| +
 | 
| +  p->nCursor = nCursor;
 | 
| +  p->nOnceFlag = nOnce;
 | 
| +  if( p->aVar ){
 | 
| +    p->nVar = (ynVar)nVar;
 | 
| +    for(n=0; n<nVar; n++){
 | 
| +      p->aVar[n].flags = MEM_Null;
 | 
| +      p->aVar[n].db = db;
 | 
| +    }
 | 
| +  }
 | 
| +  if( p->azVar ){
 | 
| +    p->nzVar = pParse->nzVar;
 | 
| +    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
 | 
| +    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
 | 
| +  }
 | 
| +  if( p->aMem ){
 | 
| +    p->aMem--;                      /* aMem[] goes from 1..nMem */
 | 
| +    p->nMem = nMem;                 /*       not from 0..nMem-1 */
 | 
| +    for(n=1; n<=nMem; n++){
 | 
| +      p->aMem[n].flags = MEM_Undefined;
 | 
| +      p->aMem[n].db = db;
 | 
| +    }
 | 
| +  }
 | 
| +  p->explain = pParse->explain;
 | 
| +  sqlite3VdbeRewind(p);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Close a VDBE cursor and release all the resources that cursor 
 | 
| +** happens to hold.
 | 
| +*/
 | 
| +void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
 | 
| +  if( pCx==0 ){
 | 
| +    return;
 | 
| +  }
 | 
| +  sqlite3VdbeSorterClose(p->db, pCx);
 | 
| +  if( pCx->pBt ){
 | 
| +    sqlite3BtreeClose(pCx->pBt);
 | 
| +    /* The pCx->pCursor will be close automatically, if it exists, by
 | 
| +    ** the call above. */
 | 
| +  }else if( pCx->pCursor ){
 | 
| +    sqlite3BtreeCloseCursor(pCx->pCursor);
 | 
| +  }
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +  else if( pCx->pVtabCursor ){
 | 
| +    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
 | 
| +    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
 | 
| +    p->inVtabMethod = 1;
 | 
| +    pModule->xClose(pVtabCursor);
 | 
| +    p->inVtabMethod = 0;
 | 
| +  }
 | 
| +#endif
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Copy the values stored in the VdbeFrame structure to its Vdbe. This
 | 
| +** is used, for example, when a trigger sub-program is halted to restore
 | 
| +** control to the main program.
 | 
| +*/
 | 
| +int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
 | 
| +  Vdbe *v = pFrame->v;
 | 
| +  v->aOnceFlag = pFrame->aOnceFlag;
 | 
| +  v->nOnceFlag = pFrame->nOnceFlag;
 | 
| +  v->aOp = pFrame->aOp;
 | 
| +  v->nOp = pFrame->nOp;
 | 
| +  v->aMem = pFrame->aMem;
 | 
| +  v->nMem = pFrame->nMem;
 | 
| +  v->apCsr = pFrame->apCsr;
 | 
| +  v->nCursor = pFrame->nCursor;
 | 
| +  v->db->lastRowid = pFrame->lastRowid;
 | 
| +  v->nChange = pFrame->nChange;
 | 
| +  return pFrame->pc;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Close all cursors.
 | 
| +**
 | 
| +** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
 | 
| +** cell array. This is necessary as the memory cell array may contain
 | 
| +** pointers to VdbeFrame objects, which may in turn contain pointers to
 | 
| +** open cursors.
 | 
| +*/
 | 
| +static void closeAllCursors(Vdbe *p){
 | 
| +  if( p->pFrame ){
 | 
| +    VdbeFrame *pFrame;
 | 
| +    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
 | 
| +    sqlite3VdbeFrameRestore(pFrame);
 | 
| +    p->pFrame = 0;
 | 
| +    p->nFrame = 0;
 | 
| +  }
 | 
| +  assert( p->nFrame==0 );
 | 
| +
 | 
| +  if( p->apCsr ){
 | 
| +    int i;
 | 
| +    for(i=0; i<p->nCursor; i++){
 | 
| +      VdbeCursor *pC = p->apCsr[i];
 | 
| +      if( pC ){
 | 
| +        sqlite3VdbeFreeCursor(p, pC);
 | 
| +        p->apCsr[i] = 0;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +  if( p->aMem ){
 | 
| +    releaseMemArray(&p->aMem[1], p->nMem);
 | 
| +  }
 | 
| +  while( p->pDelFrame ){
 | 
| +    VdbeFrame *pDel = p->pDelFrame;
 | 
| +    p->pDelFrame = pDel->pParent;
 | 
| +    sqlite3VdbeFrameDelete(pDel);
 | 
| +  }
 | 
| +
 | 
| +  /* Delete any auxdata allocations made by the VM */
 | 
| +  if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
 | 
| +  assert( p->pAuxData==0 );
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Clean up the VM after a single run.
 | 
| +*/
 | 
| +static void Cleanup(Vdbe *p){
 | 
| +  sqlite3 *db = p->db;
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 
 | 
| +  ** Vdbe.aMem[] arrays have already been cleaned up.  */
 | 
| +  int i;
 | 
| +  if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
 | 
| +  if( p->aMem ){
 | 
| +    for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +  sqlite3DbFree(db, p->zErrMsg);
 | 
| +  p->zErrMsg = 0;
 | 
| +  p->pResultSet = 0;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Set the number of result columns that will be returned by this SQL
 | 
| +** statement. This is now set at compile time, rather than during
 | 
| +** execution of the vdbe program so that sqlite3_column_count() can
 | 
| +** be called on an SQL statement before sqlite3_step().
 | 
| +*/
 | 
| +void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | 
| +  Mem *pColName;
 | 
| +  int n;
 | 
| +  sqlite3 *db = p->db;
 | 
| +
 | 
| +  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
| +  sqlite3DbFree(db, p->aColName);
 | 
| +  n = nResColumn*COLNAME_N;
 | 
| +  p->nResColumn = (u16)nResColumn;
 | 
| +  p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
 | 
| +  if( p->aColName==0 ) return;
 | 
| +  while( n-- > 0 ){
 | 
| +    pColName->flags = MEM_Null;
 | 
| +    pColName->db = p->db;
 | 
| +    pColName++;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Set the name of the idx'th column to be returned by the SQL statement.
 | 
| +** zName must be a pointer to a nul terminated string.
 | 
| +**
 | 
| +** This call must be made after a call to sqlite3VdbeSetNumCols().
 | 
| +**
 | 
| +** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
 | 
| +** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
 | 
| +** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
 | 
| +*/
 | 
| +int sqlite3VdbeSetColName(
 | 
| +  Vdbe *p,                         /* Vdbe being configured */
 | 
| +  int idx,                         /* Index of column zName applies to */
 | 
| +  int var,                         /* One of the COLNAME_* constants */
 | 
| +  const char *zName,               /* Pointer to buffer containing name */
 | 
| +  void (*xDel)(void*)              /* Memory management strategy for zName */
 | 
| +){
 | 
| +  int rc;
 | 
| +  Mem *pColName;
 | 
| +  assert( idx<p->nResColumn );
 | 
| +  assert( var<COLNAME_N );
 | 
| +  if( p->db->mallocFailed ){
 | 
| +    assert( !zName || xDel!=SQLITE_DYNAMIC );
 | 
| +    return SQLITE_NOMEM;
 | 
| +  }
 | 
| +  assert( p->aColName!=0 );
 | 
| +  pColName = &(p->aColName[idx+var*p->nResColumn]);
 | 
| +  rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
 | 
| +  assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** A read or write transaction may or may not be active on database handle
 | 
| +** db. If a transaction is active, commit it. If there is a
 | 
| +** write-transaction spanning more than one database file, this routine
 | 
| +** takes care of the master journal trickery.
 | 
| +*/
 | 
| +static int vdbeCommit(sqlite3 *db, Vdbe *p){
 | 
| +  int i;
 | 
| +  int nTrans = 0;  /* Number of databases with an active write-transaction */
 | 
| +  int rc = SQLITE_OK;
 | 
| +  int needXcommit = 0;
 | 
| +
 | 
| +#ifdef SQLITE_OMIT_VIRTUALTABLE
 | 
| +  /* With this option, sqlite3VtabSync() is defined to be simply 
 | 
| +  ** SQLITE_OK so p is not used. 
 | 
| +  */
 | 
| +  UNUSED_PARAMETER(p);
 | 
| +#endif
 | 
| +
 | 
| +  /* Before doing anything else, call the xSync() callback for any
 | 
| +  ** virtual module tables written in this transaction. This has to
 | 
| +  ** be done before determining whether a master journal file is 
 | 
| +  ** required, as an xSync() callback may add an attached database
 | 
| +  ** to the transaction.
 | 
| +  */
 | 
| +  rc = sqlite3VtabSync(db, p);
 | 
| +
 | 
| +  /* This loop determines (a) if the commit hook should be invoked and
 | 
| +  ** (b) how many database files have open write transactions, not 
 | 
| +  ** including the temp database. (b) is important because if more than 
 | 
| +  ** one database file has an open write transaction, a master journal
 | 
| +  ** file is required for an atomic commit.
 | 
| +  */ 
 | 
| +  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | 
| +    Btree *pBt = db->aDb[i].pBt;
 | 
| +    if( sqlite3BtreeIsInTrans(pBt) ){
 | 
| +      needXcommit = 1;
 | 
| +      if( i!=1 ) nTrans++;
 | 
| +      sqlite3BtreeEnter(pBt);
 | 
| +      rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
 | 
| +      sqlite3BtreeLeave(pBt);
 | 
| +    }
 | 
| +  }
 | 
| +  if( rc!=SQLITE_OK ){
 | 
| +    return rc;
 | 
| +  }
 | 
| +
 | 
| +  /* If there are any write-transactions at all, invoke the commit hook */
 | 
| +  if( needXcommit && db->xCommitCallback ){
 | 
| +    rc = db->xCommitCallback(db->pCommitArg);
 | 
| +    if( rc ){
 | 
| +      return SQLITE_CONSTRAINT_COMMITHOOK;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* The simple case - no more than one database file (not counting the
 | 
| +  ** TEMP database) has a transaction active.   There is no need for the
 | 
| +  ** master-journal.
 | 
| +  **
 | 
| +  ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | 
| +  ** string, it means the main database is :memory: or a temp file.  In 
 | 
| +  ** that case we do not support atomic multi-file commits, so use the 
 | 
| +  ** simple case then too.
 | 
| +  */
 | 
| +  if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
 | 
| +   || nTrans<=1
 | 
| +  ){
 | 
| +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( pBt ){
 | 
| +        rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* Do the commit only if all databases successfully complete phase 1. 
 | 
| +    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
 | 
| +    ** IO error while deleting or truncating a journal file. It is unlikely,
 | 
| +    ** but could happen. In this case abandon processing and return the error.
 | 
| +    */
 | 
| +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( pBt ){
 | 
| +        rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
 | 
| +      }
 | 
| +    }
 | 
| +    if( rc==SQLITE_OK ){
 | 
| +      sqlite3VtabCommit(db);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* The complex case - There is a multi-file write-transaction active.
 | 
| +  ** This requires a master journal file to ensure the transaction is
 | 
| +  ** committed atomically.
