| Index: third_party/sqlite/sqlite-src-3080704/src/vdbe.c
 | 
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbe.c b/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..366c7a01661b2d48e986d903d412981e69df33f5
 | 
| --- /dev/null
 | 
| +++ b/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
 | 
| @@ -0,0 +1,6477 @@
 | 
| +/*
 | 
| +** 2001 September 15
 | 
| +**
 | 
| +** The author disclaims copyright to this source code.  In place of
 | 
| +** a legal notice, here is a blessing:
 | 
| +**
 | 
| +**    May you do good and not evil.
 | 
| +**    May you find forgiveness for yourself and forgive others.
 | 
| +**    May you share freely, never taking more than you give.
 | 
| +**
 | 
| +*************************************************************************
 | 
| +** The code in this file implements the function that runs the
 | 
| +** bytecode of a prepared statement.
 | 
| +**
 | 
| +** Various scripts scan this source file in order to generate HTML
 | 
| +** documentation, headers files, or other derived files.  The formatting
 | 
| +** of the code in this file is, therefore, important.  See other comments
 | 
| +** in this file for details.  If in doubt, do not deviate from existing
 | 
| +** commenting and indentation practices when changing or adding code.
 | 
| +*/
 | 
| +#include "sqliteInt.h"
 | 
| +#include "vdbeInt.h"
 | 
| +
 | 
| +/*
 | 
| +** Invoke this macro on memory cells just prior to changing the
 | 
| +** value of the cell.  This macro verifies that shallow copies are
 | 
| +** not misused.  A shallow copy of a string or blob just copies a
 | 
| +** pointer to the string or blob, not the content.  If the original
 | 
| +** is changed while the copy is still in use, the string or blob might
 | 
| +** be changed out from under the copy.  This macro verifies that nothing
 | 
| +** like that ever happens.
 | 
| +*/
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
 | 
| +#else
 | 
| +# define memAboutToChange(P,M)
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** The following global variable is incremented every time a cursor
 | 
| +** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
 | 
| +** procedures use this information to make sure that indices are
 | 
| +** working correctly.  This variable has no function other than to
 | 
| +** help verify the correct operation of the library.
 | 
| +*/
 | 
| +#ifdef SQLITE_TEST
 | 
| +int sqlite3_search_count = 0;
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** When this global variable is positive, it gets decremented once before
 | 
| +** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
 | 
| +** field of the sqlite3 structure is set in order to simulate an interrupt.
 | 
| +**
 | 
| +** This facility is used for testing purposes only.  It does not function
 | 
| +** in an ordinary build.
 | 
| +*/
 | 
| +#ifdef SQLITE_TEST
 | 
| +int sqlite3_interrupt_count = 0;
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** The next global variable is incremented each type the OP_Sort opcode
 | 
| +** is executed.  The test procedures use this information to make sure that
 | 
| +** sorting is occurring or not occurring at appropriate times.   This variable
 | 
| +** has no function other than to help verify the correct operation of the
 | 
| +** library.
 | 
| +*/
 | 
| +#ifdef SQLITE_TEST
 | 
| +int sqlite3_sort_count = 0;
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** The next global variable records the size of the largest MEM_Blob
 | 
| +** or MEM_Str that has been used by a VDBE opcode.  The test procedures
 | 
| +** use this information to make sure that the zero-blob functionality
 | 
| +** is working correctly.   This variable has no function other than to
 | 
| +** help verify the correct operation of the library.
 | 
| +*/
 | 
| +#ifdef SQLITE_TEST
 | 
| +int sqlite3_max_blobsize = 0;
 | 
| +static void updateMaxBlobsize(Mem *p){
 | 
| +  if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
 | 
| +    sqlite3_max_blobsize = p->n;
 | 
| +  }
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** The next global variable is incremented each time the OP_Found opcode
 | 
| +** is executed. This is used to test whether or not the foreign key
 | 
| +** operation implemented using OP_FkIsZero is working. This variable
 | 
| +** has no function other than to help verify the correct operation of the
 | 
| +** library.
 | 
| +*/
 | 
| +#ifdef SQLITE_TEST
 | 
| +int sqlite3_found_count = 0;
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Test a register to see if it exceeds the current maximum blob size.
 | 
| +** If it does, record the new maximum blob size.
 | 
| +*/
 | 
| +#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
 | 
| +# define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
 | 
| +#else
 | 
| +# define UPDATE_MAX_BLOBSIZE(P)
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Invoke the VDBE coverage callback, if that callback is defined.  This
 | 
| +** feature is used for test suite validation only and does not appear an
 | 
| +** production builds.
 | 
| +**
 | 
| +** M is an integer, 2 or 3, that indices how many different ways the
 | 
| +** branch can go.  It is usually 2.  "I" is the direction the branch
 | 
| +** goes.  0 means falls through.  1 means branch is taken.  2 means the
 | 
| +** second alternative branch is taken.
 | 
| +**
 | 
| +** iSrcLine is the source code line (from the __LINE__ macro) that
 | 
| +** generated the VDBE instruction.  This instrumentation assumes that all
 | 
| +** source code is in a single file (the amalgamation).  Special values 1
 | 
| +** and 2 for the iSrcLine parameter mean that this particular branch is
 | 
| +** always taken or never taken, respectively.
 | 
| +*/
 | 
| +#if !defined(SQLITE_VDBE_COVERAGE)
 | 
| +# define VdbeBranchTaken(I,M)
 | 
| +#else
 | 
| +# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
 | 
| +  static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
 | 
| +    if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
 | 
| +      M = iSrcLine;
 | 
| +      /* Assert the truth of VdbeCoverageAlwaysTaken() and 
 | 
| +      ** VdbeCoverageNeverTaken() */
 | 
| +      assert( (M & I)==I );
 | 
| +    }else{
 | 
| +      if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
 | 
| +      sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
 | 
| +                                      iSrcLine,I,M);
 | 
| +    }
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +/*
 | 
| +** Convert the given register into a string if it isn't one
 | 
| +** already. Return non-zero if a malloc() fails.
 | 
| +*/
 | 
| +#define Stringify(P, enc) \
 | 
| +   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
 | 
| +     { goto no_mem; }
 | 
| +
 | 
| +/*
 | 
| +** An ephemeral string value (signified by the MEM_Ephem flag) contains
 | 
| +** a pointer to a dynamically allocated string where some other entity
 | 
| +** is responsible for deallocating that string.  Because the register
 | 
| +** does not control the string, it might be deleted without the register
 | 
| +** knowing it.
 | 
| +**
 | 
| +** This routine converts an ephemeral string into a dynamically allocated
 | 
| +** string that the register itself controls.  In other words, it
 | 
| +** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
 | 
| +*/
 | 
| +#define Deephemeralize(P) \
 | 
| +   if( ((P)->flags&MEM_Ephem)!=0 \
 | 
| +       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
 | 
| +
 | 
| +/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
 | 
| +#define isSorter(x) ((x)->pSorter!=0)
 | 
| +
 | 
| +/*
 | 
| +** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
 | 
| +** if we run out of memory.
 | 
| +*/
 | 
| +static VdbeCursor *allocateCursor(
 | 
| +  Vdbe *p,              /* The virtual machine */
 | 
| +  int iCur,             /* Index of the new VdbeCursor */
 | 
| +  int nField,           /* Number of fields in the table or index */
 | 
| +  int iDb,              /* Database the cursor belongs to, or -1 */
 | 
| +  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
 | 
| +){
 | 
| +  /* Find the memory cell that will be used to store the blob of memory
 | 
| +  ** required for this VdbeCursor structure. It is convenient to use a 
 | 
| +  ** vdbe memory cell to manage the memory allocation required for a
 | 
| +  ** VdbeCursor structure for the following reasons:
 | 
| +  **
 | 
| +  **   * Sometimes cursor numbers are used for a couple of different
 | 
| +  **     purposes in a vdbe program. The different uses might require
 | 
| +  **     different sized allocations. Memory cells provide growable
 | 
| +  **     allocations.
 | 
| +  **
 | 
| +  **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
 | 
| +  **     be freed lazily via the sqlite3_release_memory() API. This
 | 
| +  **     minimizes the number of malloc calls made by the system.
 | 
| +  **
 | 
| +  ** Memory cells for cursors are allocated at the top of the address
 | 
| +  ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
 | 
| +  ** cursor 1 is managed by memory cell (p->nMem-1), etc.
 | 
| +  */
 | 
| +  Mem *pMem = &p->aMem[p->nMem-iCur];
 | 
| +
 | 
| +  int nByte;
 | 
| +  VdbeCursor *pCx = 0;
 | 
| +  nByte = 
 | 
| +      ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 
 | 
| +      (isBtreeCursor?sqlite3BtreeCursorSize():0);
 | 
| +
 | 
| +  assert( iCur<p->nCursor );
 | 
| +  if( p->apCsr[iCur] ){
 | 
| +    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
 | 
| +    p->apCsr[iCur] = 0;
 | 
| +  }
 | 
| +  if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
 | 
| +    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
 | 
| +    memset(pCx, 0, sizeof(VdbeCursor));
 | 
| +    pCx->iDb = iDb;
 | 
| +    pCx->nField = nField;
 | 
| +    pCx->aOffset = &pCx->aType[nField];
 | 
| +    if( isBtreeCursor ){
 | 
| +      pCx->pCursor = (BtCursor*)
 | 
| +          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
 | 
| +      sqlite3BtreeCursorZero(pCx->pCursor);
 | 
| +    }
 | 
| +  }
 | 
| +  return pCx;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Try to convert a value into a numeric representation if we can
 | 
| +** do so without loss of information.  In other words, if the string
 | 
| +** looks like a number, convert it into a number.  If it does not
 | 
| +** look like a number, leave it alone.
 | 
| +**
 | 
| +** If the bTryForInt flag is true, then extra effort is made to give
 | 
| +** an integer representation.  Strings that look like floating point
 | 
| +** values but which have no fractional component (example: '48.00')
 | 
| +** will have a MEM_Int representation when bTryForInt is true.
 | 
| +**
 | 
| +** If bTryForInt is false, then if the input string contains a decimal
 | 
| +** point or exponential notation, the result is only MEM_Real, even
 | 
| +** if there is an exact integer representation of the quantity.
 | 
| +*/
 | 
| +static void applyNumericAffinity(Mem *pRec, int bTryForInt){
 | 
| +  double rValue;
 | 
| +  i64 iValue;
 | 
| +  u8 enc = pRec->enc;
 | 
| +  assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
 | 
| +  if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
 | 
| +  if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
 | 
| +    pRec->u.i = iValue;
 | 
| +    pRec->flags |= MEM_Int;
 | 
| +  }else{
 | 
| +    pRec->u.r = rValue;
 | 
| +    pRec->flags |= MEM_Real;
 | 
| +    if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Processing is determine by the affinity parameter:
 | 
| +**
 | 
| +** SQLITE_AFF_INTEGER:
 | 
| +** SQLITE_AFF_REAL:
 | 
| +** SQLITE_AFF_NUMERIC:
 | 
| +**    Try to convert pRec to an integer representation or a 
 | 
| +**    floating-point representation if an integer representation
 | 
| +**    is not possible.  Note that the integer representation is
 | 
| +**    always preferred, even if the affinity is REAL, because
 | 
| +**    an integer representation is more space efficient on disk.
 | 
| +**
 | 
| +** SQLITE_AFF_TEXT:
 | 
| +**    Convert pRec to a text representation.
 | 
| +**
 | 
| +** SQLITE_AFF_NONE:
 | 
| +**    No-op.  pRec is unchanged.
 | 
| +*/
 | 
| +static void applyAffinity(
 | 
| +  Mem *pRec,          /* The value to apply affinity to */
 | 
| +  char affinity,      /* The affinity to be applied */
 | 
| +  u8 enc              /* Use this text encoding */
 | 
| +){
 | 
| +  if( affinity>=SQLITE_AFF_NUMERIC ){
 | 
| +    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
 | 
| +             || affinity==SQLITE_AFF_NUMERIC );
 | 
| +    if( (pRec->flags & MEM_Int)==0 ){
 | 
| +      if( (pRec->flags & MEM_Real)==0 ){
 | 
| +        if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
 | 
| +      }else{
 | 
| +        sqlite3VdbeIntegerAffinity(pRec);
 | 
| +      }
 | 
| +    }
 | 
| +  }else if( affinity==SQLITE_AFF_TEXT ){
 | 
| +    /* Only attempt the conversion to TEXT if there is an integer or real
 | 
| +    ** representation (blob and NULL do not get converted) but no string
 | 
| +    ** representation.
 | 
| +    */
 | 
| +    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
 | 
| +      sqlite3VdbeMemStringify(pRec, enc, 1);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Try to convert the type of a function argument or a result column
 | 
| +** into a numeric representation.  Use either INTEGER or REAL whichever
 | 
| +** is appropriate.  But only do the conversion if it is possible without
 | 
| +** loss of information and return the revised type of the argument.
 | 
| +*/
 | 
| +int sqlite3_value_numeric_type(sqlite3_value *pVal){
 | 
| +  int eType = sqlite3_value_type(pVal);
 | 
| +  if( eType==SQLITE_TEXT ){
 | 
| +    Mem *pMem = (Mem*)pVal;
 | 
| +    applyNumericAffinity(pMem, 0);
 | 
| +    eType = sqlite3_value_type(pVal);
 | 
| +  }
 | 
| +  return eType;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Exported version of applyAffinity(). This one works on sqlite3_value*, 
 | 
| +** not the internal Mem* type.
 | 
| +*/
 | 
| +void sqlite3ValueApplyAffinity(
 | 
| +  sqlite3_value *pVal, 
 | 
| +  u8 affinity, 
 | 
| +  u8 enc
 | 
| +){
 | 
| +  applyAffinity((Mem *)pVal, affinity, enc);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** pMem currently only holds a string type (or maybe a BLOB that we can
 | 
| +** interpret as a string if we want to).  Compute its corresponding
 | 
| +** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
 | 
| +** accordingly.
 | 
| +*/
 | 
| +static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
 | 
| +  assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
 | 
| +  assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
 | 
| +  if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
 | 
| +    return 0;
 | 
| +  }
 | 
| +  if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
 | 
| +    return MEM_Int;
 | 
| +  }
 | 
| +  return MEM_Real;
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
 | 
| +** none.  
 | 
| +**
 | 
| +** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
 | 
| +** But it does set pMem->u.r and pMem->u.i appropriately.
 | 
| +*/
 | 
| +static u16 numericType(Mem *pMem){
 | 
| +  if( pMem->flags & (MEM_Int|MEM_Real) ){
 | 
| +    return pMem->flags & (MEM_Int|MEM_Real);
 | 
| +  }
 | 
| +  if( pMem->flags & (MEM_Str|MEM_Blob) ){
 | 
| +    return computeNumericType(pMem);
 | 
| +  }
 | 
| +  return 0;
 | 
| +}
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +/*
 | 
| +** Write a nice string representation of the contents of cell pMem
 | 
| +** into buffer zBuf, length nBuf.
 | 
| +*/
 | 
| +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
 | 
| +  char *zCsr = zBuf;
 | 
| +  int f = pMem->flags;
 | 
| +
 | 
| +  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
 | 
| +
 | 
| +  if( f&MEM_Blob ){
 | 
| +    int i;
 | 
| +    char c;
 | 
| +    if( f & MEM_Dyn ){
 | 
| +      c = 'z';
 | 
| +      assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | 
| +    }else if( f & MEM_Static ){
 | 
| +      c = 't';
 | 
| +      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | 
| +    }else if( f & MEM_Ephem ){
 | 
| +      c = 'e';
 | 
| +      assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | 
| +    }else{
 | 
| +      c = 's';
 | 
| +    }
 | 
| +
 | 
| +    sqlite3_snprintf(100, zCsr, "%c", c);
 | 
| +    zCsr += sqlite3Strlen30(zCsr);
 | 
| +    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
 | 
| +    zCsr += sqlite3Strlen30(zCsr);
 | 
| +    for(i=0; i<16 && i<pMem->n; i++){
 | 
| +      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
 | 
| +      zCsr += sqlite3Strlen30(zCsr);
 | 
| +    }
 | 
| +    for(i=0; i<16 && i<pMem->n; i++){
 | 
| +      char z = pMem->z[i];
 | 
| +      if( z<32 || z>126 ) *zCsr++ = '.';
 | 
| +      else *zCsr++ = z;
 | 
| +    }
 | 
| +
 | 
| +    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
 | 
| +    zCsr += sqlite3Strlen30(zCsr);
 | 
| +    if( f & MEM_Zero ){
 | 
| +      sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
 | 
| +      zCsr += sqlite3Strlen30(zCsr);
 | 
| +    }
 | 
| +    *zCsr = '\0';
 | 
| +  }else if( f & MEM_Str ){
 | 
| +    int j, k;
 | 
| +    zBuf[0] = ' ';
 | 
| +    if( f & MEM_Dyn ){
 | 
| +      zBuf[1] = 'z';
 | 
| +      assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | 
| +    }else if( f & MEM_Static ){
 | 
| +      zBuf[1] = 't';
 | 
| +      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | 
| +    }else if( f & MEM_Ephem ){
 | 
| +      zBuf[1] = 'e';
 | 
| +      assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | 
| +    }else{
 | 
| +      zBuf[1] = 's';
 | 
| +    }
 | 
| +    k = 2;
 | 
| +    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
 | 
| +    k += sqlite3Strlen30(&zBuf[k]);
 | 
| +    zBuf[k++] = '[';
 | 
| +    for(j=0; j<15 && j<pMem->n; j++){
 | 
| +      u8 c = pMem->z[j];
 | 
| +      if( c>=0x20 && c<0x7f ){
 | 
| +        zBuf[k++] = c;
 | 
| +      }else{
 | 
| +        zBuf[k++] = '.';
 | 
| +      }
 | 
| +    }
 | 
| +    zBuf[k++] = ']';
 | 
| +    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
 | 
| +    k += sqlite3Strlen30(&zBuf[k]);
 | 
| +    zBuf[k++] = 0;
 | 
| +  }
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +/*
 | 
| +** Print the value of a register for tracing purposes:
 | 
| +*/
 | 
| +static void memTracePrint(Mem *p){
 | 
| +  if( p->flags & MEM_Undefined ){
 | 
| +    printf(" undefined");
 | 
| +  }else if( p->flags & MEM_Null ){
 | 
| +    printf(" NULL");
 | 
| +  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
 | 
| +    printf(" si:%lld", p->u.i);
 | 
| +  }else if( p->flags & MEM_Int ){
 | 
| +    printf(" i:%lld", p->u.i);
 | 
| +#ifndef SQLITE_OMIT_FLOATING_POINT
 | 
| +  }else if( p->flags & MEM_Real ){
 | 
| +    printf(" r:%g", p->u.r);
 | 
| +#endif
 | 
| +  }else if( p->flags & MEM_RowSet ){
 | 
| +    printf(" (rowset)");
 | 
| +  }else{
 | 
| +    char zBuf[200];
 | 
| +    sqlite3VdbeMemPrettyPrint(p, zBuf);
 | 
| +    printf(" %s", zBuf);
 | 
| +  }
 | 
| +}
 | 
| +static void registerTrace(int iReg, Mem *p){
 | 
| +  printf("REG[%d] = ", iReg);
 | 
| +  memTracePrint(p);
 | 
| +  printf("\n");
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +#  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
 | 
| +#else
 | 
| +#  define REGISTER_TRACE(R,M)
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +#ifdef VDBE_PROFILE
 | 
| +
 | 
| +/* 
 | 
| +** hwtime.h contains inline assembler code for implementing 
 | 
| +** high-performance timing routines.
 | 
| +*/
 | 
| +#include "hwtime.h"
 | 
| +
 | 
| +#endif
 | 
| +
 | 
| +#ifndef NDEBUG
 | 
| +/*
 | 
| +** This function is only called from within an assert() expression. It
 | 
| +** checks that the sqlite3.nTransaction variable is correctly set to
 | 
| +** the number of non-transaction savepoints currently in the 
 | 
| +** linked list starting at sqlite3.pSavepoint.
 | 
| +** 
 | 
| +** Usage:
 | 
| +**
 | 
| +**     assert( checkSavepointCount(db) );
 | 
| +*/
 | 
| +static int checkSavepointCount(sqlite3 *db){
 | 
| +  int n = 0;
 | 
| +  Savepoint *p;
 | 
| +  for(p=db->pSavepoint; p; p=p->pNext) n++;
 | 
| +  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
 | 
| +  return 1;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +/*
 | 
| +** Execute as much of a VDBE program as we can.
 | 
| +** This is the core of sqlite3_step().  
 | 
| +*/
 | 
| +int sqlite3VdbeExec(
 | 
| +  Vdbe *p                    /* The VDBE */
 | 
| +){
 | 
| +  int pc=0;                  /* The program counter */
 | 
| +  Op *aOp = p->aOp;          /* Copy of p->aOp */
 | 
| +  Op *pOp;                   /* Current operation */
 | 
| +  int rc = SQLITE_OK;        /* Value to return */
 | 
| +  sqlite3 *db = p->db;       /* The database */
 | 
| +  u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
 | 
| +  u8 encoding = ENC(db);     /* The database encoding */
 | 
| +  int iCompare = 0;          /* Result of last OP_Compare operation */
 | 
| +  unsigned nVmStep = 0;      /* Number of virtual machine steps */
 | 
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
| +  unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
 | 
| +#endif
 | 
| +  Mem *aMem = p->aMem;       /* Copy of p->aMem */
 | 
| +  Mem *pIn1 = 0;             /* 1st input operand */
 | 
| +  Mem *pIn2 = 0;             /* 2nd input operand */
 | 
| +  Mem *pIn3 = 0;             /* 3rd input operand */
 | 
| +  Mem *pOut = 0;             /* Output operand */
 | 
| +  int *aPermute = 0;         /* Permutation of columns for OP_Compare */
 | 
| +  i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
 | 
| +#ifdef VDBE_PROFILE
 | 
| +  u64 start;                 /* CPU clock count at start of opcode */
 | 
| +#endif
 | 
| +  /*** INSERT STACK UNION HERE ***/
 | 
| +
 | 
| +  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
 | 
| +  sqlite3VdbeEnter(p);
 | 
| +  if( p->rc==SQLITE_NOMEM ){
 | 
| +    /* This happens if a malloc() inside a call to sqlite3_column_text() or
 | 
| +    ** sqlite3_column_text16() failed.  */
 | 
| +    goto no_mem;
 | 
| +  }
 | 
| +  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | 
| +  assert( p->bIsReader || p->readOnly!=0 );
 | 
| +  p->rc = SQLITE_OK;
 | 
| +  p->iCurrentTime = 0;
 | 
| +  assert( p->explain==0 );
 | 
| +  p->pResultSet = 0;
 | 
| +  db->busyHandler.nBusy = 0;
 | 
| +  if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
 | 
| +  sqlite3VdbeIOTraceSql(p);
 | 
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
| +  if( db->xProgress ){
 | 
| +    assert( 0 < db->nProgressOps );
 | 
| +    nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
 | 
| +    if( nProgressLimit==0 ){
 | 
| +      nProgressLimit = db->nProgressOps;
 | 
| +    }else{
 | 
| +      nProgressLimit %= (unsigned)db->nProgressOps;
 | 
| +    }
 | 
| +  }
 | 
| +#endif
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  sqlite3BeginBenignMalloc();
 | 
| +  if( p->pc==0
 | 
| +   && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
 | 
| +  ){
 | 
| +    int i;
 | 
| +    int once = 1;
 | 
| +    sqlite3VdbePrintSql(p);
 | 
| +    if( p->db->flags & SQLITE_VdbeListing ){
 | 
| +      printf("VDBE Program Listing:\n");
 | 
| +      for(i=0; i<p->nOp; i++){
 | 
| +        sqlite3VdbePrintOp(stdout, i, &aOp[i]);
 | 
| +      }
 | 
| +    }
 | 
| +    if( p->db->flags & SQLITE_VdbeEQP ){
 | 
| +      for(i=0; i<p->nOp; i++){
 | 
| +        if( aOp[i].opcode==OP_Explain ){
 | 
| +          if( once ) printf("VDBE Query Plan:\n");
 | 
| +          printf("%s\n", aOp[i].p4.z);
 | 
| +          once = 0;
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +    if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
 | 
| +  }
 | 
| +  sqlite3EndBenignMalloc();
 | 
| +#endif
 | 
| +  for(pc=p->pc; rc==SQLITE_OK; pc++){
 | 
| +    assert( pc>=0 && pc<p->nOp );
 | 
| +    if( db->mallocFailed ) goto no_mem;
 | 
| +#ifdef VDBE_PROFILE
 | 
| +    start = sqlite3Hwtime();
 | 
| +#endif
 | 
| +    nVmStep++;
 | 
| +    pOp = &aOp[pc];
 | 
| +
 | 
| +    /* Only allow tracing if SQLITE_DEBUG is defined.
 | 
| +    */
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    if( db->flags & SQLITE_VdbeTrace ){
 | 
| +      sqlite3VdbePrintOp(stdout, pc, pOp);
 | 
| +    }
 | 
| +#endif
 | 
| +      
 | 
| +
 | 
| +    /* Check to see if we need to simulate an interrupt.  This only happens
 | 
| +    ** if we have a special test build.
 | 
| +    */
 | 
| +#ifdef SQLITE_TEST
 | 
| +    if( sqlite3_interrupt_count>0 ){
 | 
| +      sqlite3_interrupt_count--;
 | 
| +      if( sqlite3_interrupt_count==0 ){
 | 
| +        sqlite3_interrupt(db);
 | 
| +      }
 | 
| +    }
 | 
| +#endif
 | 
| +
 | 
| +    /* On any opcode with the "out2-prerelease" tag, free any
 | 
| +    ** external allocations out of mem[p2] and set mem[p2] to be
 | 
| +    ** an undefined integer.  Opcodes will either fill in the integer
 | 
| +    ** value or convert mem[p2] to a different type.
 | 
| +    */
 | 
| +    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
 | 
| +    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
 | 
| +      assert( pOp->p2>0 );
 | 
| +      assert( pOp->p2<=(p->nMem-p->nCursor) );
 | 
| +      pOut = &aMem[pOp->p2];
 | 
| +      memAboutToChange(p, pOut);
 | 
| +      if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
 | 
| +      pOut->flags = MEM_Int;
 | 
| +    }
 | 
| +
 | 
| +    /* Sanity checking on other operands */
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    if( (pOp->opflags & OPFLG_IN1)!=0 ){
 | 
| +      assert( pOp->p1>0 );
 | 
| +      assert( pOp->p1<=(p->nMem-p->nCursor) );
 | 
| +      assert( memIsValid(&aMem[pOp->p1]) );
 | 
| +      assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
 | 
| +      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
 | 
| +    }
 | 
| +    if( (pOp->opflags & OPFLG_IN2)!=0 ){
 | 
| +      assert( pOp->p2>0 );
 | 
| +      assert( pOp->p2<=(p->nMem-p->nCursor) );
 | 
| +      assert( memIsValid(&aMem[pOp->p2]) );
 | 
| +      assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
 | 
| +      REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
 | 
| +    }
 | 
| +    if( (pOp->opflags & OPFLG_IN3)!=0 ){
 | 
| +      assert( pOp->p3>0 );
 | 
| +      assert( pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +      assert( memIsValid(&aMem[pOp->p3]) );
 | 
| +      assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
 | 
| +      REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
 | 
| +    }
 | 
| +    if( (pOp->opflags & OPFLG_OUT2)!=0 ){
 | 
| +      assert( pOp->p2>0 );
 | 
| +      assert( pOp->p2<=(p->nMem-p->nCursor) );
 | 
| +      memAboutToChange(p, &aMem[pOp->p2]);
 | 
| +    }
 | 
| +    if( (pOp->opflags & OPFLG_OUT3)!=0 ){
 | 
| +      assert( pOp->p3>0 );
 | 
| +      assert( pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +      memAboutToChange(p, &aMem[pOp->p3]);
 | 
| +    }
 | 
| +#endif
 | 
| +  
 | 
| +    switch( pOp->opcode ){
 | 
| +
 | 
| +/*****************************************************************************
 | 
| +** What follows is a massive switch statement where each case implements a
 | 
| +** separate instruction in the virtual machine.  If we follow the usual
 | 
| +** indentation conventions, each case should be indented by 6 spaces.  But
 | 
| +** that is a lot of wasted space on the left margin.  So the code within
 | 
| +** the switch statement will break with convention and be flush-left. Another
 | 
| +** big comment (similar to this one) will mark the point in the code where
 | 
| +** we transition back to normal indentation.
 | 
| +**
 | 
| +** The formatting of each case is important.  The makefile for SQLite
 | 
| +** generates two C files "opcodes.h" and "opcodes.c" by scanning this
 | 
| +** file looking for lines that begin with "case OP_".  The opcodes.h files
 | 
| +** will be filled with #defines that give unique integer values to each
 | 
| +** opcode and the opcodes.c file is filled with an array of strings where
 | 
| +** each string is the symbolic name for the corresponding opcode.  If the
 | 
| +** case statement is followed by a comment of the form "/# same as ... #/"
 | 
| +** that comment is used to determine the particular value of the opcode.
 | 
| +**
 | 
| +** Other keywords in the comment that follows each case are used to
 | 
| +** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
 | 
| +** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
 | 
| +** the mkopcodeh.awk script for additional information.
 | 
| +**
 | 
| +** Documentation about VDBE opcodes is generated by scanning this file
 | 
| +** for lines of that contain "Opcode:".  That line and all subsequent
 | 
| +** comment lines are used in the generation of the opcode.html documentation
 | 
| +** file.
 | 
| +**
 | 
| +** SUMMARY:
 | 
| +**
 | 
| +**     Formatting is important to scripts that scan this file.
 | 
| +**     Do not deviate from the formatting style currently in use.
 | 
| +**
 | 
| +*****************************************************************************/
 | 
| +
 | 
| +/* Opcode:  Goto * P2 * * *
 | 
| +**
 | 
| +** An unconditional jump to address P2.
 | 
| +** The next instruction executed will be 
 | 
| +** the one at index P2 from the beginning of
 | 
| +** the program.
 | 
| +**
 | 
| +** The P1 parameter is not actually used by this opcode.  However, it
 | 
| +** is sometimes set to 1 instead of 0 as a hint to the command-line shell
 | 
| +** that this Goto is the bottom of a loop and that the lines from P2 down
 | 
| +** to the current line should be indented for EXPLAIN output.
 | 
| +*/
 | 
| +case OP_Goto: {             /* jump */
 | 
| +  pc = pOp->p2 - 1;
 | 
| +
 | 
| +  /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
 | 
| +  ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
 | 
| +  ** completion.  Check to see if sqlite3_interrupt() has been called
 | 
| +  ** or if the progress callback needs to be invoked. 
 | 
| +  **
 | 
| +  ** This code uses unstructured "goto" statements and does not look clean.
 | 
| +  ** But that is not due to sloppy coding habits. The code is written this
 | 
| +  ** way for performance, to avoid having to run the interrupt and progress
 | 
| +  ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
 | 
| +  ** faster according to "valgrind --tool=cachegrind" */
 | 
| +check_for_interrupt:
 | 
| +  if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
 | 
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
| +  /* Call the progress callback if it is configured and the required number
 | 
| +  ** of VDBE ops have been executed (either since this invocation of
 | 
| +  ** sqlite3VdbeExec() or since last time the progress callback was called).
 | 
| +  ** If the progress callback returns non-zero, exit the virtual machine with
 | 
| +  ** a return code SQLITE_ABORT.
 | 
| +  */
 | 
| +  if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
 | 
| +    assert( db->nProgressOps!=0 );
 | 
| +    nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
 | 
| +    if( db->xProgress(db->pProgressArg) ){
 | 
| +      rc = SQLITE_INTERRUPT;
 | 
| +      goto vdbe_error_halt;
 | 
| +    }
 | 
| +  }
 | 
| +#endif
 | 
| +  
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  Gosub P1 P2 * * *
 | 
| +**
 | 
| +** Write the current address onto register P1
 | 
| +** and then jump to address P2.
 | 
| +*/
 | 
| +case OP_Gosub: {            /* jump */
 | 
| +  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( VdbeMemDynamic(pIn1)==0 );
 | 
| +  memAboutToChange(p, pIn1);
 | 
| +  pIn1->flags = MEM_Int;
 | 
| +  pIn1->u.i = pc;
 | 
| +  REGISTER_TRACE(pOp->p1, pIn1);
 | 
| +  pc = pOp->p2 - 1;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  Return P1 * * * *
 | 
| +**
 | 
| +** Jump to the next instruction after the address in register P1.  After
 | 
| +** the jump, register P1 becomes undefined.
