Index: third_party/sqlite/src/src/pcache1.c |
diff --git a/third_party/sqlite/src/src/pcache1.c b/third_party/sqlite/src/src/pcache1.c |
index e4d0705213e3f1f8a9d664cbd0ee297cf6b1dab7..3fcee4bc81dbc6bbbf1f1202d37b29a6cabe8074 100644 |
--- a/third_party/sqlite/src/src/pcache1.c |
+++ b/third_party/sqlite/src/src/pcache1.c |
@@ -13,7 +13,7 @@ |
** This file implements the default page cache implementation (the |
** sqlite3_pcache interface). It also contains part of the implementation |
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. |
-** If the default page cache implementation is overriden, then neither of |
+** If the default page cache implementation is overridden, then neither of |
** these two features are available. |
*/ |
@@ -25,7 +25,7 @@ typedef struct PgFreeslot PgFreeslot; |
typedef struct PGroup PGroup; |
/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set |
-** of one or more PCaches that are able to recycle each others unpinned |
+** of one or more PCaches that are able to recycle each other's unpinned |
** pages when they are under memory pressure. A PGroup is an instance of |
** the following object. |
** |
@@ -40,7 +40,7 @@ typedef struct PGroup PGroup; |
** Mode 1 uses more memory (since PCache instances are not able to rob |
** unused pages from other PCaches) but it also operates without a mutex, |
** and is therefore often faster. Mode 2 requires a mutex in order to be |
-** threadsafe, but is able recycle pages more efficient. |
+** threadsafe, but recycles pages more efficiently. |
** |
** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single |
** PGroup which is the pcache1.grp global variable and its mutex is |
@@ -48,10 +48,10 @@ typedef struct PGroup PGroup; |
*/ |
struct PGroup { |
sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ |
- int nMaxPage; /* Sum of nMax for purgeable caches */ |
- int nMinPage; /* Sum of nMin for purgeable caches */ |
- int mxPinned; /* nMaxpage + 10 - nMinPage */ |
- int nCurrentPage; /* Number of purgeable pages allocated */ |
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ |
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */ |
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ |
+ unsigned int nCurrentPage; /* Number of purgeable pages allocated */ |
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ |
}; |
@@ -66,15 +66,17 @@ struct PGroup { |
struct PCache1 { |
/* Cache configuration parameters. Page size (szPage) and the purgeable |
** flag (bPurgeable) are set when the cache is created. nMax may be |
- ** modified at any time by a call to the pcache1CacheSize() method. |
+ ** modified at any time by a call to the pcache1Cachesize() method. |
** The PGroup mutex must be held when accessing nMax. |
*/ |
PGroup *pGroup; /* PGroup this cache belongs to */ |
int szPage; /* Size of allocated pages in bytes */ |
+ int szExtra; /* Size of extra space in bytes */ |
int bPurgeable; /* True if cache is purgeable */ |
unsigned int nMin; /* Minimum number of pages reserved */ |
unsigned int nMax; /* Configured "cache_size" value */ |
unsigned int n90pct; /* nMax*9/10 */ |
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */ |
/* Hash table of all pages. The following variables may only be accessed |
** when the accessor is holding the PGroup mutex. |
@@ -83,18 +85,18 @@ struct PCache1 { |
unsigned int nPage; /* Total number of pages in apHash */ |
unsigned int nHash; /* Number of slots in apHash[] */ |
PgHdr1 **apHash; /* Hash table for fast lookup by key */ |
- |
- unsigned int iMaxKey; /* Largest key seen since xTruncate() */ |
}; |
/* |
** Each cache entry is represented by an instance of the following |
-** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated |
-** directly before this structure in memory (see the PGHDR1_TO_PAGE() |
-** macro below). |
+** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of |
+** PgHdr1.pCache->szPage bytes is allocated directly before this structure |
+** in memory. |
*/ |
struct PgHdr1 { |
+ sqlite3_pcache_page page; |
unsigned int iKey; /* Key value (page number) */ |
+ u8 isPinned; /* Page in use, not on the LRU list */ |
PgHdr1 *pNext; /* Next in hash table chain */ |
PCache1 *pCache; /* Cache that currently owns this page */ |
PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ |
@@ -127,8 +129,8 @@ static SQLITE_WSD struct PCacheGlobal { |
void *pStart, *pEnd; /* Bounds of pagecache malloc range */ |
/* Above requires no mutex. Use mutex below for variable that follow. */ |
sqlite3_mutex *mutex; /* Mutex for accessing the following: */ |
- int nFreeSlot; /* Number of unused pcache slots */ |
PgFreeslot *pFree; /* Free page blocks */ |
+ int nFreeSlot; /* Number of unused pcache slots */ |
/* The following value requires a mutex to change. We skip the mutex on |
** reading because (1) most platforms read a 32-bit integer atomically and |
** (2) even if an incorrect value is read, no great harm is done since this |
@@ -144,21 +146,6 @@ static SQLITE_WSD struct PCacheGlobal { |
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) |
/* |
-** When a PgHdr1 structure is allocated, the associated PCache1.szPage |
-** bytes of data are located directly before it in memory (i.e. the total |
-** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The |
-** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as |
-** an argument and returns a pointer to the associated block of szPage |
-** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is |
-** a pointer to a block of szPage bytes of data and the return value is |
-** a pointer to the associated PgHdr1 structure. |
-** |
-** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X ); |
-*/ |
-#define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage) |
-#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage) |
- |
-/* |
** Macros to enter and leave the PCache LRU mutex. |
*/ |
#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) |
@@ -226,12 +213,14 @@ static void *pcache1Alloc(int nByte){ |
** it from sqlite3Malloc instead. |
*/ |
p = sqlite3Malloc(nByte); |
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
if( p ){ |
int sz = sqlite3MallocSize(p); |
sqlite3_mutex_enter(pcache1.mutex); |
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); |
sqlite3_mutex_leave(pcache1.mutex); |
} |
+#endif |
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
} |
return p; |
@@ -240,8 +229,9 @@ static void *pcache1Alloc(int nByte){ |
/* |
** Free an allocated buffer obtained from pcache1Alloc(). |
*/ |
-static void pcache1Free(void *p){ |
- if( p==0 ) return; |
+static int pcache1Free(void *p){ |
+ int nFreed = 0; |
+ if( p==0 ) return 0; |
if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
PgFreeslot *pSlot; |
sqlite3_mutex_enter(pcache1.mutex); |
@@ -254,15 +244,17 @@ static void pcache1Free(void *p){ |
assert( pcache1.nFreeSlot<=pcache1.nSlot ); |
sqlite3_mutex_leave(pcache1.mutex); |
}else{ |
- int iSize; |
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
- iSize = sqlite3MallocSize(p); |
+ nFreed = sqlite3MallocSize(p); |
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
sqlite3_mutex_enter(pcache1.mutex); |
- sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed); |
sqlite3_mutex_leave(pcache1.mutex); |
+#endif |
sqlite3_free(p); |
} |
+ return nFreed; |
} |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
@@ -287,18 +279,37 @@ static int pcache1MemSize(void *p){ |
** Allocate a new page object initially associated with cache pCache. |
*/ |
