OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** The code in this file implements the function that runs the |
| 13 ** bytecode of a prepared statement. |
| 14 ** |
| 15 ** Various scripts scan this source file in order to generate HTML |
| 16 ** documentation, headers files, or other derived files. The formatting |
| 17 ** of the code in this file is, therefore, important. See other comments |
| 18 ** in this file for details. If in doubt, do not deviate from existing |
| 19 ** commenting and indentation practices when changing or adding code. |
| 20 */ |
| 21 #include "sqliteInt.h" |
| 22 #include "vdbeInt.h" |
| 23 |
| 24 /* |
| 25 ** Invoke this macro on memory cells just prior to changing the |
| 26 ** value of the cell. This macro verifies that shallow copies are |
| 27 ** not misused. A shallow copy of a string or blob just copies a |
| 28 ** pointer to the string or blob, not the content. If the original |
| 29 ** is changed while the copy is still in use, the string or blob might |
| 30 ** be changed out from under the copy. This macro verifies that nothing |
| 31 ** like that ever happens. |
| 32 */ |
| 33 #ifdef SQLITE_DEBUG |
| 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) |
| 35 #else |
| 36 # define memAboutToChange(P,M) |
| 37 #endif |
| 38 |
| 39 /* |
| 40 ** The following global variable is incremented every time a cursor |
| 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
| 42 ** procedures use this information to make sure that indices are |
| 43 ** working correctly. This variable has no function other than to |
| 44 ** help verify the correct operation of the library. |
| 45 */ |
| 46 #ifdef SQLITE_TEST |
| 47 int sqlite3_search_count = 0; |
| 48 #endif |
| 49 |
| 50 /* |
| 51 ** When this global variable is positive, it gets decremented once before |
| 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted |
| 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. |
| 54 ** |
| 55 ** This facility is used for testing purposes only. It does not function |
| 56 ** in an ordinary build. |
| 57 */ |
| 58 #ifdef SQLITE_TEST |
| 59 int sqlite3_interrupt_count = 0; |
| 60 #endif |
| 61 |
| 62 /* |
| 63 ** The next global variable is incremented each type the OP_Sort opcode |
| 64 ** is executed. The test procedures use this information to make sure that |
| 65 ** sorting is occurring or not occurring at appropriate times. This variable |
| 66 ** has no function other than to help verify the correct operation of the |
| 67 ** library. |
| 68 */ |
| 69 #ifdef SQLITE_TEST |
| 70 int sqlite3_sort_count = 0; |
| 71 #endif |
| 72 |
| 73 /* |
| 74 ** The next global variable records the size of the largest MEM_Blob |
| 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures |
| 76 ** use this information to make sure that the zero-blob functionality |
| 77 ** is working correctly. This variable has no function other than to |
| 78 ** help verify the correct operation of the library. |
| 79 */ |
| 80 #ifdef SQLITE_TEST |
| 81 int sqlite3_max_blobsize = 0; |
| 82 static void updateMaxBlobsize(Mem *p){ |
| 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ |
| 84 sqlite3_max_blobsize = p->n; |
| 85 } |
| 86 } |
| 87 #endif |
| 88 |
| 89 /* |
| 90 ** The next global variable is incremented each time the OP_Found opcode |
| 91 ** is executed. This is used to test whether or not the foreign key |
| 92 ** operation implemented using OP_FkIsZero is working. This variable |
| 93 ** has no function other than to help verify the correct operation of the |
| 94 ** library. |
| 95 */ |
| 96 #ifdef SQLITE_TEST |
| 97 int sqlite3_found_count = 0; |
| 98 #endif |
| 99 |
| 100 /* |
| 101 ** Test a register to see if it exceeds the current maximum blob size. |
| 102 ** If it does, record the new maximum blob size. |
| 103 */ |
| 104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) |
| 105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) |
| 106 #else |
| 107 # define UPDATE_MAX_BLOBSIZE(P) |
| 108 #endif |
| 109 |
| 110 /* |
| 111 ** Invoke the VDBE coverage callback, if that callback is defined. This |
| 112 ** feature is used for test suite validation only and does not appear an |
| 113 ** production builds. |
| 114 ** |
| 115 ** M is an integer, 2 or 3, that indices how many different ways the |
| 116 ** branch can go. It is usually 2. "I" is the direction the branch |
| 117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the |
| 118 ** second alternative branch is taken. |
| 119 ** |
| 120 ** iSrcLine is the source code line (from the __LINE__ macro) that |
| 121 ** generated the VDBE instruction. This instrumentation assumes that all |
| 122 ** source code is in a single file (the amalgamation). Special values 1 |
| 123 ** and 2 for the iSrcLine parameter mean that this particular branch is |
| 124 ** always taken or never taken, respectively. |
| 125 */ |
| 126 #if !defined(SQLITE_VDBE_COVERAGE) |
| 127 # define VdbeBranchTaken(I,M) |
| 128 #else |
| 129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) |
| 130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ |
| 131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ |
| 132 M = iSrcLine; |
| 133 /* Assert the truth of VdbeCoverageAlwaysTaken() and |
| 134 ** VdbeCoverageNeverTaken() */ |
| 135 assert( (M & I)==I ); |
| 136 }else{ |
| 137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ |
| 138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, |
| 139 iSrcLine,I,M); |
| 140 } |
| 141 } |
| 142 #endif |
| 143 |
| 144 /* |
| 145 ** Convert the given register into a string if it isn't one |
| 146 ** already. Return non-zero if a malloc() fails. |
| 147 */ |
| 148 #define Stringify(P, enc) \ |
| 149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ |
| 150 { goto no_mem; } |
| 151 |
| 152 /* |
| 153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains |
| 154 ** a pointer to a dynamically allocated string where some other entity |
| 155 ** is responsible for deallocating that string. Because the register |
| 156 ** does not control the string, it might be deleted without the register |
| 157 ** knowing it. |
| 158 ** |
| 159 ** This routine converts an ephemeral string into a dynamically allocated |
| 160 ** string that the register itself controls. In other words, it |
| 161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. |
| 162 */ |
| 163 #define Deephemeralize(P) \ |
| 164 if( ((P)->flags&MEM_Ephem)!=0 \ |
| 165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
| 166 |
| 167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ |
| 168 #define isSorter(x) ((x)->pSorter!=0) |
| 169 |
| 170 /* |
| 171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL |
| 172 ** if we run out of memory. |
| 173 */ |
| 174 static VdbeCursor *allocateCursor( |
| 175 Vdbe *p, /* The virtual machine */ |
| 176 int iCur, /* Index of the new VdbeCursor */ |
| 177 int nField, /* Number of fields in the table or index */ |
| 178 int iDb, /* Database the cursor belongs to, or -1 */ |
| 179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ |
| 180 ){ |
| 181 /* Find the memory cell that will be used to store the blob of memory |
| 182 ** required for this VdbeCursor structure. It is convenient to use a |
| 183 ** vdbe memory cell to manage the memory allocation required for a |
| 184 ** VdbeCursor structure for the following reasons: |
| 185 ** |
| 186 ** * Sometimes cursor numbers are used for a couple of different |
| 187 ** purposes in a vdbe program. The different uses might require |
| 188 ** different sized allocations. Memory cells provide growable |
| 189 ** allocations. |
| 190 ** |
| 191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can |
| 192 ** be freed lazily via the sqlite3_release_memory() API. This |
| 193 ** minimizes the number of malloc calls made by the system. |
| 194 ** |
| 195 ** Memory cells for cursors are allocated at the top of the address |
| 196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for |
| 197 ** cursor 1 is managed by memory cell (p->nMem-1), etc. |
| 198 */ |
| 199 Mem *pMem = &p->aMem[p->nMem-iCur]; |
| 200 |
| 201 int nByte; |
| 202 VdbeCursor *pCx = 0; |
| 203 nByte = |
| 204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + |
| 205 (isBtreeCursor?sqlite3BtreeCursorSize():0); |
| 206 |
| 207 assert( iCur<p->nCursor ); |
| 208 if( p->apCsr[iCur] ){ |
| 209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
| 210 p->apCsr[iCur] = 0; |
| 211 } |
| 212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
| 213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; |
| 214 memset(pCx, 0, sizeof(VdbeCursor)); |
| 215 pCx->iDb = iDb; |
| 216 pCx->nField = nField; |
| 217 pCx->aOffset = &pCx->aType[nField]; |
| 218 if( isBtreeCursor ){ |
| 219 pCx->pCursor = (BtCursor*) |
| 220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; |
| 221 sqlite3BtreeCursorZero(pCx->pCursor); |
| 222 } |
| 223 } |
| 224 return pCx; |
| 225 } |
| 226 |
| 227 /* |
| 228 ** Try to convert a value into a numeric representation if we can |
| 229 ** do so without loss of information. In other words, if the string |
| 230 ** looks like a number, convert it into a number. If it does not |
| 231 ** look like a number, leave it alone. |
| 232 ** |
| 233 ** If the bTryForInt flag is true, then extra effort is made to give |
| 234 ** an integer representation. Strings that look like floating point |
| 235 ** values but which have no fractional component (example: '48.00') |
| 236 ** will have a MEM_Int representation when bTryForInt is true. |
| 237 ** |
| 238 ** If bTryForInt is false, then if the input string contains a decimal |
| 239 ** point or exponential notation, the result is only MEM_Real, even |
| 240 ** if there is an exact integer representation of the quantity. |
| 241 */ |
| 242 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ |
| 243 double rValue; |
| 244 i64 iValue; |
| 245 u8 enc = pRec->enc; |
| 246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); |
| 247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; |
| 248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ |
| 249 pRec->u.i = iValue; |
| 250 pRec->flags |= MEM_Int; |
| 251 }else{ |
| 252 pRec->u.r = rValue; |
| 253 pRec->flags |= MEM_Real; |
| 254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); |
| 255 } |
| 256 } |
| 257 |
| 258 /* |
| 259 ** Processing is determine by the affinity parameter: |
| 260 ** |
| 261 ** SQLITE_AFF_INTEGER: |
| 262 ** SQLITE_AFF_REAL: |
| 263 ** SQLITE_AFF_NUMERIC: |
| 264 ** Try to convert pRec to an integer representation or a |
| 265 ** floating-point representation if an integer representation |
| 266 ** is not possible. Note that the integer representation is |
| 267 ** always preferred, even if the affinity is REAL, because |
| 268 ** an integer representation is more space efficient on disk. |
| 269 ** |
| 270 ** SQLITE_AFF_TEXT: |
| 271 ** Convert pRec to a text representation. |
| 272 ** |
| 273 ** SQLITE_AFF_NONE: |
| 274 ** No-op. pRec is unchanged. |
| 275 */ |
| 276 static void applyAffinity( |
| 277 Mem *pRec, /* The value to apply affinity to */ |
| 278 char affinity, /* The affinity to be applied */ |
| 279 u8 enc /* Use this text encoding */ |
| 280 ){ |
| 281 if( affinity>=SQLITE_AFF_NUMERIC ){ |
| 282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
| 283 || affinity==SQLITE_AFF_NUMERIC ); |
| 284 if( (pRec->flags & MEM_Int)==0 ){ |
| 285 if( (pRec->flags & MEM_Real)==0 ){ |
| 286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); |
| 287 }else{ |
| 288 sqlite3VdbeIntegerAffinity(pRec); |
| 289 } |
| 290 } |
| 291 }else if( affinity==SQLITE_AFF_TEXT ){ |
| 292 /* Only attempt the conversion to TEXT if there is an integer or real |
| 293 ** representation (blob and NULL do not get converted) but no string |
| 294 ** representation. |
| 295 */ |
| 296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ |
| 297 sqlite3VdbeMemStringify(pRec, enc, 1); |
| 298 } |
| 299 } |
| 300 } |
| 301 |
| 302 /* |
| 303 ** Try to convert the type of a function argument or a result column |
| 304 ** into a numeric representation. Use either INTEGER or REAL whichever |
| 305 ** is appropriate. But only do the conversion if it is possible without |
| 306 ** loss of information and return the revised type of the argument. |
| 307 */ |
| 308 int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
| 309 int eType = sqlite3_value_type(pVal); |
| 310 if( eType==SQLITE_TEXT ){ |
| 311 Mem *pMem = (Mem*)pVal; |
| 312 applyNumericAffinity(pMem, 0); |
| 313 eType = sqlite3_value_type(pVal); |
| 314 } |
| 315 return eType; |
| 316 } |
| 317 |
| 318 /* |
| 319 ** Exported version of applyAffinity(). This one works on sqlite3_value*, |
| 320 ** not the internal Mem* type. |
| 321 */ |
| 322 void sqlite3ValueApplyAffinity( |
| 323 sqlite3_value *pVal, |
| 324 u8 affinity, |
| 325 u8 enc |
| 326 ){ |
| 327 applyAffinity((Mem *)pVal, affinity, enc); |
| 328 } |
| 329 |
| 330 /* |
| 331 ** pMem currently only holds a string type (or maybe a BLOB that we can |
| 332 ** interpret as a string if we want to). Compute its corresponding |
| 333 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields |
| 334 ** accordingly. |
| 335 */ |
| 336 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ |
| 337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); |
| 338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); |
| 339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ |
| 340 return 0; |
| 341 } |
| 342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ |
| 343 return MEM_Int; |
| 344 } |
| 345 return MEM_Real; |
| 346 } |
| 347 |
| 348 /* |
| 349 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or |
| 350 ** none. |
| 351 ** |
| 352 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. |
| 353 ** But it does set pMem->u.r and pMem->u.i appropriately. |
| 354 */ |
| 355 static u16 numericType(Mem *pMem){ |
| 356 if( pMem->flags & (MEM_Int|MEM_Real) ){ |
| 357 return pMem->flags & (MEM_Int|MEM_Real); |
| 358 } |
| 359 if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
| 360 return computeNumericType(pMem); |
| 361 } |
| 362 return 0; |
| 363 } |
| 364 |
| 365 #ifdef SQLITE_DEBUG |
| 366 /* |
| 367 ** Write a nice string representation of the contents of cell pMem |
| 368 ** into buffer zBuf, length nBuf. |
| 369 */ |
| 370 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ |
| 371 char *zCsr = zBuf; |
| 372 int f = pMem->flags; |
| 373 |
| 374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; |
| 375 |
| 376 if( f&MEM_Blob ){ |
| 377 int i; |
| 378 char c; |
| 379 if( f & MEM_Dyn ){ |
| 380 c = 'z'; |
| 381 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
| 382 }else if( f & MEM_Static ){ |
| 383 c = 't'; |
| 384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
| 385 }else if( f & MEM_Ephem ){ |
| 386 c = 'e'; |
| 387 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
| 388 }else{ |
| 389 c = 's'; |
| 390 } |
| 391 |
| 392 sqlite3_snprintf(100, zCsr, "%c", c); |
| 393 zCsr += sqlite3Strlen30(zCsr); |
| 394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); |
| 395 zCsr += sqlite3Strlen30(zCsr); |
| 396 for(i=0; i<16 && i<pMem->n; i++){ |
| 397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); |
| 398 zCsr += sqlite3Strlen30(zCsr); |
| 399 } |
| 400 for(i=0; i<16 && i<pMem->n; i++){ |
| 401 char z = pMem->z[i]; |
| 402 if( z<32 || z>126 ) *zCsr++ = '.'; |
| 403 else *zCsr++ = z; |
| 404 } |
| 405 |
| 406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); |
| 407 zCsr += sqlite3Strlen30(zCsr); |
| 408 if( f & MEM_Zero ){ |
| 409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); |
| 410 zCsr += sqlite3Strlen30(zCsr); |
| 411 } |
| 412 *zCsr = '\0'; |
| 413 }else if( f & MEM_Str ){ |
| 414 int j, k; |
| 415 zBuf[0] = ' '; |
| 416 if( f & MEM_Dyn ){ |
| 417 zBuf[1] = 'z'; |
| 418 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
| 419 }else if( f & MEM_Static ){ |
| 420 zBuf[1] = 't'; |
| 421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
| 422 }else if( f & MEM_Ephem ){ |
| 423 zBuf[1] = 'e'; |
| 424 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
| 425 }else{ |
| 426 zBuf[1] = 's'; |
| 427 } |
| 428 k = 2; |
| 429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); |
| 430 k += sqlite3Strlen30(&zBuf[k]); |
| 431 zBuf[k++] = '['; |
| 432 for(j=0; j<15 && j<pMem->n; j++){ |
| 433 u8 c = pMem->z[j]; |
| 434 if( c>=0x20 && c<0x7f ){ |
| 435 zBuf[k++] = c; |
| 436 }else{ |
| 437 zBuf[k++] = '.'; |
| 438 } |
| 439 } |
| 440 zBuf[k++] = ']'; |
| 441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); |
| 442 k += sqlite3Strlen30(&zBuf[k]); |
| 443 zBuf[k++] = 0; |
| 444 } |
| 445 } |
| 446 #endif |
| 447 |
| 448 #ifdef SQLITE_DEBUG |
| 449 /* |
| 450 ** Print the value of a register for tracing purposes: |
| 451 */ |
| 452 static void memTracePrint(Mem *p){ |
| 453 if( p->flags & MEM_Undefined ){ |
| 454 printf(" undefined"); |
| 455 }else if( p->flags & MEM_Null ){ |
| 456 printf(" NULL"); |
| 457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
| 458 printf(" si:%lld", p->u.i); |
| 459 }else if( p->flags & MEM_Int ){ |
| 460 printf(" i:%lld", p->u.i); |
| 461 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 462 }else if( p->flags & MEM_Real ){ |
| 463 printf(" r:%g", p->u.r); |
| 464 #endif |
| 465 }else if( p->flags & MEM_RowSet ){ |
| 466 printf(" (rowset)"); |
| 467 }else{ |
| 468 char zBuf[200]; |
| 469 sqlite3VdbeMemPrettyPrint(p, zBuf); |
| 470 printf(" %s", zBuf); |
| 471 } |
| 472 } |
| 473 static void registerTrace(int iReg, Mem *p){ |
| 474 printf("REG[%d] = ", iReg); |
| 475 memTracePrint(p); |
| 476 printf("\n"); |
| 477 } |
| 478 #endif |
| 479 |
| 480 #ifdef SQLITE_DEBUG |
| 481 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) |
| 482 #else |
| 483 # define REGISTER_TRACE(R,M) |
| 484 #endif |
| 485 |
| 486 |
| 487 #ifdef VDBE_PROFILE |
| 488 |
| 489 /* |
| 490 ** hwtime.h contains inline assembler code for implementing |
| 491 ** high-performance timing routines. |
| 492 */ |
| 493 #include "hwtime.h" |
| 494 |
| 495 #endif |
| 496 |
| 497 #ifndef NDEBUG |
| 498 /* |
| 499 ** This function is only called from within an assert() expression. It |
| 500 ** checks that the sqlite3.nTransaction variable is correctly set to |
| 501 ** the number of non-transaction savepoints currently in the |
| 502 ** linked list starting at sqlite3.pSavepoint. |
| 503 ** |
| 504 ** Usage: |
| 505 ** |
| 506 ** assert( checkSavepointCount(db) ); |
| 507 */ |
| 508 static int checkSavepointCount(sqlite3 *db){ |
| 509 int n = 0; |
| 510 Savepoint *p; |
| 511 for(p=db->pSavepoint; p; p=p->pNext) n++; |
| 512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); |
| 513 return 1; |
| 514 } |
| 515 #endif |
| 516 |
| 517 |
| 518 /* |
| 519 ** Execute as much of a VDBE program as we can. |
| 520 ** This is the core of sqlite3_step(). |
| 521 */ |
| 522 int sqlite3VdbeExec( |
| 523 Vdbe *p /* The VDBE */ |
| 524 ){ |
| 525 int pc=0; /* The program counter */ |
| 526 Op *aOp = p->aOp; /* Copy of p->aOp */ |
| 527 Op *pOp; /* Current operation */ |
| 528 int rc = SQLITE_OK; /* Value to return */ |
| 529 sqlite3 *db = p->db; /* The database */ |
| 530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ |
| 531 u8 encoding = ENC(db); /* The database encoding */ |
| 532 int iCompare = 0; /* Result of last OP_Compare operation */ |
| 533 unsigned nVmStep = 0; /* Number of virtual machine steps */ |
| 534 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ |
| 536 #endif |
| 537 Mem *aMem = p->aMem; /* Copy of p->aMem */ |
| 538 Mem *pIn1 = 0; /* 1st input operand */ |
| 539 Mem *pIn2 = 0; /* 2nd input operand */ |
| 540 Mem *pIn3 = 0; /* 3rd input operand */ |
| 541 Mem *pOut = 0; /* Output operand */ |
| 542 int *aPermute = 0; /* Permutation of columns for OP_Compare */ |
| 543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ |
| 544 #ifdef VDBE_PROFILE |
| 545 u64 start; /* CPU clock count at start of opcode */ |
| 546 #endif |
| 547 /*** INSERT STACK UNION HERE ***/ |
| 548 |
| 549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ |
| 550 sqlite3VdbeEnter(p); |
| 551 if( p->rc==SQLITE_NOMEM ){ |
| 552 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| 553 ** sqlite3_column_text16() failed. */ |
| 554 goto no_mem; |
| 555 } |
| 556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
| 557 assert( p->bIsReader || p->readOnly!=0 ); |
| 558 p->rc = SQLITE_OK; |
| 559 p->iCurrentTime = 0; |
| 560 assert( p->explain==0 ); |
| 561 p->pResultSet = 0; |
| 562 db->busyHandler.nBusy = 0; |
| 563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
| 564 sqlite3VdbeIOTraceSql(p); |
| 565 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 566 if( db->xProgress ){ |
| 567 assert( 0 < db->nProgressOps ); |
| 568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; |
| 569 if( nProgressLimit==0 ){ |
| 570 nProgressLimit = db->nProgressOps; |
| 571 }else{ |
| 572 nProgressLimit %= (unsigned)db->nProgressOps; |
| 573 } |
| 574 } |
| 575 #endif |
| 576 #ifdef SQLITE_DEBUG |
| 577 sqlite3BeginBenignMalloc(); |
| 578 if( p->pc==0 |
| 579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 |
| 580 ){ |
| 581 int i; |
| 582 int once = 1; |
| 583 sqlite3VdbePrintSql(p); |
| 584 if( p->db->flags & SQLITE_VdbeListing ){ |
| 585 printf("VDBE Program Listing:\n"); |
| 586 for(i=0; i<p->nOp; i++){ |
| 587 sqlite3VdbePrintOp(stdout, i, &aOp[i]); |
| 588 } |
| 589 } |
| 590 if( p->db->flags & SQLITE_VdbeEQP ){ |
| 591 for(i=0; i<p->nOp; i++){ |
| 592 if( aOp[i].opcode==OP_Explain ){ |
| 593 if( once ) printf("VDBE Query Plan:\n"); |
| 594 printf("%s\n", aOp[i].p4.z); |
| 595 once = 0; |
| 596 } |
| 597 } |
| 598 } |
| 599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); |
| 600 } |
| 601 sqlite3EndBenignMalloc(); |
| 602 #endif |
| 603 for(pc=p->pc; rc==SQLITE_OK; pc++){ |
| 604 assert( pc>=0 && pc<p->nOp ); |
| 605 if( db->mallocFailed ) goto no_mem; |
| 606 #ifdef VDBE_PROFILE |
| 607 start = sqlite3Hwtime(); |
| 608 #endif |
| 609 nVmStep++; |
| 610 pOp = &aOp[pc]; |
| 611 |
| 612 /* Only allow tracing if SQLITE_DEBUG is defined. |
| 613 */ |
| 614 #ifdef SQLITE_DEBUG |
| 615 if( db->flags & SQLITE_VdbeTrace ){ |
| 616 sqlite3VdbePrintOp(stdout, pc, pOp); |
| 617 } |
| 618 #endif |
| 619 |
| 620 |
| 621 /* Check to see if we need to simulate an interrupt. This only happens |
| 622 ** if we have a special test build. |
| 623 */ |
| 624 #ifdef SQLITE_TEST |
| 625 if( sqlite3_interrupt_count>0 ){ |
| 626 sqlite3_interrupt_count--; |
| 627 if( sqlite3_interrupt_count==0 ){ |
| 628 sqlite3_interrupt(db); |
| 629 } |
| 630 } |
| 631 #endif |
| 632 |
| 633 /* On any opcode with the "out2-prerelease" tag, free any |
| 634 ** external allocations out of mem[p2] and set mem[p2] to be |
| 635 ** an undefined integer. Opcodes will either fill in the integer |
| 636 ** value or convert mem[p2] to a different type. |
| 637 */ |
| 638 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); |
| 639 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ |
| 640 assert( pOp->p2>0 ); |
| 641 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
| 642 pOut = &aMem[pOp->p2]; |
| 643 memAboutToChange(p, pOut); |
| 644 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); |
| 645 pOut->flags = MEM_Int; |
| 646 } |
| 647 |
| 648 /* Sanity checking on other operands */ |
| 649 #ifdef SQLITE_DEBUG |
| 650 if( (pOp->opflags & OPFLG_IN1)!=0 ){ |
| 651 assert( pOp->p1>0 ); |
| 652 assert( pOp->p1<=(p->nMem-p->nCursor) ); |
| 653 assert( memIsValid(&aMem[pOp->p1]) ); |
| 654 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); |
| 655 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); |
| 656 } |
| 657 if( (pOp->opflags & OPFLG_IN2)!=0 ){ |
| 658 assert( pOp->p2>0 ); |
| 659 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
| 660 assert( memIsValid(&aMem[pOp->p2]) ); |
| 661 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); |
| 662 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); |
| 663 } |
| 664 if( (pOp->opflags & OPFLG_IN3)!=0 ){ |
| 665 assert( pOp->p3>0 ); |
| 666 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 667 assert( memIsValid(&aMem[pOp->p3]) ); |
| 668 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); |
| 669 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); |
| 670 } |
| 671 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ |
| 672 assert( pOp->p2>0 ); |
| 673 assert( pOp->p2<=(p->nMem-p->nCursor) ); |
| 674 memAboutToChange(p, &aMem[pOp->p2]); |
| 675 } |
| 676 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ |
| 677 assert( pOp->p3>0 ); |
| 678 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 679 memAboutToChange(p, &aMem[pOp->p3]); |
| 680 } |
| 681 #endif |
| 682 |
| 683 switch( pOp->opcode ){ |
| 684 |
| 685 /***************************************************************************** |
| 686 ** What follows is a massive switch statement where each case implements a |