 | 
| +  */
 | 
| +#ifndef SQLITE_OMIT_DISKIO
 | 
| +  else{
 | 
| +    sqlite3_vfs *pVfs = db->pVfs;
 | 
| +    int needSync = 0;
 | 
| +    char *zMaster = 0;   /* File-name for the master journal */
 | 
| +    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | 
| +    sqlite3_file *pMaster = 0;
 | 
| +    i64 offset = 0;
 | 
| +    int res;
 | 
| +    int retryCount = 0;
 | 
| +    int nMainFile;
 | 
| +
 | 
| +    /* Select a master journal file name */
 | 
| +    nMainFile = sqlite3Strlen30(zMainFile);
 | 
| +    zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
 | 
| +    if( zMaster==0 ) return SQLITE_NOMEM;
 | 
| +    do {
 | 
| +      u32 iRandom;
 | 
| +      if( retryCount ){
 | 
| +        if( retryCount>100 ){
 | 
| +          sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
 | 
| +          sqlite3OsDelete(pVfs, zMaster, 0);
 | 
| +          break;
 | 
| +        }else if( retryCount==1 ){
 | 
| +          sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
 | 
| +        }
 | 
| +      }
 | 
| +      retryCount++;
 | 
| +      sqlite3_randomness(sizeof(iRandom), &iRandom);
 | 
| +      sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
 | 
| +                               (iRandom>>8)&0xffffff, iRandom&0xff);
 | 
| +      /* The antipenultimate character of the master journal name must
 | 
| +      ** be "9" to avoid name collisions when using 8+3 filenames. */
 | 
| +      assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
 | 
| +      sqlite3FileSuffix3(zMainFile, zMaster);
 | 
| +      rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
 | 
| +    }while( rc==SQLITE_OK && res );
 | 
| +    if( rc==SQLITE_OK ){
 | 
| +      /* Open the master journal. */
 | 
| +      rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
 | 
| +          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
 | 
| +          SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
 | 
| +      );
 | 
| +    }
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      sqlite3DbFree(db, zMaster);
 | 
| +      return rc;
 | 
| +    }
 | 
| + 
 | 
| +    /* Write the name of each database file in the transaction into the new
 | 
| +    ** master journal file. If an error occurs at this point close
 | 
| +    ** and delete the master journal file. All the individual journal files
 | 
| +    ** still have 'null' as the master journal pointer, so they will roll
 | 
| +    ** back independently if a failure occurs.
 | 
| +    */
 | 
| +    for(i=0; i<db->nDb; i++){
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( sqlite3BtreeIsInTrans(pBt) ){
 | 
| +        char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | 
| +        if( zFile==0 ){
 | 
| +          continue;  /* Ignore TEMP and :memory: databases */
 | 
| +        }
 | 
| +        assert( zFile[0]!=0 );
 | 
| +        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
 | 
| +          needSync = 1;
 | 
| +        }
 | 
| +        rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
 | 
| +        offset += sqlite3Strlen30(zFile)+1;
 | 
| +        if( rc!=SQLITE_OK ){
 | 
| +          sqlite3OsCloseFree(pMaster);
 | 
| +          sqlite3OsDelete(pVfs, zMaster, 0);
 | 
| +          sqlite3DbFree(db, zMaster);
 | 
| +          return rc;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
 | 
| +    ** flag is set this is not required.
 | 
| +    */
 | 
| +    if( needSync 
 | 
| +     && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
 | 
| +     && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
 | 
| +    ){
 | 
| +      sqlite3OsCloseFree(pMaster);
 | 
| +      sqlite3OsDelete(pVfs, zMaster, 0);
 | 
| +      sqlite3DbFree(db, zMaster);
 | 
| +      return rc;
 | 
| +    }
 | 
| +
 | 
| +    /* Sync all the db files involved in the transaction. The same call
 | 
| +    ** sets the master journal pointer in each individual journal. If
 | 
| +    ** an error occurs here, do not delete the master journal file.
 | 
| +    **
 | 
| +    ** If the error occurs during the first call to
 | 
| +    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
 | 
| +    ** master journal file will be orphaned. But we cannot delete it,
 | 
| +    ** in case the master journal file name was written into the journal
 | 
| +    ** file before the failure occurred.
 | 
| +    */
 | 
| +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( pBt ){
 | 
| +        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
 | 
| +      }
 | 
| +    }
 | 
| +    sqlite3OsCloseFree(pMaster);
 | 
| +    assert( rc!=SQLITE_BUSY );
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      sqlite3DbFree(db, zMaster);
 | 
| +      return rc;
 | 
| +    }
 | 
| +
 | 
| +    /* Delete the master journal file. This commits the transaction. After
 | 
| +    ** doing this the directory is synced again before any individual
 | 
| +    ** transaction files are deleted.
 | 
| +    */
 | 
| +    rc = sqlite3OsDelete(pVfs, zMaster, 1);
 | 
| +    sqlite3DbFree(db, zMaster);
 | 
| +    zMaster = 0;
 | 
| +    if( rc ){
 | 
| +      return rc;
 | 
| +    }
 | 
| +
 | 
| +    /* All files and directories have already been synced, so the following
 | 
| +    ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
 | 
| +    ** deleting or truncating journals. If something goes wrong while
 | 
| +    ** this is happening we don't really care. The integrity of the
 | 
| +    ** transaction is already guaranteed, but some stray 'cold' journals
 | 
| +    ** may be lying around. Returning an error code won't help matters.
 | 
| +    */
 | 
| +    disable_simulated_io_errors();
 | 
| +    sqlite3BeginBenignMalloc();
 | 
| +    for(i=0; i<db->nDb; i++){ 
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( pBt ){
 | 
| +        sqlite3BtreeCommitPhaseTwo(pBt, 1);
 | 
| +      }
 | 
| +    }
 | 
| +    sqlite3EndBenignMalloc();
 | 
| +    enable_simulated_io_errors();
 | 
| +
 | 
| +    sqlite3VtabCommit(db);
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +/* 
 | 
| +** This routine checks that the sqlite3.nVdbeActive count variable
 | 
| +** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | 
| +** currently active. An assertion fails if the two counts do not match.
 | 
| +** This is an internal self-check only - it is not an essential processing
 | 
| +** step.
 | 
| +**
 | 
| +** This is a no-op if NDEBUG is defined.
 | 
| +*/
 | 
| +#ifndef NDEBUG
 | 
| +static void checkActiveVdbeCnt(sqlite3 *db){
 | 
| +  Vdbe *p;
 | 
| +  int cnt = 0;
 | 
| +  int nWrite = 0;
 | 
| +  int nRead = 0;
 | 
| +  p = db->pVdbe;
 | 
| +  while( p ){
 | 
| +    if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
 | 
| +      cnt++;
 | 
| +      if( p->readOnly==0 ) nWrite++;
 | 
| +      if( p->bIsReader ) nRead++;
 | 
| +    }
 | 
| +    p = p->pNext;
 | 
| +  }
 | 
| +  assert( cnt==db->nVdbeActive );
 | 
| +  assert( nWrite==db->nVdbeWrite );
 | 
| +  assert( nRead==db->nVdbeRead );
 | 
| +}
 | 
| +#else
 | 
| +#define checkActiveVdbeCnt(x)
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** If the Vdbe passed as the first argument opened a statement-transaction,
 | 
| +** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
 | 
| +** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
 | 
| +** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
 | 
| +** statement transaction is committed.
 | 
| +**
 | 
| +** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
 | 
| +** Otherwise SQLITE_OK.
 | 
| +*/
 | 
| +int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
 | 
| +  sqlite3 *const db = p->db;
 | 
| +  int rc = SQLITE_OK;
 | 
| +
 | 
| +  /* If p->iStatement is greater than zero, then this Vdbe opened a 
 | 
| +  ** statement transaction that should be closed here. The only exception
 | 
| +  ** is that an IO error may have occurred, causing an emergency rollback.
 | 
| +  ** In this case (db->nStatement==0), and there is nothing to do.
 | 
| +  */
 | 
| +  if( db->nStatement && p->iStatement ){
 | 
| +    int i;
 | 
| +    const int iSavepoint = p->iStatement-1;
 | 
| +
 | 
| +    assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
 | 
| +    assert( db->nStatement>0 );
 | 
| +    assert( p->iStatement==(db->nStatement+db->nSavepoint) );
 | 
| +
 | 
| +    for(i=0; i<db->nDb; i++){ 
 | 
| +      int rc2 = SQLITE_OK;
 | 
| +      Btree *pBt = db->aDb[i].pBt;
 | 
| +      if( pBt ){
 | 
| +        if( eOp==SAVEPOINT_ROLLBACK ){
 | 
| +          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
 | 
| +        }
 | 
| +        if( rc2==SQLITE_OK ){
 | 
| +          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
 | 
| +        }
 | 
| +        if( rc==SQLITE_OK ){
 | 
| +          rc = rc2;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +    db->nStatement--;
 | 
| +    p->iStatement = 0;
 | 
| +
 | 
| +    if( rc==SQLITE_OK ){
 | 
| +      if( eOp==SAVEPOINT_ROLLBACK ){
 | 
| +        rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
 | 
| +      }
 | 
| +      if( rc==SQLITE_OK ){
 | 
| +        rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* If the statement transaction is being rolled back, also restore the 
 | 
| +    ** database handles deferred constraint counter to the value it had when 
 | 
| +    ** the statement transaction was opened.  */
 | 
| +    if( eOp==SAVEPOINT_ROLLBACK ){
 | 
| +      db->nDeferredCons = p->nStmtDefCons;
 | 
| +      db->nDeferredImmCons = p->nStmtDefImmCons;
 | 
| +    }
 | 
| +  }
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** This function is called when a transaction opened by the database 
 | 
| +** handle associated with the VM passed as an argument is about to be 
 | 
| +** committed. If there are outstanding deferred foreign key constraint
 | 
| +** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
 | 
| +**
 | 
| +** If there are outstanding FK violations and this function returns 
 | 
| +** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
 | 
| +** and write an error message to it. Then return SQLITE_ERROR.
 | 
| +*/
 | 
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
| +int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
 | 
| +  sqlite3 *db = p->db;
 | 
| +  if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 
 | 
| +   || (!deferred && p->nFkConstraint>0) 
 | 
| +  ){
 | 
| +    p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
 | 
| +    p->errorAction = OE_Abort;
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
 | 
| +    return SQLITE_ERROR;
 | 
| +  }
 | 
| +  return SQLITE_OK;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** This routine is called the when a VDBE tries to halt.  If the VDBE
 | 
| +** has made changes and is in autocommit mode, then commit those
 | 
| +** changes.  If a rollback is needed, then do the rollback.
 | 
| +**
 | 
| +** This routine is the only way to move the state of a VM from
 | 
| +** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
 | 
| +** call this on a VM that is in the SQLITE_MAGIC_HALT state.
 | 
| +**
 | 
| +** Return an error code.  If the commit could not complete because of
 | 
| +** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | 
| +** means the close did not happen and needs to be repeated.
 | 
| +*/
 | 
| +int sqlite3VdbeHalt(Vdbe *p){
 | 
| +  int rc;                         /* Used to store transient return codes */
 | 
| +  sqlite3 *db = p->db;
 | 
| +
 | 
| +  /* This function contains the logic that determines if a statement or
 | 
| +  ** transaction will be committed or rolled back as a result of the
 | 
| +  ** execution of this virtual machine. 
 | 
| +  **
 | 
| +  ** If any of the following errors occur:
 | 
| +  **
 | 
| +  **     SQLITE_NOMEM
 | 
| +  **     SQLITE_IOERR
 | 
| +  **     SQLITE_FULL
 | 
| +  **     SQLITE_INTERRUPT
 | 
| +  **
 | 
| +  ** Then the internal cache might have been left in an inconsistent
 | 
| +  ** state.  We need to rollback the statement transaction, if there is
 | 
| +  ** one, or the complete transaction if there is no statement transaction.
 | 
| +  */
 | 
| +
 | 
| +  if( p->db->mallocFailed ){
 | 
| +    p->rc = SQLITE_NOMEM;
 | 
| +  }
 | 
| +  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
 | 
| +  closeAllCursors(p);
 | 
| +  if( p->magic!=VDBE_MAGIC_RUN ){
 | 
| +    return SQLITE_OK;
 | 
| +  }
 | 
| +  checkActiveVdbeCnt(db);
 | 
| +
 | 
| +  /* No commit or rollback needed if the program never started or if the
 | 
| +  ** SQL statement does not read or write a database file.  */
 | 
| +  if( p->pc>=0 && p->bIsReader ){
 | 
| +    int mrc;   /* Primary error code from p->rc */
 | 
| +    int eStatementOp = 0;
 | 
| +    int isSpecialError;            /* Set to true if a 'special' error */
 | 
| +
 | 
| +    /* Lock all btrees used by the statement */
 | 
| +    sqlite3VdbeEnter(p);
 | 
| +
 | 
| +    /* Check for one of the special errors */
 | 
| +    mrc = p->rc & 0xff;
 | 
| +    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
 | 
| +                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
 | 
| +    if( isSpecialError ){
 | 
| +      /* If the query was read-only and the error code is SQLITE_INTERRUPT, 
 | 
| +      ** no rollback is necessary. Otherwise, at least a savepoint 
 | 
| +      ** transaction must be rolled back to restore the database to a 
 | 
| +      ** consistent state.