 | 
| +*/
 | 
| +case OP_Return: {           /* in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( pIn1->flags==MEM_Int );
 | 
| +  pc = (int)pIn1->u.i;
 | 
| +  pIn1->flags = MEM_Undefined;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: InitCoroutine P1 P2 P3 * *
 | 
| +**
 | 
| +** Set up register P1 so that it will Yield to the coroutine
 | 
| +** located at address P3.
 | 
| +**
 | 
| +** If P2!=0 then the coroutine implementation immediately follows
 | 
| +** this opcode.  So jump over the coroutine implementation to
 | 
| +** address P2.
 | 
| +**
 | 
| +** See also: EndCoroutine
 | 
| +*/
 | 
| +case OP_InitCoroutine: {     /* jump */
 | 
| +  assert( pOp->p1>0 &&  pOp->p1<=(p->nMem-p->nCursor) );
 | 
| +  assert( pOp->p2>=0 && pOp->p2<p->nOp );
 | 
| +  assert( pOp->p3>=0 && pOp->p3<p->nOp );
 | 
| +  pOut = &aMem[pOp->p1];
 | 
| +  assert( !VdbeMemDynamic(pOut) );
 | 
| +  pOut->u.i = pOp->p3 - 1;
 | 
| +  pOut->flags = MEM_Int;
 | 
| +  if( pOp->p2 ) pc = pOp->p2 - 1;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  EndCoroutine P1 * * * *
 | 
| +**
 | 
| +** The instruction at the address in register P1 is a Yield.
 | 
| +** Jump to the P2 parameter of that Yield.
 | 
| +** After the jump, register P1 becomes undefined.
 | 
| +**
 | 
| +** See also: InitCoroutine
 | 
| +*/
 | 
| +case OP_EndCoroutine: {           /* in1 */
 | 
| +  VdbeOp *pCaller;
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( pIn1->flags==MEM_Int );
 | 
| +  assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
 | 
| +  pCaller = &aOp[pIn1->u.i];
 | 
| +  assert( pCaller->opcode==OP_Yield );
 | 
| +  assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
 | 
| +  pc = pCaller->p2 - 1;
 | 
| +  pIn1->flags = MEM_Undefined;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  Yield P1 P2 * * *
 | 
| +**
 | 
| +** Swap the program counter with the value in register P1.  This
 | 
| +** has the effect of yielding to a coroutine.
 | 
| +**
 | 
| +** If the coroutine that is launched by this instruction ends with
 | 
| +** Yield or Return then continue to the next instruction.  But if
 | 
| +** the coroutine launched by this instruction ends with
 | 
| +** EndCoroutine, then jump to P2 rather than continuing with the
 | 
| +** next instruction.
 | 
| +**
 | 
| +** See also: InitCoroutine
 | 
| +*/
 | 
| +case OP_Yield: {            /* in1, jump */
 | 
| +  int pcDest;
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( VdbeMemDynamic(pIn1)==0 );
 | 
| +  pIn1->flags = MEM_Int;
 | 
| +  pcDest = (int)pIn1->u.i;
 | 
| +  pIn1->u.i = pc;
 | 
| +  REGISTER_TRACE(pOp->p1, pIn1);
 | 
| +  pc = pcDest;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
 | 
| +** Synopsis:  if r[P3]=null halt
 | 
| +**
 | 
| +** Check the value in register P3.  If it is NULL then Halt using
 | 
| +** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
 | 
| +** value in register P3 is not NULL, then this routine is a no-op.
 | 
| +** The P5 parameter should be 1.
 | 
| +*/
 | 
| +case OP_HaltIfNull: {      /* in3 */
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  if( (pIn3->flags & MEM_Null)==0 ) break;
 | 
| +  /* Fall through into OP_Halt */
 | 
| +}
 | 
| +
 | 
| +/* Opcode:  Halt P1 P2 * P4 P5
 | 
| +**
 | 
| +** Exit immediately.  All open cursors, etc are closed
 | 
| +** automatically.
 | 
| +**
 | 
| +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
 | 
| +** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
 | 
| +** For errors, it can be some other value.  If P1!=0 then P2 will determine
 | 
| +** whether or not to rollback the current transaction.  Do not rollback
 | 
| +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
 | 
| +** then back out all changes that have occurred during this execution of the
 | 
| +** VDBE, but do not rollback the transaction. 
 | 
| +**
 | 
| +** If P4 is not null then it is an error message string.
 | 
| +**
 | 
| +** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
 | 
| +**
 | 
| +**    0:  (no change)
 | 
| +**    1:  NOT NULL contraint failed: P4
 | 
| +**    2:  UNIQUE constraint failed: P4
 | 
| +**    3:  CHECK constraint failed: P4
 | 
| +**    4:  FOREIGN KEY constraint failed: P4
 | 
| +**
 | 
| +** If P5 is not zero and P4 is NULL, then everything after the ":" is
 | 
| +** omitted.
 | 
| +**
 | 
| +** There is an implied "Halt 0 0 0" instruction inserted at the very end of
 | 
| +** every program.  So a jump past the last instruction of the program
 | 
| +** is the same as executing Halt.
 | 
| +*/
 | 
| +case OP_Halt: {
 | 
| +  const char *zType;
 | 
| +  const char *zLogFmt;
 | 
| +
 | 
| +  if( pOp->p1==SQLITE_OK && p->pFrame ){
 | 
| +    /* Halt the sub-program. Return control to the parent frame. */
 | 
| +    VdbeFrame *pFrame = p->pFrame;
 | 
| +    p->pFrame = pFrame->pParent;
 | 
| +    p->nFrame--;
 | 
| +    sqlite3VdbeSetChanges(db, p->nChange);
 | 
| +    pc = sqlite3VdbeFrameRestore(pFrame);
 | 
| +    lastRowid = db->lastRowid;
 | 
| +    if( pOp->p2==OE_Ignore ){
 | 
| +      /* Instruction pc is the OP_Program that invoked the sub-program 
 | 
| +      ** currently being halted. If the p2 instruction of this OP_Halt
 | 
| +      ** instruction is set to OE_Ignore, then the sub-program is throwing
 | 
| +      ** an IGNORE exception. In this case jump to the address specified
 | 
| +      ** as the p2 of the calling OP_Program.  */
 | 
| +      pc = p->aOp[pc].p2-1;
 | 
| +    }
 | 
| +    aOp = p->aOp;
 | 
| +    aMem = p->aMem;
 | 
| +    break;
 | 
| +  }
 | 
| +  p->rc = pOp->p1;
 | 
| +  p->errorAction = (u8)pOp->p2;
 | 
| +  p->pc = pc;
 | 
| +  if( p->rc ){
 | 
| +    if( pOp->p5 ){
 | 
| +      static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
 | 
| +                                             "FOREIGN KEY" };
 | 
| +      assert( pOp->p5>=1 && pOp->p5<=4 );
 | 
| +      testcase( pOp->p5==1 );
 | 
| +      testcase( pOp->p5==2 );
 | 
| +      testcase( pOp->p5==3 );
 | 
| +      testcase( pOp->p5==4 );
 | 
| +      zType = azType[pOp->p5-1];
 | 
| +    }else{
 | 
| +      zType = 0;
 | 
| +    }
 | 
| +    assert( zType!=0 || pOp->p4.z!=0 );
 | 
| +    zLogFmt = "abort at %d in [%s]: %s";
 | 
| +    if( zType && pOp->p4.z ){
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", 
 | 
| +                       zType, pOp->p4.z);
 | 
| +    }else if( pOp->p4.z ){
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
 | 
| +    }else{
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
 | 
| +    }
 | 
| +    sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
 | 
| +  }
 | 
| +  rc = sqlite3VdbeHalt(p);
 | 
| +  assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
 | 
| +  if( rc==SQLITE_BUSY ){
 | 
| +    p->rc = rc = SQLITE_BUSY;
 | 
| +  }else{
 | 
| +    assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
 | 
| +    assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
 | 
| +    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
 | 
| +  }
 | 
| +  goto vdbe_return;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Integer P1 P2 * * *
 | 
| +** Synopsis: r[P2]=P1
 | 
| +**
 | 
| +** The 32-bit integer value P1 is written into register P2.
 | 
| +*/
 | 
| +case OP_Integer: {         /* out2-prerelease */
 | 
| +  pOut->u.i = pOp->p1;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Int64 * P2 * P4 *
 | 
| +** Synopsis: r[P2]=P4
 | 
| +**
 | 
| +** P4 is a pointer to a 64-bit integer value.
 | 
| +** Write that value into register P2.
 | 
| +*/
 | 
| +case OP_Int64: {           /* out2-prerelease */
 | 
| +  assert( pOp->p4.pI64!=0 );
 | 
| +  pOut->u.i = *pOp->p4.pI64;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_FLOATING_POINT
 | 
| +/* Opcode: Real * P2 * P4 *
 | 
| +** Synopsis: r[P2]=P4
 | 
| +**
 | 
| +** P4 is a pointer to a 64-bit floating point value.
 | 
| +** Write that value into register P2.
 | 
| +*/
 | 
| +case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
 | 
| +  pOut->flags = MEM_Real;
 | 
| +  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
 | 
| +  pOut->u.r = *pOp->p4.pReal;
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/* Opcode: String8 * P2 * P4 *
 | 
| +** Synopsis: r[P2]='P4'
 | 
| +**
 | 
| +** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
 | 
| +** into a String before it is executed for the first time.  During
 | 
| +** this transformation, the length of string P4 is computed and stored
 | 
| +** as the P1 parameter.
 | 
| +*/
 | 
| +case OP_String8: {         /* same as TK_STRING, out2-prerelease */
 | 
| +  assert( pOp->p4.z!=0 );
 | 
| +  pOp->opcode = OP_String;
 | 
| +  pOp->p1 = sqlite3Strlen30(pOp->p4.z);
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_UTF16
 | 
| +  if( encoding!=SQLITE_UTF8 ){
 | 
| +    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
 | 
| +    if( rc==SQLITE_TOOBIG ) goto too_big;
 | 
| +    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
 | 
| +    assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
 | 
| +    assert( VdbeMemDynamic(pOut)==0 );
 | 
| +    pOut->szMalloc = 0;
 | 
| +    pOut->flags |= MEM_Static;
 | 
| +    if( pOp->p4type==P4_DYNAMIC ){
 | 
| +      sqlite3DbFree(db, pOp->p4.z);
 | 
| +    }
 | 
| +    pOp->p4type = P4_DYNAMIC;
 | 
| +    pOp->p4.z = pOut->z;
 | 
| +    pOp->p1 = pOut->n;
 | 
| +  }
 | 
| +#endif
 | 
| +  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +  /* Fall through to the next case, OP_String */
 | 
| +}
 | 
| +  
 | 
| +/* Opcode: String P1 P2 * P4 *
 | 
| +** Synopsis: r[P2]='P4' (len=P1)
 | 
| +**
 | 
| +** The string value P4 of length P1 (bytes) is stored in register P2.
 | 
| +*/
 | 
| +case OP_String: {          /* out2-prerelease */
 | 
| +  assert( pOp->p4.z!=0 );
 | 
| +  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
 | 
| +  pOut->z = pOp->p4.z;
 | 
| +  pOut->n = pOp->p1;
 | 
| +  pOut->enc = encoding;
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Null P1 P2 P3 * *
 | 
| +** Synopsis:  r[P2..P3]=NULL
 | 
| +**
 | 
| +** Write a NULL into registers P2.  If P3 greater than P2, then also write
 | 
| +** NULL into register P3 and every register in between P2 and P3.  If P3
 | 
| +** is less than P2 (typically P3 is zero) then only register P2 is
 | 
| +** set to NULL.
 | 
| +**
 | 
| +** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
 | 
| +** NULL values will not compare equal even if SQLITE_NULLEQ is set on
 | 
| +** OP_Ne or OP_Eq.
 | 
| +*/
 | 
| +case OP_Null: {           /* out2-prerelease */
 | 
| +  int cnt;
 | 
| +  u16 nullFlag;
 | 
| +  cnt = pOp->p3-pOp->p2;
 | 
| +  assert( pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
 | 
| +  while( cnt>0 ){
 | 
| +    pOut++;
 | 
| +    memAboutToChange(p, pOut);
 | 
| +    sqlite3VdbeMemSetNull(pOut);
 | 
| +    pOut->flags = nullFlag;
 | 
| +    cnt--;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SoftNull P1 * * * *
 | 
| +** Synopsis:  r[P1]=NULL
 | 
| +**
 | 
| +** Set register P1 to have the value NULL as seen by the OP_MakeRecord
 | 
| +** instruction, but do not free any string or blob memory associated with
 | 
| +** the register, so that if the value was a string or blob that was
 | 
| +** previously copied using OP_SCopy, the copies will continue to be valid.
 | 
| +*/
 | 
| +case OP_SoftNull: {
 | 
| +  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
 | 
| +  pOut = &aMem[pOp->p1];
 | 
| +  pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Blob P1 P2 * P4 *
 | 
| +** Synopsis: r[P2]=P4 (len=P1)
 | 
| +**
 | 
| +** P4 points to a blob of data P1 bytes long.  Store this
 | 
| +** blob in register P2.
 | 
| +*/
 | 
| +case OP_Blob: {                /* out2-prerelease */
 | 
| +  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
 | 
| +  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
 | 
| +  pOut->enc = encoding;
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Variable P1 P2 * P4 *
 | 
| +** Synopsis: r[P2]=parameter(P1,P4)
 | 
| +**
 | 
| +** Transfer the values of bound parameter P1 into register P2
 | 
| +**
 | 
| +** If the parameter is named, then its name appears in P4.
 | 
| +** The P4 value is used by sqlite3_bind_parameter_name().
 | 
| +*/
 | 
| +case OP_Variable: {            /* out2-prerelease */
 | 
| +  Mem *pVar;       /* Value being transferred */
 | 
| +
 | 
| +  assert( pOp->p1>0 && pOp->p1<=p->nVar );
 | 
| +  assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
 | 
| +  pVar = &p->aVar[pOp->p1 - 1];
 | 
| +  if( sqlite3VdbeMemTooBig(pVar) ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Move P1 P2 P3 * *
 | 
| +** Synopsis:  r[P2@P3]=r[P1@P3]
 | 
| +**
 | 
| +** Move the P3 values in register P1..P1+P3-1 over into
 | 
| +** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
 | 
| +** left holding a NULL.  It is an error for register ranges
 | 
| +** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
 | 
| +** for P3 to be less than 1.
 | 
| +*/
 | 
| +case OP_Move: {
 | 
| +  int n;           /* Number of registers left to copy */
 | 
| +  int p1;          /* Register to copy from */
 | 
| +  int p2;          /* Register to copy to */
 | 
| +
 | 
| +  n = pOp->p3;
 | 
| +  p1 = pOp->p1;
 | 
| +  p2 = pOp->p2;
 | 
| +  assert( n>0 && p1>0 && p2>0 );
 | 
| +  assert( p1+n<=p2 || p2+n<=p1 );
 | 
| +
 | 
| +  pIn1 = &aMem[p1];
 | 
| +  pOut = &aMem[p2];
 | 
| +  do{
 | 
| +    assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
 | 
| +    assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
 | 
| +    assert( memIsValid(pIn1) );
 | 
| +    memAboutToChange(p, pOut);
 | 
| +    sqlite3VdbeMemMove(pOut, pIn1);
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
 | 
| +      pOut->pScopyFrom += p1 - pOp->p2;
 | 
| +    }
 | 
| +#endif
 | 
| +    REGISTER_TRACE(p2++, pOut);
 | 
| +    pIn1++;
 | 
| +    pOut++;
 | 
| +  }while( --n );
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Copy P1 P2 P3 * *
 | 
| +** Synopsis: r[P2@P3+1]=r[P1@P3+1]
 | 
| +**
 | 
| +** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
 | 
| +**
 | 
| +** This instruction makes a deep copy of the value.  A duplicate
 | 
| +** is made of any string or blob constant.  See also OP_SCopy.
 | 
| +*/
 | 
| +case OP_Copy: {
 | 
| +  int n;
 | 
| +
 | 
| +  n = pOp->p3;
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  assert( pOut!=pIn1 );
 | 
| +  while( 1 ){
 | 
| +    sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
 | 
| +    Deephemeralize(pOut);
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    pOut->pScopyFrom = 0;
 | 
| +#endif
 | 
| +    REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
 | 
| +    if( (n--)==0 ) break;
 | 
| +    pOut++;
 | 
| +    pIn1++;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SCopy P1 P2 * * *
 | 
| +** Synopsis: r[P2]=r[P1]
 | 
| +**
 | 
| +** Make a shallow copy of register P1 into register P2.
 | 
| +**
 | 
| +** This instruction makes a shallow copy of the value.  If the value
 | 
| +** is a string or blob, then the copy is only a pointer to the
 | 
| +** original and hence if the original changes so will the copy.
 | 
| +** Worse, if the original is deallocated, the copy becomes invalid.
 | 
| +** Thus the program must guarantee that the original will not change
 | 
| +** during the lifetime of the copy.  Use OP_Copy to make a complete
 | 
| +** copy.
 | 
| +*/
 | 
| +case OP_SCopy: {            /* out2 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  assert( pOut!=pIn1 );
 | 
| +  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
 | 
| +#endif
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: ResultRow P1 P2 * * *
 | 
| +** Synopsis:  output=r[P1@P2]
 | 
| +**
 | 
| +** The registers P1 through P1+P2-1 contain a single row of
 | 
| +** results. This opcode causes the sqlite3_step() call to terminate
 | 
| +** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
 | 
| +** structure to provide access to the r(P1)..r(P1+P2-1) values as
 | 
| +** the result row.
 | 
| +*/
 | 
| +case OP_ResultRow: {
 | 
| +  Mem *pMem;
 | 
| +  int i;
 | 
| +  assert( p->nResColumn==pOp->p2 );
 | 
| +  assert( pOp->p1>0 );
 | 
| +  assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | 
| +  /* Run the progress counter just before returning.
 | 
| +  */
 | 
| +  if( db->xProgress!=0
 | 
| +   && nVmStep>=nProgressLimit
 | 
| +   && db->xProgress(db->pProgressArg)!=0
 | 
| +  ){
 | 
| +    rc = SQLITE_INTERRUPT;
 | 
| +    goto vdbe_error_halt;
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +  /* If this statement has violated immediate foreign key constraints, do
 | 
| +  ** not return the number of rows modified. And do not RELEASE the statement
 | 
| +  ** transaction. It needs to be rolled back.  */
 | 
| +  if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
 | 
| +    assert( db->flags&SQLITE_CountRows );
 | 
| +    assert( p->usesStmtJournal );
 | 
| +    break;
 | 
| +  }
 | 
| +
 | 
| +  /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 
 | 
| +  ** DML statements invoke this opcode to return the number of rows 
 | 
| +  ** modified to the user. This is the only way that a VM that
 | 
| +  ** opens a statement transaction may invoke this opcode.
 | 
| +  **
 | 
| +  ** In case this is such a statement, close any statement transaction
 | 
| +  ** opened by this VM before returning control to the user. This is to
 | 
| +  ** ensure that statement-transactions are always nested, not overlapping.
 | 
| +  ** If the open statement-transaction is not closed here, then the user
 | 
| +  ** may step another VM that opens its own statement transaction. This
 | 
| +  ** may lead to overlapping statement transactions.
 | 
| +  **
 | 
| +  ** The statement transaction is never a top-level transaction.  Hence
 | 
| +  ** the RELEASE call below can never fail.
 | 
| +  */
 | 
| +  assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
 | 
| +  rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
 | 
| +  if( NEVER(rc!=SQLITE_OK) ){
 | 
| +    break;
 | 
| +  }
 | 
| +
 | 
| +  /* Invalidate all ephemeral cursor row caches */
 | 
| +  p->cacheCtr = (p->cacheCtr + 2)|1;
 | 
| +
 | 
| +  /* Make sure the results of the current row are \000 terminated
 | 
| +  ** and have an assigned type.  The results are de-ephemeralized as
 | 
| +  ** a side effect.
 | 
| +  */
 | 
| +  pMem = p->pResultSet = &aMem[pOp->p1];
 | 
| +  for(i=0; i<pOp->p2; i++){
 | 
| +    assert( memIsValid(&pMem[i]) );
 | 
| +    Deephemeralize(&pMem[i]);
 | 
| +    assert( (pMem[i].flags & MEM_Ephem)==0
 | 
| +            || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
 | 
| +    sqlite3VdbeMemNulTerminate(&pMem[i]);
 | 
| +    REGISTER_TRACE(pOp->p1+i, &pMem[i]);
 | 
| +  }
 | 
| +  if( db->mallocFailed ) goto no_mem;
 | 
| +
 | 
| +  /* Return SQLITE_ROW
 | 
| +  */
 | 
| +  p->pc = pc + 1;
 | 
| +  rc = SQLITE_ROW;
 | 
| +  goto vdbe_return;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Concat P1 P2 P3 * *
 | 
| +** Synopsis: r[P3]=r[P2]+r[P1]
 | 
| +**
 | 
| +** Add the text in register P1 onto the end of the text in
 | 
| +** register P2 and store the result in register P3.
 | 
| +** If either the P1 or P2 text are NULL then store NULL in P3.
 | 
| +**
 | 
| +**   P3 = P2 || P1
 | 
| +**
 | 
| +** It is illegal for P1 and P3 to be the same register. Sometimes,
 | 
| +** if P3 is the same register as P2, the implementation is able
 | 
| +** to avoid a memcpy().
 | 
| +*/
 | 
| +case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
 | 
| +  i64 nByte;
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  pOut = &aMem[pOp->p3];
 | 
| +  assert( pIn1!=pOut );
 | 
| +  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
 | 
| +    sqlite3VdbeMemSetNull(pOut);
 | 
| +    break;
 | 
| +  }
 | 
| +  if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
 | 
| +  Stringify(pIn1, encoding);
 | 
| +  Stringify(pIn2, encoding);
 | 
| +  nByte = pIn1->n + pIn2->n;
 | 
| +  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +  if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
 | 
| +    goto no_mem;
 | 
| +  }
 | 
| +  MemSetTypeFlag(pOut, MEM_Str);
 | 
| +  if( pOut!=pIn2 ){
 | 
| +    memcpy(pOut->z, pIn2->z, pIn2->n);
 | 
| +  }
 | 
| +  memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
 | 
| +  pOut->z[nByte]=0;
 | 
| +  pOut->z[nByte+1] = 0;
 | 
| +  pOut->flags |= MEM_Term;
 | 
| +  pOut->n = (int)nByte;
 | 
| +  pOut->enc = encoding;
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Add P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P1]+r[P2]
 | 
| +**
 | 
| +** Add the value in register P1 to the value in register P2
 | 
| +** and store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: Multiply P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P1]*r[P2]
 | 
| +**
 | 
| +**
 | 
| +** Multiply the value in register P1 by the value in register P2
 | 
| +** and store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: Subtract P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P2]-r[P1]
 | 
| +**
 | 
| +** Subtract the value in register P1 from the value in register P2
 | 
| +** and store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: Divide P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P2]/r[P1]
 | 
| +**
 | 
| +** Divide the value in register P1 by the value in register P2
 | 
| +** and store the result in register P3 (P3=P2/P1). If the value in 
 | 
| +** register P1 is zero, then the result is NULL. If either input is 
 | 
| +** NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: Remainder P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P2]%r[P1]
 | 
| +**
 | 
| +** Compute the remainder after integer register P2 is divided by 
 | 
| +** register P1 and store the result in register P3. 
 | 
| +** If the value in register P1 is zero the result is NULL.
 | 
| +** If either operand is NULL, the result is NULL.
 | 
| +*/
 | 
| +case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
 | 
| +case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
 | 
| +case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
 | 
| +case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
 | 
| +case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
 | 
| +  char bIntint;   /* Started out as two integer operands */
 | 
| +  u16 flags;      /* Combined MEM_* flags from both inputs */
 | 
| +  u16 type1;      /* Numeric type of left operand */
 | 
| +  u16 type2;      /* Numeric type of right operand */
 | 
| +  i64 iA;         /* Integer value of left operand */
 | 
| +  i64 iB;         /* Integer value of right operand */
 | 
| +  double rA;      /* Real value of left operand */
 | 
| +  double rB;      /* Real value of right operand */
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  type1 = numericType(pIn1);
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  type2 = numericType(pIn2);
 | 
| +  pOut = &aMem[pOp->p3];
 | 
| +  flags = pIn1->flags | pIn2->flags;
 | 
| +  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
 | 
| +  if( (type1 & type2 & MEM_Int)!=0 ){
 | 
| +    iA = pIn1->u.i;
 | 
| +    iB = pIn2->u.i;
 | 
| +    bIntint = 1;
 | 
| +    switch( pOp->opcode ){
 | 
| +      case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
 | 
| +      case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
 | 
| +      case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
 | 
| +      case OP_Divide: {
 | 
| +        if( iA==0 ) goto arithmetic_result_is_null;
 | 
| +        if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
 | 
| +        iB /= iA;
 | 
| +        break;
 | 
| +      }
 | 
| +      default: {
 | 
| +        if( iA==0 ) goto arithmetic_result_is_null;
 | 
| +        if( iA==-1 ) iA = 1;
 | 
| +        iB %= iA;
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +    pOut->u.i = iB;
 | 
| +    MemSetTypeFlag(pOut, MEM_Int);
 | 
| +  }else{
 | 
| +    bIntint = 0;
 | 
| +fp_math:
 | 
| +    rA = sqlite3VdbeRealValue(pIn1);
 | 
| +    rB = sqlite3VdbeRealValue(pIn2);
 | 
| +    switch( pOp->opcode ){
 | 
| +      case OP_Add:         rB += rA;       break;
 | 
| +      case OP_Subtract:    rB -= rA;       break;
 | 
| +      case OP_Multiply:    rB *= rA;       break;
 | 
| +      case OP_Divide: {
 | 
| +        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
 | 
| +        if( rA==(double)0 ) goto arithmetic_result_is_null;
 | 
| +        rB /= rA;
 | 
| +        break;
 | 
| +      }
 | 
| +      default: {
 | 
| +        iA = (i64)rA;
 | 
| +        iB = (i64)rB;
 | 
| +        if( iA==0 ) goto arithmetic_result_is_null;
 | 
| +        if( iA==-1 ) iA = 1;
 | 
| +        rB = (double)(iB % iA);
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +#ifdef SQLITE_OMIT_FLOATING_POINT
 | 
| +    pOut->u.i = rB;
 | 
| +    MemSetTypeFlag(pOut, MEM_Int);
 | 
| +#else
 | 
| +    if( sqlite3IsNaN(rB) ){
 | 
| +      goto arithmetic_result_is_null;
 | 
| +    }
 | 
| +    pOut->u.r = rB;
 | 
| +    MemSetTypeFlag(pOut, MEM_Real);
 | 
| +    if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
 | 
| +      sqlite3VdbeIntegerAffinity(pOut);
 | 
| +    }
 | 
| +#endif
 | 
| +  }
 | 
| +  break;
 | 
| +
 | 
| +arithmetic_result_is_null:
 | 
| +  sqlite3VdbeMemSetNull(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: CollSeq P1 * * P4
 | 
| +**
 | 
| +** P4 is a pointer to a CollSeq struct. If the next call to a user function
 | 
| +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
 | 
| +** be returned. This is used by the built-in min(), max() and nullif()
 | 
| +** functions.
 | 
| +**
 | 
| +** If P1 is not zero, then it is a register that a subsequent min() or
 | 
| +** max() aggregate will set to 1 if the current row is not the minimum or
 | 
| +** maximum.  The P1 register is initialized to 0 by this instruction.
 | 
| +**
 | 
| +** The interface used by the implementation of the aforementioned functions
 | 
| +** to retrieve the collation sequence set by this opcode is not available
 | 
| +** publicly, only to user functions defined in func.c.
 | 
| +*/
 | 
| +case OP_CollSeq: {
 | 
| +  assert( pOp->p4type==P4_COLLSEQ );
 | 
| +  if( pOp->p1 ){
 | 
| +    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Function P1 P2 P3 P4 P5
 | 
| +** Synopsis: r[P3]=func(r[P2@P5])
 | 
| +**
 | 
| +** Invoke a user function (P4 is a pointer to a Function structure that
 | 
| +** defines the function) with P5 arguments taken from register P2 and
 | 
| +** successors.  The result of the function is stored in register P3.
 | 
| +** Register P3 must not be one of the function inputs.
 | 
| +**
 | 
| +** P1 is a 32-bit bitmask indicating whether or not each argument to the 
 | 
| +** function was determined to be constant at compile time. If the first
 | 
| +** argument was constant then bit 0 of P1 is set. This is used to determine
 | 
| +** whether meta data associated with a user function argument using the
 | 
| +** sqlite3_set_auxdata() API may be safely retained until the next
 | 
| +** invocation of this opcode.
 | 
| +**
 | 
| +** See also: AggStep and AggFinal
 | 
| +*/
 | 
| +case OP_Function: {
 | 
| +  int i;
 | 
| +  Mem *pArg;
 | 
| +  sqlite3_context ctx;
 | 
| +  sqlite3_value **apVal;
 | 
| +  int n;
 | 
| +
 | 
| +  n = pOp->p5;
 | 
| +  apVal = p->apArg;
 | 
| +  assert( apVal || n==0 );
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  ctx.pOut = &aMem[pOp->p3];
 | 
| +  memAboutToChange(p, ctx.pOut);
 | 
| +
 | 
| +  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
 | 
| +  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
 | 
| +  pArg = &aMem[pOp->p2];
 | 
| +  for(i=0; i<n; i++, pArg++){
 | 
| +    assert( memIsValid(pArg) );
 | 
| +    apVal[i] = pArg;
 | 
| +    Deephemeralize(pArg);
 | 
| +    REGISTER_TRACE(pOp->p2+i, pArg);
 | 
| +  }
 | 
| +
 | 
| +  assert( pOp->p4type==P4_FUNCDEF );
 | 
| +  ctx.pFunc = pOp->p4.pFunc;
 | 
| +  ctx.iOp = pc;
 | 
| +  ctx.pVdbe = p;
 | 
| +  MemSetTypeFlag(ctx.pOut, MEM_Null);
 | 
| +  ctx.fErrorOrAux = 0;
 | 
| +  db->lastRowid = lastRowid;
 | 
| +  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
 | 
| +  lastRowid = db->lastRowid;  /* Remember rowid changes made by xFunc */
 | 
| +
 | 
| +  /* If the function returned an error, throw an exception */
 | 
| +  if( ctx.fErrorOrAux ){
 | 
| +    if( ctx.isError ){
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
 | 
| +      rc = ctx.isError;
 | 
| +    }
 | 
| +    sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
 | 
| +  }
 | 
| +
 | 
| +  /* Copy the result of the function into register P3 */
 | 
| +  sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
 | 
| +  if( sqlite3VdbeMemTooBig(ctx.pOut) ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +
 | 
| +  REGISTER_TRACE(pOp->p3, ctx.pOut);
 | 
| +  UPDATE_MAX_BLOBSIZE(ctx.pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: BitAnd P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P1]&r[P2]
 | 
| +**
 | 
| +** Take the bit-wise AND of the values in register P1 and P2 and
 | 
| +** store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: BitOr P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P1]|r[P2]
 | 
| +**
 | 
| +** Take the bit-wise OR of the values in register P1 and P2 and
 | 
| +** store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: ShiftLeft P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P2]<<r[P1]
 | 
| +**
 | 
| +** Shift the integer value in register P2 to the left by the
 | 
| +** number of bits specified by the integer in register P1.
 | 
| +** Store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +/* Opcode: ShiftRight P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=r[P2]>>r[P1]
 | 
| +**
 | 
| +** Shift the integer value in register P2 to the right by the
 | 
| +** number of bits specified by the integer in register P1.
 | 
| +** Store the result in register P3.
 | 
| +** If either input is NULL, the result is NULL.