| 687 ** separate instruction in the virtual machine. If we follow the usual |
| 688 ** indentation conventions, each case should be indented by 6 spaces. But |
| 689 ** that is a lot of wasted space on the left margin. So the code within |
| 690 ** the switch statement will break with convention and be flush-left. Another |
| 691 ** big comment (similar to this one) will mark the point in the code where |
| 692 ** we transition back to normal indentation. |
| 693 ** |
| 694 ** The formatting of each case is important. The makefile for SQLite |
| 695 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
| 696 ** file looking for lines that begin with "case OP_". The opcodes.h files |
| 697 ** will be filled with #defines that give unique integer values to each |
| 698 ** opcode and the opcodes.c file is filled with an array of strings where |
| 699 ** each string is the symbolic name for the corresponding opcode. If the |
| 700 ** case statement is followed by a comment of the form "/# same as ... #/" |
| 701 ** that comment is used to determine the particular value of the opcode. |
| 702 ** |
| 703 ** Other keywords in the comment that follows each case are used to |
| 704 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. |
| 705 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See |
| 706 ** the mkopcodeh.awk script for additional information. |
| 707 ** |
| 708 ** Documentation about VDBE opcodes is generated by scanning this file |
| 709 ** for lines of that contain "Opcode:". That line and all subsequent |
| 710 ** comment lines are used in the generation of the opcode.html documentation |
| 711 ** file. |
| 712 ** |
| 713 ** SUMMARY: |
| 714 ** |
| 715 ** Formatting is important to scripts that scan this file. |
| 716 ** Do not deviate from the formatting style currently in use. |
| 717 ** |
| 718 *****************************************************************************/ |
| 719 |
| 720 /* Opcode: Goto * P2 * * * |
| 721 ** |
| 722 ** An unconditional jump to address P2. |
| 723 ** The next instruction executed will be |
| 724 ** the one at index P2 from the beginning of |
| 725 ** the program. |
| 726 ** |
| 727 ** The P1 parameter is not actually used by this opcode. However, it |
| 728 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell |
| 729 ** that this Goto is the bottom of a loop and that the lines from P2 down |
| 730 ** to the current line should be indented for EXPLAIN output. |
| 731 */ |
| 732 case OP_Goto: { /* jump */ |
| 733 pc = pOp->p2 - 1; |
| 734 |
| 735 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, |
| 736 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon |
| 737 ** completion. Check to see if sqlite3_interrupt() has been called |
| 738 ** or if the progress callback needs to be invoked. |
| 739 ** |
| 740 ** This code uses unstructured "goto" statements and does not look clean. |
| 741 ** But that is not due to sloppy coding habits. The code is written this |
| 742 ** way for performance, to avoid having to run the interrupt and progress |
| 743 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% |
| 744 ** faster according to "valgrind --tool=cachegrind" */ |
| 745 check_for_interrupt: |
| 746 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
| 747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 748 /* Call the progress callback if it is configured and the required number |
| 749 ** of VDBE ops have been executed (either since this invocation of |
| 750 ** sqlite3VdbeExec() or since last time the progress callback was called). |
| 751 ** If the progress callback returns non-zero, exit the virtual machine with |
| 752 ** a return code SQLITE_ABORT. |
| 753 */ |
| 754 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ |
| 755 assert( db->nProgressOps!=0 ); |
| 756 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); |
| 757 if( db->xProgress(db->pProgressArg) ){ |
| 758 rc = SQLITE_INTERRUPT; |
| 759 goto vdbe_error_halt; |
| 760 } |
| 761 } |
| 762 #endif |
| 763 |
| 764 break; |
| 765 } |
| 766 |
| 767 /* Opcode: Gosub P1 P2 * * * |
| 768 ** |
| 769 ** Write the current address onto register P1 |
| 770 ** and then jump to address P2. |
| 771 */ |
| 772 case OP_Gosub: { /* jump */ |
| 773 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 774 pIn1 = &aMem[pOp->p1]; |
| 775 assert( VdbeMemDynamic(pIn1)==0 ); |
| 776 memAboutToChange(p, pIn1); |
| 777 pIn1->flags = MEM_Int; |
| 778 pIn1->u.i = pc; |
| 779 REGISTER_TRACE(pOp->p1, pIn1); |
| 780 pc = pOp->p2 - 1; |
| 781 break; |
| 782 } |
| 783 |
| 784 /* Opcode: Return P1 * * * * |
| 785 ** |
| 786 ** Jump to the next instruction after the address in register P1. After |
| 787 ** the jump, register P1 becomes undefined. |
| 788 */ |
| 789 case OP_Return: { /* in1 */ |
| 790 pIn1 = &aMem[pOp->p1]; |
| 791 assert( pIn1->flags==MEM_Int ); |
| 792 pc = (int)pIn1->u.i; |
| 793 pIn1->flags = MEM_Undefined; |
| 794 break; |
| 795 } |
| 796 |
| 797 /* Opcode: InitCoroutine P1 P2 P3 * * |
| 798 ** |
| 799 ** Set up register P1 so that it will Yield to the coroutine |
| 800 ** located at address P3. |
| 801 ** |
| 802 ** If P2!=0 then the coroutine implementation immediately follows |
| 803 ** this opcode. So jump over the coroutine implementation to |
| 804 ** address P2. |
| 805 ** |
| 806 ** See also: EndCoroutine |
| 807 */ |
| 808 case OP_InitCoroutine: { /* jump */ |
| 809 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 810 assert( pOp->p2>=0 && pOp->p2<p->nOp ); |
| 811 assert( pOp->p3>=0 && pOp->p3<p->nOp ); |
| 812 pOut = &aMem[pOp->p1]; |
| 813 assert( !VdbeMemDynamic(pOut) ); |
| 814 pOut->u.i = pOp->p3 - 1; |
| 815 pOut->flags = MEM_Int; |
| 816 if( pOp->p2 ) pc = pOp->p2 - 1; |
| 817 break; |
| 818 } |
| 819 |
| 820 /* Opcode: EndCoroutine P1 * * * * |
| 821 ** |
| 822 ** The instruction at the address in register P1 is a Yield. |
| 823 ** Jump to the P2 parameter of that Yield. |
| 824 ** After the jump, register P1 becomes undefined. |
| 825 ** |
| 826 ** See also: InitCoroutine |
| 827 */ |
| 828 case OP_EndCoroutine: { /* in1 */ |
| 829 VdbeOp *pCaller; |
| 830 pIn1 = &aMem[pOp->p1]; |
| 831 assert( pIn1->flags==MEM_Int ); |
| 832 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); |
| 833 pCaller = &aOp[pIn1->u.i]; |
| 834 assert( pCaller->opcode==OP_Yield ); |
| 835 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); |
| 836 pc = pCaller->p2 - 1; |
| 837 pIn1->flags = MEM_Undefined; |
| 838 break; |
| 839 } |
| 840 |
| 841 /* Opcode: Yield P1 P2 * * * |
| 842 ** |
| 843 ** Swap the program counter with the value in register P1. This |
| 844 ** has the effect of yielding to a coroutine. |
| 845 ** |
| 846 ** If the coroutine that is launched by this instruction ends with |
| 847 ** Yield or Return then continue to the next instruction. But if |
| 848 ** the coroutine launched by this instruction ends with |
| 849 ** EndCoroutine, then jump to P2 rather than continuing with the |
| 850 ** next instruction. |
| 851 ** |
| 852 ** See also: InitCoroutine |
| 853 */ |
| 854 case OP_Yield: { /* in1, jump */ |
| 855 int pcDest; |
| 856 pIn1 = &aMem[pOp->p1]; |
| 857 assert( VdbeMemDynamic(pIn1)==0 ); |
| 858 pIn1->flags = MEM_Int; |
| 859 pcDest = (int)pIn1->u.i; |
| 860 pIn1->u.i = pc; |
| 861 REGISTER_TRACE(pOp->p1, pIn1); |
| 862 pc = pcDest; |
| 863 break; |
| 864 } |
| 865 |
| 866 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 |
| 867 ** Synopsis: if r[P3]=null halt |
| 868 ** |
| 869 ** Check the value in register P3. If it is NULL then Halt using |
| 870 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the |
| 871 ** value in register P3 is not NULL, then this routine is a no-op. |
| 872 ** The P5 parameter should be 1. |
| 873 */ |
| 874 case OP_HaltIfNull: { /* in3 */ |
| 875 pIn3 = &aMem[pOp->p3]; |
| 876 if( (pIn3->flags & MEM_Null)==0 ) break; |
| 877 /* Fall through into OP_Halt */ |
| 878 } |
| 879 |
| 880 /* Opcode: Halt P1 P2 * P4 P5 |
| 881 ** |
| 882 ** Exit immediately. All open cursors, etc are closed |
| 883 ** automatically. |
| 884 ** |
| 885 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), |
| 886 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). |
| 887 ** For errors, it can be some other value. If P1!=0 then P2 will determine |
| 888 ** whether or not to rollback the current transaction. Do not rollback |
| 889 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, |
| 890 ** then back out all changes that have occurred during this execution of the |
| 891 ** VDBE, but do not rollback the transaction. |
| 892 ** |
| 893 ** If P4 is not null then it is an error message string. |
| 894 ** |
| 895 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. |
| 896 ** |
| 897 ** 0: (no change) |
| 898 ** 1: NOT NULL contraint failed: P4 |
| 899 ** 2: UNIQUE constraint failed: P4 |
| 900 ** 3: CHECK constraint failed: P4 |
| 901 ** 4: FOREIGN KEY constraint failed: P4 |
| 902 ** |
| 903 ** If P5 is not zero and P4 is NULL, then everything after the ":" is |
| 904 ** omitted. |
| 905 ** |
| 906 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
| 907 ** every program. So a jump past the last instruction of the program |
| 908 ** is the same as executing Halt. |
| 909 */ |
| 910 case OP_Halt: { |
| 911 const char *zType; |
| 912 const char *zLogFmt; |
| 913 |
| 914 if( pOp->p1==SQLITE_OK && p->pFrame ){ |
| 915 /* Halt the sub-program. Return control to the parent frame. */ |
| 916 VdbeFrame *pFrame = p->pFrame; |
| 917 p->pFrame = pFrame->pParent; |
| 918 p->nFrame--; |
| 919 sqlite3VdbeSetChanges(db, p->nChange); |
| 920 pc = sqlite3VdbeFrameRestore(pFrame); |
| 921 lastRowid = db->lastRowid; |
| 922 if( pOp->p2==OE_Ignore ){ |
| 923 /* Instruction pc is the OP_Program that invoked the sub-program |
| 924 ** currently being halted. If the p2 instruction of this OP_Halt |
| 925 ** instruction is set to OE_Ignore, then the sub-program is throwing |
| 926 ** an IGNORE exception. In this case jump to the address specified |
| 927 ** as the p2 of the calling OP_Program. */ |
| 928 pc = p->aOp[pc].p2-1; |
| 929 } |
| 930 aOp = p->aOp; |
| 931 aMem = p->aMem; |
| 932 break; |
| 933 } |
| 934 p->rc = pOp->p1; |
| 935 p->errorAction = (u8)pOp->p2; |
| 936 p->pc = pc; |
| 937 if( p->rc ){ |
| 938 if( pOp->p5 ){ |
| 939 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", |
| 940 "FOREIGN KEY" }; |
| 941 assert( pOp->p5>=1 && pOp->p5<=4 ); |
| 942 testcase( pOp->p5==1 ); |
| 943 testcase( pOp->p5==2 ); |
| 944 testcase( pOp->p5==3 ); |
| 945 testcase( pOp->p5==4 ); |
| 946 zType = azType[pOp->p5-1]; |
| 947 }else{ |
| 948 zType = 0; |
| 949 } |
| 950 assert( zType!=0 || pOp->p4.z!=0 ); |
| 951 zLogFmt = "abort at %d in [%s]: %s"; |
| 952 if( zType && pOp->p4.z ){ |
| 953 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s", |
| 954 zType, pOp->p4.z); |
| 955 }else if( pOp->p4.z ){ |
| 956 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); |
| 957 }else{ |
| 958 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType); |
| 959 } |
| 960 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg); |
| 961 } |
| 962 rc = sqlite3VdbeHalt(p); |
| 963 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); |
| 964 if( rc==SQLITE_BUSY ){ |
| 965 p->rc = rc = SQLITE_BUSY; |
| 966 }else{ |
| 967 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); |
| 968 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); |
| 969 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
| 970 } |
| 971 goto vdbe_return; |
| 972 } |
| 973 |
| 974 /* Opcode: Integer P1 P2 * * * |
| 975 ** Synopsis: r[P2]=P1 |
| 976 ** |
| 977 ** The 32-bit integer value P1 is written into register P2. |
| 978 */ |
| 979 case OP_Integer: { /* out2-prerelease */ |
| 980 pOut->u.i = pOp->p1; |
| 981 break; |
| 982 } |
| 983 |
| 984 /* Opcode: Int64 * P2 * P4 * |
| 985 ** Synopsis: r[P2]=P4 |
| 986 ** |
| 987 ** P4 is a pointer to a 64-bit integer value. |
| 988 ** Write that value into register P2. |
| 989 */ |
| 990 case OP_Int64: { /* out2-prerelease */ |
| 991 assert( pOp->p4.pI64!=0 ); |
| 992 pOut->u.i = *pOp->p4.pI64; |
| 993 break; |
| 994 } |
| 995 |
| 996 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 997 /* Opcode: Real * P2 * P4 * |
| 998 ** Synopsis: r[P2]=P4 |
| 999 ** |
| 1000 ** P4 is a pointer to a 64-bit floating point value. |
| 1001 ** Write that value into register P2. |
| 1002 */ |
| 1003 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ |
| 1004 pOut->flags = MEM_Real; |
| 1005 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); |
| 1006 pOut->u.r = *pOp->p4.pReal; |
| 1007 break; |
| 1008 } |
| 1009 #endif |
| 1010 |
| 1011 /* Opcode: String8 * P2 * P4 * |
| 1012 ** Synopsis: r[P2]='P4' |
| 1013 ** |
| 1014 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed |
| 1015 ** into a String before it is executed for the first time. During |
| 1016 ** this transformation, the length of string P4 is computed and stored |
| 1017 ** as the P1 parameter. |
| 1018 */ |
| 1019 case OP_String8: { /* same as TK_STRING, out2-prerelease */ |
| 1020 assert( pOp->p4.z!=0 ); |
| 1021 pOp->opcode = OP_String; |
| 1022 pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
| 1023 |
| 1024 #ifndef SQLITE_OMIT_UTF16 |
| 1025 if( encoding!=SQLITE_UTF8 ){ |
| 1026 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); |
| 1027 if( rc==SQLITE_TOOBIG ) goto too_big; |
| 1028 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; |
| 1029 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); |
| 1030 assert( VdbeMemDynamic(pOut)==0 ); |
| 1031 pOut->szMalloc = 0; |
| 1032 pOut->flags |= MEM_Static; |
| 1033 if( pOp->p4type==P4_DYNAMIC ){ |
| 1034 sqlite3DbFree(db, pOp->p4.z); |
| 1035 } |
| 1036 pOp->p4type = P4_DYNAMIC; |
| 1037 pOp->p4.z = pOut->z; |
| 1038 pOp->p1 = pOut->n; |
| 1039 } |
| 1040 #endif |
| 1041 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1042 goto too_big; |
| 1043 } |
| 1044 /* Fall through to the next case, OP_String */ |
| 1045 } |
| 1046 |
| 1047 /* Opcode: String P1 P2 * P4 * |
| 1048 ** Synopsis: r[P2]='P4' (len=P1) |
| 1049 ** |
| 1050 ** The string value P4 of length P1 (bytes) is stored in register P2. |
| 1051 */ |
| 1052 case OP_String: { /* out2-prerelease */ |
| 1053 assert( pOp->p4.z!=0 ); |
| 1054 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
| 1055 pOut->z = pOp->p4.z; |
| 1056 pOut->n = pOp->p1; |
| 1057 pOut->enc = encoding; |
| 1058 UPDATE_MAX_BLOBSIZE(pOut); |
| 1059 break; |
| 1060 } |
| 1061 |
| 1062 /* Opcode: Null P1 P2 P3 * * |
| 1063 ** Synopsis: r[P2..P3]=NULL |
| 1064 ** |
| 1065 ** Write a NULL into registers P2. If P3 greater than P2, then also write |
| 1066 ** NULL into register P3 and every register in between P2 and P3. If P3 |
| 1067 ** is less than P2 (typically P3 is zero) then only register P2 is |
| 1068 ** set to NULL. |
| 1069 ** |
| 1070 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that |
| 1071 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on |
| 1072 ** OP_Ne or OP_Eq. |
| 1073 */ |
| 1074 case OP_Null: { /* out2-prerelease */ |
| 1075 int cnt; |
| 1076 u16 nullFlag; |
| 1077 cnt = pOp->p3-pOp->p2; |
| 1078 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 1079 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; |
| 1080 while( cnt>0 ){ |
| 1081 pOut++; |
| 1082 memAboutToChange(p, pOut); |
| 1083 sqlite3VdbeMemSetNull(pOut); |
| 1084 pOut->flags = nullFlag; |
| 1085 cnt--; |
| 1086 } |
| 1087 break; |
| 1088 } |
| 1089 |
| 1090 /* Opcode: SoftNull P1 * * * * |
| 1091 ** Synopsis: r[P1]=NULL |
| 1092 ** |
| 1093 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord |
| 1094 ** instruction, but do not free any string or blob memory associated with |
| 1095 ** the register, so that if the value was a string or blob that was |
| 1096 ** previously copied using OP_SCopy, the copies will continue to be valid. |
| 1097 */ |
| 1098 case OP_SoftNull: { |
| 1099 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 1100 pOut = &aMem[pOp->p1]; |
| 1101 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; |
| 1102 break; |
| 1103 } |
| 1104 |
| 1105 /* Opcode: Blob P1 P2 * P4 * |
| 1106 ** Synopsis: r[P2]=P4 (len=P1) |
| 1107 ** |
| 1108 ** P4 points to a blob of data P1 bytes long. Store this |
| 1109 ** blob in register P2. |
| 1110 */ |
| 1111 case OP_Blob: { /* out2-prerelease */ |
| 1112 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
| 1113 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); |
| 1114 pOut->enc = encoding; |
| 1115 UPDATE_MAX_BLOBSIZE(pOut); |
| 1116 break; |
| 1117 } |
| 1118 |
| 1119 /* Opcode: Variable P1 P2 * P4 * |
| 1120 ** Synopsis: r[P2]=parameter(P1,P4) |
| 1121 ** |
| 1122 ** Transfer the values of bound parameter P1 into register P2 |
| 1123 ** |
| 1124 ** If the parameter is named, then its name appears in P4. |
| 1125 ** The P4 value is used by sqlite3_bind_parameter_name(). |
| 1126 */ |
| 1127 case OP_Variable: { /* out2-prerelease */ |
| 1128 Mem *pVar; /* Value being transferred */ |
| 1129 |
| 1130 assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
| 1131 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] ); |
| 1132 pVar = &p->aVar[pOp->p1 - 1]; |
| 1133 if( sqlite3VdbeMemTooBig(pVar) ){ |
| 1134 goto too_big; |
| 1135 } |
| 1136 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); |
| 1137 UPDATE_MAX_BLOBSIZE(pOut); |
| 1138 break; |
| 1139 } |
| 1140 |
| 1141 /* Opcode: Move P1 P2 P3 * * |
| 1142 ** Synopsis: r[P2@P3]=r[P1@P3] |
| 1143 ** |
| 1144 ** Move the P3 values in register P1..P1+P3-1 over into |
| 1145 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are |
| 1146 ** left holding a NULL. It is an error for register ranges |
| 1147 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error |
| 1148 ** for P3 to be less than 1. |
| 1149 */ |
| 1150 case OP_Move: { |
| 1151 int n; /* Number of registers left to copy */ |
| 1152 int p1; /* Register to copy from */ |
| 1153 int p2; /* Register to copy to */ |
| 1154 |
| 1155 n = pOp->p3; |
| 1156 p1 = pOp->p1; |
| 1157 p2 = pOp->p2; |
| 1158 assert( n>0 && p1>0 && p2>0 ); |
| 1159 assert( p1+n<=p2 || p2+n<=p1 ); |
| 1160 |
| 1161 pIn1 = &aMem[p1]; |
| 1162 pOut = &aMem[p2]; |
| 1163 do{ |
| 1164 assert( pOut<=&aMem[(p->nMem-p->nCursor)] ); |
| 1165 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] ); |
| 1166 assert( memIsValid(pIn1) ); |
| 1167 memAboutToChange(p, pOut); |
| 1168 sqlite3VdbeMemMove(pOut, pIn1); |
| 1169 #ifdef SQLITE_DEBUG |
| 1170 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){ |
| 1171 pOut->pScopyFrom += p1 - pOp->p2; |
| 1172 } |
| 1173 #endif |
| 1174 REGISTER_TRACE(p2++, pOut); |
| 1175 pIn1++; |
| 1176 pOut++; |
| 1177 }while( --n ); |
| 1178 break; |
| 1179 } |
| 1180 |
| 1181 /* Opcode: Copy P1 P2 P3 * * |
| 1182 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] |
| 1183 ** |
| 1184 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. |
| 1185 ** |
| 1186 ** This instruction makes a deep copy of the value. A duplicate |
| 1187 ** is made of any string or blob constant. See also OP_SCopy. |
| 1188 */ |
| 1189 case OP_Copy: { |
| 1190 int n; |
| 1191 |
| 1192 n = pOp->p3; |
| 1193 pIn1 = &aMem[pOp->p1]; |
| 1194 pOut = &aMem[pOp->p2]; |
| 1195 assert( pOut!=pIn1 ); |
| 1196 while( 1 ){ |
| 1197 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
| 1198 Deephemeralize(pOut); |
| 1199 #ifdef SQLITE_DEBUG |
| 1200 pOut->pScopyFrom = 0; |
| 1201 #endif |
| 1202 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); |
| 1203 if( (n--)==0 ) break; |
| 1204 pOut++; |
| 1205 pIn1++; |
| 1206 } |
| 1207 break; |
| 1208 } |
| 1209 |
| 1210 /* Opcode: SCopy P1 P2 * * * |
| 1211 ** Synopsis: r[P2]=r[P1] |
| 1212 ** |
| 1213 ** Make a shallow copy of register P1 into register P2. |
| 1214 ** |
| 1215 ** This instruction makes a shallow copy of the value. If the value |
| 1216 ** is a string or blob, then the copy is only a pointer to the |
| 1217 ** original and hence if the original changes so will the copy. |
| 1218 ** Worse, if the original is deallocated, the copy becomes invalid. |
| 1219 ** Thus the program must guarantee that the original will not change |
| 1220 ** during the lifetime of the copy. Use OP_Copy to make a complete |
| 1221 ** copy. |
| 1222 */ |
| 1223 case OP_SCopy: { /* out2 */ |
| 1224 pIn1 = &aMem[pOp->p1]; |
| 1225 pOut = &aMem[pOp->p2]; |
| 1226 assert( pOut!=pIn1 ); |
| 1227 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
| 1228 #ifdef SQLITE_DEBUG |
| 1229 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; |
| 1230 #endif |
| 1231 break; |
| 1232 } |
| 1233 |
| 1234 /* Opcode: ResultRow P1 P2 * * * |
| 1235 ** Synopsis: output=r[P1@P2] |
| 1236 ** |
| 1237 ** The registers P1 through P1+P2-1 contain a single row of |
| 1238 ** results. This opcode causes the sqlite3_step() call to terminate |
| 1239 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
| 1240 ** structure to provide access to the r(P1)..r(P1+P2-1) values as |
| 1241 ** the result row. |
| 1242 */ |
| 1243 case OP_ResultRow: { |
| 1244 Mem *pMem; |
| 1245 int i; |
| 1246 assert( p->nResColumn==pOp->p2 ); |
| 1247 assert( pOp->p1>0 ); |
| 1248 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 ); |
| 1249 |
| 1250 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 1251 /* Run the progress counter just before returning. |
| 1252 */ |
| 1253 if( db->xProgress!=0 |
| 1254 && nVmStep>=nProgressLimit |
| 1255 && db->xProgress(db->pProgressArg)!=0 |
| 1256 ){ |
| 1257 rc = SQLITE_INTERRUPT; |
| 1258 goto vdbe_error_halt; |
| 1259 } |
| 1260 #endif |
| 1261 |
| 1262 /* If this statement has violated immediate foreign key constraints, do |
| 1263 ** not return the number of rows modified. And do not RELEASE the statement |
| 1264 ** transaction. It needs to be rolled back. */ |
| 1265 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ |
| 1266 assert( db->flags&SQLITE_CountRows ); |
| 1267 assert( p->usesStmtJournal ); |
| 1268 break; |
| 1269 } |
| 1270 |
| 1271 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then |
| 1272 ** DML statements invoke this opcode to return the number of rows |
| 1273 ** modified to the user. This is the only way that a VM that |
| 1274 ** opens a statement transaction may invoke this opcode. |
| 1275 ** |
| 1276 ** In case this is such a statement, close any statement transaction |
| 1277 ** opened by this VM before returning control to the user. This is to |
| 1278 ** ensure that statement-transactions are always nested, not overlapping. |
| 1279 ** If the open statement-transaction is not closed here, then the user |
| 1280 ** may step another VM that opens its own statement transaction. This |
| 1281 ** may lead to overlapping statement transactions. |
| 1282 ** |
| 1283 ** The statement transaction is never a top-level transaction. Hence |
| 1284 ** the RELEASE call below can never fail. |
| 1285 */ |
| 1286 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); |
| 1287 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); |
| 1288 if( NEVER(rc!=SQLITE_OK) ){ |
| 1289 break; |
| 1290 } |
| 1291 |
| 1292 /* Invalidate all ephemeral cursor row caches */ |
| 1293 p->cacheCtr = (p->cacheCtr + 2)|1; |
| 1294 |
| 1295 /* Make sure the results of the current row are \000 terminated |
| 1296 ** and have an assigned type. The results are de-ephemeralized as |
| 1297 ** a side effect. |
| 1298 */ |
| 1299 pMem = p->pResultSet = &aMem[pOp->p1]; |
| 1300 for(i=0; i<pOp->p2; i++){ |
| 1301 assert( memIsValid(&pMem[i]) ); |
| 1302 Deephemeralize(&pMem[i]); |
| 1303 assert( (pMem[i].flags & MEM_Ephem)==0 |
| 1304 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
| 1305 sqlite3VdbeMemNulTerminate(&pMem[i]); |
| 1306 REGISTER_TRACE(pOp->p1+i, &pMem[i]); |
| 1307 } |
| 1308 if( db->mallocFailed ) goto no_mem; |
| 1309 |
| 1310 /* Return SQLITE_ROW |
| 1311 */ |
| 1312 p->pc = pc + 1; |
| 1313 rc = SQLITE_ROW; |
| 1314 goto vdbe_return; |
| 1315 } |
| 1316 |
| 1317 /* Opcode: Concat P1 P2 P3 * * |
| 1318 ** Synopsis: r[P3]=r[P2]+r[P1] |
| 1319 ** |
| 1320 ** Add the text in register P1 onto the end of the text in |
| 1321 ** register P2 and store the result in register P3. |
| 1322 ** If either the P1 or P2 text are NULL then store NULL in P3. |
| 1323 ** |
| 1324 ** P3 = P2 || P1 |
| 1325 ** |
| 1326 ** It is illegal for P1 and P3 to be the same register. Sometimes, |
| 1327 ** if P3 is the same register as P2, the implementation is able |
| 1328 ** to avoid a memcpy(). |
| 1329 */ |
| 1330 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ |
| 1331 i64 nByte; |
| 1332 |
| 1333 pIn1 = &aMem[pOp->p1]; |
| 1334 pIn2 = &aMem[pOp->p2]; |
| 1335 pOut = &aMem[pOp->p3]; |
| 1336 assert( pIn1!=pOut ); |
| 1337 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
| 1338 sqlite3VdbeMemSetNull(pOut); |
| 1339 break; |
| 1340 } |
| 1341 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; |
| 1342 Stringify(pIn1, encoding); |
| 1343 Stringify(pIn2, encoding); |
| 1344 nByte = pIn1->n + pIn2->n; |