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ |
- int nByte = sizeof(PgHdr1) + pCache->szPage; |
- void *pPg = pcache1Alloc(nByte); |
- PgHdr1 *p; |
+ PgHdr1 *p = 0; |
+ void *pPg; |
+ |
+ /* The group mutex must be released before pcache1Alloc() is called. This |
+ ** is because it may call sqlite3_release_memory(), which assumes that |
+ ** this mutex is not held. */ |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ pcache1LeaveMutex(pCache->pGroup); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ pPg = pcache1Alloc(pCache->szPage); |
+ p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); |
+ if( !pPg || !p ){ |
+ pcache1Free(pPg); |
+ sqlite3_free(p); |
+ pPg = 0; |
+ } |
+#else |
+ pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra); |
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; |
+#endif |
+ pcache1EnterMutex(pCache->pGroup); |
+ |
if( pPg ){ |
- p = PAGE_TO_PGHDR1(pCache, pPg); |
+ p->page.pBuf = pPg; |
+ p->page.pExtra = &p[1]; |
if( pCache->bPurgeable ){ |
pCache->pGroup->nCurrentPage++; |
} |
- }else{ |
- p = 0; |
+ return p; |
} |
- return p; |
+ return 0; |
} |
/* |
@@ -311,10 +322,14 @@ static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ |
static void pcache1FreePage(PgHdr1 *p){ |
if( ALWAYS(p) ){ |
PCache1 *pCache = p->pCache; |
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); |
+ pcache1Free(p->page.pBuf); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ sqlite3_free(p); |
+#endif |
if( pCache->bPurgeable ){ |
pCache->pGroup->nCurrentPage--; |
} |
- pcache1Free(PGHDR1_TO_PAGE(p)); |
} |
} |
@@ -346,13 +361,13 @@ void sqlite3PageFree(void *p){ |
** for all page cache needs and we should not need to spill the |
** allocation onto the heap. |
** |
-** Or, the heap is used for all page cache memory put the heap is |
+** Or, the heap is used for all page cache memory but the heap is |
** under memory pressure, then again it is desirable to avoid |
** allocating a new page cache entry in order to avoid stressing |
** the heap even further. |
*/ |
static int pcache1UnderMemoryPressure(PCache1 *pCache){ |
- if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){ |
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ |
return pcache1.bUnderPressure; |
}else{ |
return sqlite3HeapNearlyFull(); |
@@ -368,7 +383,7 @@ static int pcache1UnderMemoryPressure(PCache1 *pCache){ |
** |
** The PCache mutex must be held when this function is called. |
*/ |
-static int pcache1ResizeHash(PCache1 *p){ |
+static void pcache1ResizeHash(PCache1 *p){ |
PgHdr1 **apNew; |
unsigned int nNew; |
unsigned int i; |
@@ -382,11 +397,10 @@ static int pcache1ResizeHash(PCache1 *p){ |
pcache1LeaveMutex(p->pGroup); |
if( p->nHash ){ sqlite3BeginBenignMalloc(); } |
- apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew); |
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); |
if( p->nHash ){ sqlite3EndBenignMalloc(); } |
pcache1EnterMutex(p->pGroup); |
if( apNew ){ |
- memset(apNew, 0, sizeof(PgHdr1 *)*nNew); |
for(i=0; i<p->nHash; i++){ |
PgHdr1 *pPage; |
PgHdr1 *pNext = p->apHash[i]; |
@@ -401,8 +415,6 @@ static int pcache1ResizeHash(PCache1 *p){ |
p->apHash = apNew; |
p->nHash = nNew; |
} |
- |
- return (p->apHash ? SQLITE_OK : SQLITE_NOMEM); |
} |
/* |
@@ -411,34 +423,32 @@ static int pcache1ResizeHash(PCache1 *p){ |
** LRU list, then this function is a no-op. |
** |
** The PGroup mutex must be held when this function is called. |
-** |
-** If pPage is NULL then this routine is a no-op. |
*/ |
static void pcache1PinPage(PgHdr1 *pPage){ |
PCache1 *pCache; |
PGroup *pGroup; |
- if( pPage==0 ) return; |
+ assert( pPage!=0 ); |
+ assert( pPage->isPinned==0 ); |
pCache = pPage->pCache; |
pGroup = pCache->pGroup; |