 | 
| +      **
 | 
| +      ** Even if the statement is read-only, it is important to perform
 | 
| +      ** a statement or transaction rollback operation. If the error 
 | 
| +      ** occurred while writing to the journal, sub-journal or database
 | 
| +      ** file as part of an effort to free up cache space (see function
 | 
| +      ** pagerStress() in pager.c), the rollback is required to restore 
 | 
| +      ** the pager to a consistent state.
 | 
| +      */
 | 
| +      if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
 | 
| +        if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
 | 
| +          eStatementOp = SAVEPOINT_ROLLBACK;
 | 
| +        }else{
 | 
| +          /* We are forced to roll back the active transaction. Before doing
 | 
| +          ** so, abort any other statements this handle currently has active.
 | 
| +          */
 | 
| +          sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | 
| +          sqlite3CloseSavepoints(db);
 | 
| +          db->autoCommit = 1;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* Check for immediate foreign key violations. */
 | 
| +    if( p->rc==SQLITE_OK ){
 | 
| +      sqlite3VdbeCheckFk(p, 0);
 | 
| +    }
 | 
| +  
 | 
| +    /* If the auto-commit flag is set and this is the only active writer 
 | 
| +    ** VM, then we do either a commit or rollback of the current transaction. 
 | 
| +    **
 | 
| +    ** Note: This block also runs if one of the special errors handled 
 | 
| +    ** above has occurred. 
 | 
| +    */
 | 
| +    if( !sqlite3VtabInSync(db) 
 | 
| +     && db->autoCommit 
 | 
| +     && db->nVdbeWrite==(p->readOnly==0) 
 | 
| +    ){
 | 
| +      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | 
| +        rc = sqlite3VdbeCheckFk(p, 1);
 | 
| +        if( rc!=SQLITE_OK ){
 | 
| +          if( NEVER(p->readOnly) ){
 | 
| +            sqlite3VdbeLeave(p);
 | 
| +            return SQLITE_ERROR;
 | 
| +          }
 | 
| +          rc = SQLITE_CONSTRAINT_FOREIGNKEY;
 | 
| +        }else{ 
 | 
| +          /* The auto-commit flag is true, the vdbe program was successful 
 | 
| +          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
 | 
| +          ** key constraints to hold up the transaction. This means a commit 
 | 
| +          ** is required. */
 | 
| +          rc = vdbeCommit(db, p);
 | 
| +        }
 | 
| +        if( rc==SQLITE_BUSY && p->readOnly ){
 | 
| +          sqlite3VdbeLeave(p);
 | 
| +          return SQLITE_BUSY;
 | 
| +        }else if( rc!=SQLITE_OK ){
 | 
| +          p->rc = rc;
 | 
| +          sqlite3RollbackAll(db, SQLITE_OK);
 | 
| +        }else{
 | 
| +          db->nDeferredCons = 0;
 | 
| +          db->nDeferredImmCons = 0;
 | 
| +          db->flags &= ~SQLITE_DeferFKs;
 | 
| +          sqlite3CommitInternalChanges(db);
 | 
| +        }
 | 
| +      }else{
 | 
| +        sqlite3RollbackAll(db, SQLITE_OK);
 | 
| +      }
 | 
| +      db->nStatement = 0;
 | 
| +    }else if( eStatementOp==0 ){
 | 
| +      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | 
| +        eStatementOp = SAVEPOINT_RELEASE;
 | 
| +      }else if( p->errorAction==OE_Abort ){
 | 
| +        eStatementOp = SAVEPOINT_ROLLBACK;
 | 
| +      }else{
 | 
| +        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | 
| +        sqlite3CloseSavepoints(db);
 | 
| +        db->autoCommit = 1;
 | 
| +      }
 | 
| +    }
 | 
| +  
 | 
| +    /* If eStatementOp is non-zero, then a statement transaction needs to
 | 
| +    ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
 | 
| +    ** do so. If this operation returns an error, and the current statement
 | 
| +    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
 | 
| +    ** current statement error code.
 | 
| +    */
 | 
| +    if( eStatementOp ){
 | 
| +      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
 | 
| +      if( rc ){
 | 
| +        if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
 | 
| +          p->rc = rc;
 | 
| +          sqlite3DbFree(db, p->zErrMsg);
 | 
| +          p->zErrMsg = 0;
 | 
| +        }
 | 
| +        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | 
| +        sqlite3CloseSavepoints(db);
 | 
| +        db->autoCommit = 1;
 | 
| +      }
 | 
| +    }
 | 
| +  
 | 
| +    /* If this was an INSERT, UPDATE or DELETE and no statement transaction
 | 
| +    ** has been rolled back, update the database connection change-counter. 
 | 
| +    */
 | 
| +    if( p->changeCntOn ){
 | 
| +      if( eStatementOp!=SAVEPOINT_ROLLBACK ){
 | 
| +        sqlite3VdbeSetChanges(db, p->nChange);
 | 
| +      }else{
 | 
| +        sqlite3VdbeSetChanges(db, 0);
 | 
| +      }
 | 
| +      p->nChange = 0;
 | 
| +    }
 | 
| +
 | 
| +    /* Release the locks */
 | 
| +    sqlite3VdbeLeave(p);
 | 
| +  }
 | 
| +
 | 
| +  /* We have successfully halted and closed the VM.  Record this fact. */
 | 
| +  if( p->pc>=0 ){
 | 
| +    db->nVdbeActive--;
 | 
| +    if( !p->readOnly ) db->nVdbeWrite--;
 | 
| +    if( p->bIsReader ) db->nVdbeRead--;
 | 
| +    assert( db->nVdbeActive>=db->nVdbeRead );
 | 
| +    assert( db->nVdbeRead>=db->nVdbeWrite );
 | 
| +    assert( db->nVdbeWrite>=0 );
 | 
| +  }
 | 
| +  p->magic = VDBE_MAGIC_HALT;
 | 
| +  checkActiveVdbeCnt(db);
 | 
| +  if( p->db->mallocFailed ){
 | 
| +    p->rc = SQLITE_NOMEM;
 | 
| +  }
 | 
| +
 | 
| +  /* If the auto-commit flag is set to true, then any locks that were held
 | 
| +  ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 
 | 
| +  ** to invoke any required unlock-notify callbacks.
 | 
| +  */
 | 
| +  if( db->autoCommit ){
 | 
| +    sqlite3ConnectionUnlocked(db);
 | 
| +  }
 | 
| +
 | 
| +  assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
 | 
| +  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** Each VDBE holds the result of the most recent sqlite3_step() call
 | 
| +** in p->rc.  This routine sets that result back to SQLITE_OK.
 | 
| +*/
 | 
| +void sqlite3VdbeResetStepResult(Vdbe *p){
 | 
| +  p->rc = SQLITE_OK;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Copy the error code and error message belonging to the VDBE passed
 | 
| +** as the first argument to its database handle (so that they will be 
 | 
| +** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
 | 
| +**
 | 
| +** This function does not clear the VDBE error code or message, just
 | 
| +** copies them to the database handle.
 | 
| +*/
 | 
| +int sqlite3VdbeTransferError(Vdbe *p){
 | 
| +  sqlite3 *db = p->db;
 | 
| +  int rc = p->rc;
 | 
| +  if( p->zErrMsg ){
 | 
| +    u8 mallocFailed = db->mallocFailed;
 | 
| +    sqlite3BeginBenignMalloc();
 | 
| +    if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
 | 
| +    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
 | 
| +    sqlite3EndBenignMalloc();
 | 
| +    db->mallocFailed = mallocFailed;
 | 
| +    db->errCode = rc;
 | 
| +  }else{
 | 
| +    sqlite3Error(db, rc);
 | 
| +  }
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +#ifdef SQLITE_ENABLE_SQLLOG
 | 
| +/*
 | 
| +** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 
 | 
| +** invoke it.
 | 
| +*/
 | 
| +static void vdbeInvokeSqllog(Vdbe *v){
 | 
| +  if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
 | 
| +    char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
 | 
| +    assert( v->db->init.busy==0 );
 | 
| +    if( zExpanded ){
 | 
| +      sqlite3GlobalConfig.xSqllog(
 | 
| +          sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
 | 
| +      );
 | 
| +      sqlite3DbFree(v->db, zExpanded);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +#else
 | 
| +# define vdbeInvokeSqllog(x)
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | 
| +** Write any error messages into *pzErrMsg.  Return the result code.
 | 
| +**
 | 
| +** After this routine is run, the VDBE should be ready to be executed
 | 
| +** again.
 | 
| +**
 | 
| +** To look at it another way, this routine resets the state of the
 | 
| +** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | 
| +** VDBE_MAGIC_INIT.
 | 
| +*/
 | 
| +int sqlite3VdbeReset(Vdbe *p){
 | 
| +  sqlite3 *db;
 | 
| +  db = p->db;
 | 
| +
 | 
| +  /* If the VM did not run to completion or if it encountered an
 | 
| +  ** error, then it might not have been halted properly.  So halt
 | 
| +  ** it now.
 | 
| +  */
 | 
| +  sqlite3VdbeHalt(p);
 | 
| +
 | 
| +  /* If the VDBE has be run even partially, then transfer the error code
 | 
| +  ** and error message from the VDBE into the main database structure.  But
 | 
| +  ** if the VDBE has just been set to run but has not actually executed any
 | 
| +  ** instructions yet, leave the main database error information unchanged.
 | 
| +  */
 | 
| +  if( p->pc>=0 ){
 | 
| +    vdbeInvokeSqllog(p);
 | 
| +    sqlite3VdbeTransferError(p);
 | 
| +    sqlite3DbFree(db, p->zErrMsg);
 | 
| +    p->zErrMsg = 0;
 | 
| +    if( p->runOnlyOnce ) p->expired = 1;
 | 
| +  }else if( p->rc && p->expired ){
 | 
| +    /* The expired flag was set on the VDBE before the first call
 | 
| +    ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | 
| +    ** called), set the database error in this case as well.
 | 
| +    */
 | 
| +    sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
 | 
| +    sqlite3DbFree(db, p->zErrMsg);
 | 
| +    p->zErrMsg = 0;
 | 
| +  }
 | 
| +
 | 
| +  /* Reclaim all memory used by the VDBE
 | 
| +  */
 | 
| +  Cleanup(p);
 | 
| +
 | 
| +  /* Save profiling information from this VDBE run.
 | 
| +  */
 | 
| +#ifdef VDBE_PROFILE
 | 
| +  {
 | 
| +    FILE *out = fopen("vdbe_profile.out", "a");
 | 
| +    if( out ){
 | 
| +      int i;
 | 
| +      fprintf(out, "---- ");
 | 
| +      for(i=0; i<p->nOp; i++){
 | 
| +        fprintf(out, "%02x", p->aOp[i].opcode);
 | 
| +      }
 | 
| +      fprintf(out, "\n");
 | 
| +      if( p->zSql ){
 | 
| +        char c, pc = 0;
 | 
| +        fprintf(out, "-- ");
 | 
| +        for(i=0; (c = p->zSql[i])!=0; i++){
 | 
| +          if( pc=='\n' ) fprintf(out, "-- ");
 | 
| +          putc(c, out);
 | 
| +          pc = c;
 | 
| +        }
 | 
| +        if( pc!='\n' ) fprintf(out, "\n");
 | 
| +      }
 | 
| +      for(i=0; i<p->nOp; i++){
 | 
| +        char zHdr[100];
 | 
| +        sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
 | 
| +           p->aOp[i].cnt,
 | 
| +           p->aOp[i].cycles,
 | 
| +           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | 
| +        );
 | 
| +        fprintf(out, "%s", zHdr);
 | 
| +        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | 
| +      }
 | 
| +      fclose(out);
 | 
| +    }
 | 
| +  }
 | 
| +#endif
 | 
| +  p->iCurrentTime = 0;
 | 
| +  p->magic = VDBE_MAGIC_INIT;
 | 
| +  return p->rc & db->errMask;
 | 
| +}
 | 
| + 
 | 
| +/*
 | 
| +** Clean up and delete a VDBE after execution.  Return an integer which is
 | 
| +** the result code.  Write any error message text into *pzErrMsg.