| 1345 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1346 goto too_big; |
| 1347 } |
| 1348 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ |
| 1349 goto no_mem; |
| 1350 } |
| 1351 MemSetTypeFlag(pOut, MEM_Str); |
| 1352 if( pOut!=pIn2 ){ |
| 1353 memcpy(pOut->z, pIn2->z, pIn2->n); |
| 1354 } |
| 1355 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); |
| 1356 pOut->z[nByte]=0; |
| 1357 pOut->z[nByte+1] = 0; |
| 1358 pOut->flags |= MEM_Term; |
| 1359 pOut->n = (int)nByte; |
| 1360 pOut->enc = encoding; |
| 1361 UPDATE_MAX_BLOBSIZE(pOut); |
| 1362 break; |
| 1363 } |
| 1364 |
| 1365 /* Opcode: Add P1 P2 P3 * * |
| 1366 ** Synopsis: r[P3]=r[P1]+r[P2] |
| 1367 ** |
| 1368 ** Add the value in register P1 to the value in register P2 |
| 1369 ** and store the result in register P3. |
| 1370 ** If either input is NULL, the result is NULL. |
| 1371 */ |
| 1372 /* Opcode: Multiply P1 P2 P3 * * |
| 1373 ** Synopsis: r[P3]=r[P1]*r[P2] |
| 1374 ** |
| 1375 ** |
| 1376 ** Multiply the value in register P1 by the value in register P2 |
| 1377 ** and store the result in register P3. |
| 1378 ** If either input is NULL, the result is NULL. |
| 1379 */ |
| 1380 /* Opcode: Subtract P1 P2 P3 * * |
| 1381 ** Synopsis: r[P3]=r[P2]-r[P1] |
| 1382 ** |
| 1383 ** Subtract the value in register P1 from the value in register P2 |
| 1384 ** and store the result in register P3. |
| 1385 ** If either input is NULL, the result is NULL. |
| 1386 */ |
| 1387 /* Opcode: Divide P1 P2 P3 * * |
| 1388 ** Synopsis: r[P3]=r[P2]/r[P1] |
| 1389 ** |
| 1390 ** Divide the value in register P1 by the value in register P2 |
| 1391 ** and store the result in register P3 (P3=P2/P1). If the value in |
| 1392 ** register P1 is zero, then the result is NULL. If either input is |
| 1393 ** NULL, the result is NULL. |
| 1394 */ |
| 1395 /* Opcode: Remainder P1 P2 P3 * * |
| 1396 ** Synopsis: r[P3]=r[P2]%r[P1] |
| 1397 ** |
| 1398 ** Compute the remainder after integer register P2 is divided by |
| 1399 ** register P1 and store the result in register P3. |
| 1400 ** If the value in register P1 is zero the result is NULL. |
| 1401 ** If either operand is NULL, the result is NULL. |
| 1402 */ |
| 1403 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ |
| 1404 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ |
| 1405 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ |
| 1406 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ |
| 1407 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ |
| 1408 char bIntint; /* Started out as two integer operands */ |
| 1409 u16 flags; /* Combined MEM_* flags from both inputs */ |
| 1410 u16 type1; /* Numeric type of left operand */ |
| 1411 u16 type2; /* Numeric type of right operand */ |
| 1412 i64 iA; /* Integer value of left operand */ |
| 1413 i64 iB; /* Integer value of right operand */ |
| 1414 double rA; /* Real value of left operand */ |
| 1415 double rB; /* Real value of right operand */ |
| 1416 |
| 1417 pIn1 = &aMem[pOp->p1]; |
| 1418 type1 = numericType(pIn1); |
| 1419 pIn2 = &aMem[pOp->p2]; |
| 1420 type2 = numericType(pIn2); |
| 1421 pOut = &aMem[pOp->p3]; |
| 1422 flags = pIn1->flags | pIn2->flags; |
| 1423 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; |
| 1424 if( (type1 & type2 & MEM_Int)!=0 ){ |
| 1425 iA = pIn1->u.i; |
| 1426 iB = pIn2->u.i; |
| 1427 bIntint = 1; |
| 1428 switch( pOp->opcode ){ |
| 1429 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; |
| 1430 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; |
| 1431 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; |
| 1432 case OP_Divide: { |
| 1433 if( iA==0 ) goto arithmetic_result_is_null; |
| 1434 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; |
| 1435 iB /= iA; |
| 1436 break; |
| 1437 } |
| 1438 default: { |
| 1439 if( iA==0 ) goto arithmetic_result_is_null; |
| 1440 if( iA==-1 ) iA = 1; |
| 1441 iB %= iA; |
| 1442 break; |
| 1443 } |
| 1444 } |
| 1445 pOut->u.i = iB; |
| 1446 MemSetTypeFlag(pOut, MEM_Int); |
| 1447 }else{ |
| 1448 bIntint = 0; |
| 1449 fp_math: |
| 1450 rA = sqlite3VdbeRealValue(pIn1); |
| 1451 rB = sqlite3VdbeRealValue(pIn2); |
| 1452 switch( pOp->opcode ){ |
| 1453 case OP_Add: rB += rA; break; |
| 1454 case OP_Subtract: rB -= rA; break; |
| 1455 case OP_Multiply: rB *= rA; break; |
| 1456 case OP_Divide: { |
| 1457 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 1458 if( rA==(double)0 ) goto arithmetic_result_is_null; |
| 1459 rB /= rA; |
| 1460 break; |
| 1461 } |
| 1462 default: { |
| 1463 iA = (i64)rA; |
| 1464 iB = (i64)rB; |
| 1465 if( iA==0 ) goto arithmetic_result_is_null; |
| 1466 if( iA==-1 ) iA = 1; |
| 1467 rB = (double)(iB % iA); |
| 1468 break; |
| 1469 } |
| 1470 } |
| 1471 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 1472 pOut->u.i = rB; |
| 1473 MemSetTypeFlag(pOut, MEM_Int); |
| 1474 #else |
| 1475 if( sqlite3IsNaN(rB) ){ |
| 1476 goto arithmetic_result_is_null; |
| 1477 } |
| 1478 pOut->u.r = rB; |
| 1479 MemSetTypeFlag(pOut, MEM_Real); |
| 1480 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ |
| 1481 sqlite3VdbeIntegerAffinity(pOut); |
| 1482 } |
| 1483 #endif |
| 1484 } |
| 1485 break; |
| 1486 |
| 1487 arithmetic_result_is_null: |
| 1488 sqlite3VdbeMemSetNull(pOut); |
| 1489 break; |
| 1490 } |
| 1491 |
| 1492 /* Opcode: CollSeq P1 * * P4 |
| 1493 ** |
| 1494 ** P4 is a pointer to a CollSeq struct. If the next call to a user function |
| 1495 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
| 1496 ** be returned. This is used by the built-in min(), max() and nullif() |
| 1497 ** functions. |
| 1498 ** |
| 1499 ** If P1 is not zero, then it is a register that a subsequent min() or |
| 1500 ** max() aggregate will set to 1 if the current row is not the minimum or |
| 1501 ** maximum. The P1 register is initialized to 0 by this instruction. |
| 1502 ** |
| 1503 ** The interface used by the implementation of the aforementioned functions |
| 1504 ** to retrieve the collation sequence set by this opcode is not available |
| 1505 ** publicly, only to user functions defined in func.c. |
| 1506 */ |
| 1507 case OP_CollSeq: { |
| 1508 assert( pOp->p4type==P4_COLLSEQ ); |
| 1509 if( pOp->p1 ){ |
| 1510 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); |
| 1511 } |
| 1512 break; |
| 1513 } |
| 1514 |
| 1515 /* Opcode: Function P1 P2 P3 P4 P5 |
| 1516 ** Synopsis: r[P3]=func(r[P2@P5]) |
| 1517 ** |
| 1518 ** Invoke a user function (P4 is a pointer to a Function structure that |
| 1519 ** defines the function) with P5 arguments taken from register P2 and |
| 1520 ** successors. The result of the function is stored in register P3. |
| 1521 ** Register P3 must not be one of the function inputs. |
| 1522 ** |
| 1523 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
| 1524 ** function was determined to be constant at compile time. If the first |
| 1525 ** argument was constant then bit 0 of P1 is set. This is used to determine |
| 1526 ** whether meta data associated with a user function argument using the |
| 1527 ** sqlite3_set_auxdata() API may be safely retained until the next |
| 1528 ** invocation of this opcode. |
| 1529 ** |
| 1530 ** See also: AggStep and AggFinal |
| 1531 */ |
| 1532 case OP_Function: { |
| 1533 int i; |
| 1534 Mem *pArg; |
| 1535 sqlite3_context ctx; |
| 1536 sqlite3_value **apVal; |
| 1537 int n; |
| 1538 |
| 1539 n = pOp->p5; |
| 1540 apVal = p->apArg; |
| 1541 assert( apVal || n==0 ); |
| 1542 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 1543 ctx.pOut = &aMem[pOp->p3]; |
| 1544 memAboutToChange(p, ctx.pOut); |
| 1545 |
| 1546 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); |
| 1547 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
| 1548 pArg = &aMem[pOp->p2]; |
| 1549 for(i=0; i<n; i++, pArg++){ |
| 1550 assert( memIsValid(pArg) ); |
| 1551 apVal[i] = pArg; |
| 1552 Deephemeralize(pArg); |
| 1553 REGISTER_TRACE(pOp->p2+i, pArg); |
| 1554 } |
| 1555 |
| 1556 assert( pOp->p4type==P4_FUNCDEF ); |
| 1557 ctx.pFunc = pOp->p4.pFunc; |
| 1558 ctx.iOp = pc; |
| 1559 ctx.pVdbe = p; |
| 1560 MemSetTypeFlag(ctx.pOut, MEM_Null); |
| 1561 ctx.fErrorOrAux = 0; |
| 1562 db->lastRowid = lastRowid; |
| 1563 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
| 1564 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */ |
| 1565 |
| 1566 /* If the function returned an error, throw an exception */ |
| 1567 if( ctx.fErrorOrAux ){ |
| 1568 if( ctx.isError ){ |
| 1569 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); |
| 1570 rc = ctx.isError; |
| 1571 } |
| 1572 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); |
| 1573 } |
| 1574 |
| 1575 /* Copy the result of the function into register P3 */ |
| 1576 sqlite3VdbeChangeEncoding(ctx.pOut, encoding); |
| 1577 if( sqlite3VdbeMemTooBig(ctx.pOut) ){ |
| 1578 goto too_big; |
| 1579 } |
| 1580 |
| 1581 REGISTER_TRACE(pOp->p3, ctx.pOut); |
| 1582 UPDATE_MAX_BLOBSIZE(ctx.pOut); |
| 1583 break; |
| 1584 } |
| 1585 |
| 1586 /* Opcode: BitAnd P1 P2 P3 * * |
| 1587 ** Synopsis: r[P3]=r[P1]&r[P2] |
| 1588 ** |
| 1589 ** Take the bit-wise AND of the values in register P1 and P2 and |
| 1590 ** store the result in register P3. |
| 1591 ** If either input is NULL, the result is NULL. |
| 1592 */ |
| 1593 /* Opcode: BitOr P1 P2 P3 * * |
| 1594 ** Synopsis: r[P3]=r[P1]|r[P2] |
| 1595 ** |
| 1596 ** Take the bit-wise OR of the values in register P1 and P2 and |
| 1597 ** store the result in register P3. |
| 1598 ** If either input is NULL, the result is NULL. |
| 1599 */ |
| 1600 /* Opcode: ShiftLeft P1 P2 P3 * * |
| 1601 ** Synopsis: r[P3]=r[P2]<<r[P1] |
| 1602 ** |
| 1603 ** Shift the integer value in register P2 to the left by the |
| 1604 ** number of bits specified by the integer in register P1. |
| 1605 ** Store the result in register P3. |
| 1606 ** If either input is NULL, the result is NULL. |
| 1607 */ |
| 1608 /* Opcode: ShiftRight P1 P2 P3 * * |
| 1609 ** Synopsis: r[P3]=r[P2]>>r[P1] |
| 1610 ** |
| 1611 ** Shift the integer value in register P2 to the right by the |
| 1612 ** number of bits specified by the integer in register P1. |
| 1613 ** Store the result in register P3. |
| 1614 ** If either input is NULL, the result is NULL. |
| 1615 */ |
| 1616 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ |
| 1617 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ |
| 1618 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ |
| 1619 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ |
| 1620 i64 iA; |
| 1621 u64 uA; |
| 1622 i64 iB; |
| 1623 u8 op; |
| 1624 |
| 1625 pIn1 = &aMem[pOp->p1]; |
| 1626 pIn2 = &aMem[pOp->p2]; |
| 1627 pOut = &aMem[pOp->p3]; |
| 1628 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
| 1629 sqlite3VdbeMemSetNull(pOut); |
| 1630 break; |
| 1631 } |
| 1632 iA = sqlite3VdbeIntValue(pIn2); |
| 1633 iB = sqlite3VdbeIntValue(pIn1); |
| 1634 op = pOp->opcode; |
| 1635 if( op==OP_BitAnd ){ |
| 1636 iA &= iB; |
| 1637 }else if( op==OP_BitOr ){ |
| 1638 iA |= iB; |
| 1639 }else if( iB!=0 ){ |
| 1640 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); |
| 1641 |
| 1642 /* If shifting by a negative amount, shift in the other direction */ |
| 1643 if( iB<0 ){ |
| 1644 assert( OP_ShiftRight==OP_ShiftLeft+1 ); |
| 1645 op = 2*OP_ShiftLeft + 1 - op; |
| 1646 iB = iB>(-64) ? -iB : 64; |
| 1647 } |
| 1648 |
| 1649 if( iB>=64 ){ |
| 1650 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; |
| 1651 }else{ |
| 1652 memcpy(&uA, &iA, sizeof(uA)); |
| 1653 if( op==OP_ShiftLeft ){ |
| 1654 uA <<= iB; |
| 1655 }else{ |
| 1656 uA >>= iB; |
| 1657 /* Sign-extend on a right shift of a negative number */ |
| 1658 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); |
| 1659 } |
| 1660 memcpy(&iA, &uA, sizeof(iA)); |
| 1661 } |
| 1662 } |
| 1663 pOut->u.i = iA; |
| 1664 MemSetTypeFlag(pOut, MEM_Int); |
| 1665 break; |
| 1666 } |
| 1667 |
| 1668 /* Opcode: AddImm P1 P2 * * * |
| 1669 ** Synopsis: r[P1]=r[P1]+P2 |
| 1670 ** |
| 1671 ** Add the constant P2 to the value in register P1. |
| 1672 ** The result is always an integer. |
| 1673 ** |
| 1674 ** To force any register to be an integer, just add 0. |
| 1675 */ |
| 1676 case OP_AddImm: { /* in1 */ |
| 1677 pIn1 = &aMem[pOp->p1]; |
| 1678 memAboutToChange(p, pIn1); |
| 1679 sqlite3VdbeMemIntegerify(pIn1); |
| 1680 pIn1->u.i += pOp->p2; |
| 1681 break; |
| 1682 } |
| 1683 |
| 1684 /* Opcode: MustBeInt P1 P2 * * * |
| 1685 ** |
| 1686 ** Force the value in register P1 to be an integer. If the value |
| 1687 ** in P1 is not an integer and cannot be converted into an integer |
| 1688 ** without data loss, then jump immediately to P2, or if P2==0 |
| 1689 ** raise an SQLITE_MISMATCH exception. |
| 1690 */ |
| 1691 case OP_MustBeInt: { /* jump, in1 */ |
| 1692 pIn1 = &aMem[pOp->p1]; |
| 1693 if( (pIn1->flags & MEM_Int)==0 ){ |
| 1694 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); |
| 1695 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); |
| 1696 if( (pIn1->flags & MEM_Int)==0 ){ |
| 1697 if( pOp->p2==0 ){ |
| 1698 rc = SQLITE_MISMATCH; |
| 1699 goto abort_due_to_error; |
| 1700 }else{ |
| 1701 pc = pOp->p2 - 1; |
| 1702 break; |
| 1703 } |
| 1704 } |
| 1705 } |
| 1706 MemSetTypeFlag(pIn1, MEM_Int); |
| 1707 break; |
| 1708 } |
| 1709 |
| 1710 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 1711 /* Opcode: RealAffinity P1 * * * * |
| 1712 ** |
| 1713 ** If register P1 holds an integer convert it to a real value. |
| 1714 ** |
| 1715 ** This opcode is used when extracting information from a column that |
| 1716 ** has REAL affinity. Such column values may still be stored as |
| 1717 ** integers, for space efficiency, but after extraction we want them |
| 1718 ** to have only a real value. |
| 1719 */ |
| 1720 case OP_RealAffinity: { /* in1 */ |
| 1721 pIn1 = &aMem[pOp->p1]; |
| 1722 if( pIn1->flags & MEM_Int ){ |
| 1723 sqlite3VdbeMemRealify(pIn1); |
| 1724 } |
| 1725 break; |
| 1726 } |
| 1727 #endif |
| 1728 |
| 1729 #ifndef SQLITE_OMIT_CAST |
| 1730 /* Opcode: Cast P1 P2 * * * |
| 1731 ** Synopsis: affinity(r[P1]) |
| 1732 ** |
| 1733 ** Force the value in register P1 to be the type defined by P2. |
| 1734 ** |
| 1735 ** <ul> |
| 1736 ** <li value="97"> TEXT |
| 1737 ** <li value="98"> BLOB |
| 1738 ** <li value="99"> NUMERIC |
| 1739 ** <li value="100"> INTEGER |
| 1740 ** <li value="101"> REAL |
| 1741 ** </ul> |
| 1742 ** |
| 1743 ** A NULL value is not changed by this routine. It remains NULL. |
| 1744 */ |
| 1745 case OP_Cast: { /* in1 */ |
| 1746 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL ); |
| 1747 testcase( pOp->p2==SQLITE_AFF_TEXT ); |
| 1748 testcase( pOp->p2==SQLITE_AFF_NONE ); |
| 1749 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); |
| 1750 testcase( pOp->p2==SQLITE_AFF_INTEGER ); |
| 1751 testcase( pOp->p2==SQLITE_AFF_REAL ); |
| 1752 pIn1 = &aMem[pOp->p1]; |
| 1753 memAboutToChange(p, pIn1); |
| 1754 rc = ExpandBlob(pIn1); |
| 1755 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); |
| 1756 UPDATE_MAX_BLOBSIZE(pIn1); |
| 1757 break; |
| 1758 } |
| 1759 #endif /* SQLITE_OMIT_CAST */ |
| 1760 |
| 1761 /* Opcode: Lt P1 P2 P3 P4 P5 |
| 1762 ** Synopsis: if r[P1]<r[P3] goto P2 |
| 1763 ** |
| 1764 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then |
| 1765 ** jump to address P2. |
| 1766 ** |
| 1767 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or |
| 1768 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL |
| 1769 ** bit is clear then fall through if either operand is NULL. |
| 1770 ** |
| 1771 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - |
| 1772 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
| 1773 ** to coerce both inputs according to this affinity before the |
| 1774 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric |
| 1775 ** affinity is used. Note that the affinity conversions are stored |
| 1776 ** back into the input registers P1 and P3. So this opcode can cause |
| 1777 ** persistent changes to registers P1 and P3. |
| 1778 ** |
| 1779 ** Once any conversions have taken place, and neither value is NULL, |
| 1780 ** the values are compared. If both values are blobs then memcmp() is |
| 1781 ** used to determine the results of the comparison. If both values |
| 1782 ** are text, then the appropriate collating function specified in |
| 1783 ** P4 is used to do the comparison. If P4 is not specified then |
| 1784 ** memcmp() is used to compare text string. If both values are |
| 1785 ** numeric, then a numeric comparison is used. If the two values |
| 1786 ** are of different types, then numbers are considered less than |
| 1787 ** strings and strings are considered less than blobs. |
| 1788 ** |
| 1789 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, |
| 1790 ** store a boolean result (either 0, or 1, or NULL) in register P2. |
| 1791 ** |
| 1792 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered |
| 1793 ** equal to one another, provided that they do not have their MEM_Cleared |
| 1794 ** bit set. |
| 1795 */ |
| 1796 /* Opcode: Ne P1 P2 P3 P4 P5 |
| 1797 ** Synopsis: if r[P1]!=r[P3] goto P2 |
| 1798 ** |
| 1799 ** This works just like the Lt opcode except that the jump is taken if |
| 1800 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for |
| 1801 ** additional information. |
| 1802 ** |
| 1803 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
| 1804 ** true or false and is never NULL. If both operands are NULL then the result |
| 1805 ** of comparison is false. If either operand is NULL then the result is true. |
| 1806 ** If neither operand is NULL the result is the same as it would be if |
| 1807 ** the SQLITE_NULLEQ flag were omitted from P5. |
| 1808 */ |
| 1809 /* Opcode: Eq P1 P2 P3 P4 P5 |
| 1810 ** Synopsis: if r[P1]==r[P3] goto P2 |
| 1811 ** |
| 1812 ** This works just like the Lt opcode except that the jump is taken if |
| 1813 ** the operands in registers P1 and P3 are equal. |
| 1814 ** See the Lt opcode for additional information. |
| 1815 ** |
| 1816 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
| 1817 ** true or false and is never NULL. If both operands are NULL then the result |
| 1818 ** of comparison is true. If either operand is NULL then the result is false. |
| 1819 ** If neither operand is NULL the result is the same as it would be if |
| 1820 ** the SQLITE_NULLEQ flag were omitted from P5. |
| 1821 */ |
| 1822 /* Opcode: Le P1 P2 P3 P4 P5 |
| 1823 ** Synopsis: if r[P1]<=r[P3] goto P2 |
| 1824 ** |
| 1825 ** This works just like the Lt opcode except that the jump is taken if |
| 1826 ** the content of register P3 is less than or equal to the content of |
| 1827 ** register P1. See the Lt opcode for additional information. |
| 1828 */ |
| 1829 /* Opcode: Gt P1 P2 P3 P4 P5 |
| 1830 ** Synopsis: if r[P1]>r[P3] goto P2 |
| 1831 ** |
| 1832 ** This works just like the Lt opcode except that the jump is taken if |
| 1833 ** the content of register P3 is greater than the content of |
| 1834 ** register P1. See the Lt opcode for additional information. |
| 1835 */ |
| 1836 /* Opcode: Ge P1 P2 P3 P4 P5 |
| 1837 ** Synopsis: if r[P1]>=r[P3] goto P2 |
| 1838 ** |
| 1839 ** This works just like the Lt opcode except that the jump is taken if |
| 1840 ** the content of register P3 is greater than or equal to the content of |
| 1841 ** register P1. See the Lt opcode for additional information. |
| 1842 */ |
| 1843 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ |
| 1844 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ |
| 1845 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ |
| 1846 case OP_Le: /* same as TK_LE, jump, in1, in3 */ |
| 1847 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ |
| 1848 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ |
| 1849 int res; /* Result of the comparison of pIn1 against pIn3 */ |
| 1850 char affinity; /* Affinity to use for comparison */ |
| 1851 u16 flags1; /* Copy of initial value of pIn1->flags */ |
| 1852 u16 flags3; /* Copy of initial value of pIn3->flags */ |
| 1853 |
| 1854 pIn1 = &aMem[pOp->p1]; |
| 1855 pIn3 = &aMem[pOp->p3]; |
| 1856 flags1 = pIn1->flags; |
| 1857 flags3 = pIn3->flags; |
| 1858 if( (flags1 | flags3)&MEM_Null ){ |
| 1859 /* One or both operands are NULL */ |
| 1860 if( pOp->p5 & SQLITE_NULLEQ ){ |
| 1861 /* If SQLITE_NULLEQ is set (which will only happen if the operator is |
| 1862 ** OP_Eq or OP_Ne) then take the jump or not depending on whether |
| 1863 ** or not both operands are null. |
| 1864 */ |
| 1865 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); |
| 1866 assert( (flags1 & MEM_Cleared)==0 ); |
| 1867 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); |
| 1868 if( (flags1&MEM_Null)!=0 |
| 1869 && (flags3&MEM_Null)!=0 |
| 1870 && (flags3&MEM_Cleared)==0 |
| 1871 ){ |
| 1872 res = 0; /* Results are equal */ |
| 1873 }else{ |
| 1874 res = 1; /* Results are not equal */ |
| 1875 } |
| 1876 }else{ |
| 1877 /* SQLITE_NULLEQ is clear and at least one operand is NULL, |
| 1878 ** then the result is always NULL. |
| 1879 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. |
| 1880 */ |
| 1881 if( pOp->p5 & SQLITE_STOREP2 ){ |
| 1882 pOut = &aMem[pOp->p2]; |
| 1883 MemSetTypeFlag(pOut, MEM_Null); |
| 1884 REGISTER_TRACE(pOp->p2, pOut); |
| 1885 }else{ |
| 1886 VdbeBranchTaken(2,3); |
| 1887 if( pOp->p5 & SQLITE_JUMPIFNULL ){ |
| 1888 pc = pOp->p2-1; |
| 1889 } |
| 1890 } |
| 1891 break; |
| 1892 } |
| 1893 }else{ |
| 1894 /* Neither operand is NULL. Do a comparison. */ |
| 1895 affinity = pOp->p5 & SQLITE_AFF_MASK; |
| 1896 if( affinity>=SQLITE_AFF_NUMERIC ){ |
| 1897 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 1898 applyNumericAffinity(pIn1,0); |
| 1899 } |
| 1900 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 1901 applyNumericAffinity(pIn3,0); |
| 1902 } |
| 1903 }else if( affinity==SQLITE_AFF_TEXT ){ |
| 1904 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){ |
| 1905 testcase( pIn1->flags & MEM_Int ); |
| 1906 testcase( pIn1->flags & MEM_Real ); |
| 1907 sqlite3VdbeMemStringify(pIn1, encoding, 1); |
| 1908 } |
| 1909 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){ |
| 1910 testcase( pIn3->flags & MEM_Int ); |
| 1911 testcase( pIn3->flags & MEM_Real ); |
| 1912 sqlite3VdbeMemStringify(pIn3, encoding, 1); |
| 1913 } |
| 1914 } |
| 1915 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); |
| 1916 if( pIn1->flags & MEM_Zero ){ |
| 1917 sqlite3VdbeMemExpandBlob(pIn1); |
| 1918 flags1 &= ~MEM_Zero; |
| 1919 } |
| 1920 if( pIn3->flags & MEM_Zero ){ |
| 1921 sqlite3VdbeMemExpandBlob(pIn3); |
| 1922 flags3 &= ~MEM_Zero; |
| 1923 } |
| 1924 if( db->mallocFailed ) goto no_mem; |
| 1925 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
| 1926 } |
| 1927 switch( pOp->opcode ){ |
| 1928 case OP_Eq: res = res==0; break; |
| 1929 case OP_Ne: res = res!=0; break; |
| 1930 case OP_Lt: res = res<0; break; |
| 1931 case OP_Le: res = res<=0; break; |
| 1932 case OP_Gt: res = res>0; break; |
| 1933 default: res = res>=0; break; |
| 1934 } |
| 1935 |
| 1936 if( pOp->p5 & SQLITE_STOREP2 ){ |
| 1937 pOut = &aMem[pOp->p2]; |
| 1938 memAboutToChange(p, pOut); |
| 1939 MemSetTypeFlag(pOut, MEM_Int); |
| 1940 pOut->u.i = res; |
| 1941 REGISTER_TRACE(pOp->p2, pOut); |
| 1942 }else{ |
| 1943 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); |
| 1944 if( res ){ |
| 1945 pc = pOp->p2-1; |
| 1946 } |
| 1947 } |
| 1948 /* Undo any changes made by applyAffinity() to the input registers. */ |
| 1949 pIn1->flags = flags1; |
| 1950 pIn3->flags = flags3; |
| 1951 break; |
| 1952 } |
| 1953 |
| 1954 /* Opcode: Permutation * * * P4 * |
| 1955 ** |
| 1956 ** Set the permutation used by the OP_Compare operator to be the array |
| 1957 ** of integers in P4. |
| 1958 ** |
| 1959 ** The permutation is only valid until the next OP_Compare that has |
| 1960 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should |
| 1961 ** occur immediately prior to the OP_Compare. |
| 1962 */ |
| 1963 case OP_Permutation: { |
| 1964 assert( pOp->p4type==P4_INTARRAY ); |
| 1965 assert( pOp->p4.ai ); |
| 1966 aPermute = pOp->p4.ai; |
| 1967 break; |
| 1968 } |
| 1969 |
| 1970 /* Opcode: Compare P1 P2 P3 P4 P5 |
| 1971 ** Synopsis: r[P1@P3] <-> r[P2@P3] |
| 1972 ** |
| 1973 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this |
| 1974 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of |
| 1975 ** the comparison for use by the next OP_Jump instruct. |
| 1976 ** |
| 1977 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is |
| 1978 ** determined by the most recent OP_Permutation operator. If the |
| 1979 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential |
| 1980 ** order. |
| 1981 ** |
| 1982 ** P4 is a KeyInfo structure that defines collating sequences and sort |
| 1983 ** orders for the comparison. The permutation applies to registers |
| 1984 ** only. The KeyInfo elements are used sequentially. |
| 1985 ** |
| 1986 ** The comparison is a sort comparison, so NULLs compare equal, |
| 1987 ** NULLs are less than numbers, numbers are less than strings, |
| 1988 ** and strings are less than blobs. |