+ assert( pPage->pLruNext || pPage==pGroup->pLruTail ); |
+ assert( pPage->pLruPrev || pPage==pGroup->pLruHead ); |
assert( sqlite3_mutex_held(pGroup->mutex) ); |
- if( pPage->pLruNext || pPage==pGroup->pLruTail ){ |
- if( pPage->pLruPrev ){ |
- pPage->pLruPrev->pLruNext = pPage->pLruNext; |
- } |
- if( pPage->pLruNext ){ |
- pPage->pLruNext->pLruPrev = pPage->pLruPrev; |
- } |
- if( pGroup->pLruHead==pPage ){ |
- pGroup->pLruHead = pPage->pLruNext; |
- } |
- if( pGroup->pLruTail==pPage ){ |
- pGroup->pLruTail = pPage->pLruPrev; |
- } |
- pPage->pLruNext = 0; |
- pPage->pLruPrev = 0; |
- pPage->pCache->nRecyclable--; |
+ if( pPage->pLruPrev ){ |
+ pPage->pLruPrev->pLruNext = pPage->pLruNext; |
+ }else{ |
+ pGroup->pLruHead = pPage->pLruNext; |
} |
+ if( pPage->pLruNext ){ |
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev; |
+ }else{ |
+ pGroup->pLruTail = pPage->pLruPrev; |
+ } |
+ pPage->pLruNext = 0; |
+ pPage->pLruPrev = 0; |
+ pPage->isPinned = 1; |
+ pCache->nRecyclable--; |
} |
@@ -470,6 +480,7 @@ static void pcache1EnforceMaxPage(PGroup *pGroup){ |
while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ |
PgHdr1 *p = pGroup->pLruTail; |
assert( p->pCache->pGroup==pGroup ); |
+ assert( p->isPinned==0 ); |
pcache1PinPage(p); |
pcache1RemoveFromHash(p); |
pcache1FreePage(p); |
@@ -497,7 +508,7 @@ static void pcache1TruncateUnsafe( |
if( pPage->iKey>=iLimit ){ |
pCache->nPage--; |
*pp = pPage->pNext; |
- pcache1PinPage(pPage); |
+ if( !pPage->isPinned ) pcache1PinPage(pPage); |
pcache1FreePage(pPage); |
}else{ |
pp = &pPage->pNext; |
@@ -538,12 +549,15 @@ static void pcache1Shutdown(void *NotUsed){ |
memset(&pcache1, 0, sizeof(pcache1)); |
} |
+/* forward declaration */ |
+static void pcache1Destroy(sqlite3_pcache *p); |
+ |
/* |
** Implementation of the sqlite3_pcache.xCreate method. |
** |
** Allocate a new cache. |
*/ |
-static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){ |
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ |
PCache1 *pCache; /* The newly created page cache */ |
PGroup *pGroup; /* The group the new page cache will belong to */ |
int sz; /* Bytes of memory required to allocate the new cache */ |
@@ -570,25 +584,33 @@ static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){ |
int separateCache = sqlite3GlobalConfig.bCoreMutex>0; |
#endif |
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); |
+ assert( szExtra < 300 ); |
+ |
sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; |
- pCache = (PCache1 *)sqlite3_malloc(sz); |
+ pCache = (PCache1 *)sqlite3MallocZero(sz); |
if( pCache ){ |
- memset(pCache, 0, sz); |
if( separateCache ){ |
pGroup = (PGroup*)&pCache[1]; |
pGroup->mxPinned = 10; |
}else{ |
- pGroup = &pcache1_g.grp; |
+ pGroup = &pcache1.grp; |
} |
pCache->pGroup = pGroup; |
pCache->szPage = szPage; |
+ pCache->szExtra = szExtra; |
pCache->bPurgeable = (bPurgeable ? 1 : 0); |
+ pcache1EnterMutex(pGroup); |
+ pcache1ResizeHash(pCache); |
if( bPurgeable ){ |
pCache->nMin = 10; |
- pcache1EnterMutex(pGroup); |
pGroup->nMinPage += pCache->nMin; |
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
- pcache1LeaveMutex(pGroup); |
+ } |
+ pcache1LeaveMutex(pGroup); |
+ if( pCache->nHash==0 ){ |
+ pcache1Destroy((sqlite3_pcache*)pCache); |
+ pCache = 0; |
} |
} |
return (sqlite3_pcache *)pCache; |
@@ -614,6 +636,25 @@ static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ |
} |
/* |
+** Implementation of the sqlite3_pcache.xShrink method. |
+** |
+** Free up as much memory as possible. |
+*/ |
+static void pcache1Shrink(sqlite3_pcache *p){ |
+ PCache1 *pCache = (PCache1*)p; |
+ if( pCache->bPurgeable ){ |
+ PGroup *pGroup = pCache->pGroup; |
+ int savedMaxPage; |
+ pcache1EnterMutex(pGroup); |