 | 
| +*/
 | 
| +int sqlite3VdbeFinalize(Vdbe *p){
 | 
| +  int rc = SQLITE_OK;
 | 
| +  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
 | 
| +    rc = sqlite3VdbeReset(p);
 | 
| +    assert( (rc & p->db->errMask)==rc );
 | 
| +  }
 | 
| +  sqlite3VdbeDelete(p);
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** If parameter iOp is less than zero, then invoke the destructor for
 | 
| +** all auxiliary data pointers currently cached by the VM passed as
 | 
| +** the first argument.
 | 
| +**
 | 
| +** Or, if iOp is greater than or equal to zero, then the destructor is
 | 
| +** only invoked for those auxiliary data pointers created by the user 
 | 
| +** function invoked by the OP_Function opcode at instruction iOp of 
 | 
| +** VM pVdbe, and only then if:
 | 
| +**
 | 
| +**    * the associated function parameter is the 32nd or later (counting
 | 
| +**      from left to right), or
 | 
| +**
 | 
| +**    * the corresponding bit in argument mask is clear (where the first
 | 
| +**      function parameter corresponds to bit 0 etc.).
 | 
| +*/
 | 
| +void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
 | 
| +  AuxData **pp = &pVdbe->pAuxData;
 | 
| +  while( *pp ){
 | 
| +    AuxData *pAux = *pp;
 | 
| +    if( (iOp<0)
 | 
| +     || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
 | 
| +    ){
 | 
| +      testcase( pAux->iArg==31 );
 | 
| +      if( pAux->xDelete ){
 | 
| +        pAux->xDelete(pAux->pAux);
 | 
| +      }
 | 
| +      *pp = pAux->pNext;
 | 
| +      sqlite3DbFree(pVdbe->db, pAux);
 | 
| +    }else{
 | 
| +      pp= &pAux->pNext;
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Free all memory associated with the Vdbe passed as the second argument,
 | 
| +** except for object itself, which is preserved.
 | 
| +**
 | 
| +** The difference between this function and sqlite3VdbeDelete() is that
 | 
| +** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
 | 
| +** the database connection and frees the object itself.
 | 
| +*/
 | 
| +void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
 | 
| +  SubProgram *pSub, *pNext;
 | 
| +  int i;
 | 
| +  assert( p->db==0 || p->db==db );
 | 
| +  releaseMemArray(p->aVar, p->nVar);
 | 
| +  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | 
| +  for(pSub=p->pProgram; pSub; pSub=pNext){
 | 
| +    pNext = pSub->pNext;
 | 
| +    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
 | 
| +    sqlite3DbFree(db, pSub);
 | 
| +  }
 | 
| +  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
 | 
| +  vdbeFreeOpArray(db, p->aOp, p->nOp);
 | 
| +  sqlite3DbFree(db, p->aColName);
 | 
| +  sqlite3DbFree(db, p->zSql);
 | 
| +  sqlite3DbFree(db, p->pFree);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Delete an entire VDBE.
 | 
| +*/
 | 
| +void sqlite3VdbeDelete(Vdbe *p){
 | 
| +  sqlite3 *db;
 | 
| +
 | 
| +  if( NEVER(p==0) ) return;
 | 
| +  db = p->db;
 | 
| +  assert( sqlite3_mutex_held(db->mutex) );
 | 
| +  sqlite3VdbeClearObject(db, p);
 | 
| +  if( p->pPrev ){
 | 
| +    p->pPrev->pNext = p->pNext;
 | 
| +  }else{
 | 
| +    assert( db->pVdbe==p );
 | 
| +    db->pVdbe = p->pNext;
 | 
| +  }
 | 
| +  if( p->pNext ){
 | 
| +    p->pNext->pPrev = p->pPrev;
 | 
| +  }
 | 
| +  p->magic = VDBE_MAGIC_DEAD;
 | 
| +  p->db = 0;
 | 
| +  sqlite3DbFree(db, p);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** The cursor "p" has a pending seek operation that has not yet been
 | 
| +** carried out.  Seek the cursor now.  If an error occurs, return
 | 
| +** the appropriate error code.
 | 
| +*/
 | 
| +static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
 | 
| +  int res, rc;
 | 
| +#ifdef SQLITE_TEST
 | 
| +  extern int sqlite3_search_count;
 | 
| +#endif
 | 
| +  assert( p->deferredMoveto );
 | 
| +  assert( p->isTable );
 | 
| +  rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
 | 
| +  if( rc ) return rc;
 | 
| +  if( res!=0 ) return SQLITE_CORRUPT_BKPT;
 | 
| +#ifdef SQLITE_TEST
 | 
| +  sqlite3_search_count++;
 | 
| +#endif
 | 
| +  p->deferredMoveto = 0;
 | 
| +  p->cacheStatus = CACHE_STALE;
 | 
| +  return SQLITE_OK;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Something has moved cursor "p" out of place.  Maybe the row it was
 | 
| +** pointed to was deleted out from under it.  Or maybe the btree was
 | 
| +** rebalanced.  Whatever the cause, try to restore "p" to the place it
 | 
| +** is supposed to be pointing.  If the row was deleted out from under the
 | 
| +** cursor, set the cursor to point to a NULL row.
 | 
| +*/
 | 
| +static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
 | 
| +  int isDifferentRow, rc;
 | 
| +  assert( p->pCursor!=0 );
 | 
| +  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
 | 
| +  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
 | 
| +  p->cacheStatus = CACHE_STALE;
 | 
| +  if( isDifferentRow ) p->nullRow = 1;
 | 
| +  return rc;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Check to ensure that the cursor is valid.  Restore the cursor
 | 
| +** if need be.  Return any I/O error from the restore operation.
 | 
| +*/
 | 
| +int sqlite3VdbeCursorRestore(VdbeCursor *p){
 | 
| +  if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
 | 
| +    return handleMovedCursor(p);
 | 
| +  }
 | 
| +  return SQLITE_OK;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Make sure the cursor p is ready to read or write the row to which it
 | 
| +** was last positioned.  Return an error code if an OOM fault or I/O error
 | 
| +** prevents us from positioning the cursor to its correct position.
 | 
| +**
 | 
| +** If a MoveTo operation is pending on the given cursor, then do that
 | 
| +** MoveTo now.  If no move is pending, check to see if the row has been
 | 
| +** deleted out from under the cursor and if it has, mark the row as
 | 
| +** a NULL row.
 | 
| +**
 | 
| +** If the cursor is already pointing to the correct row and that row has
 | 
| +** not been deleted out from under the cursor, then this routine is a no-op.
 | 
| +*/
 | 
| +int sqlite3VdbeCursorMoveto(VdbeCursor *p){
 | 
| +  if( p->deferredMoveto ){
 | 
| +    return handleDeferredMoveto(p);
 | 
| +  }
 | 
| +  if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
 | 
| +    return handleMovedCursor(p);
 | 
| +  }
 | 
| +  return SQLITE_OK;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** The following functions:
 | 
| +**
 | 
| +** sqlite3VdbeSerialType()
 | 
| +** sqlite3VdbeSerialTypeLen()
 | 
| +** sqlite3VdbeSerialLen()
 | 
| +** sqlite3VdbeSerialPut()
 | 
| +** sqlite3VdbeSerialGet()
 | 
| +**
 | 
| +** encapsulate the code that serializes values for storage in SQLite
 | 
| +** data and index records. Each serialized value consists of a
 | 
| +** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | 
| +** integer, stored as a varint.
 | 
| +**
 | 
| +** In an SQLite index record, the serial type is stored directly before
 | 
| +** the blob of data that it corresponds to. In a table record, all serial
 | 
| +** types are stored at the start of the record, and the blobs of data at
 | 
| +** the end. Hence these functions allow the caller to handle the
 | 
| +** serial-type and data blob separately.
 | 
| +**
 | 
| +** The following table describes the various storage classes for data:
 | 
| +**
 | 
| +**   serial type        bytes of data      type
 | 
| +**   --------------     ---------------    ---------------
 | 
| +**      0                     0            NULL
 | 
| +**      1                     1            signed integer
 | 
| +**      2                     2            signed integer
 | 
| +**      3                     3            signed integer
 | 
| +**      4                     4            signed integer
 | 
| +**      5                     6            signed integer
 | 
| +**      6                     8            signed integer
 | 
| +**      7                     8            IEEE float
 | 
| +**      8                     0            Integer constant 0
 | 
| +**      9                     0            Integer constant 1
 | 
| +**     10,11                               reserved for expansion
 | 
| +**    N>=12 and even       (N-12)/2        BLOB
 | 
| +**    N>=13 and odd        (N-13)/2        text
 | 
| +**
 | 
| +** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | 
| +** of SQLite will not understand those serial types.
 | 
| +*/
 | 
| +
 | 
| +/*
 | 
| +** Return the serial-type for the value stored in pMem.
 | 
| +*/
 | 
| +u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
 | 
| +  int flags = pMem->flags;
 | 
| +  u32 n;
 | 
| +
 | 
| +  if( flags&MEM_Null ){
 | 
| +    return 0;
 | 
| +  }
 | 
| +  if( flags&MEM_Int ){
 | 
| +    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | 
| +#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
 | 
| +    i64 i = pMem->u.i;
 | 
| +    u64 u;
 | 
| +    if( i<0 ){
 | 
| +      if( i<(-MAX_6BYTE) ) return 6;
 | 
| +      /* Previous test prevents:  u = -(-9223372036854775808) */
 | 
| +      u = -i;
 | 
| +    }else{
 | 
| +      u = i;
 | 
| +    }
 | 
| +    if( u<=127 ){
 | 
| +      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
 | 
| +    }
 | 
| +    if( u<=32767 ) return 2;
 | 
| +    if( u<=8388607 ) return 3;
 | 
| +    if( u<=2147483647 ) return 4;
 | 
| +    if( u<=MAX_6BYTE ) return 5;
 | 
| +    return 6;
 | 
| +  }
 | 
| +  if( flags&MEM_Real ){
 | 
| +    return 7;
 | 
| +  }
 | 
| +  assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
 | 
| +  assert( pMem->n>=0 );
 | 
| +  n = (u32)pMem->n;
 | 
| +  if( flags & MEM_Zero ){
 | 
| +    n += pMem->u.nZero;
 | 
| +  }
 | 
| +  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return the length of the data corresponding to the supplied serial-type.
 | 
| +*/
 | 
| +u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
 | 
| +  if( serial_type>=12 ){
 | 
| +    return (serial_type-12)/2;
 | 
| +  }else{
 | 
| +    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
 | 
| +    return aSize[serial_type];
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** If we are on an architecture with mixed-endian floating 
 | 
| +** points (ex: ARM7) then swap the lower 4 bytes with the 
 | 
| +** upper 4 bytes.  Return the result.
 | 
| +**
 | 
| +** For most architectures, this is a no-op.
 | 
| +**
 | 
| +** (later):  It is reported to me that the mixed-endian problem
 | 
| +** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
 | 
| +** that early versions of GCC stored the two words of a 64-bit
 | 
| +** float in the wrong order.  And that error has been propagated
 | 
| +** ever since.  The blame is not necessarily with GCC, though.
 | 
| +** GCC might have just copying the problem from a prior compiler.
 | 
| +** I am also told that newer versions of GCC that follow a different
 | 
| +** ABI get the byte order right.
 | 
| +**
 | 
| +** Developers using SQLite on an ARM7 should compile and run their
 | 
| +** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
 | 
| +** enabled, some asserts below will ensure that the byte order of
 | 
| +** floating point values is correct.