 | 
| +*/
 | 
| +case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
 | 
| +case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
 | 
| +case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
 | 
| +case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
 | 
| +  i64 iA;
 | 
| +  u64 uA;
 | 
| +  i64 iB;
 | 
| +  u8 op;
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  pOut = &aMem[pOp->p3];
 | 
| +  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
 | 
| +    sqlite3VdbeMemSetNull(pOut);
 | 
| +    break;
 | 
| +  }
 | 
| +  iA = sqlite3VdbeIntValue(pIn2);
 | 
| +  iB = sqlite3VdbeIntValue(pIn1);
 | 
| +  op = pOp->opcode;
 | 
| +  if( op==OP_BitAnd ){
 | 
| +    iA &= iB;
 | 
| +  }else if( op==OP_BitOr ){
 | 
| +    iA |= iB;
 | 
| +  }else if( iB!=0 ){
 | 
| +    assert( op==OP_ShiftRight || op==OP_ShiftLeft );
 | 
| +
 | 
| +    /* If shifting by a negative amount, shift in the other direction */
 | 
| +    if( iB<0 ){
 | 
| +      assert( OP_ShiftRight==OP_ShiftLeft+1 );
 | 
| +      op = 2*OP_ShiftLeft + 1 - op;
 | 
| +      iB = iB>(-64) ? -iB : 64;
 | 
| +    }
 | 
| +
 | 
| +    if( iB>=64 ){
 | 
| +      iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
 | 
| +    }else{
 | 
| +      memcpy(&uA, &iA, sizeof(uA));
 | 
| +      if( op==OP_ShiftLeft ){
 | 
| +        uA <<= iB;
 | 
| +      }else{
 | 
| +        uA >>= iB;
 | 
| +        /* Sign-extend on a right shift of a negative number */
 | 
| +        if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
 | 
| +      }
 | 
| +      memcpy(&iA, &uA, sizeof(iA));
 | 
| +    }
 | 
| +  }
 | 
| +  pOut->u.i = iA;
 | 
| +  MemSetTypeFlag(pOut, MEM_Int);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: AddImm  P1 P2 * * *
 | 
| +** Synopsis:  r[P1]=r[P1]+P2
 | 
| +** 
 | 
| +** Add the constant P2 to the value in register P1.
 | 
| +** The result is always an integer.
 | 
| +**
 | 
| +** To force any register to be an integer, just add 0.
 | 
| +*/
 | 
| +case OP_AddImm: {            /* in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  memAboutToChange(p, pIn1);
 | 
| +  sqlite3VdbeMemIntegerify(pIn1);
 | 
| +  pIn1->u.i += pOp->p2;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: MustBeInt P1 P2 * * *
 | 
| +** 
 | 
| +** Force the value in register P1 to be an integer.  If the value
 | 
| +** in P1 is not an integer and cannot be converted into an integer
 | 
| +** without data loss, then jump immediately to P2, or if P2==0
 | 
| +** raise an SQLITE_MISMATCH exception.
 | 
| +*/
 | 
| +case OP_MustBeInt: {            /* jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  if( (pIn1->flags & MEM_Int)==0 ){
 | 
| +    applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
 | 
| +    VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
 | 
| +    if( (pIn1->flags & MEM_Int)==0 ){
 | 
| +      if( pOp->p2==0 ){
 | 
| +        rc = SQLITE_MISMATCH;
 | 
| +        goto abort_due_to_error;
 | 
| +      }else{
 | 
| +        pc = pOp->p2 - 1;
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +  MemSetTypeFlag(pIn1, MEM_Int);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_FLOATING_POINT
 | 
| +/* Opcode: RealAffinity P1 * * * *
 | 
| +**
 | 
| +** If register P1 holds an integer convert it to a real value.
 | 
| +**
 | 
| +** This opcode is used when extracting information from a column that
 | 
| +** has REAL affinity.  Such column values may still be stored as
 | 
| +** integers, for space efficiency, but after extraction we want them
 | 
| +** to have only a real value.
 | 
| +*/
 | 
| +case OP_RealAffinity: {                  /* in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  if( pIn1->flags & MEM_Int ){
 | 
| +    sqlite3VdbeMemRealify(pIn1);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_CAST
 | 
| +/* Opcode: Cast P1 P2 * * *
 | 
| +** Synopsis: affinity(r[P1])
 | 
| +**
 | 
| +** Force the value in register P1 to be the type defined by P2.
 | 
| +** 
 | 
| +** <ul>
 | 
| +** <li value="97"> TEXT
 | 
| +** <li value="98"> BLOB
 | 
| +** <li value="99"> NUMERIC
 | 
| +** <li value="100"> INTEGER
 | 
| +** <li value="101"> REAL
 | 
| +** </ul>
 | 
| +**
 | 
| +** A NULL value is not changed by this routine.  It remains NULL.
 | 
| +*/
 | 
| +case OP_Cast: {                  /* in1 */
 | 
| +  assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
 | 
| +  testcase( pOp->p2==SQLITE_AFF_TEXT );
 | 
| +  testcase( pOp->p2==SQLITE_AFF_NONE );
 | 
| +  testcase( pOp->p2==SQLITE_AFF_NUMERIC );
 | 
| +  testcase( pOp->p2==SQLITE_AFF_INTEGER );
 | 
| +  testcase( pOp->p2==SQLITE_AFF_REAL );
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  memAboutToChange(p, pIn1);
 | 
| +  rc = ExpandBlob(pIn1);
 | 
| +  sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
 | 
| +  UPDATE_MAX_BLOBSIZE(pIn1);
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_CAST */
 | 
| +
 | 
| +/* Opcode: Lt P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]<r[P3] goto P2
 | 
| +**
 | 
| +** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
 | 
| +** jump to address P2.  
 | 
| +**
 | 
| +** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
 | 
| +** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
 | 
| +** bit is clear then fall through if either operand is NULL.
 | 
| +**
 | 
| +** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
 | 
| +** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
 | 
| +** to coerce both inputs according to this affinity before the
 | 
| +** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
 | 
| +** affinity is used. Note that the affinity conversions are stored
 | 
| +** back into the input registers P1 and P3.  So this opcode can cause
 | 
| +** persistent changes to registers P1 and P3.
 | 
| +**
 | 
| +** Once any conversions have taken place, and neither value is NULL, 
 | 
| +** the values are compared. If both values are blobs then memcmp() is
 | 
| +** used to determine the results of the comparison.  If both values
 | 
| +** are text, then the appropriate collating function specified in
 | 
| +** P4 is  used to do the comparison.  If P4 is not specified then
 | 
| +** memcmp() is used to compare text string.  If both values are
 | 
| +** numeric, then a numeric comparison is used. If the two values
 | 
| +** are of different types, then numbers are considered less than
 | 
| +** strings and strings are considered less than blobs.
 | 
| +**
 | 
| +** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
 | 
| +** store a boolean result (either 0, or 1, or NULL) in register P2.
 | 
| +**
 | 
| +** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
 | 
| +** equal to one another, provided that they do not have their MEM_Cleared
 | 
| +** bit set.
 | 
| +*/
 | 
| +/* Opcode: Ne P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]!=r[P3] goto P2
 | 
| +**
 | 
| +** This works just like the Lt opcode except that the jump is taken if
 | 
| +** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
 | 
| +** additional information.
 | 
| +**
 | 
| +** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
 | 
| +** true or false and is never NULL.  If both operands are NULL then the result
 | 
| +** of comparison is false.  If either operand is NULL then the result is true.
 | 
| +** If neither operand is NULL the result is the same as it would be if
 | 
| +** the SQLITE_NULLEQ flag were omitted from P5.
 | 
| +*/
 | 
| +/* Opcode: Eq P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]==r[P3] goto P2
 | 
| +**
 | 
| +** This works just like the Lt opcode except that the jump is taken if
 | 
| +** the operands in registers P1 and P3 are equal.
 | 
| +** See the Lt opcode for additional information.
 | 
| +**
 | 
| +** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
 | 
| +** true or false and is never NULL.  If both operands are NULL then the result
 | 
| +** of comparison is true.  If either operand is NULL then the result is false.
 | 
| +** If neither operand is NULL the result is the same as it would be if
 | 
| +** the SQLITE_NULLEQ flag were omitted from P5.
 | 
| +*/
 | 
| +/* Opcode: Le P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]<=r[P3] goto P2
 | 
| +**
 | 
| +** This works just like the Lt opcode except that the jump is taken if
 | 
| +** the content of register P3 is less than or equal to the content of
 | 
| +** register P1.  See the Lt opcode for additional information.
 | 
| +*/
 | 
| +/* Opcode: Gt P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]>r[P3] goto P2
 | 
| +**
 | 
| +** This works just like the Lt opcode except that the jump is taken if
 | 
| +** the content of register P3 is greater than the content of
 | 
| +** register P1.  See the Lt opcode for additional information.
 | 
| +*/
 | 
| +/* Opcode: Ge P1 P2 P3 P4 P5
 | 
| +** Synopsis: if r[P1]>=r[P3] goto P2
 | 
| +**
 | 
| +** This works just like the Lt opcode except that the jump is taken if
 | 
| +** the content of register P3 is greater than or equal to the content of
 | 
| +** register P1.  See the Lt opcode for additional information.
 | 
| +*/
 | 
| +case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
 | 
| +case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
 | 
| +case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
 | 
| +case OP_Le:               /* same as TK_LE, jump, in1, in3 */
 | 
| +case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
 | 
| +case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
 | 
| +  int res;            /* Result of the comparison of pIn1 against pIn3 */
 | 
| +  char affinity;      /* Affinity to use for comparison */
 | 
| +  u16 flags1;         /* Copy of initial value of pIn1->flags */
 | 
| +  u16 flags3;         /* Copy of initial value of pIn3->flags */
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  flags1 = pIn1->flags;
 | 
| +  flags3 = pIn3->flags;
 | 
| +  if( (flags1 | flags3)&MEM_Null ){
 | 
| +    /* One or both operands are NULL */
 | 
| +    if( pOp->p5 & SQLITE_NULLEQ ){
 | 
| +      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
 | 
| +      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
 | 
| +      ** or not both operands are null.
 | 
| +      */
 | 
| +      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
 | 
| +      assert( (flags1 & MEM_Cleared)==0 );
 | 
| +      assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
 | 
| +      if( (flags1&MEM_Null)!=0
 | 
| +       && (flags3&MEM_Null)!=0
 | 
| +       && (flags3&MEM_Cleared)==0
 | 
| +      ){
 | 
| +        res = 0;  /* Results are equal */
 | 
| +      }else{
 | 
| +        res = 1;  /* Results are not equal */
 | 
| +      }
 | 
| +    }else{
 | 
| +      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
 | 
| +      ** then the result is always NULL.
 | 
| +      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
 | 
| +      */
 | 
| +      if( pOp->p5 & SQLITE_STOREP2 ){
 | 
| +        pOut = &aMem[pOp->p2];
 | 
| +        MemSetTypeFlag(pOut, MEM_Null);
 | 
| +        REGISTER_TRACE(pOp->p2, pOut);
 | 
| +      }else{
 | 
| +        VdbeBranchTaken(2,3);
 | 
| +        if( pOp->p5 & SQLITE_JUMPIFNULL ){
 | 
| +          pc = pOp->p2-1;
 | 
| +        }
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +  }else{
 | 
| +    /* Neither operand is NULL.  Do a comparison. */
 | 
| +    affinity = pOp->p5 & SQLITE_AFF_MASK;
 | 
| +    if( affinity>=SQLITE_AFF_NUMERIC ){
 | 
| +      if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
 | 
| +        applyNumericAffinity(pIn1,0);
 | 
| +      }
 | 
| +      if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
 | 
| +        applyNumericAffinity(pIn3,0);
 | 
| +      }
 | 
| +    }else if( affinity==SQLITE_AFF_TEXT ){
 | 
| +      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
 | 
| +        testcase( pIn1->flags & MEM_Int );
 | 
| +        testcase( pIn1->flags & MEM_Real );
 | 
| +        sqlite3VdbeMemStringify(pIn1, encoding, 1);
 | 
| +      }
 | 
| +      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
 | 
| +        testcase( pIn3->flags & MEM_Int );
 | 
| +        testcase( pIn3->flags & MEM_Real );
 | 
| +        sqlite3VdbeMemStringify(pIn3, encoding, 1);
 | 
| +      }
 | 
| +    }
 | 
| +    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
 | 
| +    if( pIn1->flags & MEM_Zero ){
 | 
| +      sqlite3VdbeMemExpandBlob(pIn1);
 | 
| +      flags1 &= ~MEM_Zero;
 | 
| +    }
 | 
| +    if( pIn3->flags & MEM_Zero ){
 | 
| +      sqlite3VdbeMemExpandBlob(pIn3);
 | 
| +      flags3 &= ~MEM_Zero;
 | 
| +    }
 | 
| +    if( db->mallocFailed ) goto no_mem;
 | 
| +    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
 | 
| +  }
 | 
| +  switch( pOp->opcode ){
 | 
| +    case OP_Eq:    res = res==0;     break;
 | 
| +    case OP_Ne:    res = res!=0;     break;
 | 
| +    case OP_Lt:    res = res<0;      break;
 | 
| +    case OP_Le:    res = res<=0;     break;
 | 
| +    case OP_Gt:    res = res>0;      break;
 | 
| +    default:       res = res>=0;     break;
 | 
| +  }
 | 
| +
 | 
| +  if( pOp->p5 & SQLITE_STOREP2 ){
 | 
| +    pOut = &aMem[pOp->p2];
 | 
| +    memAboutToChange(p, pOut);
 | 
| +    MemSetTypeFlag(pOut, MEM_Int);
 | 
| +    pOut->u.i = res;
 | 
| +    REGISTER_TRACE(pOp->p2, pOut);
 | 
| +  }else{
 | 
| +    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
 | 
| +    if( res ){
 | 
| +      pc = pOp->p2-1;
 | 
| +    }
 | 
| +  }
 | 
| +  /* Undo any changes made by applyAffinity() to the input registers. */
 | 
| +  pIn1->flags = flags1;
 | 
| +  pIn3->flags = flags3;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Permutation * * * P4 *
 | 
| +**
 | 
| +** Set the permutation used by the OP_Compare operator to be the array
 | 
| +** of integers in P4.
 | 
| +**
 | 
| +** The permutation is only valid until the next OP_Compare that has
 | 
| +** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
 | 
| +** occur immediately prior to the OP_Compare.
 | 
| +*/
 | 
| +case OP_Permutation: {
 | 
| +  assert( pOp->p4type==P4_INTARRAY );
 | 
| +  assert( pOp->p4.ai );
 | 
| +  aPermute = pOp->p4.ai;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Compare P1 P2 P3 P4 P5
 | 
| +** Synopsis: r[P1@P3] <-> r[P2@P3]
 | 
| +**
 | 
| +** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
 | 
| +** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
 | 
| +** the comparison for use by the next OP_Jump instruct.
 | 
| +**
 | 
| +** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
 | 
| +** determined by the most recent OP_Permutation operator.  If the
 | 
| +** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
 | 
| +** order.
 | 
| +**
 | 
| +** P4 is a KeyInfo structure that defines collating sequences and sort
 | 
| +** orders for the comparison.  The permutation applies to registers
 | 
| +** only.  The KeyInfo elements are used sequentially.
 | 
| +**
 | 
| +** The comparison is a sort comparison, so NULLs compare equal,
 | 
| +** NULLs are less than numbers, numbers are less than strings,
 | 
| +** and strings are less than blobs.
 | 
| +*/
 | 
| +case OP_Compare: {
 | 
| +  int n;
 | 
| +  int i;
 | 
| +  int p1;
 | 
| +  int p2;
 | 
| +  const KeyInfo *pKeyInfo;
 | 
| +  int idx;
 | 
| +  CollSeq *pColl;    /* Collating sequence to use on this term */
 | 
| +  int bRev;          /* True for DESCENDING sort order */
 | 
| +
 | 
| +  if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
 | 
| +  n = pOp->p3;
 | 
| +  pKeyInfo = pOp->p4.pKeyInfo;
 | 
| +  assert( n>0 );
 | 
| +  assert( pKeyInfo!=0 );
 | 
| +  p1 = pOp->p1;
 | 
| +  p2 = pOp->p2;
 | 
| +#if SQLITE_DEBUG
 | 
| +  if( aPermute ){
 | 
| +    int k, mx = 0;
 | 
| +    for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
 | 
| +    assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
 | 
| +    assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
 | 
| +  }else{
 | 
| +    assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
 | 
| +    assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
 | 
| +  }
 | 
| +#endif /* SQLITE_DEBUG */
 | 
| +  for(i=0; i<n; i++){
 | 
| +    idx = aPermute ? aPermute[i] : i;
 | 
| +    assert( memIsValid(&aMem[p1+idx]) );
 | 
| +    assert( memIsValid(&aMem[p2+idx]) );
 | 
| +    REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
 | 
| +    REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
 | 
| +    assert( i<pKeyInfo->nField );
 | 
| +    pColl = pKeyInfo->aColl[i];
 | 
| +    bRev = pKeyInfo->aSortOrder[i];
 | 
| +    iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
 | 
| +    if( iCompare ){
 | 
| +      if( bRev ) iCompare = -iCompare;
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +  aPermute = 0;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Jump P1 P2 P3 * *
 | 
| +**
 | 
| +** Jump to the instruction at address P1, P2, or P3 depending on whether
 | 
| +** in the most recent OP_Compare instruction the P1 vector was less than
 | 
| +** equal to, or greater than the P2 vector, respectively.
 | 
| +*/
 | 
| +case OP_Jump: {             /* jump */
 | 
| +  if( iCompare<0 ){
 | 
| +    pc = pOp->p1 - 1;  VdbeBranchTaken(0,3);
 | 
| +  }else if( iCompare==0 ){
 | 
| +    pc = pOp->p2 - 1;  VdbeBranchTaken(1,3);
 | 
| +  }else{
 | 
| +    pc = pOp->p3 - 1;  VdbeBranchTaken(2,3);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: And P1 P2 P3 * *
 | 
| +** Synopsis: r[P3]=(r[P1] && r[P2])
 | 
| +**
 | 
| +** Take the logical AND of the values in registers P1 and P2 and
 | 
| +** write the result into register P3.
 | 
| +**
 | 
| +** If either P1 or P2 is 0 (false) then the result is 0 even if
 | 
| +** the other input is NULL.  A NULL and true or two NULLs give
 | 
| +** a NULL output.
 | 
| +*/
 | 
| +/* Opcode: Or P1 P2 P3 * *
 | 
| +** Synopsis: r[P3]=(r[P1] || r[P2])
 | 
| +**
 | 
| +** Take the logical OR of the values in register P1 and P2 and
 | 
| +** store the answer in register P3.
 | 
| +**
 | 
| +** If either P1 or P2 is nonzero (true) then the result is 1 (true)
 | 
| +** even if the other input is NULL.  A NULL and false or two NULLs
 | 
| +** give a NULL output.
 | 
| +*/
 | 
| +case OP_And:              /* same as TK_AND, in1, in2, out3 */
 | 
| +case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
 | 
| +  int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
 | 
| +  int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  if( pIn1->flags & MEM_Null ){
 | 
| +    v1 = 2;
 | 
| +  }else{
 | 
| +    v1 = sqlite3VdbeIntValue(pIn1)!=0;
 | 
| +  }
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  if( pIn2->flags & MEM_Null ){
 | 
| +    v2 = 2;
 | 
| +  }else{
 | 
| +    v2 = sqlite3VdbeIntValue(pIn2)!=0;
 | 
| +  }
 | 
| +  if( pOp->opcode==OP_And ){
 | 
| +    static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
 | 
| +    v1 = and_logic[v1*3+v2];
 | 
| +  }else{
 | 
| +    static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
 | 
| +    v1 = or_logic[v1*3+v2];
 | 
| +  }
 | 
| +  pOut = &aMem[pOp->p3];
 | 
| +  if( v1==2 ){
 | 
| +    MemSetTypeFlag(pOut, MEM_Null);
 | 
| +  }else{
 | 
| +    pOut->u.i = v1;
 | 
| +    MemSetTypeFlag(pOut, MEM_Int);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Not P1 P2 * * *
 | 
| +** Synopsis: r[P2]= !r[P1]
 | 
| +**
 | 
| +** Interpret the value in register P1 as a boolean value.  Store the
 | 
| +** boolean complement in register P2.  If the value in register P1 is 
 | 
| +** NULL, then a NULL is stored in P2.
 | 
| +*/
 | 
| +case OP_Not: {                /* same as TK_NOT, in1, out2 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  sqlite3VdbeMemSetNull(pOut);
 | 
| +  if( (pIn1->flags & MEM_Null)==0 ){
 | 
| +    pOut->flags = MEM_Int;
 | 
| +    pOut->u.i = !sqlite3VdbeIntValue(pIn1);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: BitNot P1 P2 * * *
 | 
| +** Synopsis: r[P1]= ~r[P1]
 | 
| +**
 | 
| +** Interpret the content of register P1 as an integer.  Store the
 | 
| +** ones-complement of the P1 value into register P2.  If P1 holds
 | 
| +** a NULL then store a NULL in P2.
 | 
| +*/
 | 
| +case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  sqlite3VdbeMemSetNull(pOut);
 | 
| +  if( (pIn1->flags & MEM_Null)==0 ){
 | 
| +    pOut->flags = MEM_Int;
 | 
| +    pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Once P1 P2 * * *
 | 
| +**
 | 
| +** Check the "once" flag number P1. If it is set, jump to instruction P2. 
 | 
| +** Otherwise, set the flag and fall through to the next instruction.
 | 
| +** In other words, this opcode causes all following opcodes up through P2
 | 
| +** (but not including P2) to run just once and to be skipped on subsequent
 | 
| +** times through the loop.
 | 
| +**
 | 
| +** All "once" flags are initially cleared whenever a prepared statement
 | 
| +** first begins to run.
 | 
| +*/
 | 
| +case OP_Once: {             /* jump */
 | 
| +  assert( pOp->p1<p->nOnceFlag );
 | 
| +  VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
 | 
| +  if( p->aOnceFlag[pOp->p1] ){
 | 
| +    pc = pOp->p2-1;
 | 
| +  }else{
 | 
| +    p->aOnceFlag[pOp->p1] = 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: If P1 P2 P3 * *
 | 
| +**
 | 
| +** Jump to P2 if the value in register P1 is true.  The value
 | 
| +** is considered true if it is numeric and non-zero.  If the value
 | 
| +** in P1 is NULL then take the jump if and only if P3 is non-zero.
 | 
| +*/
 | 
| +/* Opcode: IfNot P1 P2 P3 * *
 | 
| +**
 | 
| +** Jump to P2 if the value in register P1 is False.  The value
 | 
| +** is considered false if it has a numeric value of zero.  If the value
 | 
| +** in P1 is NULL then take the jump if and only if P3 is non-zero.
 | 
| +*/
 | 
| +case OP_If:                 /* jump, in1 */
 | 
| +case OP_IfNot: {            /* jump, in1 */
 | 
| +  int c;
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  if( pIn1->flags & MEM_Null ){
 | 
| +    c = pOp->p3;
 | 
| +  }else{
 | 
| +#ifdef SQLITE_OMIT_FLOATING_POINT
 | 
| +    c = sqlite3VdbeIntValue(pIn1)!=0;
 | 
| +#else
 | 
| +    c = sqlite3VdbeRealValue(pIn1)!=0.0;
 | 
| +#endif
 | 
| +    if( pOp->opcode==OP_IfNot ) c = !c;
 | 
| +  }
 | 
| +  VdbeBranchTaken(c!=0, 2);
 | 
| +  if( c ){
 | 
| +    pc = pOp->p2-1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IsNull P1 P2 * * *
 | 
| +** Synopsis:  if r[P1]==NULL goto P2
 | 
| +**
 | 
| +** Jump to P2 if the value in register P1 is NULL.
 | 
| +*/
 | 
| +case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
 | 
| +  if( (pIn1->flags & MEM_Null)!=0 ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: NotNull P1 P2 * * *
 | 
| +** Synopsis: if r[P1]!=NULL goto P2
 | 
| +**
 | 
| +** Jump to P2 if the value in register P1 is not NULL.  
 | 
| +*/
 | 
| +case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
 | 
| +  if( (pIn1->flags & MEM_Null)==0 ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Column P1 P2 P3 P4 P5
 | 
| +** Synopsis:  r[P3]=PX
 | 
| +**
 | 
| +** Interpret the data that cursor P1 points to as a structure built using
 | 
| +** the MakeRecord instruction.  (See the MakeRecord opcode for additional
 | 
| +** information about the format of the data.)  Extract the P2-th column
 | 
| +** from this record.  If there are less that (P2+1) 
 | 
| +** values in the record, extract a NULL.
 | 
| +**
 | 
| +** The value extracted is stored in register P3.
 | 
| +**
 | 
| +** If the column contains fewer than P2 fields, then extract a NULL.  Or,
 | 
| +** if the P4 argument is a P4_MEM use the value of the P4 argument as
 | 
| +** the result.
 | 
| +**
 | 
| +** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
 | 
| +** then the cache of the cursor is reset prior to extracting the column.
 | 
| +** The first OP_Column against a pseudo-table after the value of the content
 | 
| +** register has changed should have this bit set.
 | 
| +**
 | 
| +** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
 | 
| +** the result is guaranteed to only be used as the argument of a length()
 | 
| +** or typeof() function, respectively.  The loading of large blobs can be
 | 
| +** skipped for length() and all content loading can be skipped for typeof().
 | 
| +*/
 | 
| +case OP_Column: {
 | 
| +  i64 payloadSize64; /* Number of bytes in the record */
 | 
| +  int p2;            /* column number to retrieve */
 | 
| +  VdbeCursor *pC;    /* The VDBE cursor */
 | 
| +  BtCursor *pCrsr;   /* The BTree cursor */
 | 
| +  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
 | 
| +  int len;           /* The length of the serialized data for the column */
 | 
| +  int i;             /* Loop counter */
 | 
| +  Mem *pDest;        /* Where to write the extracted value */
 | 
| +  Mem sMem;          /* For storing the record being decoded */
 | 
| +  const u8 *zData;   /* Part of the record being decoded */
 | 
| +  const u8 *zHdr;    /* Next unparsed byte of the header */
 | 
| +  const u8 *zEndHdr; /* Pointer to first byte after the header */
 | 
| +  u32 offset;        /* Offset into the data */
 | 
| +  u32 szField;       /* Number of bytes in the content of a field */
 | 
| +  u32 avail;         /* Number of bytes of available data */
 | 
| +  u32 t;             /* A type code from the record header */
 | 
| +  u16 fx;            /* pDest->flags value */
 | 
| +  Mem *pReg;         /* PseudoTable input register */
 | 
| +
 | 
| +  p2 = pOp->p2;
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  pDest = &aMem[pOp->p3];
 | 
| +  memAboutToChange(p, pDest);
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( p2<pC->nField );
 | 
| +  aOffset = pC->aOffset;
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
 | 
| +#endif
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
 | 
| +  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */
 | 
| +
 | 
| +  /* If the cursor cache is stale, bring it up-to-date */
 | 
| +  rc = sqlite3VdbeCursorMoveto(pC);
 | 
| +  if( rc ) goto abort_due_to_error;
 | 
| +  if( pC->cacheStatus!=p->cacheCtr ){
 | 
| +    if( pC->nullRow ){
 | 
| +      if( pCrsr==0 ){
 | 
| +        assert( pC->pseudoTableReg>0 );
 | 
| +        pReg = &aMem[pC->pseudoTableReg];
 | 
| +        assert( pReg->flags & MEM_Blob );
 | 
| +        assert( memIsValid(pReg) );
 | 
| +        pC->payloadSize = pC->szRow = avail = pReg->n;
 | 
| +        pC->aRow = (u8*)pReg->z;
 | 
| +      }else{
 | 
| +        sqlite3VdbeMemSetNull(pDest);
 | 
| +        goto op_column_out;
 | 
| +      }
 | 
| +    }else{
 | 
| +      assert( pCrsr );
 | 
| +      if( pC->isTable==0 ){
 | 
| +        assert( sqlite3BtreeCursorIsValid(pCrsr) );
 | 
| +        VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
 | 
| +        assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
 | 
| +        /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
 | 
| +        ** payload size, so it is impossible for payloadSize64 to be
 | 
| +        ** larger than 32 bits. */
 | 
| +        assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
 | 
| +        pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
 | 
| +        pC->payloadSize = (u32)payloadSize64;
 | 
| +      }else{
 | 
| +        assert( sqlite3BtreeCursorIsValid(pCrsr) );
 | 
| +        VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
 | 
| +        assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
 | 
| +        pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
 | 
| +      }
 | 
| +      assert( avail<=65536 );  /* Maximum page size is 64KiB */
 | 
| +      if( pC->payloadSize <= (u32)avail ){
 | 
| +        pC->szRow = pC->payloadSize;
 | 
| +      }else{
 | 
| +        pC->szRow = avail;
 | 
| +      }
 | 
| +      if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +        goto too_big;
 | 
| +      }
 | 
| +    }
 | 
| +    pC->cacheStatus = p->cacheCtr;
 | 
| +    pC->iHdrOffset = getVarint32(pC->aRow, offset);
 | 
| +    pC->nHdrParsed = 0;
 | 
| +    aOffset[0] = offset;
 | 
| +
 | 
| +    /* Make sure a corrupt database has not given us an oversize header.
 | 
| +    ** Do this now to avoid an oversize memory allocation.
 | 
| +    **
 | 
| +    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
 | 
| +    ** types use so much data space that there can only be 4096 and 32 of
 | 
| +    ** them, respectively.  So the maximum header length results from a
 | 
| +    ** 3-byte type for each of the maximum of 32768 columns plus three
 | 
| +    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
 | 
| +    */
 | 
| +    if( offset > 98307 || offset > pC->payloadSize ){
 | 
| +      rc = SQLITE_CORRUPT_BKPT;
 | 
| +      goto op_column_error;
 | 
| +    }
 | 
| +
 | 
| +    if( avail<offset ){
 | 
| +      /* pC->aRow does not have to hold the entire row, but it does at least
 | 
| +      ** need to cover the header of the record.  If pC->aRow does not contain
 | 
| +      ** the complete header, then set it to zero, forcing the header to be
 | 
| +      ** dynamically allocated. */
 | 
| +      pC->aRow = 0;
 | 
| +      pC->szRow = 0;
 | 
| +    }
 | 
| +
 | 
| +    /* The following goto is an optimization.  It can be omitted and
 | 
| +    ** everything will still work.  But OP_Column is measurably faster
 | 
| +    ** by skipping the subsequent conditional, which is always true.
 | 
| +    */
 | 
| +    assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
 | 
| +    goto op_column_read_header;
 | 
| +  }
 | 
| +
 | 
| +  /* Make sure at least the first p2+1 entries of the header have been
 | 
| +  ** parsed and valid information is in aOffset[] and pC->aType[].
 | 
| +  */
 | 
| +  if( pC->nHdrParsed<=p2 ){
 | 
| +    /* If there is more header available for parsing in the record, try
 | 
| +    ** to extract additional fields up through the p2+1-th field 
 | 
| +    */
 | 
| +    op_column_read_header:
 | 
| +    if( pC->iHdrOffset<aOffset[0] ){
 | 
| +      /* Make sure zData points to enough of the record to cover the header. */
 | 
| +      if( pC->aRow==0 ){
 | 
| +        memset(&sMem, 0, sizeof(sMem));
 | 
| +        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
 | 
| +                                     !pC->isTable, &sMem);
 | 
| +        if( rc!=SQLITE_OK ){
 | 
| +          goto op_column_error;
 | 
| +        }
 | 
| +        zData = (u8*)sMem.z;
 | 
| +      }else{
 | 
| +        zData = pC->aRow;
 | 
| +      }
 | 
| +  
 | 
| +      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
 | 
| +      i = pC->nHdrParsed;
 | 
| +      offset = aOffset[i];
 | 
| +      zHdr = zData + pC->iHdrOffset;
 | 
| +      zEndHdr = zData + aOffset[0];
 | 
| +      assert( i<=p2 && zHdr<zEndHdr );
 | 
| +      do{
 | 
| +        if( zHdr[0]<0x80 ){
 | 
| +          t = zHdr[0];
 | 
| +          zHdr++;
 | 
| +        }else{
 | 
| +          zHdr += sqlite3GetVarint32(zHdr, &t);
 | 
| +        }
 | 
| +        pC->aType[i] = t;
 | 
| +        szField = sqlite3VdbeSerialTypeLen(t);
 | 
| +        offset += szField;
 | 
| +        if( offset<szField ){  /* True if offset overflows */
 | 
| +          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
 | 
| +          break;
 | 
| +        }
 | 
| +        i++;
 | 
| +        aOffset[i] = offset;
 | 
| +      }while( i<=p2 && zHdr<zEndHdr );
 | 
| +      pC->nHdrParsed = i;
 | 
| +      pC->iHdrOffset = (u32)(zHdr - zData);
 | 
| +      if( pC->aRow==0 ){
 | 
| +        sqlite3VdbeMemRelease(&sMem);
 | 
| +        sMem.flags = MEM_Null;
 | 
| +      }
 | 
| +  
 | 
| +      /* The record is corrupt if any of the following are true:
 | 
| +      ** (1) the bytes of the header extend past the declared header size
 | 
| +      **          (zHdr>zEndHdr)
 | 
| +      ** (2) the entire header was used but not all data was used
 | 
| +      **          (zHdr==zEndHdr && offset!=pC->payloadSize)
 | 
| +      ** (3) the end of the data extends beyond the end of the record.