+ savedMaxPage = pGroup->nMaxPage; |
+ pGroup->nMaxPage = 0; |
+ pcache1EnforceMaxPage(pGroup); |
+ pGroup->nMaxPage = savedMaxPage; |
+ pcache1LeaveMutex(pGroup); |
+ } |
+} |
+ |
+/* |
** Implementation of the sqlite3_pcache.xPagecount method. |
*/ |
static int pcache1Pagecount(sqlite3_pcache *p){ |
@@ -625,6 +666,95 @@ static int pcache1Pagecount(sqlite3_pcache *p){ |
return n; |
} |
+ |
+/* |
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described |
+** in the header of the pcache1Fetch() procedure. |
+** |
+** This steps are broken out into a separate procedure because they are |
+** usually not needed, and by avoiding the stack initialization required |
+** for these steps, the main pcache1Fetch() procedure can run faster. |
+*/ |
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( |
+ PCache1 *pCache, |
+ unsigned int iKey, |
+ int createFlag |
+){ |
+ unsigned int nPinned; |
+ PGroup *pGroup = pCache->pGroup; |
+ PgHdr1 *pPage = 0; |
+ |
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ |
+ assert( pCache->nPage >= pCache->nRecyclable ); |
+ nPinned = pCache->nPage - pCache->nRecyclable; |
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); |
+ assert( pCache->n90pct == pCache->nMax*9/10 ); |
+ if( createFlag==1 && ( |
+ nPinned>=pGroup->mxPinned |
+ || nPinned>=pCache->n90pct |
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) |
+ )){ |
+ return 0; |
+ } |
+ |
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); |
+ assert( pCache->nHash>0 && pCache->apHash ); |
+ |
+ /* Step 4. Try to recycle a page. */ |
+ if( pCache->bPurgeable && pGroup->pLruTail && ( |
+ (pCache->nPage+1>=pCache->nMax) |
+ || pGroup->nCurrentPage>=pGroup->nMaxPage |
+ || pcache1UnderMemoryPressure(pCache) |
+ )){ |
+ PCache1 *pOther; |
+ pPage = pGroup->pLruTail; |
+ assert( pPage->isPinned==0 ); |
+ pcache1RemoveFromHash(pPage); |
+ pcache1PinPage(pPage); |
+ pOther = pPage->pCache; |
+ |
+ /* We want to verify that szPage and szExtra are the same for pOther |
+ ** and pCache. Assert that we can verify this by comparing sums. */ |
+ assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 ); |
+ assert( pCache->szExtra<512 ); |
+ assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 ); |
+ assert( pOther->szExtra<512 ); |
+ |
+ if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){ |
+ pcache1FreePage(pPage); |
+ pPage = 0; |
+ }else{ |
+ pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); |
+ } |
+ } |
+ |
+ /* Step 5. If a usable page buffer has still not been found, |
+ ** attempt to allocate a new one. |
+ */ |
+ if( !pPage ){ |
+ if( createFlag==1 ) sqlite3BeginBenignMalloc(); |
+ pPage = pcache1AllocPage(pCache); |
+ if( createFlag==1 ) sqlite3EndBenignMalloc(); |
+ } |
+ |
+ if( pPage ){ |
+ unsigned int h = iKey % pCache->nHash; |
+ pCache->nPage++; |
+ pPage->iKey = iKey; |
+ pPage->pNext = pCache->apHash[h]; |
+ pPage->pCache = pCache; |
+ pPage->pLruPrev = 0; |
+ pPage->pLruNext = 0; |
+ pPage->isPinned = 1; |
+ *(void **)pPage->page.pExtra = 0; |
+ pCache->apHash[h] = pPage; |
+ if( iKey>pCache->iMaxKey ){ |
+ pCache->iMaxKey = iKey; |
+ } |
+ } |
+ return pPage; |
+} |
+ |
/* |
** Implementation of the sqlite3_pcache.xFetch method. |
** |
@@ -638,7 +768,7 @@ static int pcache1Pagecount(sqlite3_pcache *p){ |
** For a non-purgeable cache (a cache used as the storage for an in-memory |
** database) there is really no difference between createFlag 1 and 2. So |
** the calling function (pcache.c) will never have a createFlag of 1 on |
-** a non-purgable cache. |
+** a non-purgeable cache. |
** |
** There are three different approaches to obtaining space for a page, |
** depending on the value of parameter createFlag (which may be 0, 1 or 2). |
@@ -679,107 +809,36 @@ static int pcache1Pagecount(sqlite3_pcache *p){ |