| 1989 */ |
| 1990 case OP_Compare: { |
| 1991 int n; |
| 1992 int i; |
| 1993 int p1; |
| 1994 int p2; |
| 1995 const KeyInfo *pKeyInfo; |
| 1996 int idx; |
| 1997 CollSeq *pColl; /* Collating sequence to use on this term */ |
| 1998 int bRev; /* True for DESCENDING sort order */ |
| 1999 |
| 2000 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0; |
| 2001 n = pOp->p3; |
| 2002 pKeyInfo = pOp->p4.pKeyInfo; |
| 2003 assert( n>0 ); |
| 2004 assert( pKeyInfo!=0 ); |
| 2005 p1 = pOp->p1; |
| 2006 p2 = pOp->p2; |
| 2007 #if SQLITE_DEBUG |
| 2008 if( aPermute ){ |
| 2009 int k, mx = 0; |
| 2010 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; |
| 2011 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 ); |
| 2012 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 ); |
| 2013 }else{ |
| 2014 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 ); |
| 2015 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 ); |
| 2016 } |
| 2017 #endif /* SQLITE_DEBUG */ |
| 2018 for(i=0; i<n; i++){ |
| 2019 idx = aPermute ? aPermute[i] : i; |
| 2020 assert( memIsValid(&aMem[p1+idx]) ); |
| 2021 assert( memIsValid(&aMem[p2+idx]) ); |
| 2022 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); |
| 2023 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); |
| 2024 assert( i<pKeyInfo->nField ); |
| 2025 pColl = pKeyInfo->aColl[i]; |
| 2026 bRev = pKeyInfo->aSortOrder[i]; |
| 2027 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); |
| 2028 if( iCompare ){ |
| 2029 if( bRev ) iCompare = -iCompare; |
| 2030 break; |
| 2031 } |
| 2032 } |
| 2033 aPermute = 0; |
| 2034 break; |
| 2035 } |
| 2036 |
| 2037 /* Opcode: Jump P1 P2 P3 * * |
| 2038 ** |
| 2039 ** Jump to the instruction at address P1, P2, or P3 depending on whether |
| 2040 ** in the most recent OP_Compare instruction the P1 vector was less than |
| 2041 ** equal to, or greater than the P2 vector, respectively. |
| 2042 */ |
| 2043 case OP_Jump: { /* jump */ |
| 2044 if( iCompare<0 ){ |
| 2045 pc = pOp->p1 - 1; VdbeBranchTaken(0,3); |
| 2046 }else if( iCompare==0 ){ |
| 2047 pc = pOp->p2 - 1; VdbeBranchTaken(1,3); |
| 2048 }else{ |
| 2049 pc = pOp->p3 - 1; VdbeBranchTaken(2,3); |
| 2050 } |
| 2051 break; |
| 2052 } |
| 2053 |
| 2054 /* Opcode: And P1 P2 P3 * * |
| 2055 ** Synopsis: r[P3]=(r[P1] && r[P2]) |
| 2056 ** |
| 2057 ** Take the logical AND of the values in registers P1 and P2 and |
| 2058 ** write the result into register P3. |
| 2059 ** |
| 2060 ** If either P1 or P2 is 0 (false) then the result is 0 even if |
| 2061 ** the other input is NULL. A NULL and true or two NULLs give |
| 2062 ** a NULL output. |
| 2063 */ |
| 2064 /* Opcode: Or P1 P2 P3 * * |
| 2065 ** Synopsis: r[P3]=(r[P1] || r[P2]) |
| 2066 ** |
| 2067 ** Take the logical OR of the values in register P1 and P2 and |
| 2068 ** store the answer in register P3. |
| 2069 ** |
| 2070 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) |
| 2071 ** even if the other input is NULL. A NULL and false or two NULLs |
| 2072 ** give a NULL output. |
| 2073 */ |
| 2074 case OP_And: /* same as TK_AND, in1, in2, out3 */ |
| 2075 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ |
| 2076 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
| 2077 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
| 2078 |
| 2079 pIn1 = &aMem[pOp->p1]; |
| 2080 if( pIn1->flags & MEM_Null ){ |
| 2081 v1 = 2; |
| 2082 }else{ |
| 2083 v1 = sqlite3VdbeIntValue(pIn1)!=0; |
| 2084 } |
| 2085 pIn2 = &aMem[pOp->p2]; |
| 2086 if( pIn2->flags & MEM_Null ){ |
| 2087 v2 = 2; |
| 2088 }else{ |
| 2089 v2 = sqlite3VdbeIntValue(pIn2)!=0; |
| 2090 } |
| 2091 if( pOp->opcode==OP_And ){ |
| 2092 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
| 2093 v1 = and_logic[v1*3+v2]; |
| 2094 }else{ |
| 2095 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
| 2096 v1 = or_logic[v1*3+v2]; |
| 2097 } |
| 2098 pOut = &aMem[pOp->p3]; |
| 2099 if( v1==2 ){ |
| 2100 MemSetTypeFlag(pOut, MEM_Null); |
| 2101 }else{ |
| 2102 pOut->u.i = v1; |
| 2103 MemSetTypeFlag(pOut, MEM_Int); |
| 2104 } |
| 2105 break; |
| 2106 } |
| 2107 |
| 2108 /* Opcode: Not P1 P2 * * * |
| 2109 ** Synopsis: r[P2]= !r[P1] |
| 2110 ** |
| 2111 ** Interpret the value in register P1 as a boolean value. Store the |
| 2112 ** boolean complement in register P2. If the value in register P1 is |
| 2113 ** NULL, then a NULL is stored in P2. |
| 2114 */ |
| 2115 case OP_Not: { /* same as TK_NOT, in1, out2 */ |
| 2116 pIn1 = &aMem[pOp->p1]; |
| 2117 pOut = &aMem[pOp->p2]; |
| 2118 sqlite3VdbeMemSetNull(pOut); |
| 2119 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2120 pOut->flags = MEM_Int; |
| 2121 pOut->u.i = !sqlite3VdbeIntValue(pIn1); |
| 2122 } |
| 2123 break; |
| 2124 } |
| 2125 |
| 2126 /* Opcode: BitNot P1 P2 * * * |
| 2127 ** Synopsis: r[P1]= ~r[P1] |
| 2128 ** |
| 2129 ** Interpret the content of register P1 as an integer. Store the |
| 2130 ** ones-complement of the P1 value into register P2. If P1 holds |
| 2131 ** a NULL then store a NULL in P2. |
| 2132 */ |
| 2133 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ |
| 2134 pIn1 = &aMem[pOp->p1]; |
| 2135 pOut = &aMem[pOp->p2]; |
| 2136 sqlite3VdbeMemSetNull(pOut); |
| 2137 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2138 pOut->flags = MEM_Int; |
| 2139 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); |
| 2140 } |
| 2141 break; |
| 2142 } |
| 2143 |
| 2144 /* Opcode: Once P1 P2 * * * |
| 2145 ** |
| 2146 ** Check the "once" flag number P1. If it is set, jump to instruction P2. |
| 2147 ** Otherwise, set the flag and fall through to the next instruction. |
| 2148 ** In other words, this opcode causes all following opcodes up through P2 |
| 2149 ** (but not including P2) to run just once and to be skipped on subsequent |
| 2150 ** times through the loop. |
| 2151 ** |
| 2152 ** All "once" flags are initially cleared whenever a prepared statement |
| 2153 ** first begins to run. |
| 2154 */ |
| 2155 case OP_Once: { /* jump */ |
| 2156 assert( pOp->p1<p->nOnceFlag ); |
| 2157 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); |
| 2158 if( p->aOnceFlag[pOp->p1] ){ |
| 2159 pc = pOp->p2-1; |
| 2160 }else{ |
| 2161 p->aOnceFlag[pOp->p1] = 1; |
| 2162 } |
| 2163 break; |
| 2164 } |
| 2165 |
| 2166 /* Opcode: If P1 P2 P3 * * |
| 2167 ** |
| 2168 ** Jump to P2 if the value in register P1 is true. The value |
| 2169 ** is considered true if it is numeric and non-zero. If the value |
| 2170 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
| 2171 */ |
| 2172 /* Opcode: IfNot P1 P2 P3 * * |
| 2173 ** |
| 2174 ** Jump to P2 if the value in register P1 is False. The value |
| 2175 ** is considered false if it has a numeric value of zero. If the value |
| 2176 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
| 2177 */ |
| 2178 case OP_If: /* jump, in1 */ |
| 2179 case OP_IfNot: { /* jump, in1 */ |
| 2180 int c; |
| 2181 pIn1 = &aMem[pOp->p1]; |
| 2182 if( pIn1->flags & MEM_Null ){ |
| 2183 c = pOp->p3; |
| 2184 }else{ |
| 2185 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 2186 c = sqlite3VdbeIntValue(pIn1)!=0; |
| 2187 #else |
| 2188 c = sqlite3VdbeRealValue(pIn1)!=0.0; |
| 2189 #endif |
| 2190 if( pOp->opcode==OP_IfNot ) c = !c; |
| 2191 } |
| 2192 VdbeBranchTaken(c!=0, 2); |
| 2193 if( c ){ |
| 2194 pc = pOp->p2-1; |
| 2195 } |
| 2196 break; |
| 2197 } |
| 2198 |
| 2199 /* Opcode: IsNull P1 P2 * * * |
| 2200 ** Synopsis: if r[P1]==NULL goto P2 |
| 2201 ** |
| 2202 ** Jump to P2 if the value in register P1 is NULL. |
| 2203 */ |
| 2204 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ |
| 2205 pIn1 = &aMem[pOp->p1]; |
| 2206 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); |
| 2207 if( (pIn1->flags & MEM_Null)!=0 ){ |
| 2208 pc = pOp->p2 - 1; |
| 2209 } |
| 2210 break; |
| 2211 } |
| 2212 |
| 2213 /* Opcode: NotNull P1 P2 * * * |
| 2214 ** Synopsis: if r[P1]!=NULL goto P2 |
| 2215 ** |
| 2216 ** Jump to P2 if the value in register P1 is not NULL. |
| 2217 */ |
| 2218 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ |
| 2219 pIn1 = &aMem[pOp->p1]; |
| 2220 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); |
| 2221 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2222 pc = pOp->p2 - 1; |
| 2223 } |
| 2224 break; |
| 2225 } |
| 2226 |
| 2227 /* Opcode: Column P1 P2 P3 P4 P5 |
| 2228 ** Synopsis: r[P3]=PX |
| 2229 ** |
| 2230 ** Interpret the data that cursor P1 points to as a structure built using |
| 2231 ** the MakeRecord instruction. (See the MakeRecord opcode for additional |
| 2232 ** information about the format of the data.) Extract the P2-th column |
| 2233 ** from this record. If there are less that (P2+1) |
| 2234 ** values in the record, extract a NULL. |
| 2235 ** |
| 2236 ** The value extracted is stored in register P3. |
| 2237 ** |
| 2238 ** If the column contains fewer than P2 fields, then extract a NULL. Or, |
| 2239 ** if the P4 argument is a P4_MEM use the value of the P4 argument as |
| 2240 ** the result. |
| 2241 ** |
| 2242 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, |
| 2243 ** then the cache of the cursor is reset prior to extracting the column. |
| 2244 ** The first OP_Column against a pseudo-table after the value of the content |
| 2245 ** register has changed should have this bit set. |
| 2246 ** |
| 2247 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when |
| 2248 ** the result is guaranteed to only be used as the argument of a length() |
| 2249 ** or typeof() function, respectively. The loading of large blobs can be |
| 2250 ** skipped for length() and all content loading can be skipped for typeof(). |
| 2251 */ |
| 2252 case OP_Column: { |
| 2253 i64 payloadSize64; /* Number of bytes in the record */ |
| 2254 int p2; /* column number to retrieve */ |
| 2255 VdbeCursor *pC; /* The VDBE cursor */ |
| 2256 BtCursor *pCrsr; /* The BTree cursor */ |
| 2257 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
| 2258 int len; /* The length of the serialized data for the column */ |
| 2259 int i; /* Loop counter */ |
| 2260 Mem *pDest; /* Where to write the extracted value */ |
| 2261 Mem sMem; /* For storing the record being decoded */ |
| 2262 const u8 *zData; /* Part of the record being decoded */ |
| 2263 const u8 *zHdr; /* Next unparsed byte of the header */ |
| 2264 const u8 *zEndHdr; /* Pointer to first byte after the header */ |
| 2265 u32 offset; /* Offset into the data */ |
| 2266 u32 szField; /* Number of bytes in the content of a field */ |
| 2267 u32 avail; /* Number of bytes of available data */ |
| 2268 u32 t; /* A type code from the record header */ |
| 2269 u16 fx; /* pDest->flags value */ |
| 2270 Mem *pReg; /* PseudoTable input register */ |
| 2271 |
| 2272 p2 = pOp->p2; |
| 2273 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 2274 pDest = &aMem[pOp->p3]; |
| 2275 memAboutToChange(p, pDest); |
| 2276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 2277 pC = p->apCsr[pOp->p1]; |
| 2278 assert( pC!=0 ); |
| 2279 assert( p2<pC->nField ); |
| 2280 aOffset = pC->aOffset; |
| 2281 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2282 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */ |
| 2283 #endif |
| 2284 pCrsr = pC->pCursor; |
| 2285 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */ |
| 2286 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */ |
| 2287 |
| 2288 /* If the cursor cache is stale, bring it up-to-date */ |
| 2289 rc = sqlite3VdbeCursorMoveto(pC); |
| 2290 if( rc ) goto abort_due_to_error; |
| 2291 if( pC->cacheStatus!=p->cacheCtr ){ |
| 2292 if( pC->nullRow ){ |
| 2293 if( pCrsr==0 ){ |
| 2294 assert( pC->pseudoTableReg>0 ); |
| 2295 pReg = &aMem[pC->pseudoTableReg]; |
| 2296 assert( pReg->flags & MEM_Blob ); |
| 2297 assert( memIsValid(pReg) ); |
| 2298 pC->payloadSize = pC->szRow = avail = pReg->n; |
| 2299 pC->aRow = (u8*)pReg->z; |
| 2300 }else{ |
| 2301 sqlite3VdbeMemSetNull(pDest); |
| 2302 goto op_column_out; |
| 2303 } |
| 2304 }else{ |
| 2305 assert( pCrsr ); |
| 2306 if( pC->isTable==0 ){ |
| 2307 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 2308 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
| 2309 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
| 2310 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the |
| 2311 ** payload size, so it is impossible for payloadSize64 to be |
| 2312 ** larger than 32 bits. */ |
| 2313 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); |
| 2314 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail); |
| 2315 pC->payloadSize = (u32)payloadSize64; |
| 2316 }else{ |
| 2317 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 2318 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize); |
| 2319 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
| 2320 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail); |
| 2321 } |
| 2322 assert( avail<=65536 ); /* Maximum page size is 64KiB */ |
| 2323 if( pC->payloadSize <= (u32)avail ){ |
| 2324 pC->szRow = pC->payloadSize; |
| 2325 }else{ |
| 2326 pC->szRow = avail; |
| 2327 } |
| 2328 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2329 goto too_big; |
| 2330 } |
| 2331 } |
| 2332 pC->cacheStatus = p->cacheCtr; |
| 2333 pC->iHdrOffset = getVarint32(pC->aRow, offset); |
| 2334 pC->nHdrParsed = 0; |
| 2335 aOffset[0] = offset; |
| 2336 |
| 2337 /* Make sure a corrupt database has not given us an oversize header. |
| 2338 ** Do this now to avoid an oversize memory allocation. |
| 2339 ** |
| 2340 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte |
| 2341 ** types use so much data space that there can only be 4096 and 32 of |
| 2342 ** them, respectively. So the maximum header length results from a |
| 2343 ** 3-byte type for each of the maximum of 32768 columns plus three |
| 2344 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. |
| 2345 */ |
| 2346 if( offset > 98307 || offset > pC->payloadSize ){ |
| 2347 rc = SQLITE_CORRUPT_BKPT; |
| 2348 goto op_column_error; |
| 2349 } |
| 2350 |
| 2351 if( avail<offset ){ |
| 2352 /* pC->aRow does not have to hold the entire row, but it does at least |
| 2353 ** need to cover the header of the record. If pC->aRow does not contain |
| 2354 ** the complete header, then set it to zero, forcing the header to be |
| 2355 ** dynamically allocated. */ |
| 2356 pC->aRow = 0; |
| 2357 pC->szRow = 0; |
| 2358 } |
| 2359 |
| 2360 /* The following goto is an optimization. It can be omitted and |
| 2361 ** everything will still work. But OP_Column is measurably faster |
| 2362 ** by skipping the subsequent conditional, which is always true. |
| 2363 */ |
| 2364 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ |
| 2365 goto op_column_read_header; |
| 2366 } |
| 2367 |
| 2368 /* Make sure at least the first p2+1 entries of the header have been |
| 2369 ** parsed and valid information is in aOffset[] and pC->aType[]. |
| 2370 */ |
| 2371 if( pC->nHdrParsed<=p2 ){ |
| 2372 /* If there is more header available for parsing in the record, try |
| 2373 ** to extract additional fields up through the p2+1-th field |
| 2374 */ |
| 2375 op_column_read_header: |
| 2376 if( pC->iHdrOffset<aOffset[0] ){ |
| 2377 /* Make sure zData points to enough of the record to cover the header. */ |
| 2378 if( pC->aRow==0 ){ |
| 2379 memset(&sMem, 0, sizeof(sMem)); |
| 2380 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], |
| 2381 !pC->isTable, &sMem); |
| 2382 if( rc!=SQLITE_OK ){ |
| 2383 goto op_column_error; |
| 2384 } |
| 2385 zData = (u8*)sMem.z; |
| 2386 }else{ |
| 2387 zData = pC->aRow; |
| 2388 } |
| 2389 |
| 2390 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ |
| 2391 i = pC->nHdrParsed; |
| 2392 offset = aOffset[i]; |
| 2393 zHdr = zData + pC->iHdrOffset; |
| 2394 zEndHdr = zData + aOffset[0]; |
| 2395 assert( i<=p2 && zHdr<zEndHdr ); |
| 2396 do{ |
| 2397 if( zHdr[0]<0x80 ){ |
| 2398 t = zHdr[0]; |
| 2399 zHdr++; |
| 2400 }else{ |
| 2401 zHdr += sqlite3GetVarint32(zHdr, &t); |
| 2402 } |
| 2403 pC->aType[i] = t; |
| 2404 szField = sqlite3VdbeSerialTypeLen(t); |
| 2405 offset += szField; |
| 2406 if( offset<szField ){ /* True if offset overflows */ |
| 2407 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ |
| 2408 break; |
| 2409 } |
| 2410 i++; |
| 2411 aOffset[i] = offset; |
| 2412 }while( i<=p2 && zHdr<zEndHdr ); |
| 2413 pC->nHdrParsed = i; |
| 2414 pC->iHdrOffset = (u32)(zHdr - zData); |
| 2415 if( pC->aRow==0 ){ |
| 2416 sqlite3VdbeMemRelease(&sMem); |
| 2417 sMem.flags = MEM_Null; |
| 2418 } |
| 2419 |
| 2420 /* The record is corrupt if any of the following are true: |
| 2421 ** (1) the bytes of the header extend past the declared header size |
| 2422 ** (zHdr>zEndHdr) |
| 2423 ** (2) the entire header was used but not all data was used |
| 2424 ** (zHdr==zEndHdr && offset!=pC->payloadSize) |
| 2425 ** (3) the end of the data extends beyond the end of the record. |
| 2426 ** (offset > pC->payloadSize) |
| 2427 */ |
| 2428 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize)) |
| 2429 || (offset > pC->payloadSize) |
| 2430 ){ |
| 2431 rc = SQLITE_CORRUPT_BKPT; |
| 2432 goto op_column_error; |
| 2433 } |
| 2434 } |
| 2435 |
| 2436 /* If after trying to extra new entries from the header, nHdrParsed is |
| 2437 ** still not up to p2, that means that the record has fewer than p2 |
| 2438 ** columns. So the result will be either the default value or a NULL. |
| 2439 */ |
| 2440 if( pC->nHdrParsed<=p2 ){ |
| 2441 if( pOp->p4type==P4_MEM ){ |
| 2442 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); |
| 2443 }else{ |
| 2444 sqlite3VdbeMemSetNull(pDest); |
| 2445 } |
| 2446 goto op_column_out; |
| 2447 } |
| 2448 } |
| 2449 |
| 2450 /* Extract the content for the p2+1-th column. Control can only |
| 2451 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are |
| 2452 ** all valid. |
| 2453 */ |
| 2454 assert( p2<pC->nHdrParsed ); |
| 2455 assert( rc==SQLITE_OK ); |
| 2456 assert( sqlite3VdbeCheckMemInvariants(pDest) ); |
| 2457 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest); |
| 2458 t = pC->aType[p2]; |
| 2459 if( pC->szRow>=aOffset[p2+1] ){ |
| 2460 /* This is the common case where the desired content fits on the original |
| 2461 ** page - where the content is not on an overflow page */ |
| 2462 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest); |
| 2463 }else{ |
| 2464 /* This branch happens only when content is on overflow pages */ |
| 2465 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 |
| 2466 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) |
| 2467 || (len = sqlite3VdbeSerialTypeLen(t))==0 |
| 2468 ){ |
| 2469 /* Content is irrelevant for |
| 2470 ** 1. the typeof() function, |
| 2471 ** 2. the length(X) function if X is a blob, and |
| 2472 ** 3. if the content length is zero. |
| 2473 ** So we might as well use bogus content rather than reading |
| 2474 ** content from disk. NULL will work for the value for strings |
| 2475 ** and blobs and whatever is in the payloadSize64 variable |
| 2476 ** will work for everything else. */ |
| 2477 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest); |
| 2478 }else{ |
| 2479 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable, |
| 2480 pDest); |
| 2481 if( rc!=SQLITE_OK ){ |
| 2482 goto op_column_error; |
| 2483 } |
| 2484 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); |
| 2485 pDest->flags &= ~MEM_Ephem; |
| 2486 } |
| 2487 } |
| 2488 pDest->enc = encoding; |
| 2489 |
| 2490 op_column_out: |
| 2491 /* If the column value is an ephemeral string, go ahead and persist |
| 2492 ** that string in case the cursor moves before the column value is |
| 2493 ** used. The following code does the equivalent of Deephemeralize() |
| 2494 ** but does it faster. */ |
| 2495 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){ |
| 2496 fx = pDest->flags & (MEM_Str|MEM_Blob); |
| 2497 assert( fx!=0 ); |
| 2498 zData = (const u8*)pDest->z; |
| 2499 len = pDest->n; |
| 2500 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem; |
| 2501 memcpy(pDest->z, zData, len); |
| 2502 pDest->z[len] = 0; |
| 2503 pDest->z[len+1] = 0; |
| 2504 pDest->flags = fx|MEM_Term; |
| 2505 } |
| 2506 op_column_error: |
| 2507 UPDATE_MAX_BLOBSIZE(pDest); |
| 2508 REGISTER_TRACE(pOp->p3, pDest); |
| 2509 break; |
| 2510 } |
| 2511 |
| 2512 /* Opcode: Affinity P1 P2 * P4 * |
| 2513 ** Synopsis: affinity(r[P1@P2]) |
| 2514 ** |
| 2515 ** Apply affinities to a range of P2 registers starting with P1. |
| 2516 ** |
| 2517 ** P4 is a string that is P2 characters long. The nth character of the |
| 2518 ** string indicates the column affinity that should be used for the nth |
| 2519 ** memory cell in the range. |
| 2520 */ |
| 2521 case OP_Affinity: { |
| 2522 const char *zAffinity; /* The affinity to be applied */ |
| 2523 char cAff; /* A single character of affinity */ |
| 2524 |
| 2525 zAffinity = pOp->p4.z; |
| 2526 assert( zAffinity!=0 ); |
| 2527 assert( zAffinity[pOp->p2]==0 ); |
| 2528 pIn1 = &aMem[pOp->p1]; |
| 2529 while( (cAff = *(zAffinity++))!=0 ){ |
| 2530 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] ); |
| 2531 assert( memIsValid(pIn1) ); |
| 2532 applyAffinity(pIn1, cAff, encoding); |
| 2533 pIn1++; |
| 2534 } |
| 2535 break; |
| 2536 } |
| 2537 |
| 2538 /* Opcode: MakeRecord P1 P2 P3 P4 * |
| 2539 ** Synopsis: r[P3]=mkrec(r[P1@P2]) |
| 2540 ** |
| 2541 ** Convert P2 registers beginning with P1 into the [record format] |
| 2542 ** use as a data record in a database table or as a key |
| 2543 ** in an index. The OP_Column opcode can decode the record later. |
| 2544 ** |
| 2545 ** P4 may be a string that is P2 characters long. The nth character of the |
| 2546 ** string indicates the column affinity that should be used for the nth |
| 2547 ** field of the index key. |
| 2548 ** |
| 2549 ** The mapping from character to affinity is given by the SQLITE_AFF_ |
| 2550 ** macros defined in sqliteInt.h. |
| 2551 ** |
| 2552 ** If P4 is NULL then all index fields have the affinity NONE. |
| 2553 */ |
| 2554 case OP_MakeRecord: { |
| 2555 u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
| 2556 Mem *pRec; /* The new record */ |
| 2557 u64 nData; /* Number of bytes of data space */ |
| 2558 int nHdr; /* Number of bytes of header space */ |
| 2559 i64 nByte; /* Data space required for this record */ |
| 2560 int nZero; /* Number of zero bytes at the end of the record */ |
| 2561 int nVarint; /* Number of bytes in a varint */ |
| 2562 u32 serial_type; /* Type field */ |
| 2563 Mem *pData0; /* First field to be combined into the record */ |
| 2564 Mem *pLast; /* Last field of the record */ |
| 2565 int nField; /* Number of fields in the record */ |
| 2566 char *zAffinity; /* The affinity string for the record */ |
| 2567 int file_format; /* File format to use for encoding */ |
| 2568 int i; /* Space used in zNewRecord[] header */ |
| 2569 int j; /* Space used in zNewRecord[] content */ |
| 2570 int len; /* Length of a field */ |
| 2571 |
| 2572 /* Assuming the record contains N fields, the record format looks |
| 2573 ** like this: |
| 2574 ** |
| 2575 ** ------------------------------------------------------------------------ |
| 2576 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
| 2577 ** ------------------------------------------------------------------------ |
| 2578 ** |
| 2579 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 |
| 2580 ** and so forth. |
| 2581 ** |
| 2582 ** Each type field is a varint representing the serial type of the |
| 2583 ** corresponding data element (see sqlite3VdbeSerialType()). The |
| 2584 ** hdr-size field is also a varint which is the offset from the beginning |
| 2585 ** of the record to data0. |
| 2586 */ |
| 2587 nData = 0; /* Number of bytes of data space */ |
| 2588 nHdr = 0; /* Number of bytes of header space */ |
| 2589 nZero = 0; /* Number of zero bytes at the end of the record */ |
| 2590 nField = pOp->p1; |
| 2591 zAffinity = pOp->p4.z; |
| 2592 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 ); |
| 2593 pData0 = &aMem[nField]; |
| 2594 nField = pOp->p2; |
| 2595 pLast = &pData0[nField-1]; |
| 2596 file_format = p->minWriteFileFormat; |
| 2597 |
| 2598 /* Identify the output register */ |
| 2599 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); |
| 2600 pOut = &aMem[pOp->p3]; |
| 2601 memAboutToChange(p, pOut); |
| 2602 |
| 2603 /* Apply the requested affinity to all inputs |
| 2604 */ |
| 2605 assert( pData0<=pLast ); |
| 2606 if( zAffinity ){ |
| 2607 pRec = pData0; |
| 2608 do{ |
| 2609 applyAffinity(pRec++, *(zAffinity++), encoding); |
| 2610 assert( zAffinity[0]==0 || pRec<=pLast ); |
| 2611 }while( zAffinity[0] ); |
| 2612 } |
| 2613 |
| 2614 /* Loop through the elements that will make up the record to figure |
| 2615 ** out how much space is required for the new record. |
| 2616 */ |
| 2617 pRec = pLast; |
| 2618 do{ |
| 2619 assert( memIsValid(pRec) ); |
| 2620 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format); |
| 2621 len = sqlite3VdbeSerialTypeLen(serial_type); |
| 2622 if( pRec->flags & MEM_Zero ){ |