 | 
| +      **          (offset > pC->payloadSize)
 | 
| +      */
 | 
| +      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
 | 
| +       || (offset > pC->payloadSize)
 | 
| +      ){
 | 
| +        rc = SQLITE_CORRUPT_BKPT;
 | 
| +        goto op_column_error;
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    /* If after trying to extra new entries from the header, nHdrParsed is
 | 
| +    ** still not up to p2, that means that the record has fewer than p2
 | 
| +    ** columns.  So the result will be either the default value or a NULL.
 | 
| +    */
 | 
| +    if( pC->nHdrParsed<=p2 ){
 | 
| +      if( pOp->p4type==P4_MEM ){
 | 
| +        sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
 | 
| +      }else{
 | 
| +        sqlite3VdbeMemSetNull(pDest);
 | 
| +      }
 | 
| +      goto op_column_out;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  /* Extract the content for the p2+1-th column.  Control can only
 | 
| +  ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
 | 
| +  ** all valid.
 | 
| +  */
 | 
| +  assert( p2<pC->nHdrParsed );
 | 
| +  assert( rc==SQLITE_OK );
 | 
| +  assert( sqlite3VdbeCheckMemInvariants(pDest) );
 | 
| +  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
 | 
| +  t = pC->aType[p2];
 | 
| +  if( pC->szRow>=aOffset[p2+1] ){
 | 
| +    /* This is the common case where the desired content fits on the original
 | 
| +    ** page - where the content is not on an overflow page */
 | 
| +    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
 | 
| +  }else{
 | 
| +    /* This branch happens only when content is on overflow pages */
 | 
| +    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
 | 
| +          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
 | 
| +     || (len = sqlite3VdbeSerialTypeLen(t))==0
 | 
| +    ){
 | 
| +      /* Content is irrelevant for
 | 
| +      **    1. the typeof() function,
 | 
| +      **    2. the length(X) function if X is a blob, and
 | 
| +      **    3. if the content length is zero.
 | 
| +      ** So we might as well use bogus content rather than reading
 | 
| +      ** content from disk.  NULL will work for the value for strings
 | 
| +      ** and blobs and whatever is in the payloadSize64 variable
 | 
| +      ** will work for everything else. */
 | 
| +      sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
 | 
| +    }else{
 | 
| +      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
 | 
| +                                   pDest);
 | 
| +      if( rc!=SQLITE_OK ){
 | 
| +        goto op_column_error;
 | 
| +      }
 | 
| +      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
 | 
| +      pDest->flags &= ~MEM_Ephem;
 | 
| +    }
 | 
| +  }
 | 
| +  pDest->enc = encoding;
 | 
| +
 | 
| +op_column_out:
 | 
| +  /* If the column value is an ephemeral string, go ahead and persist
 | 
| +  ** that string in case the cursor moves before the column value is
 | 
| +  ** used.  The following code does the equivalent of Deephemeralize()
 | 
| +  ** but does it faster. */
 | 
| +  if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
 | 
| +    fx = pDest->flags & (MEM_Str|MEM_Blob);
 | 
| +    assert( fx!=0 );
 | 
| +    zData = (const u8*)pDest->z;
 | 
| +    len = pDest->n;
 | 
| +    if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
 | 
| +    memcpy(pDest->z, zData, len);
 | 
| +    pDest->z[len] = 0;
 | 
| +    pDest->z[len+1] = 0;
 | 
| +    pDest->flags = fx|MEM_Term;
 | 
| +  }
 | 
| +op_column_error:
 | 
| +  UPDATE_MAX_BLOBSIZE(pDest);
 | 
| +  REGISTER_TRACE(pOp->p3, pDest);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Affinity P1 P2 * P4 *
 | 
| +** Synopsis: affinity(r[P1@P2])
 | 
| +**
 | 
| +** Apply affinities to a range of P2 registers starting with P1.
 | 
| +**
 | 
| +** P4 is a string that is P2 characters long. The nth character of the
 | 
| +** string indicates the column affinity that should be used for the nth
 | 
| +** memory cell in the range.
 | 
| +*/
 | 
| +case OP_Affinity: {
 | 
| +  const char *zAffinity;   /* The affinity to be applied */
 | 
| +  char cAff;               /* A single character of affinity */
 | 
| +
 | 
| +  zAffinity = pOp->p4.z;
 | 
| +  assert( zAffinity!=0 );
 | 
| +  assert( zAffinity[pOp->p2]==0 );
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  while( (cAff = *(zAffinity++))!=0 ){
 | 
| +    assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
 | 
| +    assert( memIsValid(pIn1) );
 | 
| +    applyAffinity(pIn1, cAff, encoding);
 | 
| +    pIn1++;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: MakeRecord P1 P2 P3 P4 *
 | 
| +** Synopsis: r[P3]=mkrec(r[P1@P2])
 | 
| +**
 | 
| +** Convert P2 registers beginning with P1 into the [record format]
 | 
| +** use as a data record in a database table or as a key
 | 
| +** in an index.  The OP_Column opcode can decode the record later.
 | 
| +**
 | 
| +** P4 may be a string that is P2 characters long.  The nth character of the
 | 
| +** string indicates the column affinity that should be used for the nth
 | 
| +** field of the index key.
 | 
| +**
 | 
| +** The mapping from character to affinity is given by the SQLITE_AFF_
 | 
| +** macros defined in sqliteInt.h.
 | 
| +**
 | 
| +** If P4 is NULL then all index fields have the affinity NONE.
 | 
| +*/
 | 
| +case OP_MakeRecord: {
 | 
| +  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
 | 
| +  Mem *pRec;             /* The new record */
 | 
| +  u64 nData;             /* Number of bytes of data space */
 | 
| +  int nHdr;              /* Number of bytes of header space */
 | 
| +  i64 nByte;             /* Data space required for this record */
 | 
| +  int nZero;             /* Number of zero bytes at the end of the record */
 | 
| +  int nVarint;           /* Number of bytes in a varint */
 | 
| +  u32 serial_type;       /* Type field */
 | 
| +  Mem *pData0;           /* First field to be combined into the record */
 | 
| +  Mem *pLast;            /* Last field of the record */
 | 
| +  int nField;            /* Number of fields in the record */
 | 
| +  char *zAffinity;       /* The affinity string for the record */
 | 
| +  int file_format;       /* File format to use for encoding */
 | 
| +  int i;                 /* Space used in zNewRecord[] header */
 | 
| +  int j;                 /* Space used in zNewRecord[] content */
 | 
| +  int len;               /* Length of a field */
 | 
| +
 | 
| +  /* Assuming the record contains N fields, the record format looks
 | 
| +  ** like this:
 | 
| +  **
 | 
| +  ** ------------------------------------------------------------------------
 | 
| +  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
 | 
| +  ** ------------------------------------------------------------------------
 | 
| +  **
 | 
| +  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
 | 
| +  ** and so forth.
 | 
| +  **
 | 
| +  ** Each type field is a varint representing the serial type of the 
 | 
| +  ** corresponding data element (see sqlite3VdbeSerialType()). The
 | 
| +  ** hdr-size field is also a varint which is the offset from the beginning
 | 
| +  ** of the record to data0.
 | 
| +  */
 | 
| +  nData = 0;         /* Number of bytes of data space */
 | 
| +  nHdr = 0;          /* Number of bytes of header space */
 | 
| +  nZero = 0;         /* Number of zero bytes at the end of the record */
 | 
| +  nField = pOp->p1;
 | 
| +  zAffinity = pOp->p4.z;
 | 
| +  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
 | 
| +  pData0 = &aMem[nField];
 | 
| +  nField = pOp->p2;
 | 
| +  pLast = &pData0[nField-1];
 | 
| +  file_format = p->minWriteFileFormat;
 | 
| +
 | 
| +  /* Identify the output register */
 | 
| +  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
 | 
| +  pOut = &aMem[pOp->p3];
 | 
| +  memAboutToChange(p, pOut);
 | 
| +
 | 
| +  /* Apply the requested affinity to all inputs
 | 
| +  */
 | 
| +  assert( pData0<=pLast );
 | 
| +  if( zAffinity ){
 | 
| +    pRec = pData0;
 | 
| +    do{
 | 
| +      applyAffinity(pRec++, *(zAffinity++), encoding);
 | 
| +      assert( zAffinity[0]==0 || pRec<=pLast );
 | 
| +    }while( zAffinity[0] );
 | 
| +  }
 | 
| +
 | 
| +  /* Loop through the elements that will make up the record to figure
 | 
| +  ** out how much space is required for the new record.
 | 
| +  */
 | 
| +  pRec = pLast;
 | 
| +  do{
 | 
| +    assert( memIsValid(pRec) );
 | 
| +    pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
 | 
| +    len = sqlite3VdbeSerialTypeLen(serial_type);
 | 
| +    if( pRec->flags & MEM_Zero ){
 | 
| +      if( nData ){
 | 
| +        sqlite3VdbeMemExpandBlob(pRec);
 | 
| +      }else{
 | 
| +        nZero += pRec->u.nZero;
 | 
| +        len -= pRec->u.nZero;
 | 
| +      }
 | 
| +    }
 | 
| +    nData += len;
 | 
| +    testcase( serial_type==127 );
 | 
| +    testcase( serial_type==128 );
 | 
| +    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
 | 
| +  }while( (--pRec)>=pData0 );
 | 
| +
 | 
| +  /* Add the initial header varint and total the size */
 | 
| +  testcase( nHdr==126 );
 | 
| +  testcase( nHdr==127 );
 | 
| +  if( nHdr<=126 ){
 | 
| +    /* The common case */
 | 
| +    nHdr += 1;
 | 
| +  }else{
 | 
| +    /* Rare case of a really large header */
 | 
| +    nVarint = sqlite3VarintLen(nHdr);
 | 
| +    nHdr += nVarint;
 | 
| +    if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
 | 
| +  }
 | 
| +  nByte = nHdr+nData;
 | 
| +  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +
 | 
| +  /* Make sure the output register has a buffer large enough to store 
 | 
| +  ** the new record. The output register (pOp->p3) is not allowed to
 | 
| +  ** be one of the input registers (because the following call to
 | 
| +  ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
 | 
| +  */
 | 
| +  if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
 | 
| +    goto no_mem;
 | 
| +  }
 | 
| +  zNewRecord = (u8 *)pOut->z;
 | 
| +
 | 
| +  /* Write the record */
 | 
| +  i = putVarint32(zNewRecord, nHdr);
 | 
| +  j = nHdr;
 | 
| +  assert( pData0<=pLast );
 | 
| +  pRec = pData0;
 | 
| +  do{
 | 
| +    serial_type = pRec->uTemp;
 | 
| +    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
 | 
| +    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
 | 
| +  }while( (++pRec)<=pLast );
 | 
| +  assert( i==nHdr );
 | 
| +  assert( j==nByte );
 | 
| +
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  pOut->n = (int)nByte;
 | 
| +  pOut->flags = MEM_Blob;
 | 
| +  if( nZero ){
 | 
| +    pOut->u.nZero = nZero;
 | 
| +    pOut->flags |= MEM_Zero;
 | 
| +  }
 | 
| +  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
 | 
| +  REGISTER_TRACE(pOp->p3, pOut);
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Count P1 P2 * * *
 | 
| +** Synopsis: r[P2]=count()
 | 
| +**
 | 
| +** Store the number of entries (an integer value) in the table or index 
 | 
| +** opened by cursor P1 in register P2
 | 
| +*/
 | 
| +#ifndef SQLITE_OMIT_BTREECOUNT
 | 
| +case OP_Count: {         /* out2-prerelease */
 | 
| +  i64 nEntry;
 | 
| +  BtCursor *pCrsr;
 | 
| +
 | 
| +  pCrsr = p->apCsr[pOp->p1]->pCursor;
 | 
| +  assert( pCrsr );
 | 
| +  nEntry = 0;  /* Not needed.  Only used to silence a warning. */
 | 
| +  rc = sqlite3BtreeCount(pCrsr, &nEntry);
 | 
| +  pOut->u.i = nEntry;
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/* Opcode: Savepoint P1 * * P4 *
 | 
| +**
 | 
| +** Open, release or rollback the savepoint named by parameter P4, depending
 | 
| +** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
 | 
| +** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
 | 
| +*/
 | 
| +case OP_Savepoint: {
 | 
| +  int p1;                         /* Value of P1 operand */
 | 
| +  char *zName;                    /* Name of savepoint */
 | 
| +  int nName;
 | 
| +  Savepoint *pNew;
 | 
| +  Savepoint *pSavepoint;
 | 
| +  Savepoint *pTmp;
 | 
| +  int iSavepoint;
 | 
| +  int ii;
 | 
| +
 | 
| +  p1 = pOp->p1;
 | 
| +  zName = pOp->p4.z;
 | 
| +
 | 
| +  /* Assert that the p1 parameter is valid. Also that if there is no open
 | 
| +  ** transaction, then there cannot be any savepoints. 
 | 
| +  */
 | 
| +  assert( db->pSavepoint==0 || db->autoCommit==0 );
 | 
| +  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
 | 
| +  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
 | 
| +  assert( checkSavepointCount(db) );
 | 
| +  assert( p->bIsReader );
 | 
| +
 | 
| +  if( p1==SAVEPOINT_BEGIN ){
 | 
| +    if( db->nVdbeWrite>0 ){
 | 
| +      /* A new savepoint cannot be created if there are active write 
 | 
| +      ** statements (i.e. open read/write incremental blob handles).
 | 
| +      */
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
 | 
| +        "SQL statements in progress");
 | 
| +      rc = SQLITE_BUSY;
 | 
| +    }else{
 | 
| +      nName = sqlite3Strlen30(zName);
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +      /* This call is Ok even if this savepoint is actually a transaction
 | 
| +      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
 | 
| +      ** If this is a transaction savepoint being opened, it is guaranteed
 | 
| +      ** that the db->aVTrans[] array is empty.  */
 | 
| +      assert( db->autoCommit==0 || db->nVTrans==0 );
 | 
| +      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
 | 
| +                                db->nStatement+db->nSavepoint);
 | 
| +      if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +#endif
 | 
| +
 | 
| +      /* Create a new savepoint structure. */
 | 
| +      pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
 | 
| +      if( pNew ){
 | 
| +        pNew->zName = (char *)&pNew[1];
 | 
| +        memcpy(pNew->zName, zName, nName+1);
 | 
| +    
 | 
| +        /* If there is no open transaction, then mark this as a special
 | 
| +        ** "transaction savepoint". */
 | 
| +        if( db->autoCommit ){
 | 
| +          db->autoCommit = 0;
 | 
| +          db->isTransactionSavepoint = 1;
 | 
| +        }else{
 | 
| +          db->nSavepoint++;
 | 
| +        }
 | 
| +    
 | 
| +        /* Link the new savepoint into the database handle's list. */
 | 
| +        pNew->pNext = db->pSavepoint;
 | 
| +        db->pSavepoint = pNew;
 | 
| +        pNew->nDeferredCons = db->nDeferredCons;
 | 
| +        pNew->nDeferredImmCons = db->nDeferredImmCons;
 | 
| +      }
 | 
| +    }
 | 
| +  }else{
 | 
| +    iSavepoint = 0;
 | 
| +
 | 
| +    /* Find the named savepoint. If there is no such savepoint, then an
 | 
| +    ** an error is returned to the user.  */
 | 
| +    for(
 | 
| +      pSavepoint = db->pSavepoint; 
 | 
| +      pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
 | 
| +      pSavepoint = pSavepoint->pNext
 | 
| +    ){
 | 
| +      iSavepoint++;
 | 
| +    }
 | 
| +    if( !pSavepoint ){
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
 | 
| +      rc = SQLITE_ERROR;
 | 
| +    }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
 | 
| +      /* It is not possible to release (commit) a savepoint if there are 
 | 
| +      ** active write statements.
 | 
| +      */
 | 
| +      sqlite3SetString(&p->zErrMsg, db, 
 | 
| +        "cannot release savepoint - SQL statements in progress"
 | 
| +      );
 | 
| +      rc = SQLITE_BUSY;
 | 
| +    }else{
 | 
| +
 | 
| +      /* Determine whether or not this is a transaction savepoint. If so,
 | 
| +      ** and this is a RELEASE command, then the current transaction 
 | 
| +      ** is committed. 
 | 
| +      */
 | 
| +      int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
 | 
| +      if( isTransaction && p1==SAVEPOINT_RELEASE ){
 | 
| +        if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
 | 
| +          goto vdbe_return;
 | 
| +        }
 | 
| +        db->autoCommit = 1;
 | 
| +        if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
 | 
| +          p->pc = pc;
 | 
| +          db->autoCommit = 0;
 | 
| +          p->rc = rc = SQLITE_BUSY;
 | 
| +          goto vdbe_return;
 | 
| +        }
 | 
| +        db->isTransactionSavepoint = 0;
 | 
| +        rc = p->rc;
 | 
| +      }else{
 | 
| +        int isSchemaChange;
 | 
| +        iSavepoint = db->nSavepoint - iSavepoint - 1;
 | 
| +        if( p1==SAVEPOINT_ROLLBACK ){
 | 
| +          isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
 | 
| +          for(ii=0; ii<db->nDb; ii++){
 | 
| +            rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
 | 
| +                                       SQLITE_ABORT_ROLLBACK,
 | 
| +                                       isSchemaChange==0);
 | 
| +            if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +          }
 | 
| +        }else{
 | 
| +          isSchemaChange = 0;
 | 
| +        }
 | 
| +        for(ii=0; ii<db->nDb; ii++){
 | 
| +          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
 | 
| +          if( rc!=SQLITE_OK ){
 | 
| +            goto abort_due_to_error;
 | 
| +          }
 | 
| +        }
 | 
| +        if( isSchemaChange ){
 | 
| +          sqlite3ExpirePreparedStatements(db);
 | 
| +          sqlite3ResetAllSchemasOfConnection(db);
 | 
| +          db->flags = (db->flags | SQLITE_InternChanges);
 | 
| +        }
 | 
| +      }
 | 
| +  
 | 
| +      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
 | 
| +      ** savepoints nested inside of the savepoint being operated on. */
 | 
| +      while( db->pSavepoint!=pSavepoint ){
 | 
| +        pTmp = db->pSavepoint;
 | 
| +        db->pSavepoint = pTmp->pNext;
 | 
| +        sqlite3DbFree(db, pTmp);
 | 
| +        db->nSavepoint--;
 | 
| +      }
 | 
| +
 | 
| +      /* If it is a RELEASE, then destroy the savepoint being operated on 
 | 
| +      ** too. If it is a ROLLBACK TO, then set the number of deferred 
 | 
| +      ** constraint violations present in the database to the value stored
 | 
| +      ** when the savepoint was created.  */
 | 
| +      if( p1==SAVEPOINT_RELEASE ){
 | 
| +        assert( pSavepoint==db->pSavepoint );
 | 
| +        db->pSavepoint = pSavepoint->pNext;
 | 
| +        sqlite3DbFree(db, pSavepoint);
 | 
| +        if( !isTransaction ){
 | 
| +          db->nSavepoint--;
 | 
| +        }
 | 
| +      }else{
 | 
| +        db->nDeferredCons = pSavepoint->nDeferredCons;
 | 
| +        db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
 | 
| +      }
 | 
| +
 | 
| +      if( !isTransaction ){
 | 
| +        rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
 | 
| +        if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: AutoCommit P1 P2 * * *
 | 
| +**
 | 
| +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
 | 
| +** back any currently active btree transactions. If there are any active
 | 
| +** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
 | 
| +** there are active writing VMs or active VMs that use shared cache.
 | 
| +**
 | 
| +** This instruction causes the VM to halt.
 | 
| +*/
 | 
| +case OP_AutoCommit: {
 | 
| +  int desiredAutoCommit;
 | 
| +  int iRollback;
 | 
| +  int turnOnAC;
 | 
| +
 | 
| +  desiredAutoCommit = pOp->p1;
 | 
| +  iRollback = pOp->p2;
 | 
| +  turnOnAC = desiredAutoCommit && !db->autoCommit;
 | 
| +  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
 | 
| +  assert( desiredAutoCommit==1 || iRollback==0 );
 | 
| +  assert( db->nVdbeActive>0 );  /* At least this one VM is active */
 | 
| +  assert( p->bIsReader );
 | 
| +
 | 
| +#if 0
 | 
| +  if( turnOnAC && iRollback && db->nVdbeActive>1 ){
 | 
| +    /* If this instruction implements a ROLLBACK and other VMs are
 | 
| +    ** still running, and a transaction is active, return an error indicating
 | 
| +    ** that the other VMs must complete first. 
 | 
| +    */
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
 | 
| +        "SQL statements in progress");
 | 
| +    rc = SQLITE_BUSY;
 | 
| +  }else
 | 
| +#endif
 | 
| +  if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
 | 
| +    /* If this instruction implements a COMMIT and other VMs are writing
 | 
| +    ** return an error indicating that the other VMs must complete first. 
 | 
| +    */
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
 | 
| +        "SQL statements in progress");
 | 
| +    rc = SQLITE_BUSY;
 | 
| +  }else if( desiredAutoCommit!=db->autoCommit ){
 | 
| +    if( iRollback ){
 | 
| +      assert( desiredAutoCommit==1 );
 | 
| +      sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
 | 
| +      db->autoCommit = 1;
 | 
| +    }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
 | 
| +      goto vdbe_return;
 | 
| +    }else{
 | 
| +      db->autoCommit = (u8)desiredAutoCommit;
 | 
| +      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
 | 
| +        p->pc = pc;
 | 
| +        db->autoCommit = (u8)(1-desiredAutoCommit);
 | 
| +        p->rc = rc = SQLITE_BUSY;
 | 
| +        goto vdbe_return;
 | 
| +      }
 | 
| +    }
 | 
| +    assert( db->nStatement==0 );
 | 
| +    sqlite3CloseSavepoints(db);
 | 
| +    if( p->rc==SQLITE_OK ){
 | 
| +      rc = SQLITE_DONE;
 | 
| +    }else{
 | 
| +      rc = SQLITE_ERROR;
 | 
| +    }
 | 
| +    goto vdbe_return;
 | 
| +  }else{
 | 
| +    sqlite3SetString(&p->zErrMsg, db,
 | 
| +        (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
 | 
| +        (iRollback)?"cannot rollback - no transaction is active":
 | 
| +                   "cannot commit - no transaction is active"));
 | 
| +         
 | 
| +    rc = SQLITE_ERROR;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Transaction P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** Begin a transaction on database P1 if a transaction is not already
 | 
| +** active.
 | 
| +** If P2 is non-zero, then a write-transaction is started, or if a 
 | 
| +** read-transaction is already active, it is upgraded to a write-transaction.
 | 
| +** If P2 is zero, then a read-transaction is started.
 | 
| +**
 | 
| +** P1 is the index of the database file on which the transaction is
 | 
| +** started.  Index 0 is the main database file and index 1 is the
 | 
| +** file used for temporary tables.  Indices of 2 or more are used for
 | 
| +** attached databases.
 | 
| +**
 | 
| +** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
 | 
| +** true (this flag is set if the Vdbe may modify more than one row and may
 | 
| +** throw an ABORT exception), a statement transaction may also be opened.
 | 
| +** More specifically, a statement transaction is opened iff the database
 | 
| +** connection is currently not in autocommit mode, or if there are other
 | 
| +** active statements. A statement transaction allows the changes made by this
 | 
| +** VDBE to be rolled back after an error without having to roll back the
 | 
| +** entire transaction. If no error is encountered, the statement transaction
 | 
| +** will automatically commit when the VDBE halts.
 | 
| +**
 | 
| +** If P5!=0 then this opcode also checks the schema cookie against P3
 | 
| +** and the schema generation counter against P4.
 | 
| +** The cookie changes its value whenever the database schema changes.
 | 
| +** This operation is used to detect when that the cookie has changed
 | 
| +** and that the current process needs to reread the schema.  If the schema
 | 
| +** cookie in P3 differs from the schema cookie in the database header or
 | 
| +** if the schema generation counter in P4 differs from the current
 | 
| +** generation counter, then an SQLITE_SCHEMA error is raised and execution
 | 
| +** halts.  The sqlite3_step() wrapper function might then reprepare the
 | 
| +** statement and rerun it from the beginning.
 | 
| +*/
 | 
| +case OP_Transaction: {
 | 
| +  Btree *pBt;
 | 
| +  int iMeta;
 | 
| +  int iGen;
 | 
| +
 | 
| +  assert( p->bIsReader );
 | 
| +  assert( p->readOnly==0 || pOp->p2==0 );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p1) );
 | 
| +  if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
 | 
| +    rc = SQLITE_READONLY;
 | 
| +    goto abort_due_to_error;
 | 
| +  }
 | 
| +  pBt = db->aDb[pOp->p1].pBt;
 | 
| +
 | 
| +  if( pBt ){
 | 
| +    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
 | 
| +    if( rc==SQLITE_BUSY ){
 | 
| +      p->pc = pc;
 | 
| +      p->rc = rc = SQLITE_BUSY;
 | 
| +      goto vdbe_return;
 | 
| +    }
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      goto abort_due_to_error;
 | 
| +    }
 | 
| +
 | 
| +    if( pOp->p2 && p->usesStmtJournal 
 | 
| +     && (db->autoCommit==0 || db->nVdbeRead>1) 
 | 
| +    ){
 | 
| +      assert( sqlite3BtreeIsInTrans(pBt) );
 | 
| +      if( p->iStatement==0 ){
 | 
| +        assert( db->nStatement>=0 && db->nSavepoint>=0 );
 | 
| +        db->nStatement++; 
 | 
| +        p->iStatement = db->nSavepoint + db->nStatement;
 | 
| +      }
 | 
| +
 | 
| +      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
 | 
| +      if( rc==SQLITE_OK ){
 | 
| +        rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
 | 
| +      }
 | 
| +
 | 
| +      /* Store the current value of the database handles deferred constraint
 | 
| +      ** counter. If the statement transaction needs to be rolled back,
 | 
| +      ** the value of this counter needs to be restored too.  */
 | 
| +      p->nStmtDefCons = db->nDeferredCons;
 | 
| +      p->nStmtDefImmCons = db->nDeferredImmCons;
 | 
| +    }
 | 
| +
 | 
| +    /* Gather the schema version number for checking */
 | 
| +    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
 | 
| +    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
 | 
| +  }else{
 | 
| +    iGen = iMeta = 0;
 | 
| +  }
 | 
| +  assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
 | 
| +  if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
 | 
| +    sqlite3DbFree(db, p->zErrMsg);
 | 
| +    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
 | 
| +    /* If the schema-cookie from the database file matches the cookie 
 | 
| +    ** stored with the in-memory representation of the schema, do
 | 
| +    ** not reload the schema from the database file.
 | 
| +    **
 | 
| +    ** If virtual-tables are in use, this is not just an optimization.
 | 
| +    ** Often, v-tables store their data in other SQLite tables, which
 | 
| +    ** are queried from within xNext() and other v-table methods using
 | 
| +    ** prepared queries. If such a query is out-of-date, we do not want to
 | 
| +    ** discard the database schema, as the user code implementing the
 | 
| +    ** v-table would have to be ready for the sqlite3_vtab structure itself
 | 
| +    ** to be invalidated whenever sqlite3_step() is called from within 
 | 
| +    ** a v-table method.
 | 
| +    */
 | 
| +    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
 | 
| +      sqlite3ResetOneSchema(db, pOp->p1);
 | 
| +    }
 | 
| +    p->expired = 1;
 | 
| +    rc = SQLITE_SCHEMA;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: ReadCookie P1 P2 P3 * *
 | 
| +**
 | 
| +** Read cookie number P3 from database P1 and write it into register P2.
 | 
| +** P3==1 is the schema version.  P3==2 is the database format.
 | 
| +** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
 | 
| +** the main database file and P1==1 is the database file used to store
 | 
| +** temporary tables.
 | 
| +**
 | 
| +** There must be a read-lock on the database (either a transaction
 | 
| +** must be started or there must be an open cursor) before
 | 
| +** executing this instruction.
 | 
| +*/
 | 
| +case OP_ReadCookie: {               /* out2-prerelease */
 | 
| +  int iMeta;
 | 
| +  int iDb;
 | 
| +  int iCookie;
 | 
| +
 | 
| +  assert( p->bIsReader );
 | 
| +  iDb = pOp->p1;
 | 
| +  iCookie = pOp->p3;
 | 
| +  assert( pOp->p3<SQLITE_N_BTREE_META );
 | 
| +  assert( iDb>=0 && iDb<db->nDb );
 | 
| +  assert( db->aDb[iDb].pBt!=0 );
 | 
| +  assert( DbMaskTest(p->btreeMask, iDb) );
 | 
| +
 | 
| +  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
 | 
| +  pOut->u.i = iMeta;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SetCookie P1 P2 P3 * *
 | 
| +**
 | 
| +** Write the content of register P3 (interpreted as an integer)
 | 
| +** into cookie number P2 of database P1.  P2==1 is the schema version.  
 | 
| +** P2==2 is the database format. P2==3 is the recommended pager cache 
 | 
| +** size, and so forth.  P1==0 is the main database file and P1==1 is the 
 | 
| +** database file used to store temporary tables.
 | 
| +**
 | 
| +** A transaction must be started before executing this opcode.
 | 
| +*/
 | 
| +case OP_SetCookie: {       /* in3 */
 | 
| +  Db *pDb;
 | 
| +  assert( pOp->p2<SQLITE_N_BTREE_META );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p1) );
 | 
| +  assert( p->readOnly==0 );
 | 
| +  pDb = &db->aDb[pOp->p1];
 | 
| +  assert( pDb->pBt!=0 );
 | 
| +  assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  sqlite3VdbeMemIntegerify(pIn3);
 | 
| +  /* See note about index shifting on OP_ReadCookie */
 | 
| +  rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
 | 
| +  if( pOp->p2==BTREE_SCHEMA_VERSION ){
 | 
| +    /* When the schema cookie changes, record the new cookie internally */
 | 
| +    pDb->pSchema->schema_cookie = (int)pIn3->u.i;
 | 
| +    db->flags |= SQLITE_InternChanges;
 | 
| +  }else if( pOp->p2==BTREE_FILE_FORMAT ){
 | 
| +    /* Record changes in the file format */
 | 
| +    pDb->pSchema->file_format = (u8)pIn3->u.i;
 | 
| +  }
 | 
| +  if( pOp->p1==1 ){
 | 
| +    /* Invalidate all prepared statements whenever the TEMP database
 | 
| +    ** schema is changed.  Ticket #1644 */
 | 
| +    sqlite3ExpirePreparedStatements(db);
 | 
| +    p->expired = 0;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: OpenRead P1 P2 P3 P4 P5
 | 
| +** Synopsis: root=P2 iDb=P3
 | 
| +**
 | 
| +** Open a read-only cursor for the database table whose root page is
 | 
| +** P2 in a database file.  The database file is determined by P3. 
 | 
| +** P3==0 means the main database, P3==1 means the database used for 
 | 
| +** temporary tables, and P3>1 means used the corresponding attached
 | 
| +** database.  Give the new cursor an identifier of P1.  The P1
 | 
| +** values need not be contiguous but all P1 values should be small integers.
 | 
| +** It is an error for P1 to be negative.
 | 
| +**
 | 
| +** If P5!=0 then use the content of register P2 as the root page, not
 | 
| +** the value of P2 itself.
 | 
| +**
 | 
| +** There will be a read lock on the database whenever there is an
 | 
| +** open cursor.  If the database was unlocked prior to this instruction
 | 
| +** then a read lock is acquired as part of this instruction.  A read
 | 
| +** lock allows other processes to read the database but prohibits
 | 
| +** any other process from modifying the database.  The read lock is
 | 
| +** released when all cursors are closed.  If this instruction attempts
 | 
| +** to get a read lock but fails, the script terminates with an
 | 
| +** SQLITE_BUSY error code.
 | 
| +**
 | 
| +** The P4 value may be either an integer (P4_INT32) or a pointer to
 | 
| +** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
 | 
| +** structure, then said structure defines the content and collating 
 | 
| +** sequence of the index being opened. Otherwise, if P4 is an integer 
 | 
| +** value, it is set to the number of columns in the table.
 | 
| +**
 | 
| +** See also: OpenWrite, ReopenIdx
 | 
| +*/
 | 
| +/* Opcode: ReopenIdx P1 P2 P3 P4 P5
 | 
| +** Synopsis: root=P2 iDb=P3
 | 
| +**
 | 
| +** The ReopenIdx opcode works exactly like ReadOpen except that it first
 | 
| +** checks to see if the cursor on P1 is already open with a root page
 | 
| +** number of P2 and if it is this opcode becomes a no-op.  In other words,
 | 
| +** if the cursor is already open, do not reopen it.
 | 
| +**
 | 
| +** The ReopenIdx opcode may only be used with P5==0 and with P4 being
 | 
| +** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
 | 
| +** every other ReopenIdx or OpenRead for the same cursor number.