 | 
| +**
 | 
| +** (2007-08-30)  Frank van Vugt has studied this problem closely
 | 
| +** and has send his findings to the SQLite developers.  Frank
 | 
| +** writes that some Linux kernels offer floating point hardware
 | 
| +** emulation that uses only 32-bit mantissas instead of a full 
 | 
| +** 48-bits as required by the IEEE standard.  (This is the
 | 
| +** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
 | 
| +** byte swapping becomes very complicated.  To avoid problems,
 | 
| +** the necessary byte swapping is carried out using a 64-bit integer
 | 
| +** rather than a 64-bit float.  Frank assures us that the code here
 | 
| +** works for him.  We, the developers, have no way to independently
 | 
| +** verify this, but Frank seems to know what he is talking about
 | 
| +** so we trust him.
 | 
| +*/
 | 
| +#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | 
| +static u64 floatSwap(u64 in){
 | 
| +  union {
 | 
| +    u64 r;
 | 
| +    u32 i[2];
 | 
| +  } u;
 | 
| +  u32 t;
 | 
| +
 | 
| +  u.r = in;
 | 
| +  t = u.i[0];
 | 
| +  u.i[0] = u.i[1];
 | 
| +  u.i[1] = t;
 | 
| +  return u.r;
 | 
| +}
 | 
| +# define swapMixedEndianFloat(X)  X = floatSwap(X)
 | 
| +#else
 | 
| +# define swapMixedEndianFloat(X)
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Write the serialized data blob for the value stored in pMem into 
 | 
| +** buf. It is assumed that the caller has allocated sufficient space.
 | 
| +** Return the number of bytes written.
 | 
| +**
 | 
| +** nBuf is the amount of space left in buf[].  The caller is responsible
 | 
| +** for allocating enough space to buf[] to hold the entire field, exclusive
 | 
| +** of the pMem->u.nZero bytes for a MEM_Zero value.
 | 
| +**
 | 
| +** Return the number of bytes actually written into buf[].  The number
 | 
| +** of bytes in the zero-filled tail is included in the return value only
 | 
| +** if those bytes were zeroed in buf[].
 | 
| +*/ 
 | 
| +u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
 | 
| +  u32 len;
 | 
| +
 | 
| +  /* Integer and Real */
 | 
| +  if( serial_type<=7 && serial_type>0 ){
 | 
| +    u64 v;
 | 
| +    u32 i;
 | 
| +    if( serial_type==7 ){
 | 
| +      assert( sizeof(v)==sizeof(pMem->u.r) );
 | 
| +      memcpy(&v, &pMem->u.r, sizeof(v));
 | 
| +      swapMixedEndianFloat(v);
 | 
| +    }else{
 | 
| +      v = pMem->u.i;
 | 
| +    }
 | 
| +    len = i = sqlite3VdbeSerialTypeLen(serial_type);
 | 
| +    assert( i>0 );
 | 
| +    do{
 | 
| +      buf[--i] = (u8)(v&0xFF);
 | 
| +      v >>= 8;
 | 
| +    }while( i );
 | 
| +    return len;
 | 
| +  }
 | 
| +
 | 
| +  /* String or blob */
 | 
| +  if( serial_type>=12 ){
 | 
| +    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
 | 
| +             == (int)sqlite3VdbeSerialTypeLen(serial_type) );
 | 
| +    len = pMem->n;
 | 
| +    memcpy(buf, pMem->z, len);
 | 
| +    return len;
 | 
| +  }
 | 
| +
 | 
| +  /* NULL or constants 0 or 1 */
 | 
| +  return 0;
 | 
| +}
 | 
| +
 | 
| +/* Input "x" is a sequence of unsigned characters that represent a
 | 
| +** big-endian integer.  Return the equivalent native integer
 | 
| +*/
 | 
| +#define ONE_BYTE_INT(x)    ((i8)(x)[0])
 | 
| +#define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
 | 
| +#define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
 | 
| +#define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
 | 
| +#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
 | 
| +
 | 
| +/*
 | 
| +** Deserialize the data blob pointed to by buf as serial type serial_type
 | 
| +** and store the result in pMem.  Return the number of bytes read.
 | 
| +**
 | 
| +** This function is implemented as two separate routines for performance.
 | 
| +** The few cases that require local variables are broken out into a separate
 | 
| +** routine so that in most cases the overhead of moving the stack pointer
 | 
| +** is avoided.
 | 
| +*/ 
 | 
| +static u32 SQLITE_NOINLINE serialGet(
 | 
| +  const unsigned char *buf,     /* Buffer to deserialize from */
 | 
| +  u32 serial_type,              /* Serial type to deserialize */
 | 
| +  Mem *pMem                     /* Memory cell to write value into */
 | 
| +){
 | 
| +  u64 x = FOUR_BYTE_UINT(buf);
 | 
| +  u32 y = FOUR_BYTE_UINT(buf+4);
 | 
| +  x = (x<<32) + y;
 | 
| +  if( serial_type==6 ){
 | 
| +    pMem->u.i = *(i64*)&x;
 | 
| +    pMem->flags = MEM_Int;
 | 
| +    testcase( pMem->u.i<0 );
 | 
| +  }else{
 | 
| +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | 
| +    /* Verify that integers and floating point values use the same
 | 
| +    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
 | 
| +    ** defined that 64-bit floating point values really are mixed
 | 
| +    ** endian.
 | 
| +    */
 | 
| +    static const u64 t1 = ((u64)0x3ff00000)<<32;
 | 
| +    static const double r1 = 1.0;
 | 
| +    u64 t2 = t1;
 | 
| +    swapMixedEndianFloat(t2);
 | 
| +    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
 | 
| +#endif
 | 
| +    assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
 | 
| +    swapMixedEndianFloat(x);
 | 
| +    memcpy(&pMem->u.r, &x, sizeof(x));
 | 
| +    pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
 | 
| +  }
 | 
| +  return 8;
 | 
| +}
 | 
| +u32 sqlite3VdbeSerialGet(
 | 
| +  const unsigned char *buf,     /* Buffer to deserialize from */
 | 
| +  u32 serial_type,              /* Serial type to deserialize */
 | 
| +  Mem *pMem                     /* Memory cell to write value into */
 | 
| +){
 | 
| +  switch( serial_type ){
 | 
| +    case 10:   /* Reserved for future use */
 | 
| +    case 11:   /* Reserved for future use */
 | 
| +    case 0: {  /* NULL */
 | 
| +      pMem->flags = MEM_Null;
 | 
| +      break;
 | 
| +    }
 | 
| +    case 1: { /* 1-byte signed integer */
 | 
| +      pMem->u.i = ONE_BYTE_INT(buf);
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      testcase( pMem->u.i<0 );
 | 
| +      return 1;
 | 
| +    }
 | 
| +    case 2: { /* 2-byte signed integer */
 | 
| +      pMem->u.i = TWO_BYTE_INT(buf);
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      testcase( pMem->u.i<0 );
 | 
| +      return 2;
 | 
| +    }
 | 
| +    case 3: { /* 3-byte signed integer */
 | 
| +      pMem->u.i = THREE_BYTE_INT(buf);
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      testcase( pMem->u.i<0 );
 | 
| +      return 3;
 | 
| +    }
 | 
| +    case 4: { /* 4-byte signed integer */
 | 
| +      pMem->u.i = FOUR_BYTE_INT(buf);
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      testcase( pMem->u.i<0 );
 | 
| +      return 4;
 | 
| +    }
 | 
| +    case 5: { /* 6-byte signed integer */
 | 
| +      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      testcase( pMem->u.i<0 );
 | 
| +      return 6;
 | 
| +    }
 | 
| +    case 6:   /* 8-byte signed integer */
 | 
| +    case 7: { /* IEEE floating point */
 | 
| +      /* These use local variables, so do them in a separate routine
 | 
| +      ** to avoid having to move the frame pointer in the common case */
 | 
| +      return serialGet(buf,serial_type,pMem);
 | 
| +    }
 | 
| +    case 8:    /* Integer 0 */
 | 
| +    case 9: {  /* Integer 1 */
 | 
| +      pMem->u.i = serial_type-8;
 | 
| +      pMem->flags = MEM_Int;
 | 
| +      return 0;
 | 
| +    }
 | 
| +    default: {
 | 
| +      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
 | 
| +      pMem->z = (char *)buf;
 | 
| +      pMem->n = (serial_type-12)/2;
 | 
| +      pMem->flags = aFlag[serial_type&1];
 | 
| +      return pMem->n;
 | 
| +    }
 | 
| +  }
 | 
| +  return 0;
 | 
| +}
 | 
| +/*
 | 
| +** This routine is used to allocate sufficient space for an UnpackedRecord
 | 
| +** structure large enough to be used with sqlite3VdbeRecordUnpack() if
 | 
| +** the first argument is a pointer to KeyInfo structure pKeyInfo.
 | 
| +**
 | 
| +** The space is either allocated using sqlite3DbMallocRaw() or from within
 | 
| +** the unaligned buffer passed via the second and third arguments (presumably
 | 
| +** stack space). If the former, then *ppFree is set to a pointer that should
 | 
| +** be eventually freed by the caller using sqlite3DbFree(). Or, if the 
 | 
| +** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
 | 
| +** before returning.
 | 
| +**
 | 
| +** If an OOM error occurs, NULL is returned.
 | 
| +*/
 | 
| +UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
 | 
| +  KeyInfo *pKeyInfo,              /* Description of the record */
 | 
| +  char *pSpace,                   /* Unaligned space available */
 | 
| +  int szSpace,                    /* Size of pSpace[] in bytes */
 | 
| +  char **ppFree                   /* OUT: Caller should free this pointer */
 | 
| +){
 | 
| +  UnpackedRecord *p;              /* Unpacked record to return */
 | 
| +  int nOff;                       /* Increment pSpace by nOff to align it */
 | 
| +  int nByte;                      /* Number of bytes required for *p */
 | 
| +
 | 
| +  /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
 | 
| +  ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 
 | 
| +  ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
 | 
| +  */
 | 
| +  nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
 | 
| +  nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
 | 
| +  if( nByte>szSpace+nOff ){
 | 
| +    p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
 | 
| +    *ppFree = (char *)p;
 | 
| +    if( !p ) return 0;
 | 
| +  }else{
 | 
| +    p = (UnpackedRecord*)&pSpace[nOff];
 | 
| +    *ppFree = 0;
 | 
| +  }
 | 
| +
 | 
| +  p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
 | 
| +  assert( pKeyInfo->aSortOrder!=0 );
 | 
| +  p->pKeyInfo = pKeyInfo;
 | 
| +  p->nField = pKeyInfo->nField + 1;
 | 
| +  return p;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Given the nKey-byte encoding of a record in pKey[], populate the 
 | 
| +** UnpackedRecord structure indicated by the fourth argument with the
 | 
| +** contents of the decoded record.
 | 
| +*/ 
 | 
| +void sqlite3VdbeRecordUnpack(
 | 
| +  KeyInfo *pKeyInfo,     /* Information about the record format */
 | 
| +  int nKey,              /* Size of the binary record */
 | 
| +  const void *pKey,      /* The binary record */
 | 
| +  UnpackedRecord *p      /* Populate this structure before returning. */
 | 
| +){
 | 
| +  const unsigned char *aKey = (const unsigned char *)pKey;
 | 
| +  int d; 
 | 
| +  u32 idx;                        /* Offset in aKey[] to read from */
 | 
| +  u16 u;                          /* Unsigned loop counter */
 | 
| +  u32 szHdr;
 | 
| +  Mem *pMem = p->aMem;
 | 
| +
 | 
| +  p->default_rc = 0;
 | 
| +  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
 | 
| +  idx = getVarint32(aKey, szHdr);
 | 
| +  d = szHdr;
 | 
| +  u = 0;
 | 
| +  while( idx<szHdr && d<=nKey ){
 | 
| +    u32 serial_type;
 | 
| +
 | 
| +    idx += getVarint32(&aKey[idx], serial_type);
 | 
| +    pMem->enc = pKeyInfo->enc;
 | 
| +    pMem->db = pKeyInfo->db;
 | 
| +    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
 | 
| +    pMem->szMalloc = 0;
 | 
| +    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
 | 
| +    pMem++;
 | 
| +    if( (++u)>=p->nField ) break;
 | 
| +  }
 | 
| +  assert( u<=pKeyInfo->nField + 1 );
 | 
| +  p->nField = u;
 | 
| +}
 | 
| +
 | 
| +#if SQLITE_DEBUG
 | 
| +/*
 | 
| +** This function compares two index or table record keys in the same way
 | 
| +** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
 | 
| +** this function deserializes and compares values using the
 | 
| +** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
 | 
| +** in assert() statements to ensure that the optimized code in
 | 
| +** sqlite3VdbeRecordCompare() returns results with these two primitives.