** |
** 5. Otherwise, allocate and return a new page buffer. |
*/ |
-static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){ |
- int nPinned; |
+static sqlite3_pcache_page *pcache1Fetch( |
+ sqlite3_pcache *p, |
+ unsigned int iKey, |
+ int createFlag |
+){ |
PCache1 *pCache = (PCache1 *)p; |
- PGroup *pGroup; |
PgHdr1 *pPage = 0; |
+ assert( offsetof(PgHdr1,page)==0 ); |
assert( pCache->bPurgeable || createFlag!=1 ); |
assert( pCache->bPurgeable || pCache->nMin==0 ); |
assert( pCache->bPurgeable==0 || pCache->nMin==10 ); |
assert( pCache->nMin==0 || pCache->bPurgeable ); |
- pcache1EnterMutex(pGroup = pCache->pGroup); |
+ assert( pCache->nHash>0 ); |
+ pcache1EnterMutex(pCache->pGroup); |
/* Step 1: Search the hash table for an existing entry. */ |
- if( pCache->nHash>0 ){ |
- unsigned int h = iKey % pCache->nHash; |
- for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext); |
- } |
+ pPage = pCache->apHash[iKey % pCache->nHash]; |
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } |
/* Step 2: Abort if no existing page is found and createFlag is 0 */ |
- if( pPage || createFlag==0 ){ |
- pcache1PinPage(pPage); |
- goto fetch_out; |
- } |
- |
- /* The pGroup local variable will normally be initialized by the |
- ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined, |
- ** then pcache1EnterMutex() is a no-op, so we have to initialize the |
- ** local variable here. Delaying the initialization of pGroup is an |
- ** optimization: The common case is to exit the module before reaching |
- ** this point. |
- */ |
-#ifdef SQLITE_MUTEX_OMIT |
- pGroup = pCache->pGroup; |
-#endif |
- |
- |
- /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ |
- nPinned = pCache->nPage - pCache->nRecyclable; |
- assert( nPinned>=0 ); |
- assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); |
- assert( pCache->n90pct == pCache->nMax*9/10 ); |
- if( createFlag==1 && ( |
- nPinned>=pGroup->mxPinned |
- || nPinned>=(int)pCache->n90pct |
- || pcache1UnderMemoryPressure(pCache) |
- )){ |
- goto fetch_out; |
- } |
- |
- if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ |
- goto fetch_out; |
- } |
- |
- /* Step 4. Try to recycle a page. */ |
- if( pCache->bPurgeable && pGroup->pLruTail && ( |
- (pCache->nPage+1>=pCache->nMax) |
- || pGroup->nCurrentPage>=pGroup->nMaxPage |
- || pcache1UnderMemoryPressure(pCache) |
- )){ |
- PCache1 *pOtherCache; |
- pPage = pGroup->pLruTail; |
- pcache1RemoveFromHash(pPage); |
- pcache1PinPage(pPage); |
- if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){ |
- pcache1FreePage(pPage); |
- pPage = 0; |
- }else{ |
- pGroup->nCurrentPage -= |
- (pOtherCache->bPurgeable - pCache->bPurgeable); |
- } |
- } |
- |
- /* Step 5. If a usable page buffer has still not been found, |
- ** attempt to allocate a new one. |
- */ |
- if( !pPage ){ |
- if( createFlag==1 ) sqlite3BeginBenignMalloc(); |
- pcache1LeaveMutex(pGroup); |
- pPage = pcache1AllocPage(pCache); |
- pcache1EnterMutex(pGroup); |
- if( createFlag==1 ) sqlite3EndBenignMalloc(); |
- } |
- |
if( pPage ){ |
- unsigned int h = iKey % pCache->nHash; |
- pCache->nPage++; |
- pPage->iKey = iKey; |
- pPage->pNext = pCache->apHash[h]; |
- pPage->pCache = pCache; |
- pPage->pLruPrev = 0; |
- pPage->pLruNext = 0; |
- *(void **)(PGHDR1_TO_PAGE(pPage)) = 0; |
- pCache->apHash[h] = pPage; |
+ if( !pPage->isPinned ) pcache1PinPage(pPage); |
+ }else if( createFlag ){ |
+ /* Steps 3, 4, and 5 implemented by this subroutine */ |
+ pPage = pcache1FetchStage2(pCache, iKey, createFlag); |
} |
- |
-fetch_out: |
- if( pPage && iKey>pCache->iMaxKey ){ |
- pCache->iMaxKey = iKey; |
- } |
- pcache1LeaveMutex(pGroup); |
- return (pPage ? PGHDR1_TO_PAGE(pPage) : 0); |