 | 
| +**
 | 
| +** See the OpenRead opcode documentation for additional information.
 | 
| +*/
 | 
| +/* Opcode: OpenWrite P1 P2 P3 P4 P5
 | 
| +** Synopsis: root=P2 iDb=P3
 | 
| +**
 | 
| +** Open a read/write cursor named P1 on the table or index whose root
 | 
| +** page is P2.  Or if P5!=0 use the content of register P2 to find the
 | 
| +** root page.
 | 
| +**
 | 
| +** The P4 value may be either an integer (P4_INT32) or a pointer to
 | 
| +** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
 | 
| +** structure, then said structure defines the content and collating 
 | 
| +** sequence of the index being opened. Otherwise, if P4 is an integer 
 | 
| +** value, it is set to the number of columns in the table, or to the
 | 
| +** largest index of any column of the table that is actually used.
 | 
| +**
 | 
| +** This instruction works just like OpenRead except that it opens the cursor
 | 
| +** in read/write mode.  For a given table, there can be one or more read-only
 | 
| +** cursors or a single read/write cursor but not both.
 | 
| +**
 | 
| +** See also OpenRead.
 | 
| +*/
 | 
| +case OP_ReopenIdx: {
 | 
| +  VdbeCursor *pCur;
 | 
| +
 | 
| +  assert( pOp->p5==0 );
 | 
| +  assert( pOp->p4type==P4_KEYINFO );
 | 
| +  pCur = p->apCsr[pOp->p1];
 | 
| +  if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
 | 
| +    assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
 | 
| +    break;
 | 
| +  }
 | 
| +  /* If the cursor is not currently open or is open on a different
 | 
| +  ** index, then fall through into OP_OpenRead to force a reopen */
 | 
| +}
 | 
| +case OP_OpenRead:
 | 
| +case OP_OpenWrite: {
 | 
| +  int nField;
 | 
| +  KeyInfo *pKeyInfo;
 | 
| +  int p2;
 | 
| +  int iDb;
 | 
| +  int wrFlag;
 | 
| +  Btree *pX;
 | 
| +  VdbeCursor *pCur;
 | 
| +  Db *pDb;
 | 
| +
 | 
| +  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
 | 
| +  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
 | 
| +  assert( p->bIsReader );
 | 
| +  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
 | 
| +          || p->readOnly==0 );
 | 
| +
 | 
| +  if( p->expired ){
 | 
| +    rc = SQLITE_ABORT_ROLLBACK;
 | 
| +    break;
 | 
| +  }
 | 
| +
 | 
| +  nField = 0;
 | 
| +  pKeyInfo = 0;
 | 
| +  p2 = pOp->p2;
 | 
| +  iDb = pOp->p3;
 | 
| +  assert( iDb>=0 && iDb<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, iDb) );
 | 
| +  pDb = &db->aDb[iDb];
 | 
| +  pX = pDb->pBt;
 | 
| +  assert( pX!=0 );
 | 
| +  if( pOp->opcode==OP_OpenWrite ){
 | 
| +    wrFlag = 1;
 | 
| +    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
 | 
| +    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
 | 
| +      p->minWriteFileFormat = pDb->pSchema->file_format;
 | 
| +    }
 | 
| +  }else{
 | 
| +    wrFlag = 0;
 | 
| +  }
 | 
| +  if( pOp->p5 & OPFLAG_P2ISREG ){
 | 
| +    assert( p2>0 );
 | 
| +    assert( p2<=(p->nMem-p->nCursor) );
 | 
| +    pIn2 = &aMem[p2];
 | 
| +    assert( memIsValid(pIn2) );
 | 
| +    assert( (pIn2->flags & MEM_Int)!=0 );
 | 
| +    sqlite3VdbeMemIntegerify(pIn2);
 | 
| +    p2 = (int)pIn2->u.i;
 | 
| +    /* The p2 value always comes from a prior OP_CreateTable opcode and
 | 
| +    ** that opcode will always set the p2 value to 2 or more or else fail.
 | 
| +    ** If there were a failure, the prepared statement would have halted
 | 
| +    ** before reaching this instruction. */
 | 
| +    if( NEVER(p2<2) ) {
 | 
| +      rc = SQLITE_CORRUPT_BKPT;
 | 
| +      goto abort_due_to_error;
 | 
| +    }
 | 
| +  }
 | 
| +  if( pOp->p4type==P4_KEYINFO ){
 | 
| +    pKeyInfo = pOp->p4.pKeyInfo;
 | 
| +    assert( pKeyInfo->enc==ENC(db) );
 | 
| +    assert( pKeyInfo->db==db );
 | 
| +    nField = pKeyInfo->nField+pKeyInfo->nXField;
 | 
| +  }else if( pOp->p4type==P4_INT32 ){
 | 
| +    nField = pOp->p4.i;
 | 
| +  }
 | 
| +  assert( pOp->p1>=0 );
 | 
| +  assert( nField>=0 );
 | 
| +  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
 | 
| +  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
 | 
| +  if( pCur==0 ) goto no_mem;
 | 
| +  pCur->nullRow = 1;
 | 
| +  pCur->isOrdered = 1;
 | 
| +  pCur->pgnoRoot = p2;
 | 
| +  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
 | 
| +  pCur->pKeyInfo = pKeyInfo;
 | 
| +  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
 | 
| +  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
 | 
| +
 | 
| +  /* Set the VdbeCursor.isTable variable. Previous versions of
 | 
| +  ** SQLite used to check if the root-page flags were sane at this point
 | 
| +  ** and report database corruption if they were not, but this check has
 | 
| +  ** since moved into the btree layer.  */  
 | 
| +  pCur->isTable = pOp->p4type!=P4_KEYINFO;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: OpenEphemeral P1 P2 * P4 P5
 | 
| +** Synopsis: nColumn=P2
 | 
| +**
 | 
| +** Open a new cursor P1 to a transient table.
 | 
| +** The cursor is always opened read/write even if 
 | 
| +** the main database is read-only.  The ephemeral
 | 
| +** table is deleted automatically when the cursor is closed.
 | 
| +**
 | 
| +** P2 is the number of columns in the ephemeral table.
 | 
| +** The cursor points to a BTree table if P4==0 and to a BTree index
 | 
| +** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
 | 
| +** that defines the format of keys in the index.
 | 
| +**
 | 
| +** The P5 parameter can be a mask of the BTREE_* flags defined
 | 
| +** in btree.h.  These flags control aspects of the operation of
 | 
| +** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
 | 
| +** added automatically.
 | 
| +*/
 | 
| +/* Opcode: OpenAutoindex P1 P2 * P4 *
 | 
| +** Synopsis: nColumn=P2
 | 
| +**
 | 
| +** This opcode works the same as OP_OpenEphemeral.  It has a
 | 
| +** different name to distinguish its use.  Tables created using
 | 
| +** by this opcode will be used for automatically created transient
 | 
| +** indices in joins.
 | 
| +*/
 | 
| +case OP_OpenAutoindex: 
 | 
| +case OP_OpenEphemeral: {
 | 
| +  VdbeCursor *pCx;
 | 
| +  KeyInfo *pKeyInfo;
 | 
| +
 | 
| +  static const int vfsFlags = 
 | 
| +      SQLITE_OPEN_READWRITE |
 | 
| +      SQLITE_OPEN_CREATE |
 | 
| +      SQLITE_OPEN_EXCLUSIVE |
 | 
| +      SQLITE_OPEN_DELETEONCLOSE |
 | 
| +      SQLITE_OPEN_TRANSIENT_DB;
 | 
| +  assert( pOp->p1>=0 );
 | 
| +  assert( pOp->p2>=0 );
 | 
| +  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
 | 
| +  if( pCx==0 ) goto no_mem;
 | 
| +  pCx->nullRow = 1;
 | 
| +  pCx->isEphemeral = 1;
 | 
| +  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
 | 
| +                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
 | 
| +  if( rc==SQLITE_OK ){
 | 
| +    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
 | 
| +  }
 | 
| +  if( rc==SQLITE_OK ){
 | 
| +    /* If a transient index is required, create it by calling
 | 
| +    ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
 | 
| +    ** opening it. If a transient table is required, just use the
 | 
| +    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
 | 
| +    */
 | 
| +    if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
 | 
| +      int pgno;
 | 
| +      assert( pOp->p4type==P4_KEYINFO );
 | 
| +      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 
 | 
| +      if( rc==SQLITE_OK ){
 | 
| +        assert( pgno==MASTER_ROOT+1 );
 | 
| +        assert( pKeyInfo->db==db );
 | 
| +        assert( pKeyInfo->enc==ENC(db) );
 | 
| +        pCx->pKeyInfo = pKeyInfo;
 | 
| +        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
 | 
| +      }
 | 
| +      pCx->isTable = 0;
 | 
| +    }else{
 | 
| +      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
 | 
| +      pCx->isTable = 1;
 | 
| +    }
 | 
| +  }
 | 
| +  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SorterOpen P1 P2 P3 P4 *
 | 
| +**
 | 
| +** This opcode works like OP_OpenEphemeral except that it opens
 | 
| +** a transient index that is specifically designed to sort large
 | 
| +** tables using an external merge-sort algorithm.
 | 
| +**
 | 
| +** If argument P3 is non-zero, then it indicates that the sorter may
 | 
| +** assume that a stable sort considering the first P3 fields of each
 | 
| +** key is sufficient to produce the required results.
 | 
| +*/
 | 
| +case OP_SorterOpen: {
 | 
| +  VdbeCursor *pCx;
 | 
| +
 | 
| +  assert( pOp->p1>=0 );
 | 
| +  assert( pOp->p2>=0 );
 | 
| +  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
 | 
| +  if( pCx==0 ) goto no_mem;
 | 
| +  pCx->pKeyInfo = pOp->p4.pKeyInfo;
 | 
| +  assert( pCx->pKeyInfo->db==db );
 | 
| +  assert( pCx->pKeyInfo->enc==ENC(db) );
 | 
| +  rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SequenceTest P1 P2 * * *
 | 
| +** Synopsis: if( cursor[P1].ctr++ ) pc = P2
 | 
| +**
 | 
| +** P1 is a sorter cursor. If the sequence counter is currently zero, jump
 | 
| +** to P2. Regardless of whether or not the jump is taken, increment the
 | 
| +** the sequence value.
 | 
| +*/
 | 
| +case OP_SequenceTest: {
 | 
| +  VdbeCursor *pC;
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC->pSorter );
 | 
| +  if( (pC->seqCount++)==0 ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: OpenPseudo P1 P2 P3 * *
 | 
| +** Synopsis: P3 columns in r[P2]
 | 
| +**
 | 
| +** Open a new cursor that points to a fake table that contains a single
 | 
| +** row of data.  The content of that one row is the content of memory
 | 
| +** register P2.  In other words, cursor P1 becomes an alias for the 
 | 
| +** MEM_Blob content contained in register P2.
 | 
| +**
 | 
| +** A pseudo-table created by this opcode is used to hold a single
 | 
| +** row output from the sorter so that the row can be decomposed into
 | 
| +** individual columns using the OP_Column opcode.  The OP_Column opcode
 | 
| +** is the only cursor opcode that works with a pseudo-table.
 | 
| +**
 | 
| +** P3 is the number of fields in the records that will be stored by
 | 
| +** the pseudo-table.
 | 
| +*/
 | 
| +case OP_OpenPseudo: {
 | 
| +  VdbeCursor *pCx;
 | 
| +
 | 
| +  assert( pOp->p1>=0 );
 | 
| +  assert( pOp->p3>=0 );
 | 
| +  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
 | 
| +  if( pCx==0 ) goto no_mem;
 | 
| +  pCx->nullRow = 1;
 | 
| +  pCx->pseudoTableReg = pOp->p2;
 | 
| +  pCx->isTable = 1;
 | 
| +  assert( pOp->p5==0 );
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Close P1 * * * *
 | 
| +**
 | 
| +** Close a cursor previously opened as P1.  If P1 is not
 | 
| +** currently open, this instruction is a no-op.
 | 
| +*/
 | 
| +case OP_Close: {
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
 | 
| +  p->apCsr[pOp->p1] = 0;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SeekGE P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
 | 
| +** use the value in register P3 as the key.  If cursor P1 refers 
 | 
| +** to an SQL index, then P3 is the first in an array of P4 registers 
 | 
| +** that are used as an unpacked index key. 
 | 
| +**
 | 
| +** Reposition cursor P1 so that  it points to the smallest entry that 
 | 
| +** is greater than or equal to the key value. If there are no records 
 | 
| +** greater than or equal to the key and P2 is not zero, then jump to P2.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in forward order,
 | 
| +** from the beginning toward the end.  In other words, the cursor is
 | 
| +** configured to use Next, not Prev.
 | 
| +**
 | 
| +** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
 | 
| +*/
 | 
| +/* Opcode: SeekGT P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
 | 
| +** use the value in register P3 as a key. If cursor P1 refers 
 | 
| +** to an SQL index, then P3 is the first in an array of P4 registers 
 | 
| +** that are used as an unpacked index key. 
 | 
| +**
 | 
| +** Reposition cursor P1 so that  it points to the smallest entry that 
 | 
| +** is greater than the key value. If there are no records greater than 
 | 
| +** the key and P2 is not zero, then jump to P2.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in forward order,
 | 
| +** from the beginning toward the end.  In other words, the cursor is
 | 
| +** configured to use Next, not Prev.
 | 
| +**
 | 
| +** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
 | 
| +*/
 | 
| +/* Opcode: SeekLT P1 P2 P3 P4 * 
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
 | 
| +** use the value in register P3 as a key. If cursor P1 refers 
 | 
| +** to an SQL index, then P3 is the first in an array of P4 registers 
 | 
| +** that are used as an unpacked index key. 
 | 
| +**
 | 
| +** Reposition cursor P1 so that  it points to the largest entry that 
 | 
| +** is less than the key value. If there are no records less than 
 | 
| +** the key and P2 is not zero, then jump to P2.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in reverse order,
 | 
| +** from the end toward the beginning.  In other words, the cursor is
 | 
| +** configured to use Prev, not Next.
 | 
| +**
 | 
| +** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
 | 
| +*/
 | 
| +/* Opcode: SeekLE P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
 | 
| +** use the value in register P3 as a key. If cursor P1 refers 
 | 
| +** to an SQL index, then P3 is the first in an array of P4 registers 
 | 
| +** that are used as an unpacked index key. 
 | 
| +**
 | 
| +** Reposition cursor P1 so that it points to the largest entry that 
 | 
| +** is less than or equal to the key value. If there are no records 
 | 
| +** less than or equal to the key and P2 is not zero, then jump to P2.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in reverse order,
 | 
| +** from the end toward the beginning.  In other words, the cursor is
 | 
| +** configured to use Prev, not Next.
 | 
| +**
 | 
| +** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
 | 
| +*/
 | 
| +case OP_SeekLT:         /* jump, in3 */
 | 
| +case OP_SeekLE:         /* jump, in3 */
 | 
| +case OP_SeekGE:         /* jump, in3 */
 | 
| +case OP_SeekGT: {       /* jump, in3 */
 | 
| +  int res;
 | 
| +  int oc;
 | 
| +  VdbeCursor *pC;
 | 
| +  UnpackedRecord r;
 | 
| +  int nField;
 | 
| +  i64 iKey;      /* The rowid we are to seek to */
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  assert( pOp->p2!=0 );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->pseudoTableReg==0 );
 | 
| +  assert( OP_SeekLE == OP_SeekLT+1 );
 | 
| +  assert( OP_SeekGE == OP_SeekLT+2 );
 | 
| +  assert( OP_SeekGT == OP_SeekLT+3 );
 | 
| +  assert( pC->isOrdered );
 | 
| +  assert( pC->pCursor!=0 );
 | 
| +  oc = pOp->opcode;
 | 
| +  pC->nullRow = 0;
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  pC->seekOp = pOp->opcode;
 | 
| +#endif
 | 
| +  if( pC->isTable ){
 | 
| +    /* The input value in P3 might be of any type: integer, real, string,
 | 
| +    ** blob, or NULL.  But it needs to be an integer before we can do
 | 
| +    ** the seek, so convert it. */
 | 
| +    pIn3 = &aMem[pOp->p3];
 | 
| +    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
 | 
| +      applyNumericAffinity(pIn3, 0);
 | 
| +    }
 | 
| +    iKey = sqlite3VdbeIntValue(pIn3);
 | 
| +
 | 
| +    /* If the P3 value could not be converted into an integer without
 | 
| +    ** loss of information, then special processing is required... */
 | 
| +    if( (pIn3->flags & MEM_Int)==0 ){
 | 
| +      if( (pIn3->flags & MEM_Real)==0 ){
 | 
| +        /* If the P3 value cannot be converted into any kind of a number,
 | 
| +        ** then the seek is not possible, so jump to P2 */
 | 
| +        pc = pOp->p2 - 1;  VdbeBranchTaken(1,2);
 | 
| +        break;
 | 
| +      }
 | 
| +
 | 
| +      /* If the approximation iKey is larger than the actual real search
 | 
| +      ** term, substitute >= for > and < for <=. e.g. if the search term
 | 
| +      ** is 4.9 and the integer approximation 5:
 | 
| +      **
 | 
| +      **        (x >  4.9)    ->     (x >= 5)
 | 
| +      **        (x <= 4.9)    ->     (x <  5)
 | 
| +      */
 | 
| +      if( pIn3->u.r<(double)iKey ){
 | 
| +        assert( OP_SeekGE==(OP_SeekGT-1) );
 | 
| +        assert( OP_SeekLT==(OP_SeekLE-1) );
 | 
| +        assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
 | 
| +        if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
 | 
| +      }
 | 
| +
 | 
| +      /* If the approximation iKey is smaller than the actual real search
 | 
| +      ** term, substitute <= for < and > for >=.  */
 | 
| +      else if( pIn3->u.r>(double)iKey ){
 | 
| +        assert( OP_SeekLE==(OP_SeekLT+1) );
 | 
| +        assert( OP_SeekGT==(OP_SeekGE+1) );
 | 
| +        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
 | 
| +        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
 | 
| +      }
 | 
| +    } 
 | 
| +    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
 | 
| +    pC->movetoTarget = iKey;  /* Used by OP_Delete */
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      goto abort_due_to_error;
 | 
| +    }
 | 
| +  }else{
 | 
| +    nField = pOp->p4.i;
 | 
| +    assert( pOp->p4type==P4_INT32 );
 | 
| +    assert( nField>0 );
 | 
| +    r.pKeyInfo = pC->pKeyInfo;
 | 
| +    r.nField = (u16)nField;
 | 
| +
 | 
| +    /* The next line of code computes as follows, only faster:
 | 
| +    **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
 | 
| +    **     r.default_rc = -1;
 | 
| +    **   }else{
 | 
| +    **     r.default_rc = +1;
 | 
| +    **   }
 | 
| +    */
 | 
| +    r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
 | 
| +    assert( oc!=OP_SeekGT || r.default_rc==-1 );
 | 
| +    assert( oc!=OP_SeekLE || r.default_rc==-1 );
 | 
| +    assert( oc!=OP_SeekGE || r.default_rc==+1 );
 | 
| +    assert( oc!=OP_SeekLT || r.default_rc==+1 );
 | 
| +
 | 
| +    r.aMem = &aMem[pOp->p3];
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
 | 
| +#endif
 | 
| +    ExpandBlob(r.aMem);
 | 
| +    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      goto abort_due_to_error;
 | 
| +    }
 | 
| +  }
 | 
| +  pC->deferredMoveto = 0;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +#ifdef SQLITE_TEST
 | 
| +  sqlite3_search_count++;
 | 
| +#endif
 | 
| +  if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
 | 
| +    if( res<0 || (res==0 && oc==OP_SeekGT) ){
 | 
| +      res = 0;
 | 
| +      rc = sqlite3BtreeNext(pC->pCursor, &res);
 | 
| +      if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +    }else{
 | 
| +      res = 0;
 | 
| +    }
 | 
| +  }else{
 | 
| +    assert( oc==OP_SeekLT || oc==OP_SeekLE );
 | 
| +    if( res>0 || (res==0 && oc==OP_SeekLT) ){
 | 
| +      res = 0;
 | 
| +      rc = sqlite3BtreePrevious(pC->pCursor, &res);
 | 
| +      if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +    }else{
 | 
| +      /* res might be negative because the table is empty.  Check to
 | 
| +      ** see if this is the case.
 | 
| +      */
 | 
| +      res = sqlite3BtreeEof(pC->pCursor);
 | 
| +    }
 | 
| +  }
 | 
| +  assert( pOp->p2>0 );
 | 
| +  VdbeBranchTaken(res!=0,2);
 | 
| +  if( res ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Seek P1 P2 * * *
 | 
| +** Synopsis:  intkey=r[P2]
 | 
| +**
 | 
| +** P1 is an open table cursor and P2 is a rowid integer.  Arrange
 | 
| +** for P1 to move so that it points to the rowid given by P2.
 | 
| +**
 | 
| +** This is actually a deferred seek.  Nothing actually happens until
 | 
| +** the cursor is used to read a record.  That way, if no reads
 | 
| +** occur, no unnecessary I/O happens.
 | 
| +*/
 | 
| +case OP_Seek: {    /* in2 */
 | 
| +  VdbeCursor *pC;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->pCursor!=0 );
 | 
| +  assert( pC->isTable );
 | 
| +  pC->nullRow = 0;
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
 | 
| +  pC->deferredMoveto = 1;
 | 
| +  break;
 | 
| +}
 | 
| +  
 | 
| +
 | 
| +/* Opcode: Found P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
 | 
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
 | 
| +** record.
 | 
| +**
 | 
| +** Cursor P1 is on an index btree.  If the record identified by P3 and P4
 | 
| +** is a prefix of any entry in P1 then a jump is made to P2 and
 | 
| +** P1 is left pointing at the matching entry.
 | 
| +**
 | 
| +** This operation leaves the cursor in a state where it can be
 | 
| +** advanced in the forward direction.  The Next instruction will work,
 | 
| +** but not the Prev instruction.
 | 
| +**
 | 
| +** See also: NotFound, NoConflict, NotExists. SeekGe
 | 
| +*/
 | 
| +/* Opcode: NotFound P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
 | 
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
 | 
| +** record.
 | 
| +** 
 | 
| +** Cursor P1 is on an index btree.  If the record identified by P3 and P4
 | 
| +** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
 | 
| +** does contain an entry whose prefix matches the P3/P4 record then control
 | 
| +** falls through to the next instruction and P1 is left pointing at the
 | 
| +** matching entry.
 | 
| +**
 | 
| +** This operation leaves the cursor in a state where it cannot be
 | 
| +** advanced in either direction.  In other words, the Next and Prev
 | 
| +** opcodes do not work after this operation.
 | 
| +**
 | 
| +** See also: Found, NotExists, NoConflict
 | 
| +*/
 | 
| +/* Opcode: NoConflict P1 P2 P3 P4 *
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
 | 
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
 | 
| +** record.
 | 
| +** 
 | 
| +** Cursor P1 is on an index btree.  If the record identified by P3 and P4
 | 
| +** contains any NULL value, jump immediately to P2.  If all terms of the
 | 
| +** record are not-NULL then a check is done to determine if any row in the
 | 
| +** P1 index btree has a matching key prefix.  If there are no matches, jump
 | 
| +** immediately to P2.  If there is a match, fall through and leave the P1
 | 
| +** cursor pointing to the matching row.
 | 
| +**
 | 
| +** This opcode is similar to OP_NotFound with the exceptions that the
 | 
| +** branch is always taken if any part of the search key input is NULL.
 | 
| +**
 | 
| +** This operation leaves the cursor in a state where it cannot be
 | 
| +** advanced in either direction.  In other words, the Next and Prev
 | 
| +** opcodes do not work after this operation.
 | 
| +**
 | 
| +** See also: NotFound, Found, NotExists
 | 
| +*/
 | 
| +case OP_NoConflict:     /* jump, in3 */
 | 
| +case OP_NotFound:       /* jump, in3 */
 | 
| +case OP_Found: {        /* jump, in3 */
 | 
| +  int alreadyExists;
 | 
| +  int ii;
 | 
| +  VdbeCursor *pC;
 | 
| +  int res;
 | 
| +  char *pFree;
 | 
| +  UnpackedRecord *pIdxKey;
 | 
| +  UnpackedRecord r;
 | 
| +  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
 | 
| +
 | 
| +#ifdef SQLITE_TEST
 | 
| +  if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
 | 
| +#endif
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  assert( pOp->p4type==P4_INT32 );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  pC->seekOp = pOp->opcode;
 | 
| +#endif
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  assert( pC->pCursor!=0 );
 | 
| +  assert( pC->isTable==0 );
 | 
| +  pFree = 0;  /* Not needed.  Only used to suppress a compiler warning. */
 | 
| +  if( pOp->p4.i>0 ){
 | 
| +    r.pKeyInfo = pC->pKeyInfo;
 | 
| +    r.nField = (u16)pOp->p4.i;
 | 
| +    r.aMem = pIn3;
 | 
| +    for(ii=0; ii<r.nField; ii++){
 | 
| +      assert( memIsValid(&r.aMem[ii]) );
 | 
| +      ExpandBlob(&r.aMem[ii]);
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
 | 
| +#endif
 | 
| +    }
 | 
| +    pIdxKey = &r;
 | 
| +  }else{
 | 
| +    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
 | 
| +        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
 | 
| +    ); 
 | 
| +    if( pIdxKey==0 ) goto no_mem;
 | 
| +    assert( pIn3->flags & MEM_Blob );
 | 
| +    assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
 | 
| +    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
 | 
| +  }
 | 
| +  pIdxKey->default_rc = 0;
 | 
| +  if( pOp->opcode==OP_NoConflict ){
 | 
| +    /* For the OP_NoConflict opcode, take the jump if any of the
 | 
| +    ** input fields are NULL, since any key with a NULL will not
 | 
| +    ** conflict */
 | 
| +    for(ii=0; ii<r.nField; ii++){
 | 
| +      if( r.aMem[ii].flags & MEM_Null ){
 | 
| +        pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
 | 
| +        break;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +  rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
 | 
| +  if( pOp->p4.i==0 ){
 | 
| +    sqlite3DbFree(db, pFree);
 | 
| +  }
 | 
| +  if( rc!=SQLITE_OK ){
 | 
| +    break;
 | 
| +  }
 | 
| +  pC->seekResult = res;
 | 
| +  alreadyExists = (res==0);
 | 
| +  pC->nullRow = 1-alreadyExists;
 | 
| +  pC->deferredMoveto = 0;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +  if( pOp->opcode==OP_Found ){
 | 
| +    VdbeBranchTaken(alreadyExists!=0,2);
 | 
| +    if( alreadyExists ) pc = pOp->p2 - 1;
 | 
| +  }else{
 | 
| +    VdbeBranchTaken(alreadyExists==0,2);
 | 
| +    if( !alreadyExists ) pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: NotExists P1 P2 P3 * *
 | 
| +** Synopsis: intkey=r[P3]
 | 
| +**
 | 
| +** P1 is the index of a cursor open on an SQL table btree (with integer
 | 
| +** keys).  P3 is an integer rowid.  If P1 does not contain a record with
 | 
| +** rowid P3 then jump immediately to P2.  If P1 does contain a record
 | 
| +** with rowid P3 then leave the cursor pointing at that record and fall
 | 
| +** through to the next instruction.
 | 
| +**
 | 
| +** The OP_NotFound opcode performs the same operation on index btrees
 | 
| +** (with arbitrary multi-value keys).
 | 
| +**
 | 
| +** This opcode leaves the cursor in a state where it cannot be advanced
 | 
| +** in either direction.  In other words, the Next and Prev opcodes will
 | 
| +** not work following this opcode.
 | 
| +**
 | 
| +** See also: Found, NotFound, NoConflict
 | 
| +*/
 | 
| +case OP_NotExists: {        /* jump, in3 */
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  int res;
 | 
| +  u64 iKey;
 | 
| +
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  assert( pIn3->flags & MEM_Int );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  pC->seekOp = 0;
 | 
| +#endif
 | 
| +  assert( pC->isTable );
 | 
| +  assert( pC->pseudoTableReg==0 );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  assert( pCrsr!=0 );
 | 
| +  res = 0;
 | 
| +  iKey = pIn3->u.i;
 | 
| +  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
 | 
| +  pC->movetoTarget = iKey;  /* Used by OP_Delete */
 | 
| +  pC->nullRow = 0;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +  pC->deferredMoveto = 0;
 | 
| +  VdbeBranchTaken(res!=0,2);
 | 
| +  if( res!=0 ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  pC->seekResult = res;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Sequence P1 P2 * * *
 | 
| +** Synopsis: r[P2]=cursor[P1].ctr++
 | 
| +**
 | 
| +** Find the next available sequence number for cursor P1.
 | 
| +** Write the sequence number into register P2.
 | 
| +** The sequence number on the cursor is incremented after this
 | 
| +** instruction.  
 | 
| +*/
 | 
| +case OP_Sequence: {           /* out2-prerelease */
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  assert( p->apCsr[pOp->p1]!=0 );
 | 
| +  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/* Opcode: NewRowid P1 P2 P3 * *
 | 
| +** Synopsis: r[P2]=rowid
 | 
| +**
 | 
| +** Get a new integer record number (a.k.a "rowid") used as the key to a table.
 | 
| +** The record number is not previously used as a key in the database
 | 
| +** table that cursor P1 points to.  The new record number is written
 | 
| +** written to register P2.
 | 
| +**
 | 
| +** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
 | 
| +** the largest previously generated record number. No new record numbers are
 | 
| +** allowed to be less than this value. When this value reaches its maximum, 
 | 
| +** an SQLITE_FULL error is generated. The P3 register is updated with the '
 | 
| +** generated record number. This P3 mechanism is used to help implement the
 | 
| +** AUTOINCREMENT feature.
 | 
| +*/
 | 
| +case OP_NewRowid: {           /* out2-prerelease */
 | 
| +  i64 v;                 /* The new rowid */
 | 
| +  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
 | 
| +  int res;               /* Result of an sqlite3BtreeLast() */
 | 
| +  int cnt;               /* Counter to limit the number of searches */
 | 
| +  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
 | 
| +  VdbeFrame *pFrame;     /* Root frame of VDBE */
 | 
| +
 | 
| +  v = 0;
 | 
| +  res = 0;
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  if( NEVER(pC->pCursor==0) ){
 | 
| +    /* The zero initialization above is all that is needed */
 | 
| +  }else{
 | 
| +    /* The next rowid or record number (different terms for the same
 | 
| +    ** thing) is obtained in a two-step algorithm.
 | 
| +    **
 | 
| +    ** First we attempt to find the largest existing rowid and add one
 | 
| +    ** to that.  But if the largest existing rowid is already the maximum
 | 
| +    ** positive integer, we have to fall through to the second
 | 
| +    ** probabilistic algorithm
 | 
| +    **
 | 
| +    ** The second algorithm is to select a rowid at random and see if
 | 
| +    ** it already exists in the table.  If it does not exist, we have
 | 
| +    ** succeeded.  If the random rowid does exist, we select a new one
 | 
| +    ** and try again, up to 100 times.
 | 
| +    */
 | 
| +    assert( pC->isTable );
 | 
| +
 | 
| +#ifdef SQLITE_32BIT_ROWID
 | 
| +#   define MAX_ROWID 0x7fffffff
 | 
| +#else
 | 
| +    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
 | 
| +    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
 | 
| +    ** to provide the constant while making all compilers happy.