 | 
| +**
 | 
| +** Return true if the result of comparison is equivalent to desiredResult.
 | 
| +** Return false if there is a disagreement.
 | 
| +*/
 | 
| +static int vdbeRecordCompareDebug(
 | 
| +  int nKey1, const void *pKey1, /* Left key */
 | 
| +  const UnpackedRecord *pPKey2, /* Right key */
 | 
| +  int desiredResult             /* Correct answer */
 | 
| +){
 | 
| +  u32 d1;            /* Offset into aKey[] of next data element */
 | 
| +  u32 idx1;          /* Offset into aKey[] of next header element */
 | 
| +  u32 szHdr1;        /* Number of bytes in header */
 | 
| +  int i = 0;
 | 
| +  int rc = 0;
 | 
| +  const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | 
| +  KeyInfo *pKeyInfo;
 | 
| +  Mem mem1;
 | 
| +
 | 
| +  pKeyInfo = pPKey2->pKeyInfo;
 | 
| +  if( pKeyInfo->db==0 ) return 1;
 | 
| +  mem1.enc = pKeyInfo->enc;
 | 
| +  mem1.db = pKeyInfo->db;
 | 
| +  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
 | 
| +  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
 | 
| +
 | 
| +  /* Compilers may complain that mem1.u.i is potentially uninitialized.
 | 
| +  ** We could initialize it, as shown here, to silence those complaints.
 | 
| +  ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 
 | 
| +  ** the unnecessary initialization has a measurable negative performance
 | 
| +  ** impact, since this routine is a very high runner.  And so, we choose
 | 
| +  ** to ignore the compiler warnings and leave this variable uninitialized.
 | 
| +  */
 | 
| +  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
 | 
| +  
 | 
| +  idx1 = getVarint32(aKey1, szHdr1);
 | 
| +  d1 = szHdr1;
 | 
| +  assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
 | 
| +  assert( pKeyInfo->aSortOrder!=0 );
 | 
| +  assert( pKeyInfo->nField>0 );
 | 
| +  assert( idx1<=szHdr1 || CORRUPT_DB );
 | 
| +  do{
 | 
| +    u32 serial_type1;
 | 
| +
 | 
| +    /* Read the serial types for the next element in each key. */
 | 
| +    idx1 += getVarint32( aKey1+idx1, serial_type1 );
 | 
| +
 | 
| +    /* Verify that there is enough key space remaining to avoid
 | 
| +    ** a buffer overread.  The "d1+serial_type1+2" subexpression will
 | 
| +    ** always be greater than or equal to the amount of required key space.
 | 
| +    ** Use that approximation to avoid the more expensive call to
 | 
| +    ** sqlite3VdbeSerialTypeLen() in the common case.
 | 
| +    */
 | 
| +    if( d1+serial_type1+2>(u32)nKey1
 | 
| +     && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 
 | 
| +    ){
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    /* Extract the values to be compared.
 | 
| +    */
 | 
| +    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | 
| +
 | 
| +    /* Do the comparison
 | 
| +    */
 | 
| +    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
 | 
| +    if( rc!=0 ){
 | 
| +      assert( mem1.szMalloc==0 );  /* See comment below */
 | 
| +      if( pKeyInfo->aSortOrder[i] ){
 | 
| +        rc = -rc;  /* Invert the result for DESC sort order. */
 | 
| +      }
 | 
| +      goto debugCompareEnd;
 | 
| +    }
 | 
| +    i++;
 | 
| +  }while( idx1<szHdr1 && i<pPKey2->nField );
 | 
| +
 | 
| +  /* No memory allocation is ever used on mem1.  Prove this using
 | 
| +  ** the following assert().  If the assert() fails, it indicates a
 | 
| +  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
 | 
| +  */
 | 
| +  assert( mem1.szMalloc==0 );
 | 
| +
 | 
| +  /* rc==0 here means that one of the keys ran out of fields and
 | 
| +  ** all the fields up to that point were equal. Return the default_rc
 | 
| +  ** value.  */
 | 
| +  rc = pPKey2->default_rc;
 | 
| +
 | 
| +debugCompareEnd:
 | 
| +  if( desiredResult==0 && rc==0 ) return 1;
 | 
| +  if( desiredResult<0 && rc<0 ) return 1;
 | 
| +  if( desiredResult>0 && rc>0 ) return 1;
 | 
| +  if( CORRUPT_DB ) return 1;
 | 
| +  if( pKeyInfo->db->mallocFailed ) return 1;
 | 
| +  return 0;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Both *pMem1 and *pMem2 contain string values. Compare the two values
 | 
| +** using the collation sequence pColl. As usual, return a negative , zero
 | 
| +** or positive value if *pMem1 is less than, equal to or greater than 
 | 
| +** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
 | 
| +*/
 | 
| +static int vdbeCompareMemString(
 | 
| +  const Mem *pMem1,
 | 
| +  const Mem *pMem2,
 | 
| +  const CollSeq *pColl,
 | 
| +  u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
 | 
| +){
 | 
| +  if( pMem1->enc==pColl->enc ){
 | 
| +    /* The strings are already in the correct encoding.  Call the
 | 
| +     ** comparison function directly */
 | 
| +    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
 | 
| +  }else{
 | 
| +    int rc;
 | 
| +    const void *v1, *v2;
 | 
| +    int n1, n2;
 | 
| +    Mem c1;
 | 
| +    Mem c2;
 | 
| +    sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
 | 
| +    sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
 | 
| +    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
 | 
| +    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
 | 
| +    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
 | 
| +    n1 = v1==0 ? 0 : c1.n;
 | 
| +    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
 | 
| +    n2 = v2==0 ? 0 : c2.n;
 | 
| +    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
 | 
| +    sqlite3VdbeMemRelease(&c1);
 | 
| +    sqlite3VdbeMemRelease(&c2);
 | 
| +    if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
 | 
| +    return rc;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Compare two blobs.  Return negative, zero, or positive if the first
 | 
| +** is less than, equal to, or greater than the second, respectively.
 | 
| +** If one blob is a prefix of the other, then the shorter is the lessor.
 | 
| +*/
 | 
| +static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
 | 
| +  int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
 | 
| +  if( c ) return c;
 | 
| +  return pB1->n - pB2->n;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** Compare the values contained by the two memory cells, returning
 | 
| +** negative, zero or positive if pMem1 is less than, equal to, or greater
 | 
| +** than pMem2. Sorting order is NULL's first, followed by numbers (integers
 | 
| +** and reals) sorted numerically, followed by text ordered by the collating
 | 
| +** sequence pColl and finally blob's ordered by memcmp().
 | 
| +**
 | 
| +** Two NULL values are considered equal by this function.
 | 
| +*/
 | 
| +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
 | 
| +  int f1, f2;
 | 
| +  int combined_flags;
 | 
| +
 | 
| +  f1 = pMem1->flags;
 | 
| +  f2 = pMem2->flags;
 | 
| +  combined_flags = f1|f2;
 | 
| +  assert( (combined_flags & MEM_RowSet)==0 );
 | 
| + 
 | 
| +  /* If one value is NULL, it is less than the other. If both values
 | 
| +  ** are NULL, return 0.
 | 
| +  */
 | 
| +  if( combined_flags&MEM_Null ){
 | 
| +    return (f2&MEM_Null) - (f1&MEM_Null);
 | 
| +  }
 | 
| +
 | 
| +  /* If one value is a number and the other is not, the number is less.
 | 
| +  ** If both are numbers, compare as reals if one is a real, or as integers
 | 
| +  ** if both values are integers.
 | 
| +  */
 | 
| +  if( combined_flags&(MEM_Int|MEM_Real) ){
 | 
| +    double r1, r2;
 | 
| +    if( (f1 & f2 & MEM_Int)!=0 ){
 | 
| +      if( pMem1->u.i < pMem2->u.i ) return -1;
 | 
| +      if( pMem1->u.i > pMem2->u.i ) return 1;
 | 
| +      return 0;
 | 
| +    }
 | 
| +    if( (f1&MEM_Real)!=0 ){
 | 
| +      r1 = pMem1->u.r;
 | 
| +    }else if( (f1&MEM_Int)!=0 ){
 | 
| +      r1 = (double)pMem1->u.i;
 | 
| +    }else{
 | 
| +      return 1;
 | 
| +    }
 | 
| +    if( (f2&MEM_Real)!=0 ){
 | 
| +      r2 = pMem2->u.r;
 | 
| +    }else if( (f2&MEM_Int)!=0 ){
 | 
| +      r2 = (double)pMem2->u.i;
 | 
| +    }else{
 | 
| +      return -1;
 | 
| +    }
 | 
| +    if( r1<r2 ) return -1;
 | 
| +    if( r1>r2 ) return 1;
 | 
| +    return 0;
 | 
| +  }
 | 
| +
 | 
| +  /* If one value is a string and the other is a blob, the string is less.
 | 
| +  ** If both are strings, compare using the collating functions.
 | 
| +  */
 | 
| +  if( combined_flags&MEM_Str ){
 | 
| +    if( (f1 & MEM_Str)==0 ){
 | 
| +      return 1;
 | 
| +    }
 | 
| +    if( (f2 & MEM_Str)==0 ){
 | 
| +      return -1;
 | 
| +    }
 | 
| +
 | 
| +    assert( pMem1->enc==pMem2->enc );
 | 
| +    assert( pMem1->enc==SQLITE_UTF8 || 
 | 
| +            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
 | 
| +
 | 
| +    /* The collation sequence must be defined at this point, even if
 | 
| +    ** the user deletes the collation sequence after the vdbe program is
 | 
| +    ** compiled (this was not always the case).
 | 
| +    */
 | 
| +    assert( !pColl || pColl->xCmp );
 | 
| +
 | 
| +    if( pColl ){
 | 
| +      return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
 | 
| +    }
 | 
| +    /* If a NULL pointer was passed as the collate function, fall through
 | 
| +    ** to the blob case and use memcmp().  */
 | 
| +  }
 | 
| + 
 | 
| +  /* Both values must be blobs.  Compare using memcmp().  */
 | 
| +  return sqlite3BlobCompare(pMem1, pMem2);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** The first argument passed to this function is a serial-type that
 | 
| +** corresponds to an integer - all values between 1 and 9 inclusive 
 | 
| +** except 7. The second points to a buffer containing an integer value
 | 
| +** serialized according to serial_type. This function deserializes
 | 
| +** and returns the value.
 | 
| +*/
 | 
| +static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
 | 
| +  u32 y;
 | 
| +  assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
 | 
| +  switch( serial_type ){
 | 
| +    case 0:
 | 
| +    case 1:
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      return ONE_BYTE_INT(aKey);
 | 
| +    case 2:
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      return TWO_BYTE_INT(aKey);
 | 
| +    case 3:
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      return THREE_BYTE_INT(aKey);
 | 
| +    case 4: {
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      y = FOUR_BYTE_UINT(aKey);
 | 
| +      return (i64)*(int*)&y;
 | 
| +    }
 | 
| +    case 5: {
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
 | 
| +    }
 | 
| +    case 6: {
 | 
| +      u64 x = FOUR_BYTE_UINT(aKey);
 | 
| +      testcase( aKey[0]&0x80 );
 | 
| +      x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
 | 
| +      return (i64)*(i64*)&x;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  return (serial_type - 8);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** This function compares the two table rows or index records
 | 
| +** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
 | 
| +** or positive integer if key1 is less than, equal to or 
 | 
| +** greater than key2.  The {nKey1, pKey1} key must be a blob
 | 
| +** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
 | 
| +** key must be a parsed key such as obtained from
 | 
| +** sqlite3VdbeParseRecord.