| 2623 if( nData ){ |
| 2624 sqlite3VdbeMemExpandBlob(pRec); |
| 2625 }else{ |
| 2626 nZero += pRec->u.nZero; |
| 2627 len -= pRec->u.nZero; |
| 2628 } |
| 2629 } |
| 2630 nData += len; |
| 2631 testcase( serial_type==127 ); |
| 2632 testcase( serial_type==128 ); |
| 2633 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); |
| 2634 }while( (--pRec)>=pData0 ); |
| 2635 |
| 2636 /* Add the initial header varint and total the size */ |
| 2637 testcase( nHdr==126 ); |
| 2638 testcase( nHdr==127 ); |
| 2639 if( nHdr<=126 ){ |
| 2640 /* The common case */ |
| 2641 nHdr += 1; |
| 2642 }else{ |
| 2643 /* Rare case of a really large header */ |
| 2644 nVarint = sqlite3VarintLen(nHdr); |
| 2645 nHdr += nVarint; |
| 2646 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; |
| 2647 } |
| 2648 nByte = nHdr+nData; |
| 2649 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2650 goto too_big; |
| 2651 } |
| 2652 |
| 2653 /* Make sure the output register has a buffer large enough to store |
| 2654 ** the new record. The output register (pOp->p3) is not allowed to |
| 2655 ** be one of the input registers (because the following call to |
| 2656 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). |
| 2657 */ |
| 2658 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ |
| 2659 goto no_mem; |
| 2660 } |
| 2661 zNewRecord = (u8 *)pOut->z; |
| 2662 |
| 2663 /* Write the record */ |
| 2664 i = putVarint32(zNewRecord, nHdr); |
| 2665 j = nHdr; |
| 2666 assert( pData0<=pLast ); |
| 2667 pRec = pData0; |
| 2668 do{ |
| 2669 serial_type = pRec->uTemp; |
| 2670 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ |
| 2671 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ |
| 2672 }while( (++pRec)<=pLast ); |
| 2673 assert( i==nHdr ); |
| 2674 assert( j==nByte ); |
| 2675 |
| 2676 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 2677 pOut->n = (int)nByte; |
| 2678 pOut->flags = MEM_Blob; |
| 2679 if( nZero ){ |
| 2680 pOut->u.nZero = nZero; |
| 2681 pOut->flags |= MEM_Zero; |
| 2682 } |
| 2683 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
| 2684 REGISTER_TRACE(pOp->p3, pOut); |
| 2685 UPDATE_MAX_BLOBSIZE(pOut); |
| 2686 break; |
| 2687 } |
| 2688 |
| 2689 /* Opcode: Count P1 P2 * * * |
| 2690 ** Synopsis: r[P2]=count() |
| 2691 ** |
| 2692 ** Store the number of entries (an integer value) in the table or index |
| 2693 ** opened by cursor P1 in register P2 |
| 2694 */ |
| 2695 #ifndef SQLITE_OMIT_BTREECOUNT |
| 2696 case OP_Count: { /* out2-prerelease */ |
| 2697 i64 nEntry; |
| 2698 BtCursor *pCrsr; |
| 2699 |
| 2700 pCrsr = p->apCsr[pOp->p1]->pCursor; |
| 2701 assert( pCrsr ); |
| 2702 nEntry = 0; /* Not needed. Only used to silence a warning. */ |
| 2703 rc = sqlite3BtreeCount(pCrsr, &nEntry); |
| 2704 pOut->u.i = nEntry; |
| 2705 break; |
| 2706 } |
| 2707 #endif |
| 2708 |
| 2709 /* Opcode: Savepoint P1 * * P4 * |
| 2710 ** |
| 2711 ** Open, release or rollback the savepoint named by parameter P4, depending |
| 2712 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an |
| 2713 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. |
| 2714 */ |
| 2715 case OP_Savepoint: { |
| 2716 int p1; /* Value of P1 operand */ |
| 2717 char *zName; /* Name of savepoint */ |
| 2718 int nName; |
| 2719 Savepoint *pNew; |
| 2720 Savepoint *pSavepoint; |
| 2721 Savepoint *pTmp; |
| 2722 int iSavepoint; |
| 2723 int ii; |
| 2724 |
| 2725 p1 = pOp->p1; |
| 2726 zName = pOp->p4.z; |
| 2727 |
| 2728 /* Assert that the p1 parameter is valid. Also that if there is no open |
| 2729 ** transaction, then there cannot be any savepoints. |
| 2730 */ |
| 2731 assert( db->pSavepoint==0 || db->autoCommit==0 ); |
| 2732 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); |
| 2733 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); |
| 2734 assert( checkSavepointCount(db) ); |
| 2735 assert( p->bIsReader ); |
| 2736 |
| 2737 if( p1==SAVEPOINT_BEGIN ){ |
| 2738 if( db->nVdbeWrite>0 ){ |
| 2739 /* A new savepoint cannot be created if there are active write |
| 2740 ** statements (i.e. open read/write incremental blob handles). |
| 2741 */ |
| 2742 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " |
| 2743 "SQL statements in progress"); |
| 2744 rc = SQLITE_BUSY; |
| 2745 }else{ |
| 2746 nName = sqlite3Strlen30(zName); |
| 2747 |
| 2748 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2749 /* This call is Ok even if this savepoint is actually a transaction |
| 2750 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. |
| 2751 ** If this is a transaction savepoint being opened, it is guaranteed |
| 2752 ** that the db->aVTrans[] array is empty. */ |
| 2753 assert( db->autoCommit==0 || db->nVTrans==0 ); |
| 2754 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, |
| 2755 db->nStatement+db->nSavepoint); |
| 2756 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2757 #endif |
| 2758 |
| 2759 /* Create a new savepoint structure. */ |
| 2760 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); |
| 2761 if( pNew ){ |
| 2762 pNew->zName = (char *)&pNew[1]; |
| 2763 memcpy(pNew->zName, zName, nName+1); |
| 2764 |
| 2765 /* If there is no open transaction, then mark this as a special |
| 2766 ** "transaction savepoint". */ |
| 2767 if( db->autoCommit ){ |
| 2768 db->autoCommit = 0; |
| 2769 db->isTransactionSavepoint = 1; |
| 2770 }else{ |
| 2771 db->nSavepoint++; |
| 2772 } |
| 2773 |
| 2774 /* Link the new savepoint into the database handle's list. */ |
| 2775 pNew->pNext = db->pSavepoint; |
| 2776 db->pSavepoint = pNew; |
| 2777 pNew->nDeferredCons = db->nDeferredCons; |
| 2778 pNew->nDeferredImmCons = db->nDeferredImmCons; |
| 2779 } |
| 2780 } |
| 2781 }else{ |
| 2782 iSavepoint = 0; |
| 2783 |
| 2784 /* Find the named savepoint. If there is no such savepoint, then an |
| 2785 ** an error is returned to the user. */ |
| 2786 for( |
| 2787 pSavepoint = db->pSavepoint; |
| 2788 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); |
| 2789 pSavepoint = pSavepoint->pNext |
| 2790 ){ |
| 2791 iSavepoint++; |
| 2792 } |
| 2793 if( !pSavepoint ){ |
| 2794 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); |
| 2795 rc = SQLITE_ERROR; |
| 2796 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ |
| 2797 /* It is not possible to release (commit) a savepoint if there are |
| 2798 ** active write statements. |
| 2799 */ |
| 2800 sqlite3SetString(&p->zErrMsg, db, |
| 2801 "cannot release savepoint - SQL statements in progress" |
| 2802 ); |
| 2803 rc = SQLITE_BUSY; |
| 2804 }else{ |
| 2805 |
| 2806 /* Determine whether or not this is a transaction savepoint. If so, |
| 2807 ** and this is a RELEASE command, then the current transaction |
| 2808 ** is committed. |
| 2809 */ |
| 2810 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; |
| 2811 if( isTransaction && p1==SAVEPOINT_RELEASE ){ |
| 2812 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
| 2813 goto vdbe_return; |
| 2814 } |
| 2815 db->autoCommit = 1; |
| 2816 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
| 2817 p->pc = pc; |
| 2818 db->autoCommit = 0; |
| 2819 p->rc = rc = SQLITE_BUSY; |
| 2820 goto vdbe_return; |
| 2821 } |
| 2822 db->isTransactionSavepoint = 0; |
| 2823 rc = p->rc; |
| 2824 }else{ |
| 2825 int isSchemaChange; |
| 2826 iSavepoint = db->nSavepoint - iSavepoint - 1; |
| 2827 if( p1==SAVEPOINT_ROLLBACK ){ |
| 2828 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; |
| 2829 for(ii=0; ii<db->nDb; ii++){ |
| 2830 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, |
| 2831 SQLITE_ABORT_ROLLBACK, |
| 2832 isSchemaChange==0); |
| 2833 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2834 } |
| 2835 }else{ |
| 2836 isSchemaChange = 0; |
| 2837 } |
| 2838 for(ii=0; ii<db->nDb; ii++){ |
| 2839 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); |
| 2840 if( rc!=SQLITE_OK ){ |
| 2841 goto abort_due_to_error; |
| 2842 } |
| 2843 } |
| 2844 if( isSchemaChange ){ |
| 2845 sqlite3ExpirePreparedStatements(db); |
| 2846 sqlite3ResetAllSchemasOfConnection(db); |
| 2847 db->flags = (db->flags | SQLITE_InternChanges); |
| 2848 } |
| 2849 } |
| 2850 |
| 2851 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all |
| 2852 ** savepoints nested inside of the savepoint being operated on. */ |
| 2853 while( db->pSavepoint!=pSavepoint ){ |
| 2854 pTmp = db->pSavepoint; |
| 2855 db->pSavepoint = pTmp->pNext; |
| 2856 sqlite3DbFree(db, pTmp); |
| 2857 db->nSavepoint--; |
| 2858 } |
| 2859 |
| 2860 /* If it is a RELEASE, then destroy the savepoint being operated on |
| 2861 ** too. If it is a ROLLBACK TO, then set the number of deferred |
| 2862 ** constraint violations present in the database to the value stored |
| 2863 ** when the savepoint was created. */ |
| 2864 if( p1==SAVEPOINT_RELEASE ){ |
| 2865 assert( pSavepoint==db->pSavepoint ); |
| 2866 db->pSavepoint = pSavepoint->pNext; |
| 2867 sqlite3DbFree(db, pSavepoint); |
| 2868 if( !isTransaction ){ |
| 2869 db->nSavepoint--; |
| 2870 } |
| 2871 }else{ |
| 2872 db->nDeferredCons = pSavepoint->nDeferredCons; |
| 2873 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; |
| 2874 } |
| 2875 |
| 2876 if( !isTransaction ){ |
| 2877 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); |
| 2878 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2879 } |
| 2880 } |
| 2881 } |
| 2882 |
| 2883 break; |
| 2884 } |
| 2885 |
| 2886 /* Opcode: AutoCommit P1 P2 * * * |
| 2887 ** |
| 2888 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll |
| 2889 ** back any currently active btree transactions. If there are any active |
| 2890 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if |
| 2891 ** there are active writing VMs or active VMs that use shared cache. |
| 2892 ** |
| 2893 ** This instruction causes the VM to halt. |
| 2894 */ |
| 2895 case OP_AutoCommit: { |
| 2896 int desiredAutoCommit; |
| 2897 int iRollback; |
| 2898 int turnOnAC; |
| 2899 |
| 2900 desiredAutoCommit = pOp->p1; |
| 2901 iRollback = pOp->p2; |
| 2902 turnOnAC = desiredAutoCommit && !db->autoCommit; |
| 2903 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); |
| 2904 assert( desiredAutoCommit==1 || iRollback==0 ); |
| 2905 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ |
| 2906 assert( p->bIsReader ); |
| 2907 |
| 2908 #if 0 |
| 2909 if( turnOnAC && iRollback && db->nVdbeActive>1 ){ |
| 2910 /* If this instruction implements a ROLLBACK and other VMs are |
| 2911 ** still running, and a transaction is active, return an error indicating |
| 2912 ** that the other VMs must complete first. |
| 2913 */ |
| 2914 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " |
| 2915 "SQL statements in progress"); |
| 2916 rc = SQLITE_BUSY; |
| 2917 }else |
| 2918 #endif |
| 2919 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){ |
| 2920 /* If this instruction implements a COMMIT and other VMs are writing |
| 2921 ** return an error indicating that the other VMs must complete first. |
| 2922 */ |
| 2923 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " |
| 2924 "SQL statements in progress"); |
| 2925 rc = SQLITE_BUSY; |
| 2926 }else if( desiredAutoCommit!=db->autoCommit ){ |
| 2927 if( iRollback ){ |
| 2928 assert( desiredAutoCommit==1 ); |
| 2929 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2930 db->autoCommit = 1; |
| 2931 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
| 2932 goto vdbe_return; |
| 2933 }else{ |
| 2934 db->autoCommit = (u8)desiredAutoCommit; |
| 2935 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
| 2936 p->pc = pc; |
| 2937 db->autoCommit = (u8)(1-desiredAutoCommit); |
| 2938 p->rc = rc = SQLITE_BUSY; |
| 2939 goto vdbe_return; |
| 2940 } |
| 2941 } |
| 2942 assert( db->nStatement==0 ); |
| 2943 sqlite3CloseSavepoints(db); |
| 2944 if( p->rc==SQLITE_OK ){ |
| 2945 rc = SQLITE_DONE; |
| 2946 }else{ |
| 2947 rc = SQLITE_ERROR; |
| 2948 } |
| 2949 goto vdbe_return; |
| 2950 }else{ |
| 2951 sqlite3SetString(&p->zErrMsg, db, |
| 2952 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( |
| 2953 (iRollback)?"cannot rollback - no transaction is active": |
| 2954 "cannot commit - no transaction is active")); |
| 2955 |
| 2956 rc = SQLITE_ERROR; |
| 2957 } |
| 2958 break; |
| 2959 } |
| 2960 |
| 2961 /* Opcode: Transaction P1 P2 P3 P4 P5 |
| 2962 ** |
| 2963 ** Begin a transaction on database P1 if a transaction is not already |
| 2964 ** active. |
| 2965 ** If P2 is non-zero, then a write-transaction is started, or if a |
| 2966 ** read-transaction is already active, it is upgraded to a write-transaction. |
| 2967 ** If P2 is zero, then a read-transaction is started. |
| 2968 ** |
| 2969 ** P1 is the index of the database file on which the transaction is |
| 2970 ** started. Index 0 is the main database file and index 1 is the |
| 2971 ** file used for temporary tables. Indices of 2 or more are used for |
| 2972 ** attached databases. |
| 2973 ** |
| 2974 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is |
| 2975 ** true (this flag is set if the Vdbe may modify more than one row and may |
| 2976 ** throw an ABORT exception), a statement transaction may also be opened. |
| 2977 ** More specifically, a statement transaction is opened iff the database |
| 2978 ** connection is currently not in autocommit mode, or if there are other |
| 2979 ** active statements. A statement transaction allows the changes made by this |
| 2980 ** VDBE to be rolled back after an error without having to roll back the |
| 2981 ** entire transaction. If no error is encountered, the statement transaction |
| 2982 ** will automatically commit when the VDBE halts. |
| 2983 ** |
| 2984 ** If P5!=0 then this opcode also checks the schema cookie against P3 |
| 2985 ** and the schema generation counter against P4. |
| 2986 ** The cookie changes its value whenever the database schema changes. |
| 2987 ** This operation is used to detect when that the cookie has changed |
| 2988 ** and that the current process needs to reread the schema. If the schema |
| 2989 ** cookie in P3 differs from the schema cookie in the database header or |
| 2990 ** if the schema generation counter in P4 differs from the current |
| 2991 ** generation counter, then an SQLITE_SCHEMA error is raised and execution |
| 2992 ** halts. The sqlite3_step() wrapper function might then reprepare the |
| 2993 ** statement and rerun it from the beginning. |
| 2994 */ |
| 2995 case OP_Transaction: { |
| 2996 Btree *pBt; |
| 2997 int iMeta; |
| 2998 int iGen; |
| 2999 |
| 3000 assert( p->bIsReader ); |
| 3001 assert( p->readOnly==0 || pOp->p2==0 ); |
| 3002 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 3003 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3004 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ |
| 3005 rc = SQLITE_READONLY; |
| 3006 goto abort_due_to_error; |
| 3007 } |
| 3008 pBt = db->aDb[pOp->p1].pBt; |
| 3009 |
| 3010 if( pBt ){ |
| 3011 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
| 3012 if( rc==SQLITE_BUSY ){ |
| 3013 p->pc = pc; |
| 3014 p->rc = rc = SQLITE_BUSY; |
| 3015 goto vdbe_return; |
| 3016 } |
| 3017 if( rc!=SQLITE_OK ){ |
| 3018 goto abort_due_to_error; |
| 3019 } |
| 3020 |
| 3021 if( pOp->p2 && p->usesStmtJournal |
| 3022 && (db->autoCommit==0 || db->nVdbeRead>1) |
| 3023 ){ |
| 3024 assert( sqlite3BtreeIsInTrans(pBt) ); |
| 3025 if( p->iStatement==0 ){ |
| 3026 assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
| 3027 db->nStatement++; |
| 3028 p->iStatement = db->nSavepoint + db->nStatement; |
| 3029 } |
| 3030 |
| 3031 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); |
| 3032 if( rc==SQLITE_OK ){ |
| 3033 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); |
| 3034 } |
| 3035 |
| 3036 /* Store the current value of the database handles deferred constraint |
| 3037 ** counter. If the statement transaction needs to be rolled back, |
| 3038 ** the value of this counter needs to be restored too. */ |
| 3039 p->nStmtDefCons = db->nDeferredCons; |
| 3040 p->nStmtDefImmCons = db->nDeferredImmCons; |
| 3041 } |
| 3042 |
| 3043 /* Gather the schema version number for checking */ |
| 3044 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); |
| 3045 iGen = db->aDb[pOp->p1].pSchema->iGeneration; |
| 3046 }else{ |
| 3047 iGen = iMeta = 0; |
| 3048 } |
| 3049 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); |
| 3050 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ |
| 3051 sqlite3DbFree(db, p->zErrMsg); |
| 3052 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
| 3053 /* If the schema-cookie from the database file matches the cookie |
| 3054 ** stored with the in-memory representation of the schema, do |
| 3055 ** not reload the schema from the database file. |
| 3056 ** |
| 3057 ** If virtual-tables are in use, this is not just an optimization. |
| 3058 ** Often, v-tables store their data in other SQLite tables, which |
| 3059 ** are queried from within xNext() and other v-table methods using |
| 3060 ** prepared queries. If such a query is out-of-date, we do not want to |
| 3061 ** discard the database schema, as the user code implementing the |
| 3062 ** v-table would have to be ready for the sqlite3_vtab structure itself |
| 3063 ** to be invalidated whenever sqlite3_step() is called from within |
| 3064 ** a v-table method. |
| 3065 */ |
| 3066 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ |
| 3067 sqlite3ResetOneSchema(db, pOp->p1); |
| 3068 } |
| 3069 p->expired = 1; |
| 3070 rc = SQLITE_SCHEMA; |
| 3071 } |
| 3072 break; |
| 3073 } |
| 3074 |
| 3075 /* Opcode: ReadCookie P1 P2 P3 * * |
| 3076 ** |
| 3077 ** Read cookie number P3 from database P1 and write it into register P2. |
| 3078 ** P3==1 is the schema version. P3==2 is the database format. |
| 3079 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is |
| 3080 ** the main database file and P1==1 is the database file used to store |
| 3081 ** temporary tables. |
| 3082 ** |
| 3083 ** There must be a read-lock on the database (either a transaction |
| 3084 ** must be started or there must be an open cursor) before |
| 3085 ** executing this instruction. |
| 3086 */ |
| 3087 case OP_ReadCookie: { /* out2-prerelease */ |
| 3088 int iMeta; |
| 3089 int iDb; |
| 3090 int iCookie; |
| 3091 |
| 3092 assert( p->bIsReader ); |
| 3093 iDb = pOp->p1; |
| 3094 iCookie = pOp->p3; |
| 3095 assert( pOp->p3<SQLITE_N_BTREE_META ); |
| 3096 assert( iDb>=0 && iDb<db->nDb ); |
| 3097 assert( db->aDb[iDb].pBt!=0 ); |
| 3098 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 3099 |
| 3100 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); |
| 3101 pOut->u.i = iMeta; |
| 3102 break; |
| 3103 } |
| 3104 |
| 3105 /* Opcode: SetCookie P1 P2 P3 * * |
| 3106 ** |
| 3107 ** Write the content of register P3 (interpreted as an integer) |
| 3108 ** into cookie number P2 of database P1. P2==1 is the schema version. |
| 3109 ** P2==2 is the database format. P2==3 is the recommended pager cache |
| 3110 ** size, and so forth. P1==0 is the main database file and P1==1 is the |
| 3111 ** database file used to store temporary tables. |
| 3112 ** |
| 3113 ** A transaction must be started before executing this opcode. |
| 3114 */ |
| 3115 case OP_SetCookie: { /* in3 */ |
| 3116 Db *pDb; |
| 3117 assert( pOp->p2<SQLITE_N_BTREE_META ); |
| 3118 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 3119 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3120 assert( p->readOnly==0 ); |
| 3121 pDb = &db->aDb[pOp->p1]; |
| 3122 assert( pDb->pBt!=0 ); |
| 3123 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
| 3124 pIn3 = &aMem[pOp->p3]; |
| 3125 sqlite3VdbeMemIntegerify(pIn3); |
| 3126 /* See note about index shifting on OP_ReadCookie */ |
| 3127 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); |
| 3128 if( pOp->p2==BTREE_SCHEMA_VERSION ){ |
| 3129 /* When the schema cookie changes, record the new cookie internally */ |
| 3130 pDb->pSchema->schema_cookie = (int)pIn3->u.i; |
| 3131 db->flags |= SQLITE_InternChanges; |
| 3132 }else if( pOp->p2==BTREE_FILE_FORMAT ){ |
| 3133 /* Record changes in the file format */ |
| 3134 pDb->pSchema->file_format = (u8)pIn3->u.i; |
| 3135 } |
| 3136 if( pOp->p1==1 ){ |
| 3137 /* Invalidate all prepared statements whenever the TEMP database |
| 3138 ** schema is changed. Ticket #1644 */ |
| 3139 sqlite3ExpirePreparedStatements(db); |
| 3140 p->expired = 0; |
| 3141 } |
| 3142 break; |
| 3143 } |
| 3144 |
| 3145 /* Opcode: OpenRead P1 P2 P3 P4 P5 |
| 3146 ** Synopsis: root=P2 iDb=P3 |
| 3147 ** |
| 3148 ** Open a read-only cursor for the database table whose root page is |
| 3149 ** P2 in a database file. The database file is determined by P3. |
| 3150 ** P3==0 means the main database, P3==1 means the database used for |
| 3151 ** temporary tables, and P3>1 means used the corresponding attached |
| 3152 ** database. Give the new cursor an identifier of P1. The P1 |
| 3153 ** values need not be contiguous but all P1 values should be small integers. |
| 3154 ** It is an error for P1 to be negative. |
| 3155 ** |
| 3156 ** If P5!=0 then use the content of register P2 as the root page, not |
| 3157 ** the value of P2 itself. |
| 3158 ** |
| 3159 ** There will be a read lock on the database whenever there is an |
| 3160 ** open cursor. If the database was unlocked prior to this instruction |
| 3161 ** then a read lock is acquired as part of this instruction. A read |
| 3162 ** lock allows other processes to read the database but prohibits |
| 3163 ** any other process from modifying the database. The read lock is |
| 3164 ** released when all cursors are closed. If this instruction attempts |
| 3165 ** to get a read lock but fails, the script terminates with an |
| 3166 ** SQLITE_BUSY error code. |
| 3167 ** |
| 3168 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
| 3169 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
| 3170 ** structure, then said structure defines the content and collating |
| 3171 ** sequence of the index being opened. Otherwise, if P4 is an integer |
| 3172 ** value, it is set to the number of columns in the table. |
| 3173 ** |
| 3174 ** See also: OpenWrite, ReopenIdx |
| 3175 */ |
| 3176 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 |
| 3177 ** Synopsis: root=P2 iDb=P3 |
| 3178 ** |
| 3179 ** The ReopenIdx opcode works exactly like ReadOpen except that it first |
| 3180 ** checks to see if the cursor on P1 is already open with a root page |
| 3181 ** number of P2 and if it is this opcode becomes a no-op. In other words, |
| 3182 ** if the cursor is already open, do not reopen it. |
| 3183 ** |
| 3184 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being |
| 3185 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as |
| 3186 ** every other ReopenIdx or OpenRead for the same cursor number. |
| 3187 ** |
| 3188 ** See the OpenRead opcode documentation for additional information. |
| 3189 */ |
| 3190 /* Opcode: OpenWrite P1 P2 P3 P4 P5 |
| 3191 ** Synopsis: root=P2 iDb=P3 |
| 3192 ** |
| 3193 ** Open a read/write cursor named P1 on the table or index whose root |
| 3194 ** page is P2. Or if P5!=0 use the content of register P2 to find the |
| 3195 ** root page. |
| 3196 ** |
| 3197 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
| 3198 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
| 3199 ** structure, then said structure defines the content and collating |
| 3200 ** sequence of the index being opened. Otherwise, if P4 is an integer |
| 3201 ** value, it is set to the number of columns in the table, or to the |
| 3202 ** largest index of any column of the table that is actually used. |
| 3203 ** |
| 3204 ** This instruction works just like OpenRead except that it opens the cursor |
| 3205 ** in read/write mode. For a given table, there can be one or more read-only |
| 3206 ** cursors or a single read/write cursor but not both. |
| 3207 ** |
| 3208 ** See also OpenRead. |
| 3209 */ |
| 3210 case OP_ReopenIdx: { |
| 3211 VdbeCursor *pCur; |
| 3212 |
| 3213 assert( pOp->p5==0 ); |
| 3214 assert( pOp->p4type==P4_KEYINFO ); |
| 3215 pCur = p->apCsr[pOp->p1]; |
| 3216 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ |
| 3217 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ |
| 3218 break; |
| 3219 } |
| 3220 /* If the cursor is not currently open or is open on a different |
| 3221 ** index, then fall through into OP_OpenRead to force a reopen */ |
| 3222 } |
| 3223 case OP_OpenRead: |
| 3224 case OP_OpenWrite: { |
| 3225 int nField; |
| 3226 KeyInfo *pKeyInfo; |
| 3227 int p2; |
| 3228 int iDb; |
| 3229 int wrFlag; |
| 3230 Btree *pX; |
| 3231 VdbeCursor *pCur; |
| 3232 Db *pDb; |
| 3233 |
| 3234 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); |
| 3235 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); |
| 3236 assert( p->bIsReader ); |
| 3237 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx |
| 3238 || p->readOnly==0 ); |
| 3239 |
| 3240 if( p->expired ){ |
| 3241 rc = SQLITE_ABORT_ROLLBACK; |
| 3242 break; |
| 3243 } |
| 3244 |
| 3245 nField = 0; |
| 3246 pKeyInfo = 0; |
| 3247 p2 = pOp->p2; |
| 3248 iDb = pOp->p3; |