 | 
| +    */
 | 
| +#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
 | 
| +#endif
 | 
| +
 | 
| +    if( !pC->useRandomRowid ){
 | 
| +      rc = sqlite3BtreeLast(pC->pCursor, &res);
 | 
| +      if( rc!=SQLITE_OK ){
 | 
| +        goto abort_due_to_error;
 | 
| +      }
 | 
| +      if( res ){
 | 
| +        v = 1;   /* IMP: R-61914-48074 */
 | 
| +      }else{
 | 
| +        assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
 | 
| +        rc = sqlite3BtreeKeySize(pC->pCursor, &v);
 | 
| +        assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
 | 
| +        if( v>=MAX_ROWID ){
 | 
| +          pC->useRandomRowid = 1;
 | 
| +        }else{
 | 
| +          v++;   /* IMP: R-29538-34987 */
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
| +    if( pOp->p3 ){
 | 
| +      /* Assert that P3 is a valid memory cell. */
 | 
| +      assert( pOp->p3>0 );
 | 
| +      if( p->pFrame ){
 | 
| +        for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
 | 
| +        /* Assert that P3 is a valid memory cell. */
 | 
| +        assert( pOp->p3<=pFrame->nMem );
 | 
| +        pMem = &pFrame->aMem[pOp->p3];
 | 
| +      }else{
 | 
| +        /* Assert that P3 is a valid memory cell. */
 | 
| +        assert( pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +        pMem = &aMem[pOp->p3];
 | 
| +        memAboutToChange(p, pMem);
 | 
| +      }
 | 
| +      assert( memIsValid(pMem) );
 | 
| +
 | 
| +      REGISTER_TRACE(pOp->p3, pMem);
 | 
| +      sqlite3VdbeMemIntegerify(pMem);
 | 
| +      assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
 | 
| +      if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
 | 
| +        rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
 | 
| +        goto abort_due_to_error;
 | 
| +      }
 | 
| +      if( v<pMem->u.i+1 ){
 | 
| +        v = pMem->u.i + 1;
 | 
| +      }
 | 
| +      pMem->u.i = v;
 | 
| +    }
 | 
| +#endif
 | 
| +    if( pC->useRandomRowid ){
 | 
| +      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
 | 
| +      ** largest possible integer (9223372036854775807) then the database
 | 
| +      ** engine starts picking positive candidate ROWIDs at random until
 | 
| +      ** it finds one that is not previously used. */
 | 
| +      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
 | 
| +                             ** an AUTOINCREMENT table. */
 | 
| +      cnt = 0;
 | 
| +      do{
 | 
| +        sqlite3_randomness(sizeof(v), &v);
 | 
| +        v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
 | 
| +      }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
 | 
| +                                                 0, &res))==SQLITE_OK)
 | 
| +            && (res==0)
 | 
| +            && (++cnt<100));
 | 
| +      if( rc==SQLITE_OK && res==0 ){
 | 
| +        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
 | 
| +        goto abort_due_to_error;
 | 
| +      }
 | 
| +      assert( v>0 );  /* EV: R-40812-03570 */
 | 
| +    }
 | 
| +    pC->deferredMoveto = 0;
 | 
| +    pC->cacheStatus = CACHE_STALE;
 | 
| +  }
 | 
| +  pOut->u.i = v;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Insert P1 P2 P3 P4 P5
 | 
| +** Synopsis: intkey=r[P3] data=r[P2]
 | 
| +**
 | 
| +** Write an entry into the table of cursor P1.  A new entry is
 | 
| +** created if it doesn't already exist or the data for an existing
 | 
| +** entry is overwritten.  The data is the value MEM_Blob stored in register
 | 
| +** number P2. The key is stored in register P3. The key must
 | 
| +** be a MEM_Int.
 | 
| +**
 | 
| +** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
 | 
| +** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
 | 
| +** then rowid is stored for subsequent return by the
 | 
| +** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
 | 
| +**
 | 
| +** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
 | 
| +** the last seek operation (OP_NotExists) was a success, then this
 | 
| +** operation will not attempt to find the appropriate row before doing
 | 
| +** the insert but will instead overwrite the row that the cursor is
 | 
| +** currently pointing to.  Presumably, the prior OP_NotExists opcode
 | 
| +** has already positioned the cursor correctly.  This is an optimization
 | 
| +** that boosts performance by avoiding redundant seeks.
 | 
| +**
 | 
| +** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
 | 
| +** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
 | 
| +** is part of an INSERT operation.  The difference is only important to
 | 
| +** the update hook.
 | 
| +**
 | 
| +** Parameter P4 may point to a string containing the table-name, or
 | 
| +** may be NULL. If it is not NULL, then the update-hook 
 | 
| +** (sqlite3.xUpdateCallback) is invoked following a successful insert.
 | 
| +**
 | 
| +** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
 | 
| +** allocated, then ownership of P2 is transferred to the pseudo-cursor
 | 
| +** and register P2 becomes ephemeral.  If the cursor is changed, the
 | 
| +** value of register P2 will then change.  Make sure this does not
 | 
| +** cause any problems.)
 | 
| +**
 | 
| +** This instruction only works on tables.  The equivalent instruction
 | 
| +** for indices is OP_IdxInsert.
 | 
| +*/
 | 
| +/* Opcode: InsertInt P1 P2 P3 P4 P5
 | 
| +** Synopsis:  intkey=P3 data=r[P2]
 | 
| +**
 | 
| +** This works exactly like OP_Insert except that the key is the
 | 
| +** integer value P3, not the value of the integer stored in register P3.
 | 
| +*/
 | 
| +case OP_Insert: 
 | 
| +case OP_InsertInt: {
 | 
| +  Mem *pData;       /* MEM cell holding data for the record to be inserted */
 | 
| +  Mem *pKey;        /* MEM cell holding key  for the record */
 | 
| +  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
 | 
| +  VdbeCursor *pC;   /* Cursor to table into which insert is written */
 | 
| +  int nZero;        /* Number of zero-bytes to append */
 | 
| +  int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
 | 
| +  const char *zDb;  /* database name - used by the update hook */
 | 
| +  const char *zTbl; /* Table name - used by the opdate hook */
 | 
| +  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
 | 
| +
 | 
| +  pData = &aMem[pOp->p2];
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  assert( memIsValid(pData) );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->pCursor!=0 );
 | 
| +  assert( pC->pseudoTableReg==0 );
 | 
| +  assert( pC->isTable );
 | 
| +  REGISTER_TRACE(pOp->p2, pData);
 | 
| +
 | 
| +  if( pOp->opcode==OP_Insert ){
 | 
| +    pKey = &aMem[pOp->p3];
 | 
| +    assert( pKey->flags & MEM_Int );
 | 
| +    assert( memIsValid(pKey) );
 | 
| +    REGISTER_TRACE(pOp->p3, pKey);
 | 
| +    iKey = pKey->u.i;
 | 
| +  }else{
 | 
| +    assert( pOp->opcode==OP_InsertInt );
 | 
| +    iKey = pOp->p3;
 | 
| +  }
 | 
| +
 | 
| +  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
 | 
| +  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
 | 
| +  if( pData->flags & MEM_Null ){
 | 
| +    pData->z = 0;
 | 
| +    pData->n = 0;
 | 
| +  }else{
 | 
| +    assert( pData->flags & (MEM_Blob|MEM_Str) );
 | 
| +  }
 | 
| +  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
 | 
| +  if( pData->flags & MEM_Zero ){
 | 
| +    nZero = pData->u.nZero;
 | 
| +  }else{
 | 
| +    nZero = 0;
 | 
| +  }
 | 
| +  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
 | 
| +                          pData->z, pData->n, nZero,
 | 
| +                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
 | 
| +  );
 | 
| +  pC->deferredMoveto = 0;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +
 | 
| +  /* Invoke the update-hook if required. */
 | 
| +  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
 | 
| +    zDb = db->aDb[pC->iDb].zName;
 | 
| +    zTbl = pOp->p4.z;
 | 
| +    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
 | 
| +    assert( pC->isTable );
 | 
| +    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
 | 
| +    assert( pC->iDb>=0 );
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Delete P1 P2 * P4 *
 | 
| +**
 | 
| +** Delete the record at which the P1 cursor is currently pointing.
 | 
| +**
 | 
| +** The cursor will be left pointing at either the next or the previous
 | 
| +** record in the table. If it is left pointing at the next record, then
 | 
| +** the next Next instruction will be a no-op.  Hence it is OK to delete
 | 
| +** a record from within a Next loop.
 | 
| +**
 | 
| +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | 
| +** incremented (otherwise not).
 | 
| +**
 | 
| +** P1 must not be pseudo-table.  It has to be a real table with
 | 
| +** multiple rows.
 | 
| +**
 | 
| +** If P4 is not NULL, then it is the name of the table that P1 is
 | 
| +** pointing to.  The update hook will be invoked, if it exists.
 | 
| +** If P4 is not NULL then the P1 cursor must have been positioned
 | 
| +** using OP_NotFound prior to invoking this opcode.
 | 
| +*/
 | 
| +case OP_Delete: {
 | 
| +  VdbeCursor *pC;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  /* The seek operation that positioned the cursor prior to OP_Delete will
 | 
| +  ** have also set the pC->movetoTarget field to the rowid of the row that
 | 
| +  ** is being deleted */
 | 
| +  if( pOp->p4.z && pC->isTable ){
 | 
| +    i64 iKey = 0;
 | 
| +    sqlite3BtreeKeySize(pC->pCursor, &iKey);
 | 
| +    assert( pC->movetoTarget==iKey ); 
 | 
| +  }
 | 
| +#endif
 | 
| + 
 | 
| +  rc = sqlite3BtreeDelete(pC->pCursor);
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +
 | 
| +  /* Invoke the update-hook if required. */
 | 
| +  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
 | 
| +    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
 | 
| +                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
 | 
| +    assert( pC->iDb>=0 );
 | 
| +  }
 | 
| +  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
 | 
| +  break;
 | 
| +}
 | 
| +/* Opcode: ResetCount * * * * *
 | 
| +**
 | 
| +** The value of the change counter is copied to the database handle
 | 
| +** change counter (returned by subsequent calls to sqlite3_changes()).
 | 
| +** Then the VMs internal change counter resets to 0.
 | 
| +** This is used by trigger programs.
 | 
| +*/
 | 
| +case OP_ResetCount: {
 | 
| +  sqlite3VdbeSetChanges(db, p->nChange);
 | 
| +  p->nChange = 0;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: SorterCompare P1 P2 P3 P4
 | 
| +** Synopsis:  if key(P1)!=trim(r[P3],P4) goto P2
 | 
| +**
 | 
| +** P1 is a sorter cursor. This instruction compares a prefix of the
 | 
| +** record blob in register P3 against a prefix of the entry that 
 | 
| +** the sorter cursor currently points to.  Only the first P4 fields
 | 
| +** of r[P3] and the sorter record are compared.
 | 
| +**
 | 
| +** If either P3 or the sorter contains a NULL in one of their significant
 | 
| +** fields (not counting the P4 fields at the end which are ignored) then
 | 
| +** the comparison is assumed to be equal.
 | 
| +**
 | 
| +** Fall through to next instruction if the two records compare equal to
 | 
| +** each other.  Jump to P2 if they are different.
 | 
| +*/
 | 
| +case OP_SorterCompare: {
 | 
| +  VdbeCursor *pC;
 | 
| +  int res;
 | 
| +  int nKeyCol;
 | 
| +
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( isSorter(pC) );
 | 
| +  assert( pOp->p4type==P4_INT32 );
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  nKeyCol = pOp->p4.i;
 | 
| +  res = 0;
 | 
| +  rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
 | 
| +  VdbeBranchTaken(res!=0,2);
 | 
| +  if( res ){
 | 
| +    pc = pOp->p2-1;
 | 
| +  }
 | 
| +  break;
 | 
| +};
 | 
| +
 | 
| +/* Opcode: SorterData P1 P2 P3 * *
 | 
| +** Synopsis: r[P2]=data
 | 
| +**
 | 
| +** Write into register P2 the current sorter data for sorter cursor P1.
 | 
| +** Then clear the column header cache on cursor P3.
 | 
| +**
 | 
| +** This opcode is normally use to move a record out of the sorter and into
 | 
| +** a register that is the source for a pseudo-table cursor created using
 | 
| +** OpenPseudo.  That pseudo-table cursor is the one that is identified by
 | 
| +** parameter P3.  Clearing the P3 column cache as part of this opcode saves
 | 
| +** us from having to issue a separate NullRow instruction to clear that cache.
 | 
| +*/
 | 
| +case OP_SorterData: {
 | 
| +  VdbeCursor *pC;
 | 
| +
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( isSorter(pC) );
 | 
| +  rc = sqlite3VdbeSorterRowkey(pC, pOut);
 | 
| +  assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: RowData P1 P2 * * *
 | 
| +** Synopsis: r[P2]=data
 | 
| +**
 | 
| +** Write into register P2 the complete row data for cursor P1.
 | 
| +** There is no interpretation of the data.  
 | 
| +** It is just copied onto the P2 register exactly as 
 | 
| +** it is found in the database file.
 | 
| +**
 | 
| +** If the P1 cursor must be pointing to a valid row (not a NULL row)
 | 
| +** of a real table, not a pseudo-table.
 | 
| +*/
 | 
| +/* Opcode: RowKey P1 P2 * * *
 | 
| +** Synopsis: r[P2]=key
 | 
| +**
 | 
| +** Write into register P2 the complete row key for cursor P1.
 | 
| +** There is no interpretation of the data.  
 | 
| +** The key is copied onto the P2 register exactly as 
 | 
| +** it is found in the database file.
 | 
| +**
 | 
| +** If the P1 cursor must be pointing to a valid row (not a NULL row)
 | 
| +** of a real table, not a pseudo-table.
 | 
| +*/
 | 
| +case OP_RowKey:
 | 
| +case OP_RowData: {
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  u32 n;
 | 
| +  i64 n64;
 | 
| +
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  memAboutToChange(p, pOut);
 | 
| +
 | 
| +  /* Note that RowKey and RowData are really exactly the same instruction */
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( isSorter(pC)==0 );
 | 
| +  assert( pC->isTable || pOp->opcode!=OP_RowData );
 | 
| +  assert( pC->isTable==0 || pOp->opcode==OP_RowData );
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->nullRow==0 );
 | 
| +  assert( pC->pseudoTableReg==0 );
 | 
| +  assert( pC->pCursor!=0 );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +
 | 
| +  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
 | 
| +  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
 | 
| +  ** the cursor.  If this where not the case, on of the following assert()s
 | 
| +  ** would fail.  Should this ever change (because of changes in the code
 | 
| +  ** generator) then the fix would be to insert a call to
 | 
| +  ** sqlite3VdbeCursorMoveto().
 | 
| +  */
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +  assert( sqlite3BtreeCursorIsValid(pCrsr) );
 | 
| +#if 0  /* Not required due to the previous to assert() statements */
 | 
| +  rc = sqlite3VdbeCursorMoveto(pC);
 | 
| +  if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | 
| +#endif
 | 
| +
 | 
| +  if( pC->isTable==0 ){
 | 
| +    assert( !pC->isTable );
 | 
| +    VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
 | 
| +    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
 | 
| +    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +      goto too_big;
 | 
| +    }
 | 
| +    n = (u32)n64;
 | 
| +  }else{
 | 
| +    VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
 | 
| +    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
 | 
| +    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
 | 
| +      goto too_big;
 | 
| +    }
 | 
| +  }
 | 
| +  testcase( n==0 );
 | 
| +  if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
 | 
| +    goto no_mem;
 | 
| +  }
 | 
| +  pOut->n = n;
 | 
| +  MemSetTypeFlag(pOut, MEM_Blob);
 | 
| +  if( pC->isTable==0 ){
 | 
| +    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
 | 
| +  }else{
 | 
| +    rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
 | 
| +  }
 | 
| +  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
 | 
| +  UPDATE_MAX_BLOBSIZE(pOut);
 | 
| +  REGISTER_TRACE(pOp->p2, pOut);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Rowid P1 P2 * * *
 | 
| +** Synopsis: r[P2]=rowid
 | 
| +**
 | 
| +** Store in register P2 an integer which is the key of the table entry that
 | 
| +** P1 is currently point to.
 | 
| +**
 | 
| +** P1 can be either an ordinary table or a virtual table.  There used to
 | 
| +** be a separate OP_VRowid opcode for use with virtual tables, but this
 | 
| +** one opcode now works for both table types.
 | 
| +*/
 | 
| +case OP_Rowid: {                 /* out2-prerelease */
 | 
| +  VdbeCursor *pC;
 | 
| +  i64 v;
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  const sqlite3_module *pModule;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->pseudoTableReg==0 || pC->nullRow );
 | 
| +  if( pC->nullRow ){
 | 
| +    pOut->flags = MEM_Null;
 | 
| +    break;
 | 
| +  }else if( pC->deferredMoveto ){
 | 
| +    v = pC->movetoTarget;
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +  }else if( pC->pVtabCursor ){
 | 
| +    pVtab = pC->pVtabCursor->pVtab;
 | 
| +    pModule = pVtab->pModule;
 | 
| +    assert( pModule->xRowid );
 | 
| +    rc = pModule->xRowid(pC->pVtabCursor, &v);
 | 
| +    sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +  }else{
 | 
| +    assert( pC->pCursor!=0 );
 | 
| +    rc = sqlite3VdbeCursorRestore(pC);
 | 
| +    if( rc ) goto abort_due_to_error;
 | 
| +    if( pC->nullRow ){
 | 
| +      pOut->flags = MEM_Null;
 | 
| +      break;
 | 
| +    }
 | 
| +    rc = sqlite3BtreeKeySize(pC->pCursor, &v);
 | 
| +    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
 | 
| +  }
 | 
| +  pOut->u.i = v;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: NullRow P1 * * * *
 | 
| +**
 | 
| +** Move the cursor P1 to a null row.  Any OP_Column operations
 | 
| +** that occur while the cursor is on the null row will always
 | 
| +** write a NULL.
 | 
| +*/
 | 
| +case OP_NullRow: {
 | 
| +  VdbeCursor *pC;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  pC->nullRow = 1;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +  if( pC->pCursor ){
 | 
| +    sqlite3BtreeClearCursor(pC->pCursor);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Last P1 P2 * * *
 | 
| +**
 | 
| +** The next use of the Rowid or Column or Prev instruction for P1 
 | 
| +** will refer to the last entry in the database table or index.
 | 
| +** If the table or index is empty and P2>0, then jump immediately to P2.
 | 
| +** If P2 is 0 or if the table or index is not empty, fall through
 | 
| +** to the following instruction.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in reverse order,
 | 
| +** from the end toward the beginning.  In other words, the cursor is
 | 
| +** configured to use Prev, not Next.
 | 
| +*/
 | 
| +case OP_Last: {        /* jump */
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  int res;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  res = 0;
 | 
| +  assert( pCrsr!=0 );
 | 
| +  rc = sqlite3BtreeLast(pCrsr, &res);
 | 
| +  pC->nullRow = (u8)res;
 | 
| +  pC->deferredMoveto = 0;
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  pC->seekOp = OP_Last;
 | 
| +#endif
 | 
| +  if( pOp->p2>0 ){
 | 
| +    VdbeBranchTaken(res!=0,2);
 | 
| +    if( res ) pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/* Opcode: Sort P1 P2 * * *
 | 
| +**
 | 
| +** This opcode does exactly the same thing as OP_Rewind except that
 | 
| +** it increments an undocumented global variable used for testing.
 | 
| +**
 | 
| +** Sorting is accomplished by writing records into a sorting index,
 | 
| +** then rewinding that index and playing it back from beginning to
 | 
| +** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
 | 
| +** rewinding so that the global variable will be incremented and
 | 
| +** regression tests can determine whether or not the optimizer is
 | 
| +** correctly optimizing out sorts.
 | 
| +*/
 | 
| +case OP_SorterSort:    /* jump */
 | 
| +case OP_Sort: {        /* jump */
 | 
| +#ifdef SQLITE_TEST
 | 
| +  sqlite3_sort_count++;
 | 
| +  sqlite3_search_count--;
 | 
| +#endif
 | 
| +  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
 | 
| +  /* Fall through into OP_Rewind */
 | 
| +}
 | 
| +/* Opcode: Rewind P1 P2 * * *
 | 
| +**
 | 
| +** The next use of the Rowid or Column or Next instruction for P1 
 | 
| +** will refer to the first entry in the database table or index.
 | 
| +** If the table or index is empty and P2>0, then jump immediately to P2.
 | 
| +** If P2 is 0 or if the table or index is not empty, fall through
 | 
| +** to the following instruction.
 | 
| +**
 | 
| +** This opcode leaves the cursor configured to move in forward order,
 | 
| +** from the beginning toward the end.  In other words, the cursor is
 | 
| +** configured to use Next, not Prev.
 | 
| +*/
 | 
| +case OP_Rewind: {        /* jump */
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  int res;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
 | 
| +  res = 1;
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  pC->seekOp = OP_Rewind;
 | 
| +#endif
 | 
| +  if( isSorter(pC) ){
 | 
| +    rc = sqlite3VdbeSorterRewind(pC, &res);
 | 
| +  }else{
 | 
| +    pCrsr = pC->pCursor;
 | 
| +    assert( pCrsr );
 | 
| +    rc = sqlite3BtreeFirst(pCrsr, &res);
 | 
| +    pC->deferredMoveto = 0;
 | 
| +    pC->cacheStatus = CACHE_STALE;
 | 
| +  }
 | 
| +  pC->nullRow = (u8)res;
 | 
| +  assert( pOp->p2>0 && pOp->p2<p->nOp );
 | 
| +  VdbeBranchTaken(res!=0,2);
 | 
| +  if( res ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Next P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** Advance cursor P1 so that it points to the next key/data pair in its
 | 
| +** table or index.  If there are no more key/value pairs then fall through
 | 
| +** to the following instruction.  But if the cursor advance was successful,
 | 
| +** jump immediately to P2.
 | 
| +**
 | 
| +** The Next opcode is only valid following an SeekGT, SeekGE, or
 | 
| +** OP_Rewind opcode used to position the cursor.  Next is not allowed
 | 
| +** to follow SeekLT, SeekLE, or OP_Last.
 | 
| +**
 | 
| +** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
 | 
| +** been opened prior to this opcode or the program will segfault.
 | 
| +**
 | 
| +** The P3 value is a hint to the btree implementation. If P3==1, that
 | 
| +** means P1 is an SQL index and that this instruction could have been
 | 
| +** omitted if that index had been unique.  P3 is usually 0.  P3 is
 | 
| +** always either 0 or 1.
 | 
| +**
 | 
| +** P4 is always of type P4_ADVANCE. The function pointer points to
 | 
| +** sqlite3BtreeNext().
 | 
| +**
 | 
| +** If P5 is positive and the jump is taken, then event counter
 | 
| +** number P5-1 in the prepared statement is incremented.
 | 
| +**
 | 
| +** See also: Prev, NextIfOpen
 | 
| +*/
 | 
| +/* Opcode: NextIfOpen P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** This opcode works just like Next except that if cursor P1 is not
 | 
| +** open it behaves a no-op.
 | 
| +*/
 | 
| +/* Opcode: Prev P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** Back up cursor P1 so that it points to the previous key/data pair in its
 | 
| +** table or index.  If there is no previous key/value pairs then fall through
 | 
| +** to the following instruction.  But if the cursor backup was successful,
 | 
| +** jump immediately to P2.
 | 
| +**
 | 
| +**
 | 
| +** The Prev opcode is only valid following an SeekLT, SeekLE, or
 | 
| +** OP_Last opcode used to position the cursor.  Prev is not allowed
 | 
| +** to follow SeekGT, SeekGE, or OP_Rewind.
 | 
| +**
 | 
| +** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
 | 
| +** not open then the behavior is undefined.
 | 
| +**
 | 
| +** The P3 value is a hint to the btree implementation. If P3==1, that
 | 
| +** means P1 is an SQL index and that this instruction could have been
 | 
| +** omitted if that index had been unique.  P3 is usually 0.  P3 is
 | 
| +** always either 0 or 1.
 | 
| +**
 | 
| +** P4 is always of type P4_ADVANCE. The function pointer points to
 | 
| +** sqlite3BtreePrevious().
 | 
| +**
 | 
| +** If P5 is positive and the jump is taken, then event counter
 | 
| +** number P5-1 in the prepared statement is incremented.
 | 
| +*/
 | 
| +/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** This opcode works just like Prev except that if cursor P1 is not
 | 
| +** open it behaves a no-op.
 | 
| +*/
 | 
| +case OP_SorterNext: {  /* jump */
 | 
| +  VdbeCursor *pC;
 | 
| +  int res;
 | 
| +
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( isSorter(pC) );
 | 
| +  res = 0;
 | 
| +  rc = sqlite3VdbeSorterNext(db, pC, &res);
 | 
| +  goto next_tail;
 | 
| +case OP_PrevIfOpen:    /* jump */
 | 
| +case OP_NextIfOpen:    /* jump */
 | 
| +  if( p->apCsr[pOp->p1]==0 ) break;
 | 
| +  /* Fall through */
 | 
| +case OP_Prev:          /* jump */
 | 
| +case OP_Next:          /* jump */
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  assert( pOp->p5<ArraySize(p->aCounter) );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  res = pOp->p3;
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +  assert( pC->pCursor );
 | 
| +  assert( res==0 || (res==1 && pC->isTable==0) );
 | 
| +  testcase( res==1 );
 | 
| +  assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
 | 
| +  assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
 | 
| +  assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
 | 
| +  assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
 | 
| +
 | 
| +  /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
 | 
| +  ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
 | 
| +  assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
 | 
| +       || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
 | 
| +       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
 | 
| +  assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
 | 
| +       || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
 | 
| +       || pC->seekOp==OP_Last );
 | 
| +
 | 
| +  rc = pOp->p4.xAdvance(pC->pCursor, &res);
 | 
| +next_tail:
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +  VdbeBranchTaken(res==0,2);
 | 
| +  if( res==0 ){
 | 
| +    pC->nullRow = 0;
 | 
| +    pc = pOp->p2 - 1;
 | 
| +    p->aCounter[pOp->p5]++;
 | 
| +#ifdef SQLITE_TEST
 | 
| +    sqlite3_search_count++;
 | 
| +#endif
 | 
| +  }else{
 | 
| +    pC->nullRow = 1;
 | 
| +  }
 | 
| +  goto check_for_interrupt;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IdxInsert P1 P2 P3 * P5
 | 
| +** Synopsis: key=r[P2]
 | 
| +**
 | 
| +** Register P2 holds an SQL index key made using the
 | 
| +** MakeRecord instructions.  This opcode writes that key
 | 
| +** into the index P1.  Data for the entry is nil.
 | 
| +**
 | 
| +** P3 is a flag that provides a hint to the b-tree layer that this
 | 
| +** insert is likely to be an append.
 | 
| +**
 | 
| +** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
 | 
| +** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
 | 
| +** then the change counter is unchanged.
 | 
| +**
 | 
| +** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
 | 
| +** just done a seek to the spot where the new entry is to be inserted.
 | 
| +** This flag avoids doing an extra seek.
 | 
| +**
 | 
| +** This instruction only works for indices.  The equivalent instruction
 | 
| +** for tables is OP_Insert.
 | 
| +*/
 | 
| +case OP_SorterInsert:       /* in2 */
 | 
| +case OP_IdxInsert: {        /* in2 */
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  int nKey;
 | 
| +  const char *zKey;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  assert( pIn2->flags & MEM_Blob );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
 | 
| +  assert( pCrsr!=0 );
 | 
| +  assert( pC->isTable==0 );
 | 
| +  rc = ExpandBlob(pIn2);
 | 
| +  if( rc==SQLITE_OK ){
 | 
| +    if( isSorter(pC) ){
 | 
| +      rc = sqlite3VdbeSorterWrite(pC, pIn2);
 | 
| +    }else{
 | 
| +      nKey = pIn2->n;
 | 
| +      zKey = pIn2->z;
 | 
| +      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
 | 
| +          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
 | 
| +          );
 | 
| +      assert( pC->deferredMoveto==0 );
 | 
| +      pC->cacheStatus = CACHE_STALE;
 | 
| +    }
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IdxDelete P1 P2 P3 * *
 | 
| +** Synopsis: key=r[P2@P3]
 | 
| +**
 | 
| +** The content of P3 registers starting at register P2 form
 | 
| +** an unpacked index key. This opcode removes that entry from the 
 | 
| +** index opened by cursor P1.
 | 
| +*/
 | 
| +case OP_IdxDelete: {
 | 
| +  VdbeCursor *pC;
 | 
| +  BtCursor *pCrsr;
 | 
| +  int res;
 | 
| +  UnpackedRecord r;
 | 
| +
 | 
| +  assert( pOp->p3>0 );
 | 
| +  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  assert( pCrsr!=0 );
 | 
| +  assert( pOp->p5==0 );
 | 
| +  r.pKeyInfo = pC->pKeyInfo;
 | 
| +  r.nField = (u16)pOp->p3;
 | 
| +  r.default_rc = 0;
 | 
| +  r.aMem = &aMem[pOp->p2];
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
 | 
| +#endif
 | 
| +  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
 | 
| +  if( rc==SQLITE_OK && res==0 ){
 | 
| +    rc = sqlite3BtreeDelete(pCrsr);
 | 
| +  }
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +  pC->cacheStatus = CACHE_STALE;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IdxRowid P1 P2 * * *
 | 
| +** Synopsis: r[P2]=rowid
 | 
| +**
 | 
| +** Write into register P2 an integer which is the last entry in the record at
 | 
| +** the end of the index key pointed to by cursor P1.  This integer should be
 | 
| +** the rowid of the table entry to which this index entry points.
 | 
| +**
 | 
| +** See also: Rowid, MakeRecord.
 | 
| +*/
 | 
| +case OP_IdxRowid: {              /* out2-prerelease */
 | 
| +  BtCursor *pCrsr;
 | 
| +  VdbeCursor *pC;
 | 
| +  i64 rowid;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  pCrsr = pC->pCursor;
 | 
| +  assert( pCrsr!=0 );
 | 
| +  pOut->flags = MEM_Null;
 | 
| +  assert( pC->isTable==0 );
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +
 | 
| +  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
 | 
| +  ** out from under the cursor.  That will never happend for an IdxRowid
 | 
| +  ** opcode, hence the NEVER() arround the check of the return value.
 | 
| +  */
 | 
| +  rc = sqlite3VdbeCursorRestore(pC);
 | 
| +  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
 | 
| +
 | 
| +  if( !pC->nullRow ){
 | 
| +    rowid = 0;  /* Not needed.  Only used to silence a warning. */
 | 
| +    rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
 | 
| +    if( rc!=SQLITE_OK ){
 | 
| +      goto abort_due_to_error;
 | 
| +    }
 | 
| +    pOut->u.i = rowid;
 | 
| +    pOut->flags = MEM_Int;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IdxGE P1 P2 P3 P4 P5
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** The P4 register values beginning with P3 form an unpacked index 
 | 
| +** key that omits the PRIMARY KEY.  Compare this key value against the index 
 | 
| +** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 
 | 
| +** fields at the end.
 | 
| +**
 | 
| +** If the P1 index entry is greater than or equal to the key value
 | 
| +** then jump to P2.  Otherwise fall through to the next instruction.
 | 
| +*/
 | 
| +/* Opcode: IdxGT P1 P2 P3 P4 P5
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** The P4 register values beginning with P3 form an unpacked index 
 | 
| +** key that omits the PRIMARY KEY.  Compare this key value against the index 
 | 
| +** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 
 | 
| +** fields at the end.
 | 
| +**
 | 
| +** If the P1 index entry is greater than the key value
 | 
| +** then jump to P2.  Otherwise fall through to the next instruction.
 | 
| +*/
 | 
| +/* Opcode: IdxLT P1 P2 P3 P4 P5
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** The P4 register values beginning with P3 form an unpacked index 
 | 
| +** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
 | 
| +** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
 | 
| +** ROWID on the P1 index.
 | 
| +**
 | 
| +** If the P1 index entry is less than the key value then jump to P2.
 | 
| +** Otherwise fall through to the next instruction.
 | 
| +*/
 | 
| +/* Opcode: IdxLE P1 P2 P3 P4 P5
 | 
| +** Synopsis: key=r[P3@P4]
 | 
| +**
 | 
| +** The P4 register values beginning with P3 form an unpacked index 
 | 
| +** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
 | 
| +** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
 | 
| +** ROWID on the P1 index.
 | 
| +**
 | 
| +** If the P1 index entry is less than or equal to the key value then jump
 | 
| +** to P2. Otherwise fall through to the next instruction.
 | 
| +*/
 | 
| +case OP_IdxLE:          /* jump */
 | 
| +case OP_IdxGT:          /* jump */
 | 
| +case OP_IdxLT:          /* jump */
 | 
| +case OP_IdxGE:  {       /* jump */
 | 
| +  VdbeCursor *pC;
 | 
| +  int res;
 | 
| +  UnpackedRecord r;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  assert( pC->isOrdered );
 | 
| +  assert( pC->pCursor!=0);
 | 
| +  assert( pC->deferredMoveto==0 );
 | 
| +  assert( pOp->p5==0 || pOp->p5==1 );
 | 
| +  assert( pOp->p4type==P4_INT32 );
 | 
| +  r.pKeyInfo = pC->pKeyInfo;
 | 
| +  r.nField = (u16)pOp->p4.i;
 | 
| +  if( pOp->opcode<OP_IdxLT ){
 | 
| +    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
 | 
| +    r.default_rc = -1;
 | 
| +  }else{
 | 
| +    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
 | 
| +    r.default_rc = 0;
 | 
| +  }
 | 
| +  r.aMem = &aMem[pOp->p3];
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
 | 
| +#endif
 | 
| +  res = 0;  /* Not needed.  Only used to silence a warning. */
 | 
| +  rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
 | 
| +  assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
 | 
| +  if( (pOp->opcode&1)==(OP_IdxLT&1) ){
 | 
| +    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
 | 
| +    res = -res;
 | 
| +  }else{
 | 
| +    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
 | 
| +    res++;
 | 
| +  }
 | 
| +  VdbeBranchTaken(res>0,2);
 | 
| +  if( res>0 ){
 | 
| +    pc = pOp->p2 - 1 ;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Destroy P1 P2 P3 * *
 | 
| +**
 | 
| +** Delete an entire database table or index whose root page in the database
 | 
| +** file is given by P1.