 | 
| +**
 | 
| +** If argument bSkip is non-zero, it is assumed that the caller has already
 | 
| +** determined that the first fields of the keys are equal.
 | 
| +**
 | 
| +** Key1 and Key2 do not have to contain the same number of fields. If all 
 | 
| +** fields that appear in both keys are equal, then pPKey2->default_rc is 
 | 
| +** returned.
 | 
| +**
 | 
| +** If database corruption is discovered, set pPKey2->errCode to 
 | 
| +** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
 | 
| +** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
 | 
| +** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
 | 
| +*/
 | 
| +static int vdbeRecordCompareWithSkip(
 | 
| +  int nKey1, const void *pKey1,   /* Left key */
 | 
| +  UnpackedRecord *pPKey2,         /* Right key */
 | 
| +  int bSkip                       /* If true, skip the first field */
 | 
| +){
 | 
| +  u32 d1;                         /* Offset into aKey[] of next data element */
 | 
| +  int i;                          /* Index of next field to compare */
 | 
| +  u32 szHdr1;                     /* Size of record header in bytes */
 | 
| +  u32 idx1;                       /* Offset of first type in header */
 | 
| +  int rc = 0;                     /* Return value */
 | 
| +  Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
 | 
| +  KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
 | 
| +  const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | 
| +  Mem mem1;
 | 
| +
 | 
| +  /* If bSkip is true, then the caller has already determined that the first
 | 
| +  ** two elements in the keys are equal. Fix the various stack variables so
 | 
| +  ** that this routine begins comparing at the second field. */
 | 
| +  if( bSkip ){
 | 
| +    u32 s1;
 | 
| +    idx1 = 1 + getVarint32(&aKey1[1], s1);
 | 
| +    szHdr1 = aKey1[0];
 | 
| +    d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
 | 
| +    i = 1;
 | 
| +    pRhs++;
 | 
| +  }else{
 | 
| +    idx1 = getVarint32(aKey1, szHdr1);
 | 
| +    d1 = szHdr1;
 | 
| +    if( d1>(unsigned)nKey1 ){ 
 | 
| +      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | 
| +      return 0;  /* Corruption */
 | 
| +    }
 | 
| +    i = 0;
 | 
| +  }
 | 
| +
 | 
| +  VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
 | 
| +  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
 | 
| +       || CORRUPT_DB );
 | 
| +  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
 | 
| +  assert( pPKey2->pKeyInfo->nField>0 );
 | 
| +  assert( idx1<=szHdr1 || CORRUPT_DB );
 | 
| +  do{
 | 
| +    u32 serial_type;
 | 
| +
 | 
| +    /* RHS is an integer */
 | 
| +    if( pRhs->flags & MEM_Int ){
 | 
| +      serial_type = aKey1[idx1];
 | 
| +      testcase( serial_type==12 );
 | 
| +      if( serial_type>=12 ){
 | 
| +        rc = +1;
 | 
| +      }else if( serial_type==0 ){
 | 
| +        rc = -1;
 | 
| +      }else if( serial_type==7 ){
 | 
| +        double rhs = (double)pRhs->u.i;
 | 
| +        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
 | 
| +        if( mem1.u.r<rhs ){
 | 
| +          rc = -1;
 | 
| +        }else if( mem1.u.r>rhs ){
 | 
| +          rc = +1;
 | 
| +        }
 | 
| +      }else{
 | 
| +        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
 | 
| +        i64 rhs = pRhs->u.i;
 | 
| +        if( lhs<rhs ){
 | 
| +          rc = -1;
 | 
| +        }else if( lhs>rhs ){
 | 
| +          rc = +1;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* RHS is real */
 | 
| +    else if( pRhs->flags & MEM_Real ){
 | 
| +      serial_type = aKey1[idx1];
 | 
| +      if( serial_type>=12 ){
 | 
| +        rc = +1;
 | 
| +      }else if( serial_type==0 ){
 | 
| +        rc = -1;
 | 
| +      }else{
 | 
| +        double rhs = pRhs->u.r;
 | 
| +        double lhs;
 | 
| +        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
 | 
| +        if( serial_type==7 ){
 | 
| +          lhs = mem1.u.r;
 | 
| +        }else{
 | 
| +          lhs = (double)mem1.u.i;
 | 
| +        }
 | 
| +        if( lhs<rhs ){
 | 
| +          rc = -1;
 | 
| +        }else if( lhs>rhs ){
 | 
| +          rc = +1;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* RHS is a string */
 | 
| +    else if( pRhs->flags & MEM_Str ){
 | 
| +      getVarint32(&aKey1[idx1], serial_type);
 | 
| +      testcase( serial_type==12 );
 | 
| +      if( serial_type<12 ){
 | 
| +        rc = -1;
 | 
| +      }else if( !(serial_type & 0x01) ){
 | 
| +        rc = +1;
 | 
| +      }else{
 | 
| +        mem1.n = (serial_type - 12) / 2;
 | 
| +        testcase( (d1+mem1.n)==(unsigned)nKey1 );
 | 
| +        testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
 | 
| +        if( (d1+mem1.n) > (unsigned)nKey1 ){
 | 
| +          pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | 
| +          return 0;                /* Corruption */
 | 
| +        }else if( pKeyInfo->aColl[i] ){
 | 
| +          mem1.enc = pKeyInfo->enc;
 | 
| +          mem1.db = pKeyInfo->db;
 | 
| +          mem1.flags = MEM_Str;
 | 
| +          mem1.z = (char*)&aKey1[d1];
 | 
| +          rc = vdbeCompareMemString(
 | 
| +              &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
 | 
| +          );
 | 
| +        }else{
 | 
| +          int nCmp = MIN(mem1.n, pRhs->n);
 | 
| +          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
 | 
| +          if( rc==0 ) rc = mem1.n - pRhs->n; 
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* RHS is a blob */
 | 
| +    else if( pRhs->flags & MEM_Blob ){
 | 
| +      getVarint32(&aKey1[idx1], serial_type);
 | 
| +      testcase( serial_type==12 );
 | 
| +      if( serial_type<12 || (serial_type & 0x01) ){
 | 
| +        rc = -1;
 | 
| +      }else{
 | 
| +        int nStr = (serial_type - 12) / 2;
 | 
| +        testcase( (d1+nStr)==(unsigned)nKey1 );
 | 
| +        testcase( (d1+nStr+1)==(unsigned)nKey1 );
 | 
| +        if( (d1+nStr) > (unsigned)nKey1 ){
 | 
| +          pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | 
| +          return 0;                /* Corruption */
 | 
| +        }else{
 | 
| +          int nCmp = MIN(nStr, pRhs->n);
 | 
| +          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
 | 
| +          if( rc==0 ) rc = nStr - pRhs->n;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* RHS is null */
 | 
| +    else{
 | 
| +      serial_type = aKey1[idx1];
 | 
| +      rc = (serial_type!=0);
 | 
| +    }
 | 
| +
 | 
| +    if( rc!=0 ){
 | 
| +      if( pKeyInfo->aSortOrder[i] ){
 | 
| +        rc = -rc;
 | 
| +      }
 | 
| +      assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
 | 
| +      assert( mem1.szMalloc==0 );  /* See comment below */
 | 
| +      return rc;
 | 
| +    }
 | 
| +
 | 
| +    i++;
 | 
| +    pRhs++;
 | 
| +    d1 += sqlite3VdbeSerialTypeLen(serial_type);
 | 
| +    idx1 += sqlite3VarintLen(serial_type);
 | 
| +  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
 | 
| +
 | 
| +  /* No memory allocation is ever used on mem1.  Prove this using
 | 
| +  ** the following assert().  If the assert() fails, it indicates a
 | 
| +  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
 | 
| +  assert( mem1.szMalloc==0 );
 | 
| +
 | 
| +  /* rc==0 here means that one or both of the keys ran out of fields and
 | 
| +  ** all the fields up to that point were equal. Return the default_rc
 | 
| +  ** value.  */
 | 
| +  assert( CORRUPT_DB 
 | 
| +       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
 | 
| +       || pKeyInfo->db->mallocFailed
 | 
| +  );
 | 
| +  return pPKey2->default_rc;
 | 
| +}
 | 
| +int sqlite3VdbeRecordCompare(
 | 
| +  int nKey1, const void *pKey1,   /* Left key */
 | 
| +  UnpackedRecord *pPKey2          /* Right key */
 | 
| +){
 | 
| +  return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** This function is an optimized version of sqlite3VdbeRecordCompare() 
 | 
| +** that (a) the first field of pPKey2 is an integer, and (b) the 
 | 
| +** size-of-header varint at the start of (pKey1/nKey1) fits in a single
 | 
| +** byte (i.e. is less than 128).
 | 
| +**
 | 
| +** To avoid concerns about buffer overreads, this routine is only used
 | 
| +** on schemas where the maximum valid header size is 63 bytes or less.
 | 
| +*/
 | 
| +static int vdbeRecordCompareInt(
 | 
| +  int nKey1, const void *pKey1, /* Left key */
 | 
| +  UnpackedRecord *pPKey2        /* Right key */
 | 
| +){
 | 
| +  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
 | 
| +  int serial_type = ((const u8*)pKey1)[1];
 | 
| +  int res;
 | 
| +  u32 y;
 | 
| +  u64 x;
 | 
| +  i64 v = pPKey2->aMem[0].u.i;
 | 
| +  i64 lhs;
 | 
| +
 | 
| +  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
 | 
| +  switch( serial_type ){
 | 
| +    case 1: { /* 1-byte signed integer */
 | 
| +      lhs = ONE_BYTE_INT(aKey);
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 2: { /* 2-byte signed integer */
 | 
| +      lhs = TWO_BYTE_INT(aKey);
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 3: { /* 3-byte signed integer */
 | 
| +      lhs = THREE_BYTE_INT(aKey);
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 4: { /* 4-byte signed integer */
 | 
| +      y = FOUR_BYTE_UINT(aKey);
 | 
| +      lhs = (i64)*(int*)&y;
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 5: { /* 6-byte signed integer */
 | 
| +      lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 6: { /* 8-byte signed integer */
 | 
| +      x = FOUR_BYTE_UINT(aKey);
 | 
| +      x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
 | 
| +      lhs = *(i64*)&x;
 | 
| +      testcase( lhs<0 );
 | 
| +      break;
 | 
| +    }
 | 
| +    case 8: 
 | 
| +      lhs = 0;
 | 
| +      break;
 | 
| +    case 9:
 | 
| +      lhs = 1;
 | 
| +      break;
 | 
| +
 | 
| +    /* This case could be removed without changing the results of running
 | 
| +    ** this code. Including it causes gcc to generate a faster switch 
 | 
| +    ** statement (since the range of switch targets now starts at zero and
 | 
| +    ** is contiguous) but does not cause any duplicate code to be generated
 | 
| +    ** (as gcc is clever enough to combine the two like cases). Other 
 | 
| +    ** compilers might be similar.  */ 
 | 
| +    case 0: case 7:
 | 
| +      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
 | 
| +
 | 
| +    default:
 | 
| +      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
 | 
| +  }
 | 
| +
 | 
| +  if( v>lhs ){
 | 
| +    res = pPKey2->r1;
 | 
| +  }else if( v<lhs ){
 | 
| +    res = pPKey2->r2;
 | 
| +  }else if( pPKey2->nField>1 ){
 | 
| +    /* The first fields of the two keys are equal. Compare the trailing 
 | 
| +    ** fields.  */
 | 
| +    res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
 | 
| +  }else{
 | 
| +    /* The first fields of the two keys are equal and there are no trailing
 | 
| +    ** fields. Return pPKey2->default_rc in this case. */
 | 
| +    res = pPKey2->default_rc;
 | 
| +  }
 | 
| +
 | 
| +  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
 | 
| +  return res;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** This function is an optimized version of sqlite3VdbeRecordCompare() 
 | 
| +** that (a) the first field of pPKey2 is a string, that (b) the first field
 | 
| +** uses the collation sequence BINARY and (c) that the size-of-header varint 
 | 
| +** at the start of (pKey1/nKey1) fits in a single byte.