| 3249 assert( iDb>=0 && iDb<db->nDb ); |
| 3250 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 3251 pDb = &db->aDb[iDb]; |
| 3252 pX = pDb->pBt; |
| 3253 assert( pX!=0 ); |
| 3254 if( pOp->opcode==OP_OpenWrite ){ |
| 3255 wrFlag = 1; |
| 3256 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 3257 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
| 3258 p->minWriteFileFormat = pDb->pSchema->file_format; |
| 3259 } |
| 3260 }else{ |
| 3261 wrFlag = 0; |
| 3262 } |
| 3263 if( pOp->p5 & OPFLAG_P2ISREG ){ |
| 3264 assert( p2>0 ); |
| 3265 assert( p2<=(p->nMem-p->nCursor) ); |
| 3266 pIn2 = &aMem[p2]; |
| 3267 assert( memIsValid(pIn2) ); |
| 3268 assert( (pIn2->flags & MEM_Int)!=0 ); |
| 3269 sqlite3VdbeMemIntegerify(pIn2); |
| 3270 p2 = (int)pIn2->u.i; |
| 3271 /* The p2 value always comes from a prior OP_CreateTable opcode and |
| 3272 ** that opcode will always set the p2 value to 2 or more or else fail. |
| 3273 ** If there were a failure, the prepared statement would have halted |
| 3274 ** before reaching this instruction. */ |
| 3275 if( NEVER(p2<2) ) { |
| 3276 rc = SQLITE_CORRUPT_BKPT; |
| 3277 goto abort_due_to_error; |
| 3278 } |
| 3279 } |
| 3280 if( pOp->p4type==P4_KEYINFO ){ |
| 3281 pKeyInfo = pOp->p4.pKeyInfo; |
| 3282 assert( pKeyInfo->enc==ENC(db) ); |
| 3283 assert( pKeyInfo->db==db ); |
| 3284 nField = pKeyInfo->nField+pKeyInfo->nXField; |
| 3285 }else if( pOp->p4type==P4_INT32 ){ |
| 3286 nField = pOp->p4.i; |
| 3287 } |
| 3288 assert( pOp->p1>=0 ); |
| 3289 assert( nField>=0 ); |
| 3290 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ |
| 3291 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); |
| 3292 if( pCur==0 ) goto no_mem; |
| 3293 pCur->nullRow = 1; |
| 3294 pCur->isOrdered = 1; |
| 3295 pCur->pgnoRoot = p2; |
| 3296 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); |
| 3297 pCur->pKeyInfo = pKeyInfo; |
| 3298 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); |
| 3299 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR)); |
| 3300 |
| 3301 /* Set the VdbeCursor.isTable variable. Previous versions of |
| 3302 ** SQLite used to check if the root-page flags were sane at this point |
| 3303 ** and report database corruption if they were not, but this check has |
| 3304 ** since moved into the btree layer. */ |
| 3305 pCur->isTable = pOp->p4type!=P4_KEYINFO; |
| 3306 break; |
| 3307 } |
| 3308 |
| 3309 /* Opcode: OpenEphemeral P1 P2 * P4 P5 |
| 3310 ** Synopsis: nColumn=P2 |
| 3311 ** |
| 3312 ** Open a new cursor P1 to a transient table. |
| 3313 ** The cursor is always opened read/write even if |
| 3314 ** the main database is read-only. The ephemeral |
| 3315 ** table is deleted automatically when the cursor is closed. |
| 3316 ** |
| 3317 ** P2 is the number of columns in the ephemeral table. |
| 3318 ** The cursor points to a BTree table if P4==0 and to a BTree index |
| 3319 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure |
| 3320 ** that defines the format of keys in the index. |
| 3321 ** |
| 3322 ** The P5 parameter can be a mask of the BTREE_* flags defined |
| 3323 ** in btree.h. These flags control aspects of the operation of |
| 3324 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are |
| 3325 ** added automatically. |
| 3326 */ |
| 3327 /* Opcode: OpenAutoindex P1 P2 * P4 * |
| 3328 ** Synopsis: nColumn=P2 |
| 3329 ** |
| 3330 ** This opcode works the same as OP_OpenEphemeral. It has a |
| 3331 ** different name to distinguish its use. Tables created using |
| 3332 ** by this opcode will be used for automatically created transient |
| 3333 ** indices in joins. |
| 3334 */ |
| 3335 case OP_OpenAutoindex: |
| 3336 case OP_OpenEphemeral: { |
| 3337 VdbeCursor *pCx; |
| 3338 KeyInfo *pKeyInfo; |
| 3339 |
| 3340 static const int vfsFlags = |
| 3341 SQLITE_OPEN_READWRITE | |
| 3342 SQLITE_OPEN_CREATE | |
| 3343 SQLITE_OPEN_EXCLUSIVE | |
| 3344 SQLITE_OPEN_DELETEONCLOSE | |
| 3345 SQLITE_OPEN_TRANSIENT_DB; |
| 3346 assert( pOp->p1>=0 ); |
| 3347 assert( pOp->p2>=0 ); |
| 3348 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); |
| 3349 if( pCx==0 ) goto no_mem; |
| 3350 pCx->nullRow = 1; |
| 3351 pCx->isEphemeral = 1; |
| 3352 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, |
| 3353 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); |
| 3354 if( rc==SQLITE_OK ){ |
| 3355 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
| 3356 } |
| 3357 if( rc==SQLITE_OK ){ |
| 3358 /* If a transient index is required, create it by calling |
| 3359 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before |
| 3360 ** opening it. If a transient table is required, just use the |
| 3361 ** automatically created table with root-page 1 (an BLOB_INTKEY table). |
| 3362 */ |
| 3363 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ |
| 3364 int pgno; |
| 3365 assert( pOp->p4type==P4_KEYINFO ); |
| 3366 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); |
| 3367 if( rc==SQLITE_OK ){ |
| 3368 assert( pgno==MASTER_ROOT+1 ); |
| 3369 assert( pKeyInfo->db==db ); |
| 3370 assert( pKeyInfo->enc==ENC(db) ); |
| 3371 pCx->pKeyInfo = pKeyInfo; |
| 3372 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor); |
| 3373 } |
| 3374 pCx->isTable = 0; |
| 3375 }else{ |
| 3376 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); |
| 3377 pCx->isTable = 1; |
| 3378 } |
| 3379 } |
| 3380 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); |
| 3381 break; |
| 3382 } |
| 3383 |
| 3384 /* Opcode: SorterOpen P1 P2 P3 P4 * |
| 3385 ** |
| 3386 ** This opcode works like OP_OpenEphemeral except that it opens |
| 3387 ** a transient index that is specifically designed to sort large |
| 3388 ** tables using an external merge-sort algorithm. |
| 3389 ** |
| 3390 ** If argument P3 is non-zero, then it indicates that the sorter may |
| 3391 ** assume that a stable sort considering the first P3 fields of each |
| 3392 ** key is sufficient to produce the required results. |
| 3393 */ |
| 3394 case OP_SorterOpen: { |
| 3395 VdbeCursor *pCx; |
| 3396 |
| 3397 assert( pOp->p1>=0 ); |
| 3398 assert( pOp->p2>=0 ); |
| 3399 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); |
| 3400 if( pCx==0 ) goto no_mem; |
| 3401 pCx->pKeyInfo = pOp->p4.pKeyInfo; |
| 3402 assert( pCx->pKeyInfo->db==db ); |
| 3403 assert( pCx->pKeyInfo->enc==ENC(db) ); |
| 3404 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); |
| 3405 break; |
| 3406 } |
| 3407 |
| 3408 /* Opcode: SequenceTest P1 P2 * * * |
| 3409 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 |
| 3410 ** |
| 3411 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump |
| 3412 ** to P2. Regardless of whether or not the jump is taken, increment the |
| 3413 ** the sequence value. |
| 3414 */ |
| 3415 case OP_SequenceTest: { |
| 3416 VdbeCursor *pC; |
| 3417 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3418 pC = p->apCsr[pOp->p1]; |
| 3419 assert( pC->pSorter ); |
| 3420 if( (pC->seqCount++)==0 ){ |
| 3421 pc = pOp->p2 - 1; |
| 3422 } |
| 3423 break; |
| 3424 } |
| 3425 |
| 3426 /* Opcode: OpenPseudo P1 P2 P3 * * |
| 3427 ** Synopsis: P3 columns in r[P2] |
| 3428 ** |
| 3429 ** Open a new cursor that points to a fake table that contains a single |
| 3430 ** row of data. The content of that one row is the content of memory |
| 3431 ** register P2. In other words, cursor P1 becomes an alias for the |
| 3432 ** MEM_Blob content contained in register P2. |
| 3433 ** |
| 3434 ** A pseudo-table created by this opcode is used to hold a single |
| 3435 ** row output from the sorter so that the row can be decomposed into |
| 3436 ** individual columns using the OP_Column opcode. The OP_Column opcode |
| 3437 ** is the only cursor opcode that works with a pseudo-table. |
| 3438 ** |
| 3439 ** P3 is the number of fields in the records that will be stored by |
| 3440 ** the pseudo-table. |
| 3441 */ |
| 3442 case OP_OpenPseudo: { |
| 3443 VdbeCursor *pCx; |
| 3444 |
| 3445 assert( pOp->p1>=0 ); |
| 3446 assert( pOp->p3>=0 ); |
| 3447 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); |
| 3448 if( pCx==0 ) goto no_mem; |
| 3449 pCx->nullRow = 1; |
| 3450 pCx->pseudoTableReg = pOp->p2; |
| 3451 pCx->isTable = 1; |
| 3452 assert( pOp->p5==0 ); |
| 3453 break; |
| 3454 } |
| 3455 |
| 3456 /* Opcode: Close P1 * * * * |
| 3457 ** |
| 3458 ** Close a cursor previously opened as P1. If P1 is not |
| 3459 ** currently open, this instruction is a no-op. |
| 3460 */ |
| 3461 case OP_Close: { |
| 3462 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3463 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); |
| 3464 p->apCsr[pOp->p1] = 0; |
| 3465 break; |
| 3466 } |
| 3467 |
| 3468 /* Opcode: SeekGE P1 P2 P3 P4 * |
| 3469 ** Synopsis: key=r[P3@P4] |
| 3470 ** |
| 3471 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3472 ** use the value in register P3 as the key. If cursor P1 refers |
| 3473 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3474 ** that are used as an unpacked index key. |
| 3475 ** |
| 3476 ** Reposition cursor P1 so that it points to the smallest entry that |
| 3477 ** is greater than or equal to the key value. If there are no records |
| 3478 ** greater than or equal to the key and P2 is not zero, then jump to P2. |
| 3479 ** |
| 3480 ** This opcode leaves the cursor configured to move in forward order, |
| 3481 ** from the beginning toward the end. In other words, the cursor is |
| 3482 ** configured to use Next, not Prev. |
| 3483 ** |
| 3484 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe |
| 3485 */ |
| 3486 /* Opcode: SeekGT P1 P2 P3 P4 * |
| 3487 ** Synopsis: key=r[P3@P4] |
| 3488 ** |
| 3489 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3490 ** use the value in register P3 as a key. If cursor P1 refers |
| 3491 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3492 ** that are used as an unpacked index key. |
| 3493 ** |
| 3494 ** Reposition cursor P1 so that it points to the smallest entry that |
| 3495 ** is greater than the key value. If there are no records greater than |
| 3496 ** the key and P2 is not zero, then jump to P2. |
| 3497 ** |
| 3498 ** This opcode leaves the cursor configured to move in forward order, |
| 3499 ** from the beginning toward the end. In other words, the cursor is |
| 3500 ** configured to use Next, not Prev. |
| 3501 ** |
| 3502 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe |
| 3503 */ |
| 3504 /* Opcode: SeekLT P1 P2 P3 P4 * |
| 3505 ** Synopsis: key=r[P3@P4] |
| 3506 ** |
| 3507 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3508 ** use the value in register P3 as a key. If cursor P1 refers |
| 3509 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3510 ** that are used as an unpacked index key. |
| 3511 ** |
| 3512 ** Reposition cursor P1 so that it points to the largest entry that |
| 3513 ** is less than the key value. If there are no records less than |
| 3514 ** the key and P2 is not zero, then jump to P2. |
| 3515 ** |
| 3516 ** This opcode leaves the cursor configured to move in reverse order, |
| 3517 ** from the end toward the beginning. In other words, the cursor is |
| 3518 ** configured to use Prev, not Next. |
| 3519 ** |
| 3520 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe |
| 3521 */ |
| 3522 /* Opcode: SeekLE P1 P2 P3 P4 * |
| 3523 ** Synopsis: key=r[P3@P4] |
| 3524 ** |
| 3525 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3526 ** use the value in register P3 as a key. If cursor P1 refers |
| 3527 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3528 ** that are used as an unpacked index key. |
| 3529 ** |
| 3530 ** Reposition cursor P1 so that it points to the largest entry that |
| 3531 ** is less than or equal to the key value. If there are no records |
| 3532 ** less than or equal to the key and P2 is not zero, then jump to P2. |
| 3533 ** |
| 3534 ** This opcode leaves the cursor configured to move in reverse order, |
| 3535 ** from the end toward the beginning. In other words, the cursor is |
| 3536 ** configured to use Prev, not Next. |
| 3537 ** |
| 3538 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt |
| 3539 */ |
| 3540 case OP_SeekLT: /* jump, in3 */ |
| 3541 case OP_SeekLE: /* jump, in3 */ |
| 3542 case OP_SeekGE: /* jump, in3 */ |
| 3543 case OP_SeekGT: { /* jump, in3 */ |
| 3544 int res; |
| 3545 int oc; |
| 3546 VdbeCursor *pC; |
| 3547 UnpackedRecord r; |
| 3548 int nField; |
| 3549 i64 iKey; /* The rowid we are to seek to */ |
| 3550 |
| 3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3552 assert( pOp->p2!=0 ); |
| 3553 pC = p->apCsr[pOp->p1]; |
| 3554 assert( pC!=0 ); |
| 3555 assert( pC->pseudoTableReg==0 ); |
| 3556 assert( OP_SeekLE == OP_SeekLT+1 ); |
| 3557 assert( OP_SeekGE == OP_SeekLT+2 ); |
| 3558 assert( OP_SeekGT == OP_SeekLT+3 ); |
| 3559 assert( pC->isOrdered ); |
| 3560 assert( pC->pCursor!=0 ); |
| 3561 oc = pOp->opcode; |
| 3562 pC->nullRow = 0; |
| 3563 #ifdef SQLITE_DEBUG |
| 3564 pC->seekOp = pOp->opcode; |
| 3565 #endif |
| 3566 if( pC->isTable ){ |
| 3567 /* The input value in P3 might be of any type: integer, real, string, |
| 3568 ** blob, or NULL. But it needs to be an integer before we can do |
| 3569 ** the seek, so convert it. */ |
| 3570 pIn3 = &aMem[pOp->p3]; |
| 3571 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 3572 applyNumericAffinity(pIn3, 0); |
| 3573 } |
| 3574 iKey = sqlite3VdbeIntValue(pIn3); |
| 3575 |
| 3576 /* If the P3 value could not be converted into an integer without |
| 3577 ** loss of information, then special processing is required... */ |
| 3578 if( (pIn3->flags & MEM_Int)==0 ){ |
| 3579 if( (pIn3->flags & MEM_Real)==0 ){ |
| 3580 /* If the P3 value cannot be converted into any kind of a number, |
| 3581 ** then the seek is not possible, so jump to P2 */ |
| 3582 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); |
| 3583 break; |
| 3584 } |
| 3585 |
| 3586 /* If the approximation iKey is larger than the actual real search |
| 3587 ** term, substitute >= for > and < for <=. e.g. if the search term |
| 3588 ** is 4.9 and the integer approximation 5: |
| 3589 ** |
| 3590 ** (x > 4.9) -> (x >= 5) |
| 3591 ** (x <= 4.9) -> (x < 5) |
| 3592 */ |
| 3593 if( pIn3->u.r<(double)iKey ){ |
| 3594 assert( OP_SeekGE==(OP_SeekGT-1) ); |
| 3595 assert( OP_SeekLT==(OP_SeekLE-1) ); |
| 3596 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); |
| 3597 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; |
| 3598 } |
| 3599 |
| 3600 /* If the approximation iKey is smaller than the actual real search |
| 3601 ** term, substitute <= for < and > for >=. */ |
| 3602 else if( pIn3->u.r>(double)iKey ){ |
| 3603 assert( OP_SeekLE==(OP_SeekLT+1) ); |
| 3604 assert( OP_SeekGT==(OP_SeekGE+1) ); |
| 3605 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); |
| 3606 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; |
| 3607 } |
| 3608 } |
| 3609 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); |
| 3610 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
| 3611 if( rc!=SQLITE_OK ){ |
| 3612 goto abort_due_to_error; |
| 3613 } |
| 3614 }else{ |
| 3615 nField = pOp->p4.i; |
| 3616 assert( pOp->p4type==P4_INT32 ); |
| 3617 assert( nField>0 ); |
| 3618 r.pKeyInfo = pC->pKeyInfo; |
| 3619 r.nField = (u16)nField; |
| 3620 |
| 3621 /* The next line of code computes as follows, only faster: |
| 3622 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ |
| 3623 ** r.default_rc = -1; |
| 3624 ** }else{ |
| 3625 ** r.default_rc = +1; |
| 3626 ** } |
| 3627 */ |
| 3628 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); |
| 3629 assert( oc!=OP_SeekGT || r.default_rc==-1 ); |
| 3630 assert( oc!=OP_SeekLE || r.default_rc==-1 ); |
| 3631 assert( oc!=OP_SeekGE || r.default_rc==+1 ); |
| 3632 assert( oc!=OP_SeekLT || r.default_rc==+1 ); |
| 3633 |
| 3634 r.aMem = &aMem[pOp->p3]; |
| 3635 #ifdef SQLITE_DEBUG |
| 3636 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 3637 #endif |
| 3638 ExpandBlob(r.aMem); |
| 3639 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); |
| 3640 if( rc!=SQLITE_OK ){ |
| 3641 goto abort_due_to_error; |
| 3642 } |
| 3643 } |
| 3644 pC->deferredMoveto = 0; |
| 3645 pC->cacheStatus = CACHE_STALE; |
| 3646 #ifdef SQLITE_TEST |
| 3647 sqlite3_search_count++; |
| 3648 #endif |
| 3649 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); |
| 3650 if( res<0 || (res==0 && oc==OP_SeekGT) ){ |
| 3651 res = 0; |
| 3652 rc = sqlite3BtreeNext(pC->pCursor, &res); |
| 3653 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3654 }else{ |
| 3655 res = 0; |
| 3656 } |
| 3657 }else{ |
| 3658 assert( oc==OP_SeekLT || oc==OP_SeekLE ); |
| 3659 if( res>0 || (res==0 && oc==OP_SeekLT) ){ |
| 3660 res = 0; |
| 3661 rc = sqlite3BtreePrevious(pC->pCursor, &res); |
| 3662 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3663 }else{ |
| 3664 /* res might be negative because the table is empty. Check to |
| 3665 ** see if this is the case. |
| 3666 */ |
| 3667 res = sqlite3BtreeEof(pC->pCursor); |
| 3668 } |
| 3669 } |
| 3670 assert( pOp->p2>0 ); |
| 3671 VdbeBranchTaken(res!=0,2); |
| 3672 if( res ){ |
| 3673 pc = pOp->p2 - 1; |
| 3674 } |
| 3675 break; |
| 3676 } |
| 3677 |
| 3678 /* Opcode: Seek P1 P2 * * * |
| 3679 ** Synopsis: intkey=r[P2] |
| 3680 ** |
| 3681 ** P1 is an open table cursor and P2 is a rowid integer. Arrange |
| 3682 ** for P1 to move so that it points to the rowid given by P2. |
| 3683 ** |
| 3684 ** This is actually a deferred seek. Nothing actually happens until |
| 3685 ** the cursor is used to read a record. That way, if no reads |
| 3686 ** occur, no unnecessary I/O happens. |
| 3687 */ |
| 3688 case OP_Seek: { /* in2 */ |
| 3689 VdbeCursor *pC; |
| 3690 |
| 3691 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3692 pC = p->apCsr[pOp->p1]; |
| 3693 assert( pC!=0 ); |
| 3694 assert( pC->pCursor!=0 ); |
| 3695 assert( pC->isTable ); |
| 3696 pC->nullRow = 0; |
| 3697 pIn2 = &aMem[pOp->p2]; |
| 3698 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); |
| 3699 pC->deferredMoveto = 1; |
| 3700 break; |
| 3701 } |
| 3702 |
| 3703 |
| 3704 /* Opcode: Found P1 P2 P3 P4 * |
| 3705 ** Synopsis: key=r[P3@P4] |
| 3706 ** |
| 3707 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3708 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3709 ** record. |
| 3710 ** |
| 3711 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3712 ** is a prefix of any entry in P1 then a jump is made to P2 and |
| 3713 ** P1 is left pointing at the matching entry. |
| 3714 ** |
| 3715 ** This operation leaves the cursor in a state where it can be |
| 3716 ** advanced in the forward direction. The Next instruction will work, |
| 3717 ** but not the Prev instruction. |
| 3718 ** |
| 3719 ** See also: NotFound, NoConflict, NotExists. SeekGe |
| 3720 */ |
| 3721 /* Opcode: NotFound P1 P2 P3 P4 * |
| 3722 ** Synopsis: key=r[P3@P4] |
| 3723 ** |
| 3724 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3725 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3726 ** record. |
| 3727 ** |
| 3728 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3729 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 |
| 3730 ** does contain an entry whose prefix matches the P3/P4 record then control |
| 3731 ** falls through to the next instruction and P1 is left pointing at the |
| 3732 ** matching entry. |
| 3733 ** |
| 3734 ** This operation leaves the cursor in a state where it cannot be |
| 3735 ** advanced in either direction. In other words, the Next and Prev |
| 3736 ** opcodes do not work after this operation. |
| 3737 ** |
| 3738 ** See also: Found, NotExists, NoConflict |
| 3739 */ |
| 3740 /* Opcode: NoConflict P1 P2 P3 P4 * |
| 3741 ** Synopsis: key=r[P3@P4] |
| 3742 ** |
| 3743 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3744 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3745 ** record. |
| 3746 ** |
| 3747 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3748 ** contains any NULL value, jump immediately to P2. If all terms of the |
| 3749 ** record are not-NULL then a check is done to determine if any row in the |
| 3750 ** P1 index btree has a matching key prefix. If there are no matches, jump |
| 3751 ** immediately to P2. If there is a match, fall through and leave the P1 |
| 3752 ** cursor pointing to the matching row. |
| 3753 ** |
| 3754 ** This opcode is similar to OP_NotFound with the exceptions that the |
| 3755 ** branch is always taken if any part of the search key input is NULL. |
| 3756 ** |
| 3757 ** This operation leaves the cursor in a state where it cannot be |
| 3758 ** advanced in either direction. In other words, the Next and Prev |
| 3759 ** opcodes do not work after this operation. |
| 3760 ** |
| 3761 ** See also: NotFound, Found, NotExists |
| 3762 */ |
| 3763 case OP_NoConflict: /* jump, in3 */ |
| 3764 case OP_NotFound: /* jump, in3 */ |
| 3765 case OP_Found: { /* jump, in3 */ |
| 3766 int alreadyExists; |
| 3767 int ii; |
| 3768 VdbeCursor *pC; |
| 3769 int res; |
| 3770 char *pFree; |
| 3771 UnpackedRecord *pIdxKey; |
| 3772 UnpackedRecord r; |
| 3773 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7]; |
| 3774 |
| 3775 #ifdef SQLITE_TEST |
| 3776 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; |
| 3777 #endif |
| 3778 |
| 3779 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3780 assert( pOp->p4type==P4_INT32 ); |
| 3781 pC = p->apCsr[pOp->p1]; |
| 3782 assert( pC!=0 ); |
| 3783 #ifdef SQLITE_DEBUG |
| 3784 pC->seekOp = pOp->opcode; |
| 3785 #endif |
| 3786 pIn3 = &aMem[pOp->p3]; |
| 3787 assert( pC->pCursor!=0 ); |
| 3788 assert( pC->isTable==0 ); |
| 3789 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */ |
| 3790 if( pOp->p4.i>0 ){ |
| 3791 r.pKeyInfo = pC->pKeyInfo; |
| 3792 r.nField = (u16)pOp->p4.i; |
| 3793 r.aMem = pIn3; |
| 3794 for(ii=0; ii<r.nField; ii++){ |
| 3795 assert( memIsValid(&r.aMem[ii]) ); |
| 3796 ExpandBlob(&r.aMem[ii]); |
| 3797 #ifdef SQLITE_DEBUG |
| 3798 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); |
| 3799 #endif |
| 3800 } |
| 3801 pIdxKey = &r; |
| 3802 }else{ |
| 3803 pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
| 3804 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree |
| 3805 ); |
| 3806 if( pIdxKey==0 ) goto no_mem; |
| 3807 assert( pIn3->flags & MEM_Blob ); |
| 3808 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ |
| 3809 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); |
| 3810 } |
| 3811 pIdxKey->default_rc = 0; |
| 3812 if( pOp->opcode==OP_NoConflict ){ |
| 3813 /* For the OP_NoConflict opcode, take the jump if any of the |
| 3814 ** input fields are NULL, since any key with a NULL will not |
| 3815 ** conflict */ |
| 3816 for(ii=0; ii<r.nField; ii++){ |
| 3817 if( r.aMem[ii].flags & MEM_Null ){ |
| 3818 pc = pOp->p2 - 1; VdbeBranchTaken(1,2); |
| 3819 break; |
| 3820 } |
| 3821 } |
| 3822 } |
| 3823 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); |
| 3824 if( pOp->p4.i==0 ){ |
| 3825 sqlite3DbFree(db, pFree); |
| 3826 } |
| 3827 if( rc!=SQLITE_OK ){ |
| 3828 break; |
| 3829 } |
| 3830 pC->seekResult = res; |
| 3831 alreadyExists = (res==0); |
| 3832 pC->nullRow = 1-alreadyExists; |
| 3833 pC->deferredMoveto = 0; |
| 3834 pC->cacheStatus = CACHE_STALE; |
| 3835 if( pOp->opcode==OP_Found ){ |
| 3836 VdbeBranchTaken(alreadyExists!=0,2); |
| 3837 if( alreadyExists ) pc = pOp->p2 - 1; |
| 3838 }else{ |
| 3839 VdbeBranchTaken(alreadyExists==0,2); |
| 3840 if( !alreadyExists ) pc = pOp->p2 - 1; |
| 3841 } |
| 3842 break; |
| 3843 } |
| 3844 |
| 3845 /* Opcode: NotExists P1 P2 P3 * * |
| 3846 ** Synopsis: intkey=r[P3] |
| 3847 ** |
| 3848 ** P1 is the index of a cursor open on an SQL table btree (with integer |
| 3849 ** keys). P3 is an integer rowid. If P1 does not contain a record with |
| 3850 ** rowid P3 then jump immediately to P2. If P1 does contain a record |
| 3851 ** with rowid P3 then leave the cursor pointing at that record and fall |
| 3852 ** through to the next instruction. |
| 3853 ** |
| 3854 ** The OP_NotFound opcode performs the same operation on index btrees |
| 3855 ** (with arbitrary multi-value keys). |
| 3856 ** |
| 3857 ** This opcode leaves the cursor in a state where it cannot be advanced |
| 3858 ** in either direction. In other words, the Next and Prev opcodes will |
| 3859 ** not work following this opcode. |
| 3860 ** |
| 3861 ** See also: Found, NotFound, NoConflict |
| 3862 */ |
| 3863 case OP_NotExists: { /* jump, in3 */ |
| 3864 VdbeCursor *pC; |
| 3865 BtCursor *pCrsr; |
| 3866 int res; |
| 3867 u64 iKey; |
| 3868 |
| 3869 pIn3 = &aMem[pOp->p3]; |
| 3870 assert( pIn3->flags & MEM_Int ); |
| 3871 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3872 pC = p->apCsr[pOp->p1]; |
| 3873 assert( pC!=0 ); |
| 3874 #ifdef SQLITE_DEBUG |
| 3875 pC->seekOp = 0; |
| 3876 #endif |
| 3877 assert( pC->isTable ); |
| 3878 assert( pC->pseudoTableReg==0 ); |
| 3879 pCrsr = pC->pCursor; |
| 3880 assert( pCrsr!=0 ); |
| 3881 res = 0; |
| 3882 iKey = pIn3->u.i; |
| 3883 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); |