 | 
| +**
 | 
| +** The table being destroyed is in the main database file if P3==0.  If
 | 
| +** P3==1 then the table to be clear is in the auxiliary database file
 | 
| +** that is used to store tables create using CREATE TEMPORARY TABLE.
 | 
| +**
 | 
| +** If AUTOVACUUM is enabled then it is possible that another root page
 | 
| +** might be moved into the newly deleted root page in order to keep all
 | 
| +** root pages contiguous at the beginning of the database.  The former
 | 
| +** value of the root page that moved - its value before the move occurred -
 | 
| +** is stored in register P2.  If no page 
 | 
| +** movement was required (because the table being dropped was already 
 | 
| +** the last one in the database) then a zero is stored in register P2.
 | 
| +** If AUTOVACUUM is disabled then a zero is stored in register P2.
 | 
| +**
 | 
| +** See also: Clear
 | 
| +*/
 | 
| +case OP_Destroy: {     /* out2-prerelease */
 | 
| +  int iMoved;
 | 
| +  int iCnt;
 | 
| +  Vdbe *pVdbe;
 | 
| +  int iDb;
 | 
| +
 | 
| +  assert( p->readOnly==0 );
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +  iCnt = 0;
 | 
| +  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
 | 
| +    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 
 | 
| +     && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 
 | 
| +    ){
 | 
| +      iCnt++;
 | 
| +    }
 | 
| +  }
 | 
| +#else
 | 
| +  iCnt = db->nVdbeRead;
 | 
| +#endif
 | 
| +  pOut->flags = MEM_Null;
 | 
| +  if( iCnt>1 ){
 | 
| +    rc = SQLITE_LOCKED;
 | 
| +    p->errorAction = OE_Abort;
 | 
| +  }else{
 | 
| +    iDb = pOp->p3;
 | 
| +    assert( iCnt==1 );
 | 
| +    assert( DbMaskTest(p->btreeMask, iDb) );
 | 
| +    iMoved = 0;  /* Not needed.  Only to silence a warning. */
 | 
| +    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
 | 
| +    pOut->flags = MEM_Int;
 | 
| +    pOut->u.i = iMoved;
 | 
| +#ifndef SQLITE_OMIT_AUTOVACUUM
 | 
| +    if( rc==SQLITE_OK && iMoved!=0 ){
 | 
| +      sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
 | 
| +      /* All OP_Destroy operations occur on the same btree */
 | 
| +      assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
 | 
| +      resetSchemaOnFault = iDb+1;
 | 
| +    }
 | 
| +#endif
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Clear P1 P2 P3
 | 
| +**
 | 
| +** Delete all contents of the database table or index whose root page
 | 
| +** in the database file is given by P1.  But, unlike Destroy, do not
 | 
| +** remove the table or index from the database file.
 | 
| +**
 | 
| +** The table being clear is in the main database file if P2==0.  If
 | 
| +** P2==1 then the table to be clear is in the auxiliary database file
 | 
| +** that is used to store tables create using CREATE TEMPORARY TABLE.
 | 
| +**
 | 
| +** If the P3 value is non-zero, then the table referred to must be an
 | 
| +** intkey table (an SQL table, not an index). In this case the row change 
 | 
| +** count is incremented by the number of rows in the table being cleared. 
 | 
| +** If P3 is greater than zero, then the value stored in register P3 is
 | 
| +** also incremented by the number of rows in the table being cleared.
 | 
| +**
 | 
| +** See also: Destroy
 | 
| +*/
 | 
| +case OP_Clear: {
 | 
| +  int nChange;
 | 
| + 
 | 
| +  nChange = 0;
 | 
| +  assert( p->readOnly==0 );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p2) );
 | 
| +  rc = sqlite3BtreeClearTable(
 | 
| +      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
 | 
| +  );
 | 
| +  if( pOp->p3 ){
 | 
| +    p->nChange += nChange;
 | 
| +    if( pOp->p3>0 ){
 | 
| +      assert( memIsValid(&aMem[pOp->p3]) );
 | 
| +      memAboutToChange(p, &aMem[pOp->p3]);
 | 
| +      aMem[pOp->p3].u.i += nChange;
 | 
| +    }
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: ResetSorter P1 * * * *
 | 
| +**
 | 
| +** Delete all contents from the ephemeral table or sorter
 | 
| +** that is open on cursor P1.
 | 
| +**
 | 
| +** This opcode only works for cursors used for sorting and
 | 
| +** opened with OP_OpenEphemeral or OP_SorterOpen.
 | 
| +*/
 | 
| +case OP_ResetSorter: {
 | 
| +  VdbeCursor *pC;
 | 
| + 
 | 
| +  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | 
| +  pC = p->apCsr[pOp->p1];
 | 
| +  assert( pC!=0 );
 | 
| +  if( pC->pSorter ){
 | 
| +    sqlite3VdbeSorterReset(db, pC->pSorter);
 | 
| +  }else{
 | 
| +    assert( pC->isEphemeral );
 | 
| +    rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: CreateTable P1 P2 * * *
 | 
| +** Synopsis: r[P2]=root iDb=P1
 | 
| +**
 | 
| +** Allocate a new table in the main database file if P1==0 or in the
 | 
| +** auxiliary database file if P1==1 or in an attached database if
 | 
| +** P1>1.  Write the root page number of the new table into
 | 
| +** register P2
 | 
| +**
 | 
| +** The difference between a table and an index is this:  A table must
 | 
| +** have a 4-byte integer key and can have arbitrary data.  An index
 | 
| +** has an arbitrary key but no data.
 | 
| +**
 | 
| +** See also: CreateIndex
 | 
| +*/
 | 
| +/* Opcode: CreateIndex P1 P2 * * *
 | 
| +** Synopsis: r[P2]=root iDb=P1
 | 
| +**
 | 
| +** Allocate a new index in the main database file if P1==0 or in the
 | 
| +** auxiliary database file if P1==1 or in an attached database if
 | 
| +** P1>1.  Write the root page number of the new table into
 | 
| +** register P2.
 | 
| +**
 | 
| +** See documentation on OP_CreateTable for additional information.
 | 
| +*/
 | 
| +case OP_CreateIndex:            /* out2-prerelease */
 | 
| +case OP_CreateTable: {          /* out2-prerelease */
 | 
| +  int pgno;
 | 
| +  int flags;
 | 
| +  Db *pDb;
 | 
| +
 | 
| +  pgno = 0;
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p1) );
 | 
| +  assert( p->readOnly==0 );
 | 
| +  pDb = &db->aDb[pOp->p1];
 | 
| +  assert( pDb->pBt!=0 );
 | 
| +  if( pOp->opcode==OP_CreateTable ){
 | 
| +    /* flags = BTREE_INTKEY; */
 | 
| +    flags = BTREE_INTKEY;
 | 
| +  }else{
 | 
| +    flags = BTREE_BLOBKEY;
 | 
| +  }
 | 
| +  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
 | 
| +  pOut->u.i = pgno;
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: ParseSchema P1 * * P4 *
 | 
| +**
 | 
| +** Read and parse all entries from the SQLITE_MASTER table of database P1
 | 
| +** that match the WHERE clause P4. 
 | 
| +**
 | 
| +** This opcode invokes the parser to create a new virtual machine,
 | 
| +** then runs the new virtual machine.  It is thus a re-entrant opcode.
 | 
| +*/
 | 
| +case OP_ParseSchema: {
 | 
| +  int iDb;
 | 
| +  const char *zMaster;
 | 
| +  char *zSql;
 | 
| +  InitData initData;
 | 
| +
 | 
| +  /* Any prepared statement that invokes this opcode will hold mutexes
 | 
| +  ** on every btree.  This is a prerequisite for invoking 
 | 
| +  ** sqlite3InitCallback().
 | 
| +  */
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  for(iDb=0; iDb<db->nDb; iDb++){
 | 
| +    assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +  iDb = pOp->p1;
 | 
| +  assert( iDb>=0 && iDb<db->nDb );
 | 
| +  assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
 | 
| +  /* Used to be a conditional */ {
 | 
| +    zMaster = SCHEMA_TABLE(iDb);
 | 
| +    initData.db = db;
 | 
| +    initData.iDb = pOp->p1;
 | 
| +    initData.pzErrMsg = &p->zErrMsg;
 | 
| +    zSql = sqlite3MPrintf(db,
 | 
| +       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
 | 
| +       db->aDb[iDb].zName, zMaster, pOp->p4.z);
 | 
| +    if( zSql==0 ){
 | 
| +      rc = SQLITE_NOMEM;
 | 
| +    }else{
 | 
| +      assert( db->init.busy==0 );
 | 
| +      db->init.busy = 1;
 | 
| +      initData.rc = SQLITE_OK;
 | 
| +      assert( !db->mallocFailed );
 | 
| +      rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
 | 
| +      if( rc==SQLITE_OK ) rc = initData.rc;
 | 
| +      sqlite3DbFree(db, zSql);
 | 
| +      db->init.busy = 0;
 | 
| +    }
 | 
| +  }
 | 
| +  if( rc ) sqlite3ResetAllSchemasOfConnection(db);
 | 
| +  if( rc==SQLITE_NOMEM ){
 | 
| +    goto no_mem;
 | 
| +  }
 | 
| +  break;  
 | 
| +}
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_ANALYZE)
 | 
| +/* Opcode: LoadAnalysis P1 * * * *
 | 
| +**
 | 
| +** Read the sqlite_stat1 table for database P1 and load the content
 | 
| +** of that table into the internal index hash table.  This will cause
 | 
| +** the analysis to be used when preparing all subsequent queries.
 | 
| +*/
 | 
| +case OP_LoadAnalysis: {
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  rc = sqlite3AnalysisLoad(db, pOp->p1);
 | 
| +  break;  
 | 
| +}
 | 
| +#endif /* !defined(SQLITE_OMIT_ANALYZE) */
 | 
| +
 | 
| +/* Opcode: DropTable P1 * * P4 *
 | 
| +**
 | 
| +** Remove the internal (in-memory) data structures that describe
 | 
| +** the table named P4 in database P1.  This is called after a table
 | 
| +** is dropped from disk (using the Destroy opcode) in order to keep 
 | 
| +** the internal representation of the
 | 
| +** schema consistent with what is on disk.
 | 
| +*/
 | 
| +case OP_DropTable: {
 | 
| +  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: DropIndex P1 * * P4 *
 | 
| +**
 | 
| +** Remove the internal (in-memory) data structures that describe
 | 
| +** the index named P4 in database P1.  This is called after an index
 | 
| +** is dropped from disk (using the Destroy opcode)
 | 
| +** in order to keep the internal representation of the
 | 
| +** schema consistent with what is on disk.
 | 
| +*/
 | 
| +case OP_DropIndex: {
 | 
| +  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: DropTrigger P1 * * P4 *
 | 
| +**
 | 
| +** Remove the internal (in-memory) data structures that describe
 | 
| +** the trigger named P4 in database P1.  This is called after a trigger
 | 
| +** is dropped from disk (using the Destroy opcode) in order to keep 
 | 
| +** the internal representation of the
 | 
| +** schema consistent with what is on disk.
 | 
| +*/
 | 
| +case OP_DropTrigger: {
 | 
| +  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | 
| +/* Opcode: IntegrityCk P1 P2 P3 * P5
 | 
| +**
 | 
| +** Do an analysis of the currently open database.  Store in
 | 
| +** register P1 the text of an error message describing any problems.
 | 
| +** If no problems are found, store a NULL in register P1.
 | 
| +**
 | 
| +** The register P3 contains the maximum number of allowed errors.
 | 
| +** At most reg(P3) errors will be reported.
 | 
| +** In other words, the analysis stops as soon as reg(P1) errors are 
 | 
| +** seen.  Reg(P1) is updated with the number of errors remaining.
 | 
| +**
 | 
| +** The root page numbers of all tables in the database are integer
 | 
| +** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
 | 
| +** total.
 | 
| +**
 | 
| +** If P5 is not zero, the check is done on the auxiliary database
 | 
| +** file, not the main database file.
 | 
| +**
 | 
| +** This opcode is used to implement the integrity_check pragma.
 | 
| +*/
 | 
| +case OP_IntegrityCk: {
 | 
| +  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
 | 
| +  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
 | 
| +  int j;          /* Loop counter */
 | 
| +  int nErr;       /* Number of errors reported */
 | 
| +  char *z;        /* Text of the error report */
 | 
| +  Mem *pnErr;     /* Register keeping track of errors remaining */
 | 
| +
 | 
| +  assert( p->bIsReader );
 | 
| +  nRoot = pOp->p2;
 | 
| +  assert( nRoot>0 );
 | 
| +  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
 | 
| +  if( aRoot==0 ) goto no_mem;
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  pnErr = &aMem[pOp->p3];
 | 
| +  assert( (pnErr->flags & MEM_Int)!=0 );
 | 
| +  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  for(j=0; j<nRoot; j++){
 | 
| +    aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
 | 
| +  }
 | 
| +  aRoot[j] = 0;
 | 
| +  assert( pOp->p5<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p5) );
 | 
| +  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
 | 
| +                                 (int)pnErr->u.i, &nErr);
 | 
| +  sqlite3DbFree(db, aRoot);
 | 
| +  pnErr->u.i -= nErr;
 | 
| +  sqlite3VdbeMemSetNull(pIn1);
 | 
| +  if( nErr==0 ){
 | 
| +    assert( z==0 );
 | 
| +  }else if( z==0 ){
 | 
| +    goto no_mem;
 | 
| +  }else{
 | 
| +    sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
 | 
| +  }
 | 
| +  UPDATE_MAX_BLOBSIZE(pIn1);
 | 
| +  sqlite3VdbeChangeEncoding(pIn1, encoding);
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | 
| +
 | 
| +/* Opcode: RowSetAdd P1 P2 * * *
 | 
| +** Synopsis:  rowset(P1)=r[P2]
 | 
| +**
 | 
| +** Insert the integer value held by register P2 into a boolean index
 | 
| +** held in register P1.
 | 
| +**
 | 
| +** An assertion fails if P2 is not an integer.
 | 
| +*/
 | 
| +case OP_RowSetAdd: {       /* in1, in2 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  assert( (pIn2->flags & MEM_Int)!=0 );
 | 
| +  if( (pIn1->flags & MEM_RowSet)==0 ){
 | 
| +    sqlite3VdbeMemSetRowSet(pIn1);
 | 
| +    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
 | 
| +  }
 | 
| +  sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: RowSetRead P1 P2 P3 * *
 | 
| +** Synopsis:  r[P3]=rowset(P1)
 | 
| +**
 | 
| +** Extract the smallest value from boolean index P1 and put that value into
 | 
| +** register P3.  Or, if boolean index P1 is initially empty, leave P3
 | 
| +** unchanged and jump to instruction P2.
 | 
| +*/
 | 
| +case OP_RowSetRead: {       /* jump, in1, out3 */
 | 
| +  i64 val;
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  if( (pIn1->flags & MEM_RowSet)==0 
 | 
| +   || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
 | 
| +  ){
 | 
| +    /* The boolean index is empty */
 | 
| +    sqlite3VdbeMemSetNull(pIn1);
 | 
| +    pc = pOp->p2 - 1;
 | 
| +    VdbeBranchTaken(1,2);
 | 
| +  }else{
 | 
| +    /* A value was pulled from the index */
 | 
| +    sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
 | 
| +    VdbeBranchTaken(0,2);
 | 
| +  }
 | 
| +  goto check_for_interrupt;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: RowSetTest P1 P2 P3 P4
 | 
| +** Synopsis: if r[P3] in rowset(P1) goto P2
 | 
| +**
 | 
| +** Register P3 is assumed to hold a 64-bit integer value. If register P1
 | 
| +** contains a RowSet object and that RowSet object contains
 | 
| +** the value held in P3, jump to register P2. Otherwise, insert the
 | 
| +** integer in P3 into the RowSet and continue on to the
 | 
| +** next opcode.
 | 
| +**
 | 
| +** The RowSet object is optimized for the case where successive sets
 | 
| +** of integers, where each set contains no duplicates. Each set
 | 
| +** of values is identified by a unique P4 value. The first set
 | 
| +** must have P4==0, the final set P4=-1.  P4 must be either -1 or
 | 
| +** non-negative.  For non-negative values of P4 only the lower 4
 | 
| +** bits are significant.
 | 
| +**
 | 
| +** This allows optimizations: (a) when P4==0 there is no need to test
 | 
| +** the rowset object for P3, as it is guaranteed not to contain it,
 | 
| +** (b) when P4==-1 there is no need to insert the value, as it will
 | 
| +** never be tested for, and (c) when a value that is part of set X is
 | 
| +** inserted, there is no need to search to see if the same value was
 | 
| +** previously inserted as part of set X (only if it was previously
 | 
| +** inserted as part of some other set).
 | 
| +*/
 | 
| +case OP_RowSetTest: {                     /* jump, in1, in3 */
 | 
| +  int iSet;
 | 
| +  int exists;
 | 
| +
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  pIn3 = &aMem[pOp->p3];
 | 
| +  iSet = pOp->p4.i;
 | 
| +  assert( pIn3->flags&MEM_Int );
 | 
| +
 | 
| +  /* If there is anything other than a rowset object in memory cell P1,
 | 
| +  ** delete it now and initialize P1 with an empty rowset
 | 
| +  */
 | 
| +  if( (pIn1->flags & MEM_RowSet)==0 ){
 | 
| +    sqlite3VdbeMemSetRowSet(pIn1);
 | 
| +    if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
 | 
| +  }
 | 
| +
 | 
| +  assert( pOp->p4type==P4_INT32 );
 | 
| +  assert( iSet==-1 || iSet>=0 );
 | 
| +  if( iSet ){
 | 
| +    exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
 | 
| +    VdbeBranchTaken(exists!=0,2);
 | 
| +    if( exists ){
 | 
| +      pc = pOp->p2 - 1;
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +  if( iSet>=0 ){
 | 
| +    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_TRIGGER
 | 
| +
 | 
| +/* Opcode: Program P1 P2 P3 P4 P5
 | 
| +**
 | 
| +** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 
 | 
| +**
 | 
| +** P1 contains the address of the memory cell that contains the first memory 
 | 
| +** cell in an array of values used as arguments to the sub-program. P2 
 | 
| +** contains the address to jump to if the sub-program throws an IGNORE 
 | 
| +** exception using the RAISE() function. Register P3 contains the address 
 | 
| +** of a memory cell in this (the parent) VM that is used to allocate the 
 | 
| +** memory required by the sub-vdbe at runtime.
 | 
| +**
 | 
| +** P4 is a pointer to the VM containing the trigger program.
 | 
| +**
 | 
| +** If P5 is non-zero, then recursive program invocation is enabled.
 | 
| +*/
 | 
| +case OP_Program: {        /* jump */
 | 
| +  int nMem;               /* Number of memory registers for sub-program */
 | 
| +  int nByte;              /* Bytes of runtime space required for sub-program */
 | 
| +  Mem *pRt;               /* Register to allocate runtime space */
 | 
| +  Mem *pMem;              /* Used to iterate through memory cells */
 | 
| +  Mem *pEnd;              /* Last memory cell in new array */
 | 
| +  VdbeFrame *pFrame;      /* New vdbe frame to execute in */
 | 
| +  SubProgram *pProgram;   /* Sub-program to execute */
 | 
| +  void *t;                /* Token identifying trigger */
 | 
| +
 | 
| +  pProgram = pOp->p4.pProgram;
 | 
| +  pRt = &aMem[pOp->p3];
 | 
| +  assert( pProgram->nOp>0 );
 | 
| +  
 | 
| +  /* If the p5 flag is clear, then recursive invocation of triggers is 
 | 
| +  ** disabled for backwards compatibility (p5 is set if this sub-program
 | 
| +  ** is really a trigger, not a foreign key action, and the flag set
 | 
| +  ** and cleared by the "PRAGMA recursive_triggers" command is clear).
 | 
| +  ** 
 | 
| +  ** It is recursive invocation of triggers, at the SQL level, that is 
 | 
| +  ** disabled. In some cases a single trigger may generate more than one 
 | 
| +  ** SubProgram (if the trigger may be executed with more than one different 
 | 
| +  ** ON CONFLICT algorithm). SubProgram structures associated with a
 | 
| +  ** single trigger all have the same value for the SubProgram.token 
 | 
| +  ** variable.  */
 | 
| +  if( pOp->p5 ){
 | 
| +    t = pProgram->token;
 | 
| +    for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
 | 
| +    if( pFrame ) break;
 | 
| +  }
 | 
| +
 | 
| +  if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
 | 
| +    rc = SQLITE_ERROR;
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
 | 
| +    break;
 | 
| +  }
 | 
| +
 | 
| +  /* Register pRt is used to store the memory required to save the state
 | 
| +  ** of the current program, and the memory required at runtime to execute
 | 
| +  ** the trigger program. If this trigger has been fired before, then pRt 
 | 
| +  ** is already allocated. Otherwise, it must be initialized.  */
 | 
| +  if( (pRt->flags&MEM_Frame)==0 ){
 | 
| +    /* SubProgram.nMem is set to the number of memory cells used by the 
 | 
| +    ** program stored in SubProgram.aOp. As well as these, one memory
 | 
| +    ** cell is required for each cursor used by the program. Set local
 | 
| +    ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
 | 
| +    */
 | 
| +    nMem = pProgram->nMem + pProgram->nCsr;
 | 
| +    nByte = ROUND8(sizeof(VdbeFrame))
 | 
| +              + nMem * sizeof(Mem)
 | 
| +              + pProgram->nCsr * sizeof(VdbeCursor *)
 | 
| +              + pProgram->nOnce * sizeof(u8);
 | 
| +    pFrame = sqlite3DbMallocZero(db, nByte);
 | 
| +    if( !pFrame ){
 | 
| +      goto no_mem;
 | 
| +    }
 | 
| +    sqlite3VdbeMemRelease(pRt);
 | 
| +    pRt->flags = MEM_Frame;
 | 
| +    pRt->u.pFrame = pFrame;
 | 
| +
 | 
| +    pFrame->v = p;
 | 
| +    pFrame->nChildMem = nMem;
 | 
| +    pFrame->nChildCsr = pProgram->nCsr;
 | 
| +    pFrame->pc = pc;
 | 
| +    pFrame->aMem = p->aMem;
 | 
| +    pFrame->nMem = p->nMem;
 | 
| +    pFrame->apCsr = p->apCsr;
 | 
| +    pFrame->nCursor = p->nCursor;
 | 
| +    pFrame->aOp = p->aOp;
 | 
| +    pFrame->nOp = p->nOp;
 | 
| +    pFrame->token = pProgram->token;
 | 
| +    pFrame->aOnceFlag = p->aOnceFlag;
 | 
| +    pFrame->nOnceFlag = p->nOnceFlag;
 | 
| +
 | 
| +    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
 | 
| +    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
 | 
| +      pMem->flags = MEM_Undefined;
 | 
| +      pMem->db = db;
 | 
| +    }
 | 
| +  }else{
 | 
| +    pFrame = pRt->u.pFrame;
 | 
| +    assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
 | 
| +    assert( pProgram->nCsr==pFrame->nChildCsr );
 | 
| +    assert( pc==pFrame->pc );
 | 
| +  }
 | 
| +
 | 
| +  p->nFrame++;
 | 
| +  pFrame->pParent = p->pFrame;
 | 
| +  pFrame->lastRowid = lastRowid;
 | 
| +  pFrame->nChange = p->nChange;
 | 
| +  p->nChange = 0;
 | 
| +  p->pFrame = pFrame;
 | 
| +  p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
 | 
| +  p->nMem = pFrame->nChildMem;
 | 
| +  p->nCursor = (u16)pFrame->nChildCsr;
 | 
| +  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
 | 
| +  p->aOp = aOp = pProgram->aOp;
 | 
| +  p->nOp = pProgram->nOp;
 | 
| +  p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
 | 
| +  p->nOnceFlag = pProgram->nOnce;
 | 
| +  pc = -1;
 | 
| +  memset(p->aOnceFlag, 0, p->nOnceFlag);
 | 
| +
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: Param P1 P2 * * *
 | 
| +**
 | 
| +** This opcode is only ever present in sub-programs called via the 
 | 
| +** OP_Program instruction. Copy a value currently stored in a memory 
 | 
| +** cell of the calling (parent) frame to cell P2 in the current frames 
 | 
| +** address space. This is used by trigger programs to access the new.* 
 | 
| +** and old.* values.
 | 
| +**
 | 
| +** The address of the cell in the parent frame is determined by adding
 | 
| +** the value of the P1 argument to the value of the P1 argument to the
 | 
| +** calling OP_Program instruction.
 | 
| +*/
 | 
| +case OP_Param: {           /* out2-prerelease */
 | 
| +  VdbeFrame *pFrame;
 | 
| +  Mem *pIn;
 | 
| +  pFrame = p->pFrame;
 | 
| +  pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];   
 | 
| +  sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +#endif /* #ifndef SQLITE_OMIT_TRIGGER */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
 | 
| +/* Opcode: FkCounter P1 P2 * * *
 | 
| +** Synopsis: fkctr[P1]+=P2
 | 
| +**
 | 
| +** Increment a "constraint counter" by P2 (P2 may be negative or positive).
 | 
| +** If P1 is non-zero, the database constraint counter is incremented 
 | 
| +** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
 | 
| +** statement counter is incremented (immediate foreign key constraints).
 | 
| +*/
 | 
| +case OP_FkCounter: {
 | 
| +  if( db->flags & SQLITE_DeferFKs ){
 | 
| +    db->nDeferredImmCons += pOp->p2;
 | 
| +  }else if( pOp->p1 ){
 | 
| +    db->nDeferredCons += pOp->p2;
 | 
| +  }else{
 | 
| +    p->nFkConstraint += pOp->p2;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: FkIfZero P1 P2 * * *
 | 
| +** Synopsis: if fkctr[P1]==0 goto P2
 | 
| +**
 | 
| +** This opcode tests if a foreign key constraint-counter is currently zero.
 | 
| +** If so, jump to instruction P2. Otherwise, fall through to the next 
 | 
| +** instruction.
 | 
| +**
 | 
| +** If P1 is non-zero, then the jump is taken if the database constraint-counter
 | 
| +** is zero (the one that counts deferred constraint violations). If P1 is
 | 
| +** zero, the jump is taken if the statement constraint-counter is zero
 | 
| +** (immediate foreign key constraint violations).
 | 
| +*/
 | 
| +case OP_FkIfZero: {         /* jump */
 | 
| +  if( pOp->p1 ){
 | 
| +    VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
 | 
| +    if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
 | 
| +  }else{
 | 
| +    VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
 | 
| +    if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
 | 
| +/* Opcode: MemMax P1 P2 * * *
 | 
| +** Synopsis: r[P1]=max(r[P1],r[P2])
 | 
| +**
 | 
| +** P1 is a register in the root frame of this VM (the root frame is
 | 
| +** different from the current frame if this instruction is being executed
 | 
| +** within a sub-program). Set the value of register P1 to the maximum of 
 | 
| +** its current value and the value in register P2.
 | 
| +**
 | 
| +** This instruction throws an error if the memory cell is not initially
 | 
| +** an integer.
 | 
| +*/
 | 
| +case OP_MemMax: {        /* in2 */
 | 
| +  VdbeFrame *pFrame;
 | 
| +  if( p->pFrame ){
 | 
| +    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
 | 
| +    pIn1 = &pFrame->aMem[pOp->p1];
 | 
| +  }else{
 | 
| +    pIn1 = &aMem[pOp->p1];
 | 
| +  }
 | 
| +  assert( memIsValid(pIn1) );
 | 
| +  sqlite3VdbeMemIntegerify(pIn1);
 | 
| +  pIn2 = &aMem[pOp->p2];
 | 
| +  sqlite3VdbeMemIntegerify(pIn2);
 | 
| +  if( pIn1->u.i<pIn2->u.i){
 | 
| +    pIn1->u.i = pIn2->u.i;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_AUTOINCREMENT */
 | 
| +
 | 
| +/* Opcode: IfPos P1 P2 * * *
 | 
| +** Synopsis: if r[P1]>0 goto P2
 | 
| +**
 | 
| +** If the value of register P1 is 1 or greater, jump to P2.
 | 
| +**
 | 
| +** It is illegal to use this instruction on a register that does
 | 
| +** not contain an integer.  An assertion fault will result if you try.
 | 
| +*/
 | 
| +case OP_IfPos: {        /* jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( pIn1->flags&MEM_Int );
 | 
| +  VdbeBranchTaken( pIn1->u.i>0, 2);
 | 
| +  if( pIn1->u.i>0 ){
 | 
| +     pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IfNeg P1 P2 P3 * *
 | 
| +** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
 | 
| +**
 | 
| +** Register P1 must contain an integer.  Add literal P3 to the value in
 | 
| +** register P1 then if the value of register P1 is less than zero, jump to P2. 
 | 
| +*/
 | 
| +case OP_IfNeg: {        /* jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( pIn1->flags&MEM_Int );
 | 
| +  pIn1->u.i += pOp->p3;
 | 
| +  VdbeBranchTaken(pIn1->u.i<0, 2);
 | 
| +  if( pIn1->u.i<0 ){
 | 
| +     pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: IfZero P1 P2 P3 * *
 | 
| +** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
 | 
| +**
 | 
| +** The register P1 must contain an integer.  Add literal P3 to the
 | 
| +** value in register P1.  If the result is exactly 0, jump to P2. 
 | 
| +*/
 | 
| +case OP_IfZero: {        /* jump, in1 */
 | 
| +  pIn1 = &aMem[pOp->p1];
 | 
| +  assert( pIn1->flags&MEM_Int );
 | 
| +  pIn1->u.i += pOp->p3;
 | 
| +  VdbeBranchTaken(pIn1->u.i==0, 2);
 | 
| +  if( pIn1->u.i==0 ){
 | 
| +     pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: AggStep * P2 P3 P4 P5
 | 
| +** Synopsis: accum=r[P3] step(r[P2@P5])
 | 
| +**
 | 
| +** Execute the step function for an aggregate.  The
 | 
| +** function has P5 arguments.   P4 is a pointer to the FuncDef
 | 
| +** structure that specifies the function.  Use register
 | 
| +** P3 as the accumulator.
 | 
| +**
 | 
| +** The P5 arguments are taken from register P2 and its
 | 
| +** successors.
 | 
| +*/
 | 
| +case OP_AggStep: {
 | 
| +  int n;
 | 
| +  int i;
 | 
| +  Mem *pMem;
 | 
| +  Mem *pRec;
 | 
| +  Mem t;
 | 
| +  sqlite3_context ctx;
 | 
| +  sqlite3_value **apVal;
 | 
| +
 | 
| +  n = pOp->p5;
 | 
| +  assert( n>=0 );
 | 
| +  pRec = &aMem[pOp->p2];
 | 
| +  apVal = p->apArg;
 | 
| +  assert( apVal || n==0 );
 | 
| +  for(i=0; i<n; i++, pRec++){
 | 
| +    assert( memIsValid(pRec) );
 | 
| +    apVal[i] = pRec;
 | 
| +    memAboutToChange(p, pRec);
 | 
| +  }
 | 
| +  ctx.pFunc = pOp->p4.pFunc;
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  ctx.pMem = pMem = &aMem[pOp->p3];
 | 
| +  pMem->n++;
 | 
| +  sqlite3VdbeMemInit(&t, db, MEM_Null);
 | 
| +  ctx.pOut = &t;
 | 
| +  ctx.isError = 0;
 | 
| +  ctx.pVdbe = p;
 | 
| +  ctx.iOp = pc;
 | 
| +  ctx.skipFlag = 0;
 | 
| +  (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
 | 
| +  if( ctx.isError ){
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
 | 
| +    rc = ctx.isError;
 | 
| +  }
 | 
| +  if( ctx.skipFlag ){
 | 
| +    assert( pOp[-1].opcode==OP_CollSeq );
 | 
| +    i = pOp[-1].p1;
 | 
| +    if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
 | 
| +  }
 | 
| +  sqlite3VdbeMemRelease(&t);
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/* Opcode: AggFinal P1 P2 * P4 *
 | 
| +** Synopsis: accum=r[P1] N=P2
 | 
| +**
 | 
| +** Execute the finalizer function for an aggregate.  P1 is
 | 
| +** the memory location that is the accumulator for the aggregate.