 | 
| +*/
 | 
| +static int vdbeRecordCompareString(
 | 
| +  int nKey1, const void *pKey1, /* Left key */
 | 
| +  UnpackedRecord *pPKey2        /* Right key */
 | 
| +){
 | 
| +  const u8 *aKey1 = (const u8*)pKey1;
 | 
| +  int serial_type;
 | 
| +  int res;
 | 
| +
 | 
| +  getVarint32(&aKey1[1], serial_type);
 | 
| +  if( serial_type<12 ){
 | 
| +    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
 | 
| +  }else if( !(serial_type & 0x01) ){ 
 | 
| +    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
 | 
| +  }else{
 | 
| +    int nCmp;
 | 
| +    int nStr;
 | 
| +    int szHdr = aKey1[0];
 | 
| +
 | 
| +    nStr = (serial_type-12) / 2;
 | 
| +    if( (szHdr + nStr) > nKey1 ){
 | 
| +      pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
 | 
| +      return 0;    /* Corruption */
 | 
| +    }
 | 
| +    nCmp = MIN( pPKey2->aMem[0].n, nStr );
 | 
| +    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
 | 
| +
 | 
| +    if( res==0 ){
 | 
| +      res = nStr - pPKey2->aMem[0].n;
 | 
| +      if( res==0 ){
 | 
| +        if( pPKey2->nField>1 ){
 | 
| +          res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
 | 
| +        }else{
 | 
| +          res = pPKey2->default_rc;
 | 
| +        }
 | 
| +      }else if( res>0 ){
 | 
| +        res = pPKey2->r2;
 | 
| +      }else{
 | 
| +        res = pPKey2->r1;
 | 
| +      }
 | 
| +    }else if( res>0 ){
 | 
| +      res = pPKey2->r2;
 | 
| +    }else{
 | 
| +      res = pPKey2->r1;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
 | 
| +       || CORRUPT_DB
 | 
| +       || pPKey2->pKeyInfo->db->mallocFailed
 | 
| +  );
 | 
| +  return res;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
 | 
| +** suitable for comparing serialized records to the unpacked record passed
 | 
| +** as the only argument.
 | 
| +*/
 | 
| +RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
 | 
| +  /* varintRecordCompareInt() and varintRecordCompareString() both assume
 | 
| +  ** that the size-of-header varint that occurs at the start of each record
 | 
| +  ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
 | 
| +  ** also assumes that it is safe to overread a buffer by at least the 
 | 
| +  ** maximum possible legal header size plus 8 bytes. Because there is
 | 
| +  ** guaranteed to be at least 74 (but not 136) bytes of padding following each
 | 
| +  ** buffer passed to varintRecordCompareInt() this makes it convenient to
 | 
| +  ** limit the size of the header to 64 bytes in cases where the first field
 | 
| +  ** is an integer.
 | 
| +  **
 | 
| +  ** The easiest way to enforce this limit is to consider only records with
 | 
| +  ** 13 fields or less. If the first field is an integer, the maximum legal
 | 
| +  ** header size is (12*5 + 1 + 1) bytes.  */
 | 
| +  if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
 | 
| +    int flags = p->aMem[0].flags;
 | 
| +    if( p->pKeyInfo->aSortOrder[0] ){
 | 
| +      p->r1 = 1;
 | 
| +      p->r2 = -1;
 | 
| +    }else{
 | 
| +      p->r1 = -1;
 | 
| +      p->r2 = 1;
 | 
| +    }
 | 
| +    if( (flags & MEM_Int) ){
 | 
| +      return vdbeRecordCompareInt;
 | 
| +    }
 | 
| +    testcase( flags & MEM_Real );
 | 
| +    testcase( flags & MEM_Null );
 | 
| +    testcase( flags & MEM_Blob );
 | 
| +    if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
 | 
| +      assert( flags & MEM_Str );
 | 
| +      return vdbeRecordCompareString;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  return sqlite3VdbeRecordCompare;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** pCur points at an index entry created using the OP_MakeRecord opcode.
 | 
| +** Read the rowid (the last field in the record) and store it in *rowid.
 | 
| +** Return SQLITE_OK if everything works, or an error code otherwise.
 | 
| +**
 | 
| +** pCur might be pointing to text obtained from a corrupt database file.
 | 
| +** So the content cannot be trusted.  Do appropriate checks on the content.
 | 
| +*/
 | 
| +int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
 | 
| +  i64 nCellKey = 0;
 | 
| +  int rc;
 | 
| +  u32 szHdr;        /* Size of the header */
 | 
| +  u32 typeRowid;    /* Serial type of the rowid */
 | 
| +  u32 lenRowid;     /* Size of the rowid */
 | 
| +  Mem m, v;
 | 
| +
 | 
| +  /* Get the size of the index entry.  Only indices entries of less
 | 
| +  ** than 2GiB are support - anything large must be database corruption.
 | 
| +  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
 | 
| +  ** this code can safely assume that nCellKey is 32-bits  
 | 
| +  */
 | 
| +  assert( sqlite3BtreeCursorIsValid(pCur) );
 | 
| +  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
| +  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
 | 
| +  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
 | 
| +
 | 
| +  /* Read in the complete content of the index entry */
 | 
| +  sqlite3VdbeMemInit(&m, db, 0);
 | 
| +  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
 | 
| +  if( rc ){
 | 
| +    return rc;
 | 
| +  }
 | 
| +
 | 
| +  /* The index entry must begin with a header size */
 | 
| +  (void)getVarint32((u8*)m.z, szHdr);
 | 
| +  testcase( szHdr==3 );
 | 
| +  testcase( szHdr==m.n );
 | 
| +  if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
 | 
| +    goto idx_rowid_corruption;
 | 
| +  }
 | 
| +
 | 
| +  /* The last field of the index should be an integer - the ROWID.
 | 
| +  ** Verify that the last entry really is an integer. */
 | 
| +  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
 | 
| +  testcase( typeRowid==1 );
 | 
| +  testcase( typeRowid==2 );
 | 
| +  testcase( typeRowid==3 );
 | 
| +  testcase( typeRowid==4 );
 | 
| +  testcase( typeRowid==5 );
 | 
| +  testcase( typeRowid==6 );
 | 
| +  testcase( typeRowid==8 );
 | 
| +  testcase( typeRowid==9 );
 | 
| +  if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
 | 
| +    goto idx_rowid_corruption;
 | 
| +  }
 | 
| +  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
 | 
| +  testcase( (u32)m.n==szHdr+lenRowid );
 | 
| +  if( unlikely((u32)m.n<szHdr+lenRowid) ){
 | 
| +    goto idx_rowid_corruption;
 | 
| +  }
 | 
| +
 | 
| +  /* Fetch the integer off the end of the index record */
 | 
| +  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | 
| +  *rowid = v.u.i;
 | 
| +  sqlite3VdbeMemRelease(&m);
 | 
| +  return SQLITE_OK;
 | 
| +
 | 
| +  /* Jump here if database corruption is detected after m has been
 | 
| +  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
 | 
| +idx_rowid_corruption:
 | 
| +  testcase( m.szMalloc!=0 );
 | 
| +  sqlite3VdbeMemRelease(&m);
 | 
| +  return SQLITE_CORRUPT_BKPT;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Compare the key of the index entry that cursor pC is pointing to against
 | 
| +** the key string in pUnpacked.  Write into *pRes a number
 | 
| +** that is negative, zero, or positive if pC is less than, equal to,
 | 
| +** or greater than pUnpacked.  Return SQLITE_OK on success.
 | 
| +**
 | 
| +** pUnpacked is either created without a rowid or is truncated so that it
 | 
| +** omits the rowid at the end.  The rowid at the end of the index entry
 | 
| +** is ignored as well.  Hence, this routine only compares the prefixes 
 | 
| +** of the keys prior to the final rowid, not the entire key.
 | 
| +*/
 | 
| +int sqlite3VdbeIdxKeyCompare(
 | 
| +  sqlite3 *db,                     /* Database connection */
 | 
| +  VdbeCursor *pC,                  /* The cursor to compare against */
 | 
| +  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
 | 
| +  int *res                         /* Write the comparison result here */
 | 
| +){
 | 
| +  i64 nCellKey = 0;
 | 
| +  int rc;
 | 
| +  BtCursor *pCur = pC->pCursor;
 | 
| +  Mem m;
 | 
| +
 | 
| +  assert( sqlite3BtreeCursorIsValid(pCur) );
 | 
| +  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
 | 
| +  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
 | 
| +  /* nCellKey will always be between 0 and 0xffffffff because of the way
 | 
| +  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
 | 
| +  if( nCellKey<=0 || nCellKey>0x7fffffff ){
 | 
| +    *res = 0;
 | 
| +    return SQLITE_CORRUPT_BKPT;
 | 
| +  }
 | 
| +  sqlite3VdbeMemInit(&m, db, 0);
 | 
| +  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
 | 
| +  if( rc ){
 | 
| +    return rc;
 | 
| +  }
 | 
| +  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
 | 
| +  sqlite3VdbeMemRelease(&m);
 | 
| +  return SQLITE_OK;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** This routine sets the value to be returned by subsequent calls to
 | 
| +** sqlite3_changes() on the database handle 'db'. 
 | 
| +*/
 | 
| +void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
 | 
| +  assert( sqlite3_mutex_held(db->mutex) );
 | 
| +  db->nChange = nChange;
 | 
| +  db->nTotalChange += nChange;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Set a flag in the vdbe to update the change counter when it is finalised
 | 
| +** or reset.
 | 
| +*/
 | 
| +void sqlite3VdbeCountChanges(Vdbe *v){
 | 
| +  v->changeCntOn = 1;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Mark every prepared statement associated with a database connection
 | 
| +** as expired.
 | 
| +**
 | 
| +** An expired statement means that recompilation of the statement is
 | 
| +** recommend.  Statements expire when things happen that make their
 | 
| +** programs obsolete.  Removing user-defined functions or collating
 | 
| +** sequences, or changing an authorization function are the types of
 | 
| +** things that make prepared statements obsolete.
 | 
| +*/
 | 
| +void sqlite3ExpirePreparedStatements(sqlite3 *db){
 | 
| +  Vdbe *p;
 | 
| +  for(p = db->pVdbe; p; p=p->pNext){
 | 
| +    p->expired = 1;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return the database associated with the Vdbe.
 | 
| +*/
 | 
| +sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | 
| +  return v->db;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return a pointer to an sqlite3_value structure containing the value bound
 | 
| +** parameter iVar of VM v. Except, if the value is an SQL NULL, return 
 | 
| +** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
 | 
| +** constants) to the value before returning it.
 | 
| +**
 | 
| +** The returned value must be freed by the caller using sqlite3ValueFree().
 | 
| +*/
 | 
| +sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
 | 
| +  assert( iVar>0 );
 | 
| +  if( v ){
 | 
| +    Mem *pMem = &v->aVar[iVar-1];
 | 
| +    if( 0==(pMem->flags & MEM_Null) ){
 | 
| +      sqlite3_value *pRet = sqlite3ValueNew(v->db);
 | 
| +      if( pRet ){
 | 
| +        sqlite3VdbeMemCopy((Mem *)pRet, pMem);
 | 
| +        sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
 | 
| +      }
 | 
| +      return pRet;
 | 
| +    }
 | 
| +  }
 | 
| +  return 0;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Configure SQL variable iVar so that binding a new value to it signals
 | 
| +** to sqlite3_reoptimize() that re-preparing the statement may result
 | 
| +** in a better query plan.
 | 
| +*/
 | 
| +void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
 | 
| +  assert( iVar>0 );
 | 
| +  if( iVar>32 ){
 | 
| +    v->expmask = 0xffffffff;
 | 
| +  }else{
 | 
| +    v->expmask |= ((u32)1 << (iVar-1));
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/*
 | 
| +** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
 | 
| +** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
 | 
| +** in memory obtained from sqlite3DbMalloc).
 | 
| +*/
 | 
| +void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
 | 
| +  sqlite3 *db = p->db;
 | 
| +  sqlite3DbFree(db, p->zErrMsg);
 | 
| +  p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
 | 
| +  sqlite3_free(pVtab->zErrMsg);
 | 
| +  pVtab->zErrMsg = 0;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| 
 |