+ assert( pPage==0 || pCache->iMaxKey>=iKey ); |
+ pcache1LeaveMutex(pCache->pGroup); |
+ return (sqlite3_pcache_page*)pPage; |
} |
@@ -788,9 +847,13 @@ fetch_out: |
** |
** Mark a page as unpinned (eligible for asynchronous recycling). |
*/ |
-static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ |
+static void pcache1Unpin( |
+ sqlite3_pcache *p, |
+ sqlite3_pcache_page *pPg, |
+ int reuseUnlikely |
+){ |
PCache1 *pCache = (PCache1 *)p; |
- PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); |
+ PgHdr1 *pPage = (PgHdr1 *)pPg; |
PGroup *pGroup = pCache->pGroup; |
assert( pPage->pCache==pCache ); |
@@ -801,6 +864,7 @@ static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ |
*/ |
assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); |
assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); |
+ assert( pPage->isPinned==1 ); |
if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ |
pcache1RemoveFromHash(pPage); |
@@ -816,6 +880,7 @@ static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ |
pGroup->pLruHead = pPage; |
} |
pCache->nRecyclable++; |
+ pPage->isPinned = 0; |
} |
pcache1LeaveMutex(pCache->pGroup); |
@@ -826,12 +891,12 @@ static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ |
*/ |
static void pcache1Rekey( |
sqlite3_pcache *p, |
- void *pPg, |
+ sqlite3_pcache_page *pPg, |
unsigned int iOld, |
unsigned int iNew |
){ |
PCache1 *pCache = (PCache1 *)p; |
- PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); |
+ PgHdr1 *pPage = (PgHdr1 *)pPg; |
PgHdr1 **pp; |
unsigned int h; |
assert( pPage->iKey==iOld ); |
@@ -885,7 +950,9 @@ static void pcache1Destroy(sqlite3_pcache *p){ |
assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); |
pcache1EnterMutex(pGroup); |
pcache1TruncateUnsafe(pCache, 0); |
+ assert( pGroup->nMaxPage >= pCache->nMax ); |
pGroup->nMaxPage -= pCache->nMax; |
+ assert( pGroup->nMinPage >= pCache->nMin ); |
pGroup->nMinPage -= pCache->nMin; |
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
pcache1EnforceMaxPage(pGroup); |
@@ -900,7 +967,8 @@ static void pcache1Destroy(sqlite3_pcache *p){ |
** already provided an alternative. |
*/ |
void sqlite3PCacheSetDefault(void){ |
- static const sqlite3_pcache_methods defaultMethods = { |
+ static const sqlite3_pcache_methods2 defaultMethods = { |
+ 1, /* iVersion */ |
0, /* pArg */ |
pcache1Init, /* xInit */ |
pcache1Shutdown, /* xShutdown */ |
@@ -911,9 +979,10 @@ void sqlite3PCacheSetDefault(void){ |
pcache1Unpin, /* xUnpin */ |
pcache1Rekey, /* xRekey */ |
pcache1Truncate, /* xTruncate */ |
- pcache1Destroy /* xDestroy */ |
+ pcache1Destroy, /* xDestroy */ |
+ pcache1Shrink /* xShrink */ |
}; |
- sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods); |
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); |
} |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
@@ -934,7 +1003,11 @@ int sqlite3PcacheReleaseMemory(int nReq){ |
PgHdr1 *p; |
pcache1EnterMutex(&pcache1.grp); |
while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ |
- nFree += pcache1MemSize(PGHDR1_TO_PAGE(p)); |
+ nFree += pcache1MemSize(p->page.pBuf); |
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER |
+ nFree += sqlite3MemSize(p); |
+#endif |
+ assert( p->isPinned==0 ); |
pcache1PinPage(p); |
pcache1RemoveFromHash(p); |
pcache1FreePage(p); |
@@ -959,11 +1032,12 @@ void sqlite3PcacheStats( |
PgHdr1 *p; |
int nRecyclable = 0; |
for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ |
+ assert( p->isPinned==0 ); |
nRecyclable++; |
} |
*pnCurrent = pcache1.grp.nCurrentPage; |
- *pnMax = pcache1.grp.nMaxPage; |
- *pnMin = pcache1.grp.nMinPage; |
+ *pnMax = (int)pcache1.grp.nMaxPage; |
+ *pnMin = (int)pcache1.grp.nMinPage; |
*pnRecyclable = nRecyclable; |
} |
#endif |