 | 
| +**
 | 
| +** P2 is the number of arguments that the step function takes and
 | 
| +** P4 is a pointer to the FuncDef for this function.  The P2
 | 
| +** argument is not used by this opcode.  It is only there to disambiguate
 | 
| +** functions that can take varying numbers of arguments.  The
 | 
| +** P4 argument is only needed for the degenerate case where
 | 
| +** the step function was not previously called.
 | 
| +*/
 | 
| +case OP_AggFinal: {
 | 
| +  Mem *pMem;
 | 
| +  assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
 | 
| +  pMem = &aMem[pOp->p1];
 | 
| +  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
 | 
| +  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
 | 
| +  if( rc ){
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
 | 
| +  }
 | 
| +  sqlite3VdbeChangeEncoding(pMem, encoding);
 | 
| +  UPDATE_MAX_BLOBSIZE(pMem);
 | 
| +  if( sqlite3VdbeMemTooBig(pMem) ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_WAL
 | 
| +/* Opcode: Checkpoint P1 P2 P3 * *
 | 
| +**
 | 
| +** Checkpoint database P1. This is a no-op if P1 is not currently in
 | 
| +** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
 | 
| +** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
 | 
| +** SQLITE_BUSY or not, respectively.  Write the number of pages in the
 | 
| +** WAL after the checkpoint into mem[P3+1] and the number of pages
 | 
| +** in the WAL that have been checkpointed after the checkpoint
 | 
| +** completes into mem[P3+2].  However on an error, mem[P3+1] and
 | 
| +** mem[P3+2] are initialized to -1.
 | 
| +*/
 | 
| +case OP_Checkpoint: {
 | 
| +  int i;                          /* Loop counter */
 | 
| +  int aRes[3];                    /* Results */
 | 
| +  Mem *pMem;                      /* Write results here */
 | 
| +
 | 
| +  assert( p->readOnly==0 );
 | 
| +  aRes[0] = 0;
 | 
| +  aRes[1] = aRes[2] = -1;
 | 
| +  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
 | 
| +       || pOp->p2==SQLITE_CHECKPOINT_FULL
 | 
| +       || pOp->p2==SQLITE_CHECKPOINT_RESTART
 | 
| +  );
 | 
| +  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
 | 
| +  if( rc==SQLITE_BUSY ){
 | 
| +    rc = SQLITE_OK;
 | 
| +    aRes[0] = 1;
 | 
| +  }
 | 
| +  for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
 | 
| +    sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
 | 
| +  }    
 | 
| +  break;
 | 
| +};  
 | 
| +#endif
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_PRAGMA
 | 
| +/* Opcode: JournalMode P1 P2 P3 * *
 | 
| +**
 | 
| +** Change the journal mode of database P1 to P3. P3 must be one of the
 | 
| +** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
 | 
| +** modes (delete, truncate, persist, off and memory), this is a simple
 | 
| +** operation. No IO is required.
 | 
| +**
 | 
| +** If changing into or out of WAL mode the procedure is more complicated.
 | 
| +**
 | 
| +** Write a string containing the final journal-mode to register P2.
 | 
| +*/
 | 
| +case OP_JournalMode: {    /* out2-prerelease */
 | 
| +  Btree *pBt;                     /* Btree to change journal mode of */
 | 
| +  Pager *pPager;                  /* Pager associated with pBt */
 | 
| +  int eNew;                       /* New journal mode */
 | 
| +  int eOld;                       /* The old journal mode */
 | 
| +#ifndef SQLITE_OMIT_WAL
 | 
| +  const char *zFilename;          /* Name of database file for pPager */
 | 
| +#endif
 | 
| +
 | 
| +  eNew = pOp->p3;
 | 
| +  assert( eNew==PAGER_JOURNALMODE_DELETE 
 | 
| +       || eNew==PAGER_JOURNALMODE_TRUNCATE 
 | 
| +       || eNew==PAGER_JOURNALMODE_PERSIST 
 | 
| +       || eNew==PAGER_JOURNALMODE_OFF
 | 
| +       || eNew==PAGER_JOURNALMODE_MEMORY
 | 
| +       || eNew==PAGER_JOURNALMODE_WAL
 | 
| +       || eNew==PAGER_JOURNALMODE_QUERY
 | 
| +  );
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  assert( p->readOnly==0 );
 | 
| +
 | 
| +  pBt = db->aDb[pOp->p1].pBt;
 | 
| +  pPager = sqlite3BtreePager(pBt);
 | 
| +  eOld = sqlite3PagerGetJournalMode(pPager);
 | 
| +  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
 | 
| +  if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_WAL
 | 
| +  zFilename = sqlite3PagerFilename(pPager, 1);
 | 
| +
 | 
| +  /* Do not allow a transition to journal_mode=WAL for a database
 | 
| +  ** in temporary storage or if the VFS does not support shared memory 
 | 
| +  */
 | 
| +  if( eNew==PAGER_JOURNALMODE_WAL
 | 
| +   && (sqlite3Strlen30(zFilename)==0           /* Temp file */
 | 
| +       || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
 | 
| +  ){
 | 
| +    eNew = eOld;
 | 
| +  }
 | 
| +
 | 
| +  if( (eNew!=eOld)
 | 
| +   && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
 | 
| +  ){
 | 
| +    if( !db->autoCommit || db->nVdbeRead>1 ){
 | 
| +      rc = SQLITE_ERROR;
 | 
| +      sqlite3SetString(&p->zErrMsg, db, 
 | 
| +          "cannot change %s wal mode from within a transaction",
 | 
| +          (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
 | 
| +      );
 | 
| +      break;
 | 
| +    }else{
 | 
| + 
 | 
| +      if( eOld==PAGER_JOURNALMODE_WAL ){
 | 
| +        /* If leaving WAL mode, close the log file. If successful, the call
 | 
| +        ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 
 | 
| +        ** file. An EXCLUSIVE lock may still be held on the database file 
 | 
| +        ** after a successful return. 
 | 
| +        */
 | 
| +        rc = sqlite3PagerCloseWal(pPager);
 | 
| +        if( rc==SQLITE_OK ){
 | 
| +          sqlite3PagerSetJournalMode(pPager, eNew);
 | 
| +        }
 | 
| +      }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
 | 
| +        /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
 | 
| +        ** as an intermediate */
 | 
| +        sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
 | 
| +      }
 | 
| +  
 | 
| +      /* Open a transaction on the database file. Regardless of the journal
 | 
| +      ** mode, this transaction always uses a rollback journal.
 | 
| +      */
 | 
| +      assert( sqlite3BtreeIsInTrans(pBt)==0 );
 | 
| +      if( rc==SQLITE_OK ){
 | 
| +        rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +#endif /* ifndef SQLITE_OMIT_WAL */
 | 
| +
 | 
| +  if( rc ){
 | 
| +    eNew = eOld;
 | 
| +  }
 | 
| +  eNew = sqlite3PagerSetJournalMode(pPager, eNew);
 | 
| +
 | 
| +  pOut = &aMem[pOp->p2];
 | 
| +  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
 | 
| +  pOut->z = (char *)sqlite3JournalModename(eNew);
 | 
| +  pOut->n = sqlite3Strlen30(pOut->z);
 | 
| +  pOut->enc = SQLITE_UTF8;
 | 
| +  sqlite3VdbeChangeEncoding(pOut, encoding);
 | 
| +  break;
 | 
| +};
 | 
| +#endif /* SQLITE_OMIT_PRAGMA */
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
 | 
| +/* Opcode: Vacuum * * * * *
 | 
| +**
 | 
| +** Vacuum the entire database.  This opcode will cause other virtual
 | 
| +** machines to be created and run.  It may not be called from within
 | 
| +** a transaction.
 | 
| +*/
 | 
| +case OP_Vacuum: {
 | 
| +  assert( p->readOnly==0 );
 | 
| +  rc = sqlite3RunVacuum(&p->zErrMsg, db);
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#if !defined(SQLITE_OMIT_AUTOVACUUM)
 | 
| +/* Opcode: IncrVacuum P1 P2 * * *
 | 
| +**
 | 
| +** Perform a single step of the incremental vacuum procedure on
 | 
| +** the P1 database. If the vacuum has finished, jump to instruction
 | 
| +** P2. Otherwise, fall through to the next instruction.
 | 
| +*/
 | 
| +case OP_IncrVacuum: {        /* jump */
 | 
| +  Btree *pBt;
 | 
| +
 | 
| +  assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | 
| +  assert( DbMaskTest(p->btreeMask, pOp->p1) );
 | 
| +  assert( p->readOnly==0 );
 | 
| +  pBt = db->aDb[pOp->p1].pBt;
 | 
| +  rc = sqlite3BtreeIncrVacuum(pBt);
 | 
| +  VdbeBranchTaken(rc==SQLITE_DONE,2);
 | 
| +  if( rc==SQLITE_DONE ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +    rc = SQLITE_OK;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +/* Opcode: Expire P1 * * * *
 | 
| +**
 | 
| +** Cause precompiled statements to expire.  When an expired statement
 | 
| +** is executed using sqlite3_step() it will either automatically
 | 
| +** reprepare itself (if it was originally created using sqlite3_prepare_v2())
 | 
| +** or it will fail with SQLITE_SCHEMA.
 | 
| +** 
 | 
| +** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
 | 
| +** then only the currently executing statement is expired.
 | 
| +*/
 | 
| +case OP_Expire: {
 | 
| +  if( !pOp->p1 ){
 | 
| +    sqlite3ExpirePreparedStatements(db);
 | 
| +  }else{
 | 
| +    p->expired = 1;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_SHARED_CACHE
 | 
| +/* Opcode: TableLock P1 P2 P3 P4 *
 | 
| +** Synopsis: iDb=P1 root=P2 write=P3
 | 
| +**
 | 
| +** Obtain a lock on a particular table. This instruction is only used when
 | 
| +** the shared-cache feature is enabled. 
 | 
| +**
 | 
| +** P1 is the index of the database in sqlite3.aDb[] of the database
 | 
| +** on which the lock is acquired.  A readlock is obtained if P3==0 or
 | 
| +** a write lock if P3==1.
 | 
| +**
 | 
| +** P2 contains the root-page of the table to lock.
 | 
| +**
 | 
| +** P4 contains a pointer to the name of the table being locked. This is only
 | 
| +** used to generate an error message if the lock cannot be obtained.
 | 
| +*/
 | 
| +case OP_TableLock: {
 | 
| +  u8 isWriteLock = (u8)pOp->p3;
 | 
| +  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
 | 
| +    int p1 = pOp->p1; 
 | 
| +    assert( p1>=0 && p1<db->nDb );
 | 
| +    assert( DbMaskTest(p->btreeMask, p1) );
 | 
| +    assert( isWriteLock==0 || isWriteLock==1 );
 | 
| +    rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
 | 
| +    if( (rc&0xFF)==SQLITE_LOCKED ){
 | 
| +      const char *z = pOp->p4.z;
 | 
| +      sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
 | 
| +    }
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_SHARED_CACHE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VBegin * * * P4 *
 | 
| +**
 | 
| +** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
 | 
| +** xBegin method for that table.
 | 
| +**
 | 
| +** Also, whether or not P4 is set, check that this is not being called from
 | 
| +** within a callback to a virtual table xSync() method. If it is, the error
 | 
| +** code will be set to SQLITE_LOCKED.
 | 
| +*/
 | 
| +case OP_VBegin: {
 | 
| +  VTable *pVTab;
 | 
| +  pVTab = pOp->p4.pVtab;
 | 
| +  rc = sqlite3VtabBegin(db, pVTab);
 | 
| +  if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VCreate P1 * * P4 *
 | 
| +**
 | 
| +** P4 is the name of a virtual table in database P1. Call the xCreate method
 | 
| +** for that table.
 | 
| +*/
 | 
| +case OP_VCreate: {
 | 
| +  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VDestroy P1 * * P4 *
 | 
| +**
 | 
| +** P4 is the name of a virtual table in database P1.  Call the xDestroy method
 | 
| +** of that table.
 | 
| +*/
 | 
| +case OP_VDestroy: {
 | 
| +  p->inVtabMethod = 2;
 | 
| +  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
 | 
| +  p->inVtabMethod = 0;
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VOpen P1 * * P4 *
 | 
| +**
 | 
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | 
| +** P1 is a cursor number.  This opcode opens a cursor to the virtual
 | 
| +** table and stores that cursor in P1.
 | 
| +*/
 | 
| +case OP_VOpen: {
 | 
| +  VdbeCursor *pCur;
 | 
| +  sqlite3_vtab_cursor *pVtabCursor;
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  sqlite3_module *pModule;
 | 
| +
 | 
| +  assert( p->bIsReader );
 | 
| +  pCur = 0;
 | 
| +  pVtabCursor = 0;
 | 
| +  pVtab = pOp->p4.pVtab->pVtab;
 | 
| +  pModule = (sqlite3_module *)pVtab->pModule;
 | 
| +  assert(pVtab && pModule);
 | 
| +  rc = pModule->xOpen(pVtab, &pVtabCursor);
 | 
| +  sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +  if( SQLITE_OK==rc ){
 | 
| +    /* Initialize sqlite3_vtab_cursor base class */
 | 
| +    pVtabCursor->pVtab = pVtab;
 | 
| +
 | 
| +    /* Initialize vdbe cursor object */
 | 
| +    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
 | 
| +    if( pCur ){
 | 
| +      pCur->pVtabCursor = pVtabCursor;
 | 
| +    }else{
 | 
| +      db->mallocFailed = 1;
 | 
| +      pModule->xClose(pVtabCursor);
 | 
| +    }
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VFilter P1 P2 P3 P4 *
 | 
| +** Synopsis: iplan=r[P3] zplan='P4'
 | 
| +**
 | 
| +** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
 | 
| +** the filtered result set is empty.
 | 
| +**
 | 
| +** P4 is either NULL or a string that was generated by the xBestIndex
 | 
| +** method of the module.  The interpretation of the P4 string is left
 | 
| +** to the module implementation.
 | 
| +**
 | 
| +** This opcode invokes the xFilter method on the virtual table specified
 | 
| +** by P1.  The integer query plan parameter to xFilter is stored in register
 | 
| +** P3. Register P3+1 stores the argc parameter to be passed to the
 | 
| +** xFilter method. Registers P3+2..P3+1+argc are the argc
 | 
| +** additional parameters which are passed to
 | 
| +** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
 | 
| +**
 | 
| +** A jump is made to P2 if the result set after filtering would be empty.
 | 
| +*/
 | 
| +case OP_VFilter: {   /* jump */
 | 
| +  int nArg;
 | 
| +  int iQuery;
 | 
| +  const sqlite3_module *pModule;
 | 
| +  Mem *pQuery;
 | 
| +  Mem *pArgc;
 | 
| +  sqlite3_vtab_cursor *pVtabCursor;
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  VdbeCursor *pCur;
 | 
| +  int res;
 | 
| +  int i;
 | 
| +  Mem **apArg;
 | 
| +
 | 
| +  pQuery = &aMem[pOp->p3];
 | 
| +  pArgc = &pQuery[1];
 | 
| +  pCur = p->apCsr[pOp->p1];
 | 
| +  assert( memIsValid(pQuery) );
 | 
| +  REGISTER_TRACE(pOp->p3, pQuery);
 | 
| +  assert( pCur->pVtabCursor );
 | 
| +  pVtabCursor = pCur->pVtabCursor;
 | 
| +  pVtab = pVtabCursor->pVtab;
 | 
| +  pModule = pVtab->pModule;
 | 
| +
 | 
| +  /* Grab the index number and argc parameters */
 | 
| +  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
 | 
| +  nArg = (int)pArgc->u.i;
 | 
| +  iQuery = (int)pQuery->u.i;
 | 
| +
 | 
| +  /* Invoke the xFilter method */
 | 
| +  {
 | 
| +    res = 0;
 | 
| +    apArg = p->apArg;
 | 
| +    for(i = 0; i<nArg; i++){
 | 
| +      apArg[i] = &pArgc[i+1];
 | 
| +    }
 | 
| +
 | 
| +    p->inVtabMethod = 1;
 | 
| +    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
 | 
| +    p->inVtabMethod = 0;
 | 
| +    sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +    if( rc==SQLITE_OK ){
 | 
| +      res = pModule->xEof(pVtabCursor);
 | 
| +    }
 | 
| +    VdbeBranchTaken(res!=0,2);
 | 
| +    if( res ){
 | 
| +      pc = pOp->p2 - 1;
 | 
| +    }
 | 
| +  }
 | 
| +  pCur->nullRow = 0;
 | 
| +
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VColumn P1 P2 P3 * *
 | 
| +** Synopsis: r[P3]=vcolumn(P2)
 | 
| +**
 | 
| +** Store the value of the P2-th column of
 | 
| +** the row of the virtual-table that the 
 | 
| +** P1 cursor is pointing to into register P3.
 | 
| +*/
 | 
| +case OP_VColumn: {
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  const sqlite3_module *pModule;
 | 
| +  Mem *pDest;
 | 
| +  sqlite3_context sContext;
 | 
| +
 | 
| +  VdbeCursor *pCur = p->apCsr[pOp->p1];
 | 
| +  assert( pCur->pVtabCursor );
 | 
| +  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
 | 
| +  pDest = &aMem[pOp->p3];
 | 
| +  memAboutToChange(p, pDest);
 | 
| +  if( pCur->nullRow ){
 | 
| +    sqlite3VdbeMemSetNull(pDest);
 | 
| +    break;
 | 
| +  }
 | 
| +  pVtab = pCur->pVtabCursor->pVtab;
 | 
| +  pModule = pVtab->pModule;
 | 
| +  assert( pModule->xColumn );
 | 
| +  memset(&sContext, 0, sizeof(sContext));
 | 
| +  sContext.pOut = pDest;
 | 
| +  MemSetTypeFlag(pDest, MEM_Null);
 | 
| +  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
 | 
| +  sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +  if( sContext.isError ){
 | 
| +    rc = sContext.isError;
 | 
| +  }
 | 
| +  sqlite3VdbeChangeEncoding(pDest, encoding);
 | 
| +  REGISTER_TRACE(pOp->p3, pDest);
 | 
| +  UPDATE_MAX_BLOBSIZE(pDest);
 | 
| +
 | 
| +  if( sqlite3VdbeMemTooBig(pDest) ){
 | 
| +    goto too_big;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VNext P1 P2 * * *
 | 
| +**
 | 
| +** Advance virtual table P1 to the next row in its result set and
 | 
| +** jump to instruction P2.  Or, if the virtual table has reached
 | 
| +** the end of its result set, then fall through to the next instruction.
 | 
| +*/
 | 
| +case OP_VNext: {   /* jump */
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  const sqlite3_module *pModule;
 | 
| +  int res;
 | 
| +  VdbeCursor *pCur;
 | 
| +
 | 
| +  res = 0;
 | 
| +  pCur = p->apCsr[pOp->p1];
 | 
| +  assert( pCur->pVtabCursor );
 | 
| +  if( pCur->nullRow ){
 | 
| +    break;
 | 
| +  }
 | 
| +  pVtab = pCur->pVtabCursor->pVtab;
 | 
| +  pModule = pVtab->pModule;
 | 
| +  assert( pModule->xNext );
 | 
| +
 | 
| +  /* Invoke the xNext() method of the module. There is no way for the
 | 
| +  ** underlying implementation to return an error if one occurs during
 | 
| +  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
 | 
| +  ** data is available) and the error code returned when xColumn or
 | 
| +  ** some other method is next invoked on the save virtual table cursor.
 | 
| +  */
 | 
| +  p->inVtabMethod = 1;
 | 
| +  rc = pModule->xNext(pCur->pVtabCursor);
 | 
| +  p->inVtabMethod = 0;
 | 
| +  sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +  if( rc==SQLITE_OK ){
 | 
| +    res = pModule->xEof(pCur->pVtabCursor);
 | 
| +  }
 | 
| +  VdbeBranchTaken(!res,2);
 | 
| +  if( !res ){
 | 
| +    /* If there is data, jump to P2 */
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +  goto check_for_interrupt;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VRename P1 * * P4 *
 | 
| +**
 | 
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | 
| +** This opcode invokes the corresponding xRename method. The value
 | 
| +** in register P1 is passed as the zName argument to the xRename method.
 | 
| +*/
 | 
| +case OP_VRename: {
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  Mem *pName;
 | 
| +
 | 
| +  pVtab = pOp->p4.pVtab->pVtab;
 | 
| +  pName = &aMem[pOp->p1];
 | 
| +  assert( pVtab->pModule->xRename );
 | 
| +  assert( memIsValid(pName) );
 | 
| +  assert( p->readOnly==0 );
 | 
| +  REGISTER_TRACE(pOp->p1, pName);
 | 
| +  assert( pName->flags & MEM_Str );
 | 
| +  testcase( pName->enc==SQLITE_UTF8 );
 | 
| +  testcase( pName->enc==SQLITE_UTF16BE );
 | 
| +  testcase( pName->enc==SQLITE_UTF16LE );
 | 
| +  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
 | 
| +  if( rc==SQLITE_OK ){
 | 
| +    rc = pVtab->pModule->xRename(pVtab, pName->z);
 | 
| +    sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +    p->expired = 0;
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
 | 
| +/* Opcode: VUpdate P1 P2 P3 P4 P5
 | 
| +** Synopsis: data=r[P3@P2]
 | 
| +**
 | 
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | 
| +** This opcode invokes the corresponding xUpdate method. P2 values
 | 
| +** are contiguous memory cells starting at P3 to pass to the xUpdate 
 | 
| +** invocation. The value in register (P3+P2-1) corresponds to the 
 | 
| +** p2th element of the argv array passed to xUpdate.
 | 
| +**
 | 
| +** The xUpdate method will do a DELETE or an INSERT or both.
 | 
| +** The argv[0] element (which corresponds to memory cell P3)
 | 
| +** is the rowid of a row to delete.  If argv[0] is NULL then no 
 | 
| +** deletion occurs.  The argv[1] element is the rowid of the new 
 | 
| +** row.  This can be NULL to have the virtual table select the new 
 | 
| +** rowid for itself.  The subsequent elements in the array are 
 | 
| +** the values of columns in the new row.
 | 
| +**
 | 
| +** If P2==1 then no insert is performed.  argv[0] is the rowid of
 | 
| +** a row to delete.
 | 
| +**
 | 
| +** P1 is a boolean flag. If it is set to true and the xUpdate call
 | 
| +** is successful, then the value returned by sqlite3_last_insert_rowid() 
 | 
| +** is set to the value of the rowid for the row just inserted.
 | 
| +**
 | 
| +** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
 | 
| +** apply in the case of a constraint failure on an insert or update.
 | 
| +*/
 | 
| +case OP_VUpdate: {
 | 
| +  sqlite3_vtab *pVtab;
 | 
| +  sqlite3_module *pModule;
 | 
| +  int nArg;
 | 
| +  int i;
 | 
| +  sqlite_int64 rowid;
 | 
| +  Mem **apArg;
 | 
| +  Mem *pX;
 | 
| +
 | 
| +  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
 | 
| +       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
 | 
| +  );
 | 
| +  assert( p->readOnly==0 );
 | 
| +  pVtab = pOp->p4.pVtab->pVtab;
 | 
| +  pModule = (sqlite3_module *)pVtab->pModule;
 | 
| +  nArg = pOp->p2;
 | 
| +  assert( pOp->p4type==P4_VTAB );
 | 
| +  if( ALWAYS(pModule->xUpdate) ){
 | 
| +    u8 vtabOnConflict = db->vtabOnConflict;
 | 
| +    apArg = p->apArg;
 | 
| +    pX = &aMem[pOp->p3];
 | 
| +    for(i=0; i<nArg; i++){
 | 
| +      assert( memIsValid(pX) );
 | 
| +      memAboutToChange(p, pX);
 | 
| +      apArg[i] = pX;
 | 
| +      pX++;
 | 
| +    }
 | 
| +    db->vtabOnConflict = pOp->p5;
 | 
| +    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
 | 
| +    db->vtabOnConflict = vtabOnConflict;
 | 
| +    sqlite3VtabImportErrmsg(p, pVtab);
 | 
| +    if( rc==SQLITE_OK && pOp->p1 ){
 | 
| +      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
 | 
| +      db->lastRowid = lastRowid = rowid;
 | 
| +    }
 | 
| +    if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
 | 
| +      if( pOp->p5==OE_Ignore ){
 | 
| +        rc = SQLITE_OK;
 | 
| +      }else{
 | 
| +        p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
 | 
| +      }
 | 
| +    }else{
 | 
| +      p->nChange++;
 | 
| +    }
 | 
| +  }
 | 
| +  break;
 | 
| +}
 | 
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
 | 
| +
 | 
| +#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
 | 
| +/* Opcode: Pagecount P1 P2 * * *
 | 
| +**
 | 
| +** Write the current number of pages in database P1 to memory cell P2.
 | 
| +*/
 | 
| +case OP_Pagecount: {            /* out2-prerelease */
 | 
| +  pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
 | 
| +/* Opcode: MaxPgcnt P1 P2 P3 * *
 | 
| +**
 | 
| +** Try to set the maximum page count for database P1 to the value in P3.
 | 
| +** Do not let the maximum page count fall below the current page count and
 | 
| +** do not change the maximum page count value if P3==0.
 | 
| +**
 | 
| +** Store the maximum page count after the change in register P2.
 | 
| +*/
 | 
| +case OP_MaxPgcnt: {            /* out2-prerelease */
 | 
| +  unsigned int newMax;
 | 
| +  Btree *pBt;
 | 
| +
 | 
| +  pBt = db->aDb[pOp->p1].pBt;
 | 
| +  newMax = 0;
 | 
| +  if( pOp->p3 ){
 | 
| +    newMax = sqlite3BtreeLastPage(pBt);
 | 
| +    if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
 | 
| +  }
 | 
| +  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
 | 
| +  break;
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +/* Opcode: Init * P2 * P4 *
 | 
| +** Synopsis:  Start at P2
 | 
| +**
 | 
| +** Programs contain a single instance of this opcode as the very first
 | 
| +** opcode.
 | 
| +**
 | 
| +** If tracing is enabled (by the sqlite3_trace()) interface, then
 | 
| +** the UTF-8 string contained in P4 is emitted on the trace callback.
 | 
| +** Or if P4 is blank, use the string returned by sqlite3_sql().
 | 
| +**
 | 
| +** If P2 is not zero, jump to instruction P2.
 | 
| +*/
 | 
| +case OP_Init: {          /* jump */
 | 
| +  char *zTrace;
 | 
| +  char *z;
 | 
| +
 | 
| +  if( pOp->p2 ){
 | 
| +    pc = pOp->p2 - 1;
 | 
| +  }
 | 
| +#ifndef SQLITE_OMIT_TRACE
 | 
| +  if( db->xTrace
 | 
| +   && !p->doingRerun
 | 
| +   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
 | 
| +  ){
 | 
| +    z = sqlite3VdbeExpandSql(p, zTrace);
 | 
| +    db->xTrace(db->pTraceArg, z);
 | 
| +    sqlite3DbFree(db, z);
 | 
| +  }
 | 
| +#ifdef SQLITE_USE_FCNTL_TRACE
 | 
| +  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
 | 
| +  if( zTrace ){
 | 
| +    int i;
 | 
| +    for(i=0; i<db->nDb; i++){
 | 
| +      if( DbMaskTest(p->btreeMask, i)==0 ) continue;
 | 
| +      sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
 | 
| +    }
 | 
| +  }
 | 
| +#endif /* SQLITE_USE_FCNTL_TRACE */
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +  if( (db->flags & SQLITE_SqlTrace)!=0
 | 
| +   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
 | 
| +  ){
 | 
| +    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
 | 
| +  }
 | 
| +#endif /* SQLITE_DEBUG */
 | 
| +#endif /* SQLITE_OMIT_TRACE */
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/* Opcode: Noop * * * * *
 | 
| +**
 | 
| +** Do nothing.  This instruction is often useful as a jump
 | 
| +** destination.
 | 
| +*/
 | 
| +/*
 | 
| +** The magic Explain opcode are only inserted when explain==2 (which
 | 
| +** is to say when the EXPLAIN QUERY PLAN syntax is used.)
 | 
| +** This opcode records information from the optimizer.  It is the
 | 
| +** the same as a no-op.  This opcodesnever appears in a real VM program.
 | 
| +*/
 | 
| +default: {          /* This is really OP_Noop and OP_Explain */
 | 
| +  assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
 | 
| +  break;
 | 
| +}
 | 
| +
 | 
| +/*****************************************************************************
 | 
| +** The cases of the switch statement above this line should all be indented
 | 
| +** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
 | 
| +** readability.  From this point on down, the normal indentation rules are
 | 
| +** restored.
 | 
| +*****************************************************************************/
 | 
| +    }
 | 
| +
 | 
| +#ifdef VDBE_PROFILE
 | 
| +    {
 | 
| +      u64 endTime = sqlite3Hwtime();
 | 
| +      if( endTime>start ) pOp->cycles += endTime - start;
 | 
| +      pOp->cnt++;
 | 
| +    }
 | 
| +#endif
 | 
| +
 | 
| +    /* The following code adds nothing to the actual functionality
 | 
| +    ** of the program.  It is only here for testing and debugging.
 | 
| +    ** On the other hand, it does burn CPU cycles every time through
 | 
| +    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
 | 
| +    */
 | 
| +#ifndef NDEBUG
 | 
| +    assert( pc>=-1 && pc<p->nOp );
 | 
| +
 | 
| +#ifdef SQLITE_DEBUG
 | 
| +    if( db->flags & SQLITE_VdbeTrace ){
 | 
| +      if( rc!=0 ) printf("rc=%d\n",rc);
 | 
| +      if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
 | 
| +        registerTrace(pOp->p2, &aMem[pOp->p2]);
 | 
| +      }
 | 
| +      if( pOp->opflags & OPFLG_OUT3 ){
 | 
| +        registerTrace(pOp->p3, &aMem[pOp->p3]);
 | 
| +      }
 | 
| +    }
 | 
| +#endif  /* SQLITE_DEBUG */
 | 
| +#endif  /* NDEBUG */
 | 
| +  }  /* The end of the for(;;) loop the loops through opcodes */
 | 
| +
 | 
| +  /* If we reach this point, it means that execution is finished with
 | 
| +  ** an error of some kind.
 | 
| +  */
 | 
| +vdbe_error_halt:
 | 
| +  assert( rc );
 | 
| +  p->rc = rc;
 | 
| +  testcase( sqlite3GlobalConfig.xLog!=0 );
 | 
| +  sqlite3_log(rc, "statement aborts at %d: [%s] %s", 
 | 
| +                   pc, p->zSql, p->zErrMsg);
 | 
| +  sqlite3VdbeHalt(p);
 | 
| +  if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
 | 
| +  rc = SQLITE_ERROR;
 | 
| +  if( resetSchemaOnFault>0 ){
 | 
| +    sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
 | 
| +  }
 | 
| +
 | 
| +  /* This is the only way out of this procedure.  We have to
 | 
| +  ** release the mutexes on btrees that were acquired at the
 | 
| +  ** top. */
 | 
| +vdbe_return:
 | 
| +  db->lastRowid = lastRowid;
 | 
| +  testcase( nVmStep>0 );
 | 
| +  p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
 | 
| +  sqlite3VdbeLeave(p);
 | 
| +  return rc;
 | 
| +
 | 
| +  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
 | 
| +  ** is encountered.
 | 
| +  */
 | 
| +too_big:
 | 
| +  sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
 | 
| +  rc = SQLITE_TOOBIG;
 | 
| +  goto vdbe_error_halt;
 | 
| +
 | 
| +  /* Jump to here if a malloc() fails.
 | 
| +  */
 | 
| +no_mem:
 | 
| +  db->mallocFailed = 1;
 | 
| +  sqlite3SetString(&p->zErrMsg, db, "out of memory");
 | 
| +  rc = SQLITE_NOMEM;
 | 
| +  goto vdbe_error_halt;
 | 
| +
 | 
| +  /* Jump to here for any other kind of fatal error.  The "rc" variable
 | 
| +  ** should hold the error number.
 | 
| +  */
 | 
| +abort_due_to_error:
 | 
| +  assert( p->zErrMsg==0 );
 | 
| +  if( db->mallocFailed ) rc = SQLITE_NOMEM;
 | 
| +  if( rc!=SQLITE_IOERR_NOMEM ){
 | 
| +    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
 | 
| +  }
 | 
| +  goto vdbe_error_halt;
 | 
| +
 | 
| +  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
 | 
| +  ** flag.
 | 
| +  */
 | 
| +abort_due_to_interrupt:
 | 
| +  assert( db->u1.isInterrupted );
 | 
| +  rc = SQLITE_INTERRUPT;
 | 
| +  p->rc = rc;
 | 
| +  sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
 | 
| +  goto vdbe_error_halt;
 | 
| +}
 | 
| 
 |