| 3884 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
| 3885 pC->nullRow = 0; |
| 3886 pC->cacheStatus = CACHE_STALE; |
| 3887 pC->deferredMoveto = 0; |
| 3888 VdbeBranchTaken(res!=0,2); |
| 3889 if( res!=0 ){ |
| 3890 pc = pOp->p2 - 1; |
| 3891 } |
| 3892 pC->seekResult = res; |
| 3893 break; |
| 3894 } |
| 3895 |
| 3896 /* Opcode: Sequence P1 P2 * * * |
| 3897 ** Synopsis: r[P2]=cursor[P1].ctr++ |
| 3898 ** |
| 3899 ** Find the next available sequence number for cursor P1. |
| 3900 ** Write the sequence number into register P2. |
| 3901 ** The sequence number on the cursor is incremented after this |
| 3902 ** instruction. |
| 3903 */ |
| 3904 case OP_Sequence: { /* out2-prerelease */ |
| 3905 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3906 assert( p->apCsr[pOp->p1]!=0 ); |
| 3907 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; |
| 3908 break; |
| 3909 } |
| 3910 |
| 3911 |
| 3912 /* Opcode: NewRowid P1 P2 P3 * * |
| 3913 ** Synopsis: r[P2]=rowid |
| 3914 ** |
| 3915 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
| 3916 ** The record number is not previously used as a key in the database |
| 3917 ** table that cursor P1 points to. The new record number is written |
| 3918 ** written to register P2. |
| 3919 ** |
| 3920 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds |
| 3921 ** the largest previously generated record number. No new record numbers are |
| 3922 ** allowed to be less than this value. When this value reaches its maximum, |
| 3923 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' |
| 3924 ** generated record number. This P3 mechanism is used to help implement the |
| 3925 ** AUTOINCREMENT feature. |
| 3926 */ |
| 3927 case OP_NewRowid: { /* out2-prerelease */ |
| 3928 i64 v; /* The new rowid */ |
| 3929 VdbeCursor *pC; /* Cursor of table to get the new rowid */ |
| 3930 int res; /* Result of an sqlite3BtreeLast() */ |
| 3931 int cnt; /* Counter to limit the number of searches */ |
| 3932 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ |
| 3933 VdbeFrame *pFrame; /* Root frame of VDBE */ |
| 3934 |
| 3935 v = 0; |
| 3936 res = 0; |
| 3937 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3938 pC = p->apCsr[pOp->p1]; |
| 3939 assert( pC!=0 ); |
| 3940 if( NEVER(pC->pCursor==0) ){ |
| 3941 /* The zero initialization above is all that is needed */ |
| 3942 }else{ |
| 3943 /* The next rowid or record number (different terms for the same |
| 3944 ** thing) is obtained in a two-step algorithm. |
| 3945 ** |
| 3946 ** First we attempt to find the largest existing rowid and add one |
| 3947 ** to that. But if the largest existing rowid is already the maximum |
| 3948 ** positive integer, we have to fall through to the second |
| 3949 ** probabilistic algorithm |
| 3950 ** |
| 3951 ** The second algorithm is to select a rowid at random and see if |
| 3952 ** it already exists in the table. If it does not exist, we have |
| 3953 ** succeeded. If the random rowid does exist, we select a new one |
| 3954 ** and try again, up to 100 times. |
| 3955 */ |
| 3956 assert( pC->isTable ); |
| 3957 |
| 3958 #ifdef SQLITE_32BIT_ROWID |
| 3959 # define MAX_ROWID 0x7fffffff |
| 3960 #else |
| 3961 /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
| 3962 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
| 3963 ** to provide the constant while making all compilers happy. |
| 3964 */ |
| 3965 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
| 3966 #endif |
| 3967 |
| 3968 if( !pC->useRandomRowid ){ |
| 3969 rc = sqlite3BtreeLast(pC->pCursor, &res); |
| 3970 if( rc!=SQLITE_OK ){ |
| 3971 goto abort_due_to_error; |
| 3972 } |
| 3973 if( res ){ |
| 3974 v = 1; /* IMP: R-61914-48074 */ |
| 3975 }else{ |
| 3976 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); |
| 3977 rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
| 3978 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ |
| 3979 if( v>=MAX_ROWID ){ |
| 3980 pC->useRandomRowid = 1; |
| 3981 }else{ |
| 3982 v++; /* IMP: R-29538-34987 */ |
| 3983 } |
| 3984 } |
| 3985 } |
| 3986 |
| 3987 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 3988 if( pOp->p3 ){ |
| 3989 /* Assert that P3 is a valid memory cell. */ |
| 3990 assert( pOp->p3>0 ); |
| 3991 if( p->pFrame ){ |
| 3992 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 3993 /* Assert that P3 is a valid memory cell. */ |
| 3994 assert( pOp->p3<=pFrame->nMem ); |
| 3995 pMem = &pFrame->aMem[pOp->p3]; |
| 3996 }else{ |
| 3997 /* Assert that P3 is a valid memory cell. */ |
| 3998 assert( pOp->p3<=(p->nMem-p->nCursor) ); |
| 3999 pMem = &aMem[pOp->p3]; |
| 4000 memAboutToChange(p, pMem); |
| 4001 } |
| 4002 assert( memIsValid(pMem) ); |
| 4003 |
| 4004 REGISTER_TRACE(pOp->p3, pMem); |
| 4005 sqlite3VdbeMemIntegerify(pMem); |
| 4006 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ |
| 4007 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ |
| 4008 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ |
| 4009 goto abort_due_to_error; |
| 4010 } |
| 4011 if( v<pMem->u.i+1 ){ |
| 4012 v = pMem->u.i + 1; |
| 4013 } |
| 4014 pMem->u.i = v; |
| 4015 } |
| 4016 #endif |
| 4017 if( pC->useRandomRowid ){ |
| 4018 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the |
| 4019 ** largest possible integer (9223372036854775807) then the database |
| 4020 ** engine starts picking positive candidate ROWIDs at random until |
| 4021 ** it finds one that is not previously used. */ |
| 4022 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is |
| 4023 ** an AUTOINCREMENT table. */ |
| 4024 cnt = 0; |
| 4025 do{ |
| 4026 sqlite3_randomness(sizeof(v), &v); |
| 4027 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ |
| 4028 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, |
| 4029 0, &res))==SQLITE_OK) |
| 4030 && (res==0) |
| 4031 && (++cnt<100)); |
| 4032 if( rc==SQLITE_OK && res==0 ){ |
| 4033 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ |
| 4034 goto abort_due_to_error; |
| 4035 } |
| 4036 assert( v>0 ); /* EV: R-40812-03570 */ |
| 4037 } |
| 4038 pC->deferredMoveto = 0; |
| 4039 pC->cacheStatus = CACHE_STALE; |
| 4040 } |
| 4041 pOut->u.i = v; |
| 4042 break; |
| 4043 } |
| 4044 |
| 4045 /* Opcode: Insert P1 P2 P3 P4 P5 |
| 4046 ** Synopsis: intkey=r[P3] data=r[P2] |
| 4047 ** |
| 4048 ** Write an entry into the table of cursor P1. A new entry is |
| 4049 ** created if it doesn't already exist or the data for an existing |
| 4050 ** entry is overwritten. The data is the value MEM_Blob stored in register |
| 4051 ** number P2. The key is stored in register P3. The key must |
| 4052 ** be a MEM_Int. |
| 4053 ** |
| 4054 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is |
| 4055 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, |
| 4056 ** then rowid is stored for subsequent return by the |
| 4057 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). |
| 4058 ** |
| 4059 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of |
| 4060 ** the last seek operation (OP_NotExists) was a success, then this |
| 4061 ** operation will not attempt to find the appropriate row before doing |
| 4062 ** the insert but will instead overwrite the row that the cursor is |
| 4063 ** currently pointing to. Presumably, the prior OP_NotExists opcode |
| 4064 ** has already positioned the cursor correctly. This is an optimization |
| 4065 ** that boosts performance by avoiding redundant seeks. |
| 4066 ** |
| 4067 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an |
| 4068 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode |
| 4069 ** is part of an INSERT operation. The difference is only important to |
| 4070 ** the update hook. |
| 4071 ** |
| 4072 ** Parameter P4 may point to a string containing the table-name, or |
| 4073 ** may be NULL. If it is not NULL, then the update-hook |
| 4074 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. |
| 4075 ** |
| 4076 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically |
| 4077 ** allocated, then ownership of P2 is transferred to the pseudo-cursor |
| 4078 ** and register P2 becomes ephemeral. If the cursor is changed, the |
| 4079 ** value of register P2 will then change. Make sure this does not |
| 4080 ** cause any problems.) |
| 4081 ** |
| 4082 ** This instruction only works on tables. The equivalent instruction |
| 4083 ** for indices is OP_IdxInsert. |
| 4084 */ |
| 4085 /* Opcode: InsertInt P1 P2 P3 P4 P5 |
| 4086 ** Synopsis: intkey=P3 data=r[P2] |
| 4087 ** |
| 4088 ** This works exactly like OP_Insert except that the key is the |
| 4089 ** integer value P3, not the value of the integer stored in register P3. |
| 4090 */ |
| 4091 case OP_Insert: |
| 4092 case OP_InsertInt: { |
| 4093 Mem *pData; /* MEM cell holding data for the record to be inserted */ |
| 4094 Mem *pKey; /* MEM cell holding key for the record */ |
| 4095 i64 iKey; /* The integer ROWID or key for the record to be inserted */ |
| 4096 VdbeCursor *pC; /* Cursor to table into which insert is written */ |
| 4097 int nZero; /* Number of zero-bytes to append */ |
| 4098 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ |
| 4099 const char *zDb; /* database name - used by the update hook */ |
| 4100 const char *zTbl; /* Table name - used by the opdate hook */ |
| 4101 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ |
| 4102 |
| 4103 pData = &aMem[pOp->p2]; |
| 4104 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4105 assert( memIsValid(pData) ); |
| 4106 pC = p->apCsr[pOp->p1]; |
| 4107 assert( pC!=0 ); |
| 4108 assert( pC->pCursor!=0 ); |
| 4109 assert( pC->pseudoTableReg==0 ); |
| 4110 assert( pC->isTable ); |
| 4111 REGISTER_TRACE(pOp->p2, pData); |
| 4112 |
| 4113 if( pOp->opcode==OP_Insert ){ |
| 4114 pKey = &aMem[pOp->p3]; |
| 4115 assert( pKey->flags & MEM_Int ); |
| 4116 assert( memIsValid(pKey) ); |
| 4117 REGISTER_TRACE(pOp->p3, pKey); |
| 4118 iKey = pKey->u.i; |
| 4119 }else{ |
| 4120 assert( pOp->opcode==OP_InsertInt ); |
| 4121 iKey = pOp->p3; |
| 4122 } |
| 4123 |
| 4124 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
| 4125 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey; |
| 4126 if( pData->flags & MEM_Null ){ |
| 4127 pData->z = 0; |
| 4128 pData->n = 0; |
| 4129 }else{ |
| 4130 assert( pData->flags & (MEM_Blob|MEM_Str) ); |
| 4131 } |
| 4132 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); |
| 4133 if( pData->flags & MEM_Zero ){ |
| 4134 nZero = pData->u.nZero; |
| 4135 }else{ |
| 4136 nZero = 0; |
| 4137 } |
| 4138 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, |
| 4139 pData->z, pData->n, nZero, |
| 4140 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult |
| 4141 ); |
| 4142 pC->deferredMoveto = 0; |
| 4143 pC->cacheStatus = CACHE_STALE; |
| 4144 |
| 4145 /* Invoke the update-hook if required. */ |
| 4146 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ |
| 4147 zDb = db->aDb[pC->iDb].zName; |
| 4148 zTbl = pOp->p4.z; |
| 4149 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
| 4150 assert( pC->isTable ); |
| 4151 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); |
| 4152 assert( pC->iDb>=0 ); |
| 4153 } |
| 4154 break; |
| 4155 } |
| 4156 |
| 4157 /* Opcode: Delete P1 P2 * P4 * |
| 4158 ** |
| 4159 ** Delete the record at which the P1 cursor is currently pointing. |
| 4160 ** |
| 4161 ** The cursor will be left pointing at either the next or the previous |
| 4162 ** record in the table. If it is left pointing at the next record, then |
| 4163 ** the next Next instruction will be a no-op. Hence it is OK to delete |
| 4164 ** a record from within a Next loop. |
| 4165 ** |
| 4166 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
| 4167 ** incremented (otherwise not). |
| 4168 ** |
| 4169 ** P1 must not be pseudo-table. It has to be a real table with |
| 4170 ** multiple rows. |
| 4171 ** |
| 4172 ** If P4 is not NULL, then it is the name of the table that P1 is |
| 4173 ** pointing to. The update hook will be invoked, if it exists. |
| 4174 ** If P4 is not NULL then the P1 cursor must have been positioned |
| 4175 ** using OP_NotFound prior to invoking this opcode. |
| 4176 */ |
| 4177 case OP_Delete: { |
| 4178 VdbeCursor *pC; |
| 4179 |
| 4180 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4181 pC = p->apCsr[pOp->p1]; |
| 4182 assert( pC!=0 ); |
| 4183 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ |
| 4184 assert( pC->deferredMoveto==0 ); |
| 4185 |
| 4186 #ifdef SQLITE_DEBUG |
| 4187 /* The seek operation that positioned the cursor prior to OP_Delete will |
| 4188 ** have also set the pC->movetoTarget field to the rowid of the row that |
| 4189 ** is being deleted */ |
| 4190 if( pOp->p4.z && pC->isTable ){ |
| 4191 i64 iKey = 0; |
| 4192 sqlite3BtreeKeySize(pC->pCursor, &iKey); |
| 4193 assert( pC->movetoTarget==iKey ); |
| 4194 } |
| 4195 #endif |
| 4196 |
| 4197 rc = sqlite3BtreeDelete(pC->pCursor); |
| 4198 pC->cacheStatus = CACHE_STALE; |
| 4199 |
| 4200 /* Invoke the update-hook if required. */ |
| 4201 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){ |
| 4202 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, |
| 4203 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget); |
| 4204 assert( pC->iDb>=0 ); |
| 4205 } |
| 4206 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
| 4207 break; |
| 4208 } |
| 4209 /* Opcode: ResetCount * * * * * |
| 4210 ** |
| 4211 ** The value of the change counter is copied to the database handle |
| 4212 ** change counter (returned by subsequent calls to sqlite3_changes()). |
| 4213 ** Then the VMs internal change counter resets to 0. |
| 4214 ** This is used by trigger programs. |
| 4215 */ |
| 4216 case OP_ResetCount: { |
| 4217 sqlite3VdbeSetChanges(db, p->nChange); |
| 4218 p->nChange = 0; |
| 4219 break; |
| 4220 } |
| 4221 |
| 4222 /* Opcode: SorterCompare P1 P2 P3 P4 |
| 4223 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 |
| 4224 ** |
| 4225 ** P1 is a sorter cursor. This instruction compares a prefix of the |
| 4226 ** record blob in register P3 against a prefix of the entry that |
| 4227 ** the sorter cursor currently points to. Only the first P4 fields |
| 4228 ** of r[P3] and the sorter record are compared. |
| 4229 ** |
| 4230 ** If either P3 or the sorter contains a NULL in one of their significant |
| 4231 ** fields (not counting the P4 fields at the end which are ignored) then |
| 4232 ** the comparison is assumed to be equal. |
| 4233 ** |
| 4234 ** Fall through to next instruction if the two records compare equal to |
| 4235 ** each other. Jump to P2 if they are different. |
| 4236 */ |
| 4237 case OP_SorterCompare: { |
| 4238 VdbeCursor *pC; |
| 4239 int res; |
| 4240 int nKeyCol; |
| 4241 |
| 4242 pC = p->apCsr[pOp->p1]; |
| 4243 assert( isSorter(pC) ); |
| 4244 assert( pOp->p4type==P4_INT32 ); |
| 4245 pIn3 = &aMem[pOp->p3]; |
| 4246 nKeyCol = pOp->p4.i; |
| 4247 res = 0; |
| 4248 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); |
| 4249 VdbeBranchTaken(res!=0,2); |
| 4250 if( res ){ |
| 4251 pc = pOp->p2-1; |
| 4252 } |
| 4253 break; |
| 4254 }; |
| 4255 |
| 4256 /* Opcode: SorterData P1 P2 P3 * * |
| 4257 ** Synopsis: r[P2]=data |
| 4258 ** |
| 4259 ** Write into register P2 the current sorter data for sorter cursor P1. |
| 4260 ** Then clear the column header cache on cursor P3. |
| 4261 ** |
| 4262 ** This opcode is normally use to move a record out of the sorter and into |
| 4263 ** a register that is the source for a pseudo-table cursor created using |
| 4264 ** OpenPseudo. That pseudo-table cursor is the one that is identified by |
| 4265 ** parameter P3. Clearing the P3 column cache as part of this opcode saves |
| 4266 ** us from having to issue a separate NullRow instruction to clear that cache. |
| 4267 */ |
| 4268 case OP_SorterData: { |
| 4269 VdbeCursor *pC; |
| 4270 |
| 4271 pOut = &aMem[pOp->p2]; |
| 4272 pC = p->apCsr[pOp->p1]; |
| 4273 assert( isSorter(pC) ); |
| 4274 rc = sqlite3VdbeSorterRowkey(pC, pOut); |
| 4275 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); |
| 4276 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4277 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; |
| 4278 break; |
| 4279 } |
| 4280 |
| 4281 /* Opcode: RowData P1 P2 * * * |
| 4282 ** Synopsis: r[P2]=data |
| 4283 ** |
| 4284 ** Write into register P2 the complete row data for cursor P1. |
| 4285 ** There is no interpretation of the data. |
| 4286 ** It is just copied onto the P2 register exactly as |
| 4287 ** it is found in the database file. |
| 4288 ** |
| 4289 ** If the P1 cursor must be pointing to a valid row (not a NULL row) |
| 4290 ** of a real table, not a pseudo-table. |
| 4291 */ |
| 4292 /* Opcode: RowKey P1 P2 * * * |
| 4293 ** Synopsis: r[P2]=key |
| 4294 ** |
| 4295 ** Write into register P2 the complete row key for cursor P1. |
| 4296 ** There is no interpretation of the data. |
| 4297 ** The key is copied onto the P2 register exactly as |
| 4298 ** it is found in the database file. |
| 4299 ** |
| 4300 ** If the P1 cursor must be pointing to a valid row (not a NULL row) |
| 4301 ** of a real table, not a pseudo-table. |
| 4302 */ |
| 4303 case OP_RowKey: |
| 4304 case OP_RowData: { |
| 4305 VdbeCursor *pC; |
| 4306 BtCursor *pCrsr; |
| 4307 u32 n; |
| 4308 i64 n64; |
| 4309 |
| 4310 pOut = &aMem[pOp->p2]; |
| 4311 memAboutToChange(p, pOut); |
| 4312 |
| 4313 /* Note that RowKey and RowData are really exactly the same instruction */ |
| 4314 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4315 pC = p->apCsr[pOp->p1]; |
| 4316 assert( isSorter(pC)==0 ); |
| 4317 assert( pC->isTable || pOp->opcode!=OP_RowData ); |
| 4318 assert( pC->isTable==0 || pOp->opcode==OP_RowData ); |
| 4319 assert( pC!=0 ); |
| 4320 assert( pC->nullRow==0 ); |
| 4321 assert( pC->pseudoTableReg==0 ); |
| 4322 assert( pC->pCursor!=0 ); |
| 4323 pCrsr = pC->pCursor; |
| 4324 |
| 4325 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or |
| 4326 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate |
| 4327 ** the cursor. If this where not the case, on of the following assert()s |
| 4328 ** would fail. Should this ever change (because of changes in the code |
| 4329 ** generator) then the fix would be to insert a call to |
| 4330 ** sqlite3VdbeCursorMoveto(). |
| 4331 */ |
| 4332 assert( pC->deferredMoveto==0 ); |
| 4333 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 4334 #if 0 /* Not required due to the previous to assert() statements */ |
| 4335 rc = sqlite3VdbeCursorMoveto(pC); |
| 4336 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 4337 #endif |
| 4338 |
| 4339 if( pC->isTable==0 ){ |
| 4340 assert( !pC->isTable ); |
| 4341 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64); |
| 4342 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
| 4343 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 4344 goto too_big; |
| 4345 } |
| 4346 n = (u32)n64; |
| 4347 }else{ |
| 4348 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n); |
| 4349 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
| 4350 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 4351 goto too_big; |
| 4352 } |
| 4353 } |
| 4354 testcase( n==0 ); |
| 4355 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){ |
| 4356 goto no_mem; |
| 4357 } |
| 4358 pOut->n = n; |
| 4359 MemSetTypeFlag(pOut, MEM_Blob); |
| 4360 if( pC->isTable==0 ){ |
| 4361 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); |
| 4362 }else{ |
| 4363 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); |
| 4364 } |
| 4365 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ |
| 4366 UPDATE_MAX_BLOBSIZE(pOut); |
| 4367 REGISTER_TRACE(pOp->p2, pOut); |
| 4368 break; |
| 4369 } |
| 4370 |
| 4371 /* Opcode: Rowid P1 P2 * * * |
| 4372 ** Synopsis: r[P2]=rowid |
| 4373 ** |
| 4374 ** Store in register P2 an integer which is the key of the table entry that |
| 4375 ** P1 is currently point to. |
| 4376 ** |
| 4377 ** P1 can be either an ordinary table or a virtual table. There used to |
| 4378 ** be a separate OP_VRowid opcode for use with virtual tables, but this |
| 4379 ** one opcode now works for both table types. |
| 4380 */ |
| 4381 case OP_Rowid: { /* out2-prerelease */ |
| 4382 VdbeCursor *pC; |
| 4383 i64 v; |
| 4384 sqlite3_vtab *pVtab; |
| 4385 const sqlite3_module *pModule; |
| 4386 |
| 4387 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4388 pC = p->apCsr[pOp->p1]; |
| 4389 assert( pC!=0 ); |
| 4390 assert( pC->pseudoTableReg==0 || pC->nullRow ); |
| 4391 if( pC->nullRow ){ |
| 4392 pOut->flags = MEM_Null; |
| 4393 break; |
| 4394 }else if( pC->deferredMoveto ){ |
| 4395 v = pC->movetoTarget; |
| 4396 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4397 }else if( pC->pVtabCursor ){ |
| 4398 pVtab = pC->pVtabCursor->pVtab; |
| 4399 pModule = pVtab->pModule; |
| 4400 assert( pModule->xRowid ); |
| 4401 rc = pModule->xRowid(pC->pVtabCursor, &v); |
| 4402 sqlite3VtabImportErrmsg(p, pVtab); |
| 4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 4404 }else{ |
| 4405 assert( pC->pCursor!=0 ); |
| 4406 rc = sqlite3VdbeCursorRestore(pC); |
| 4407 if( rc ) goto abort_due_to_error; |
| 4408 if( pC->nullRow ){ |
| 4409 pOut->flags = MEM_Null; |
| 4410 break; |
| 4411 } |
| 4412 rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
| 4413 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */ |
| 4414 } |
| 4415 pOut->u.i = v; |
| 4416 break; |
| 4417 } |
| 4418 |
| 4419 /* Opcode: NullRow P1 * * * * |
| 4420 ** |
| 4421 ** Move the cursor P1 to a null row. Any OP_Column operations |
| 4422 ** that occur while the cursor is on the null row will always |
| 4423 ** write a NULL. |
| 4424 */ |
| 4425 case OP_NullRow: { |
| 4426 VdbeCursor *pC; |
| 4427 |
| 4428 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4429 pC = p->apCsr[pOp->p1]; |
| 4430 assert( pC!=0 ); |
| 4431 pC->nullRow = 1; |
| 4432 pC->cacheStatus = CACHE_STALE; |
| 4433 if( pC->pCursor ){ |
| 4434 sqlite3BtreeClearCursor(pC->pCursor); |
| 4435 } |
| 4436 break; |
| 4437 } |
| 4438 |
| 4439 /* Opcode: Last P1 P2 * * * |
| 4440 ** |
| 4441 ** The next use of the Rowid or Column or Prev instruction for P1 |
| 4442 ** will refer to the last entry in the database table or index. |
| 4443 ** If the table or index is empty and P2>0, then jump immediately to P2. |
| 4444 ** If P2 is 0 or if the table or index is not empty, fall through |
| 4445 ** to the following instruction. |
| 4446 ** |
| 4447 ** This opcode leaves the cursor configured to move in reverse order, |
| 4448 ** from the end toward the beginning. In other words, the cursor is |
| 4449 ** configured to use Prev, not Next. |
| 4450 */ |
| 4451 case OP_Last: { /* jump */ |
| 4452 VdbeCursor *pC; |
| 4453 BtCursor *pCrsr; |
| 4454 int res; |
| 4455 |
| 4456 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4457 pC = p->apCsr[pOp->p1]; |
| 4458 assert( pC!=0 ); |
| 4459 pCrsr = pC->pCursor; |
| 4460 res = 0; |
| 4461 assert( pCrsr!=0 ); |
| 4462 rc = sqlite3BtreeLast(pCrsr, &res); |
| 4463 pC->nullRow = (u8)res; |
| 4464 pC->deferredMoveto = 0; |
| 4465 pC->cacheStatus = CACHE_STALE; |
| 4466 #ifdef SQLITE_DEBUG |
| 4467 pC->seekOp = OP_Last; |
| 4468 #endif |
| 4469 if( pOp->p2>0 ){ |
| 4470 VdbeBranchTaken(res!=0,2); |
| 4471 if( res ) pc = pOp->p2 - 1; |
| 4472 } |
| 4473 break; |
| 4474 } |
| 4475 |
| 4476 |
| 4477 /* Opcode: Sort P1 P2 * * * |
| 4478 ** |
| 4479 ** This opcode does exactly the same thing as OP_Rewind except that |
| 4480 ** it increments an undocumented global variable used for testing. |
| 4481 ** |
| 4482 ** Sorting is accomplished by writing records into a sorting index, |
| 4483 ** then rewinding that index and playing it back from beginning to |
| 4484 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the |
| 4485 ** rewinding so that the global variable will be incremented and |
| 4486 ** regression tests can determine whether or not the optimizer is |
| 4487 ** correctly optimizing out sorts. |
| 4488 */ |
| 4489 case OP_SorterSort: /* jump */ |
| 4490 case OP_Sort: { /* jump */ |
| 4491 #ifdef SQLITE_TEST |
| 4492 sqlite3_sort_count++; |
| 4493 sqlite3_search_count--; |
| 4494 #endif |
| 4495 p->aCounter[SQLITE_STMTSTATUS_SORT]++; |
| 4496 /* Fall through into OP_Rewind */ |
| 4497 } |
| 4498 /* Opcode: Rewind P1 P2 * * * |
| 4499 ** |
| 4500 ** The next use of the Rowid or Column or Next instruction for P1 |
| 4501 ** will refer to the first entry in the database table or index. |
| 4502 ** If the table or index is empty and P2>0, then jump immediately to P2. |
| 4503 ** If P2 is 0 or if the table or index is not empty, fall through |
| 4504 ** to the following instruction. |
| 4505 ** |
| 4506 ** This opcode leaves the cursor configured to move in forward order, |
| 4507 ** from the beginning toward the end. In other words, the cursor is |
| 4508 ** configured to use Next, not Prev. |
| 4509 */ |
| 4510 case OP_Rewind: { /* jump */ |
| 4511 VdbeCursor *pC; |
| 4512 BtCursor *pCrsr; |
| 4513 int res; |
| 4514 |
| 4515 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4516 pC = p->apCsr[pOp->p1]; |
| 4517 assert( pC!=0 ); |
| 4518 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); |
| 4519 res = 1; |
| 4520 #ifdef SQLITE_DEBUG |
| 4521 pC->seekOp = OP_Rewind; |
| 4522 #endif |
| 4523 if( isSorter(pC) ){ |
| 4524 rc = sqlite3VdbeSorterRewind(pC, &res); |
| 4525 }else{ |
| 4526 pCrsr = pC->pCursor; |
| 4527 assert( pCrsr ); |
| 4528 rc = sqlite3BtreeFirst(pCrsr, &res); |
| 4529 pC->deferredMoveto = 0; |
| 4530 pC->cacheStatus = CACHE_STALE; |
| 4531 } |
| 4532 pC->nullRow = (u8)res; |
| 4533 assert( pOp->p2>0 && pOp->p2<p->nOp ); |
| 4534 VdbeBranchTaken(res!=0,2); |
| 4535 if( res ){ |
| 4536 pc = pOp->p2 - 1; |
| 4537 } |
| 4538 break; |
| 4539 } |
| 4540 |
| 4541 /* Opcode: Next P1 P2 P3 P4 P5 |
| 4542 ** |
| 4543 ** Advance cursor P1 so that it points to the next key/data pair in its |
| 4544 ** table or index. If there are no more key/value pairs then fall through |
| 4545 ** to the following instruction. But if the cursor advance was successful, |
| 4546 ** jump immediately to P2. |
| 4547 ** |
| 4548 ** The Next opcode is only valid following an SeekGT, SeekGE, or |
| 4549 ** OP_Rewind opcode used to position the cursor. Next is not allowed |
| 4550 ** to follow SeekLT, SeekLE, or OP_Last. |
| 4551 ** |
| 4552 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have |
| 4553 ** been opened prior to this opcode or the program will segfault. |
| 4554 ** |
| 4555 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4556 ** means P1 is an SQL index and that this instruction could have been |
| 4557 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4558 ** always either 0 or 1. |
| 4559 ** |
| 4560 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4561 ** sqlite3BtreeNext(). |
| 4562 ** |
| 4563 ** If P5 is positive and the jump is taken, then event counter |
| 4564 ** number P5-1 in the prepared statement is incremented. |
| 4565 ** |
| 4566 ** See also: Prev, NextIfOpen |
| 4567 */ |
| 4568 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 |
| 4569 ** |
| 4570 ** This opcode works just like Next except that if cursor P1 is not |
| 4571 ** open it behaves a no-op. |
| 4572 */ |
| 4573 /* Opcode: Prev P1 P2 P3 P4 P5 |
| 4574 ** |
| 4575 ** Back up cursor P1 so that it points to the previous key/data pair in its |
| 4576 ** table or index. If there is no previous key/value pairs then fall through |
| 4577 ** to the following instruction. But if the cursor backup was successful, |
| 4578 ** jump immediately to P2. |
| 4579 ** |
| 4580 ** |
| 4581 ** The Prev opcode is only valid following an SeekLT, SeekLE, or |
| 4582 ** OP_Last opcode used to position the cursor. Prev is not allowed |
| 4583 ** to follow SeekGT, SeekGE, or OP_Rewind. |
| 4584 ** |
| 4585 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is |
| 4586 ** not open then the behavior is undefined. |
| 4587 ** |
| 4588 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4589 ** means P1 is an SQL index and that this instruction could have been |
| 4590 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4591 ** always either 0 or 1. |
| 4592 ** |
| 4593 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4594 ** sqlite3BtreePrevious(). |
| 4595 ** |
| 4596 ** If P5 is positive and the jump is taken, then event counter |
| 4597 ** number P5-1 in the prepared statement is incremented. |
| 4598 */ |
| 4599 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 |
| 4600 ** |
| 4601 ** This opcode works just like Prev except that if cursor P1 is not |
| 4602 ** open it behaves a no-op. |
| 4603 */ |
| 4604 case OP_SorterNext: { /* jump */ |
| 4605 VdbeCursor *pC; |
| 4606 int res; |
| 4607 |
| 4608 pC = p->apCsr[pOp->p1]; |
| 4609 assert( isSorter(pC) ); |
| 4610 res = 0; |
| 4611 rc = sqlite3VdbeSorterNext(db, pC, &res); |
| 4612 goto next_tail; |
| 4613 case OP_PrevIfOpen: /* jump */ |
| 4614 case OP_NextIfOpen: /* jump */ |
| 4615 if( p->apCsr[pOp->p1]==0 ) break; |
| 4616 /* Fall through */ |
| 4617 case OP_Prev: /* jump */ |
| 4618 case OP_Next: /* jump */ |
| 4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4620 assert( pOp->p5<ArraySize(p->aCounter) ); |
| 4621 pC = p->apCsr[pOp->p1]; |
| 4622 res = pOp->p3; |
| 4623 assert( pC!=0 ); |
| 4624 assert( pC->deferredMoveto==0 ); |
| 4625 assert( pC->pCursor ); |
| 4626 assert( res==0 || (res==1 && pC->isTable==0) ); |
| 4627 testcase( res==1 ); |
| 4628 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 4629 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); |
| 4630 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 4631 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); |
| 4632 |
| 4633 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. |
| 4634 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ |
| 4635 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen |
| 4636 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE |
| 4637 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); |
| 4638 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen |
| 4639 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE |
| 4640 || pC->seekOp==OP_Last ); |
| 4641 |
| 4642 rc = pOp->p4.xAdvance(pC->pCursor, &res); |
| 4643 next_tail: |
| 4644 pC->cacheStatus = CACHE_STALE; |
| 4645 VdbeBranchTaken(res==0,2); |
| 4646 if( res==0 ){ |
| 4647 pC->nullRow = 0; |
| 4648 pc = pOp->p2 - 1; |
| 4649 p->aCounter[pOp->p5]++; |
| 4650 #ifdef SQLITE_TEST |
| 4651 sqlite3_search_count++; |
| 4652 #endif |
| 4653 }else{ |
| 4654 pC->nullRow = 1; |
| 4655 } |
| 4656 goto check_for_interrupt; |
| 4657 } |
| 4658 |
| 4659 /* Opcode: IdxInsert P1 P2 P3 * P5 |
| 4660 ** Synopsis: key=r[P2] |
| 4661 ** |
| 4662 ** Register P2 holds an SQL index key made using the |
| 4663 ** MakeRecord instructions. This opcode writes that key |
| 4664 ** into the index P1. Data for the entry is nil. |
| 4665 ** |
| 4666 ** P3 is a flag that provides a hint to the b-tree layer that this |
| 4667 ** insert is likely to be an append. |
| 4668 ** |
| 4669 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is |
| 4670 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, |
| 4671 ** then the change counter is unchanged. |
| 4672 ** |
| 4673 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have |
| 4674 ** just done a seek to the spot where the new entry is to be inserted. |
| 4675 ** This flag avoids doing an extra seek. |
| 4676 ** |
| 4677 ** This instruction only works for indices. The equivalent instruction |
| 4678 ** for tables is OP_Insert. |
| 4679 */ |
| 4680 case OP_SorterInsert: /* in2 */ |
| 4681 case OP_IdxInsert: { /* in2 */ |
| 4682 VdbeCursor *pC; |
| 4683 BtCursor *pCrsr; |
| 4684 int nKey; |
| 4685 const char *zKey; |
| 4686 |
| 4687 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4688 pC = p->apCsr[pOp->p1]; |
| 4689 assert( pC!=0 ); |
| 4690 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); |
| 4691 pIn2 = &aMem[pOp->p2]; |
| 4692 assert( pIn2->flags & MEM_Blob ); |
| 4693 pCrsr = pC->pCursor; |
| 4694 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
| 4695 assert( pCrsr!=0 ); |
| 4696 assert( pC->isTable==0 ); |
| 4697 rc = ExpandBlob(pIn2); |
| 4698 if( rc==SQLITE_OK ){ |
| 4699 if( isSorter(pC) ){ |
| 4700 rc = sqlite3VdbeSorterWrite(pC, pIn2); |
| 4701 }else{ |
| 4702 nKey = pIn2->n; |
| 4703 zKey = pIn2->z; |
| 4704 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, |
| 4705 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) |
| 4706 ); |
| 4707 assert( pC->deferredMoveto==0 ); |
| 4708 pC->cacheStatus = CACHE_STALE; |
| 4709 } |
| 4710 } |
| 4711 break; |
| 4712 } |
| 4713 |
| 4714 /* Opcode: IdxDelete P1 P2 P3 * * |
| 4715 ** Synopsis: key=r[P2@P3] |
| 4716 ** |
| 4717 ** The content of P3 registers starting at register P2 form |
| 4718 ** an unpacked index key. This opcode removes that entry from the |
| 4719 ** index opened by cursor P1. |
| 4720 */ |
| 4721 case OP_IdxDelete: { |
| 4722 VdbeCursor *pC; |
| 4723 BtCursor *pCrsr; |
| 4724 int res; |
| 4725 UnpackedRecord r; |
| 4726 |
| 4727 assert( pOp->p3>0 ); |
| 4728 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 ); |
| 4729 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4730 pC = p->apCsr[pOp->p1]; |
| 4731 assert( pC!=0 ); |
| 4732 pCrsr = pC->pCursor; |
| 4733 assert( pCrsr!=0 ); |
| 4734 assert( pOp->p5==0 ); |
| 4735 r.pKeyInfo = pC->pKeyInfo; |
| 4736 r.nField = (u16)pOp->p3; |
| 4737 r.default_rc = 0; |
| 4738 r.aMem = &aMem[pOp->p2]; |
| 4739 #ifdef SQLITE_DEBUG |
| 4740 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 4741 #endif |
| 4742 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); |
| 4743 if( rc==SQLITE_OK && res==0 ){ |
| 4744 rc = sqlite3BtreeDelete(pCrsr); |
| 4745 } |
| 4746 assert( pC->deferredMoveto==0 ); |
| 4747 pC->cacheStatus = CACHE_STALE; |
| 4748 break; |
| 4749 } |
| 4750 |
| 4751 /* Opcode: IdxRowid P1 P2 * * * |
| 4752 ** Synopsis: r[P2]=rowid |
| 4753 ** |
| 4754 ** Write into register P2 an integer which is the last entry in the record at |
| 4755 ** the end of the index key pointed to by cursor P1. This integer should be |
| 4756 ** the rowid of the table entry to which this index entry points. |
| 4757 ** |
| 4758 ** See also: Rowid, MakeRecord. |
| 4759 */ |
| 4760 case OP_IdxRowid: { /* out2-prerelease */ |
| 4761 BtCursor *pCrsr; |
| 4762 VdbeCursor *pC; |
| 4763 i64 rowid; |
| 4764 |
| 4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4766 pC = p->apCsr[pOp->p1]; |
| 4767 assert( pC!=0 ); |
| 4768 pCrsr = pC->pCursor; |
| 4769 assert( pCrsr!=0 ); |
| 4770 pOut->flags = MEM_Null; |
| 4771 assert( pC->isTable==0 ); |
| 4772 assert( pC->deferredMoveto==0 ); |
| 4773 |
| 4774 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted |
| 4775 ** out from under the cursor. That will never happend for an IdxRowid |
| 4776 ** opcode, hence the NEVER() arround the check of the return value. |
| 4777 */ |
| 4778 rc = sqlite3VdbeCursorRestore(pC); |
| 4779 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; |
| 4780 |
| 4781 if( !pC->nullRow ){ |
| 4782 rowid = 0; /* Not needed. Only used to silence a warning. */ |
| 4783 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); |
| 4784 if( rc!=SQLITE_OK ){ |
| 4785 goto abort_due_to_error; |
| 4786 } |
| 4787 pOut->u.i = rowid; |
| 4788 pOut->flags = MEM_Int; |
| 4789 } |
| 4790 break; |
| 4791 } |
| 4792 |
| 4793 /* Opcode: IdxGE P1 P2 P3 P4 P5 |
| 4794 ** Synopsis: key=r[P3@P4] |
| 4795 ** |
| 4796 ** The P4 register values beginning with P3 form an unpacked index |
| 4797 ** key that omits the PRIMARY KEY. Compare this key value against the index |
| 4798 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
| 4799 ** fields at the end. |
| 4800 ** |
| 4801 ** If the P1 index entry is greater than or equal to the key value |
| 4802 ** then jump to P2. Otherwise fall through to the next instruction. |
| 4803 */ |
| 4804 /* Opcode: IdxGT P1 P2 P3 P4 P5 |
| 4805 ** Synopsis: key=r[P3@P4] |
| 4806 ** |
| 4807 ** The P4 register values beginning with P3 form an unpacked index |
| 4808 ** key that omits the PRIMARY KEY. Compare this key value against the index |
| 4809 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
| 4810 ** fields at the end. |
| 4811 ** |
| 4812 ** If the P1 index entry is greater than the key value |
| 4813 ** then jump to P2. Otherwise fall through to the next instruction. |
| 4814 */ |
| 4815 /* Opcode: IdxLT P1 P2 P3 P4 P5 |
| 4816 ** Synopsis: key=r[P3@P4] |
| 4817 ** |
| 4818 ** The P4 register values beginning with P3 form an unpacked index |
| 4819 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
| 4820 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 4821 ** ROWID on the P1 index. |
| 4822 ** |
| 4823 ** If the P1 index entry is less than the key value then jump to P2. |
| 4824 ** Otherwise fall through to the next instruction. |
| 4825 */ |
| 4826 /* Opcode: IdxLE P1 P2 P3 P4 P5 |
| 4827 ** Synopsis: key=r[P3@P4] |
| 4828 ** |
| 4829 ** The P4 register values beginning with P3 form an unpacked index |
| 4830 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
| 4831 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 4832 ** ROWID on the P1 index. |
| 4833 ** |
| 4834 ** If the P1 index entry is less than or equal to the key value then jump |
| 4835 ** to P2. Otherwise fall through to the next instruction. |
| 4836 */ |
| 4837 case OP_IdxLE: /* jump */ |
| 4838 case OP_IdxGT: /* jump */ |
| 4839 case OP_IdxLT: /* jump */ |
| 4840 case OP_IdxGE: { /* jump */ |
| 4841 VdbeCursor *pC; |
| 4842 int res; |
| 4843 UnpackedRecord r; |
| 4844 |
| 4845 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4846 pC = p->apCsr[pOp->p1]; |
| 4847 assert( pC!=0 ); |
| 4848 assert( pC->isOrdered ); |
| 4849 assert( pC->pCursor!=0); |
| 4850 assert( pC->deferredMoveto==0 ); |
| 4851 assert( pOp->p5==0 || pOp->p5==1 ); |
| 4852 assert( pOp->p4type==P4_INT32 ); |
| 4853 r.pKeyInfo = pC->pKeyInfo; |
| 4854 r.nField = (u16)pOp->p4.i; |
| 4855 if( pOp->opcode<OP_IdxLT ){ |
| 4856 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); |
| 4857 r.default_rc = -1; |
| 4858 }else{ |
| 4859 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); |
| 4860 r.default_rc = 0; |
| 4861 } |
| 4862 r.aMem = &aMem[pOp->p3]; |
| 4863 #ifdef SQLITE_DEBUG |
| 4864 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 4865 #endif |
| 4866 res = 0; /* Not needed. Only used to silence a warning. */ |
| 4867 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); |
| 4868 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); |
| 4869 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ |
| 4870 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); |
| 4871 res = -res; |
| 4872 }else{ |
| 4873 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); |
| 4874 res++; |
| 4875 } |
| 4876 VdbeBranchTaken(res>0,2); |
| 4877 if( res>0 ){ |
| 4878 pc = pOp->p2 - 1 ; |
| 4879 } |
| 4880 break; |
| 4881 } |
| 4882 |
| 4883 /* Opcode: Destroy P1 P2 P3 * * |
| 4884 ** |
| 4885 ** Delete an entire database table or index whose root page in the database |
| 4886 ** file is given by P1. |
| 4887 ** |
| 4888 ** The table being destroyed is in the main database file if P3==0. If |
| 4889 ** P3==1 then the table to be clear is in the auxiliary database file |
| 4890 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
| 4891 ** |
| 4892 ** If AUTOVACUUM is enabled then it is possible that another root page |
| 4893 ** might be moved into the newly deleted root page in order to keep all |
| 4894 ** root pages contiguous at the beginning of the database. The former |
| 4895 ** value of the root page that moved - its value before the move occurred - |
| 4896 ** is stored in register P2. If no page |
| 4897 ** movement was required (because the table being dropped was already |
| 4898 ** the last one in the database) then a zero is stored in register P2. |
| 4899 ** If AUTOVACUUM is disabled then a zero is stored in register P2. |
| 4900 ** |
| 4901 ** See also: Clear |
| 4902 */ |
| 4903 case OP_Destroy: { /* out2-prerelease */ |
| 4904 int iMoved; |
| 4905 int iCnt; |
| 4906 Vdbe *pVdbe; |
| 4907 int iDb; |
| 4908 |
| 4909 assert( p->readOnly==0 ); |
| 4910 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4911 iCnt = 0; |
| 4912 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ |
| 4913 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader |
| 4914 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 |
| 4915 ){ |
| 4916 iCnt++; |
| 4917 } |
| 4918 } |
| 4919 #else |
| 4920 iCnt = db->nVdbeRead; |
| 4921 #endif |
| 4922 pOut->flags = MEM_Null; |
| 4923 if( iCnt>1 ){ |
| 4924 rc = SQLITE_LOCKED; |
| 4925 p->errorAction = OE_Abort; |
| 4926 }else{ |
| 4927 iDb = pOp->p3; |
| 4928 assert( iCnt==1 ); |
| 4929 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 4930 iMoved = 0; /* Not needed. Only to silence a warning. */ |
| 4931 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); |
| 4932 pOut->flags = MEM_Int; |
| 4933 pOut->u.i = iMoved; |
| 4934 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 4935 if( rc==SQLITE_OK && iMoved!=0 ){ |
| 4936 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); |
| 4937 /* All OP_Destroy operations occur on the same btree */ |
| 4938 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); |
| 4939 resetSchemaOnFault = iDb+1; |
| 4940 } |
| 4941 #endif |
| 4942 } |
| 4943 break; |
| 4944 } |
| 4945 |
| 4946 /* Opcode: Clear P1 P2 P3 |
| 4947 ** |
| 4948 ** Delete all contents of the database table or index whose root page |
| 4949 ** in the database file is given by P1. But, unlike Destroy, do not |
| 4950 ** remove the table or index from the database file. |
| 4951 ** |
| 4952 ** The table being clear is in the main database file if P2==0. If |
| 4953 ** P2==1 then the table to be clear is in the auxiliary database file |
| 4954 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
| 4955 ** |
| 4956 ** If the P3 value is non-zero, then the table referred to must be an |
| 4957 ** intkey table (an SQL table, not an index). In this case the row change |
| 4958 ** count is incremented by the number of rows in the table being cleared. |
| 4959 ** If P3 is greater than zero, then the value stored in register P3 is |
| 4960 ** also incremented by the number of rows in the table being cleared. |
| 4961 ** |
| 4962 ** See also: Destroy |
| 4963 */ |
| 4964 case OP_Clear: { |
| 4965 int nChange; |
| 4966 |
| 4967 nChange = 0; |
| 4968 assert( p->readOnly==0 ); |
| 4969 assert( DbMaskTest(p->btreeMask, pOp->p2) ); |
| 4970 rc = sqlite3BtreeClearTable( |
| 4971 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) |
| 4972 ); |
| 4973 if( pOp->p3 ){ |
| 4974 p->nChange += nChange; |
| 4975 if( pOp->p3>0 ){ |
| 4976 assert( memIsValid(&aMem[pOp->p3]) ); |
| 4977 memAboutToChange(p, &aMem[pOp->p3]); |
| 4978 aMem[pOp->p3].u.i += nChange; |
| 4979 } |
| 4980 } |
| 4981 break; |
| 4982 } |
| 4983 |
| 4984 /* Opcode: ResetSorter P1 * * * * |
| 4985 ** |
| 4986 ** Delete all contents from the ephemeral table or sorter |
| 4987 ** that is open on cursor P1. |
| 4988 ** |
| 4989 ** This opcode only works for cursors used for sorting and |
| 4990 ** opened with OP_OpenEphemeral or OP_SorterOpen. |
| 4991 */ |
| 4992 case OP_ResetSorter: { |
| 4993 VdbeCursor *pC; |
| 4994 |
| 4995 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4996 pC = p->apCsr[pOp->p1]; |
| 4997 assert( pC!=0 ); |
| 4998 if( pC->pSorter ){ |
| 4999 sqlite3VdbeSorterReset(db, pC->pSorter); |
| 5000 }else{ |
| 5001 assert( pC->isEphemeral ); |
| 5002 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor); |
| 5003 } |
| 5004 break; |
| 5005 } |
| 5006 |
| 5007 /* Opcode: CreateTable P1 P2 * * * |
| 5008 ** Synopsis: r[P2]=root iDb=P1 |
| 5009 ** |
| 5010 ** Allocate a new table in the main database file if P1==0 or in the |
| 5011 ** auxiliary database file if P1==1 or in an attached database if |
| 5012 ** P1>1. Write the root page number of the new table into |
| 5013 ** register P2 |
| 5014 ** |
| 5015 ** The difference between a table and an index is this: A table must |
| 5016 ** have a 4-byte integer key and can have arbitrary data. An index |
| 5017 ** has an arbitrary key but no data. |
| 5018 ** |
| 5019 ** See also: CreateIndex |
| 5020 */ |
| 5021 /* Opcode: CreateIndex P1 P2 * * * |
| 5022 ** Synopsis: r[P2]=root iDb=P1 |
| 5023 ** |
| 5024 ** Allocate a new index in the main database file if P1==0 or in the |
| 5025 ** auxiliary database file if P1==1 or in an attached database if |
| 5026 ** P1>1. Write the root page number of the new table into |
| 5027 ** register P2. |
| 5028 ** |
| 5029 ** See documentation on OP_CreateTable for additional information. |
| 5030 */ |
| 5031 case OP_CreateIndex: /* out2-prerelease */ |
| 5032 case OP_CreateTable: { /* out2-prerelease */ |
| 5033 int pgno; |
| 5034 int flags; |
| 5035 Db *pDb; |
| 5036 |
| 5037 pgno = 0; |
| 5038 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5039 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 5040 assert( p->readOnly==0 ); |
| 5041 pDb = &db->aDb[pOp->p1]; |
| 5042 assert( pDb->pBt!=0 ); |
| 5043 if( pOp->opcode==OP_CreateTable ){ |
| 5044 /* flags = BTREE_INTKEY; */ |
| 5045 flags = BTREE_INTKEY; |
| 5046 }else{ |
| 5047 flags = BTREE_BLOBKEY; |
| 5048 } |
| 5049 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); |
| 5050 pOut->u.i = pgno; |
| 5051 break; |
| 5052 } |
| 5053 |
| 5054 /* Opcode: ParseSchema P1 * * P4 * |
| 5055 ** |
| 5056 ** Read and parse all entries from the SQLITE_MASTER table of database P1 |
| 5057 ** that match the WHERE clause P4. |
| 5058 ** |
| 5059 ** This opcode invokes the parser to create a new virtual machine, |
| 5060 ** then runs the new virtual machine. It is thus a re-entrant opcode. |
| 5061 */ |
| 5062 case OP_ParseSchema: { |
| 5063 int iDb; |
| 5064 const char *zMaster; |
| 5065 char *zSql; |
| 5066 InitData initData; |
| 5067 |
| 5068 /* Any prepared statement that invokes this opcode will hold mutexes |
| 5069 ** on every btree. This is a prerequisite for invoking |
| 5070 ** sqlite3InitCallback(). |
| 5071 */ |
| 5072 #ifdef SQLITE_DEBUG |
| 5073 for(iDb=0; iDb<db->nDb; iDb++){ |
| 5074 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); |
| 5075 } |
| 5076 #endif |
| 5077 |
| 5078 iDb = pOp->p1; |
| 5079 assert( iDb>=0 && iDb<db->nDb ); |
| 5080 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); |
| 5081 /* Used to be a conditional */ { |
| 5082 zMaster = SCHEMA_TABLE(iDb); |
| 5083 initData.db = db; |
| 5084 initData.iDb = pOp->p1; |
| 5085 initData.pzErrMsg = &p->zErrMsg; |
| 5086 zSql = sqlite3MPrintf(db, |
| 5087 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", |
| 5088 db->aDb[iDb].zName, zMaster, pOp->p4.z); |
| 5089 if( zSql==0 ){ |
| 5090 rc = SQLITE_NOMEM; |
| 5091 }else{ |
| 5092 assert( db->init.busy==0 ); |
| 5093 db->init.busy = 1; |
| 5094 initData.rc = SQLITE_OK; |
| 5095 assert( !db->mallocFailed ); |
| 5096 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
| 5097 if( rc==SQLITE_OK ) rc = initData.rc; |
| 5098 sqlite3DbFree(db, zSql); |
| 5099 db->init.busy = 0; |
| 5100 } |
| 5101 } |
| 5102 if( rc ) sqlite3ResetAllSchemasOfConnection(db); |
| 5103 if( rc==SQLITE_NOMEM ){ |
| 5104 goto no_mem; |
| 5105 } |
| 5106 break; |
| 5107 } |
| 5108 |
| 5109 #if !defined(SQLITE_OMIT_ANALYZE) |
| 5110 /* Opcode: LoadAnalysis P1 * * * * |
| 5111 ** |
| 5112 ** Read the sqlite_stat1 table for database P1 and load the content |
| 5113 ** of that table into the internal index hash table. This will cause |
| 5114 ** the analysis to be used when preparing all subsequent queries. |
| 5115 */ |
| 5116 case OP_LoadAnalysis: { |
| 5117 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5118 rc = sqlite3AnalysisLoad(db, pOp->p1); |
| 5119 break; |
| 5120 } |
| 5121 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ |
| 5122 |
| 5123 /* Opcode: DropTable P1 * * P4 * |
| 5124 ** |
| 5125 ** Remove the internal (in-memory) data structures that describe |
| 5126 ** the table named P4 in database P1. This is called after a table |
| 5127 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5128 ** the internal representation of the |
| 5129 ** schema consistent with what is on disk. |
| 5130 */ |
| 5131 case OP_DropTable: { |
| 5132 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); |
| 5133 break; |
| 5134 } |
| 5135 |
| 5136 /* Opcode: DropIndex P1 * * P4 * |
| 5137 ** |
| 5138 ** Remove the internal (in-memory) data structures that describe |
| 5139 ** the index named P4 in database P1. This is called after an index |
| 5140 ** is dropped from disk (using the Destroy opcode) |
| 5141 ** in order to keep the internal representation of the |
| 5142 ** schema consistent with what is on disk. |
| 5143 */ |
| 5144 case OP_DropIndex: { |
| 5145 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); |
| 5146 break; |
| 5147 } |
| 5148 |
| 5149 /* Opcode: DropTrigger P1 * * P4 * |
| 5150 ** |
| 5151 ** Remove the internal (in-memory) data structures that describe |
| 5152 ** the trigger named P4 in database P1. This is called after a trigger |
| 5153 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5154 ** the internal representation of the |
| 5155 ** schema consistent with what is on disk. |
| 5156 */ |
| 5157 case OP_DropTrigger: { |
| 5158 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); |
| 5159 break; |
| 5160 } |
| 5161 |
| 5162 |
| 5163 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 5164 /* Opcode: IntegrityCk P1 P2 P3 * P5 |
| 5165 ** |
| 5166 ** Do an analysis of the currently open database. Store in |
| 5167 ** register P1 the text of an error message describing any problems. |
| 5168 ** If no problems are found, store a NULL in register P1. |
| 5169 ** |
| 5170 ** The register P3 contains the maximum number of allowed errors. |
| 5171 ** At most reg(P3) errors will be reported. |
| 5172 ** In other words, the analysis stops as soon as reg(P1) errors are |
| 5173 ** seen. Reg(P1) is updated with the number of errors remaining. |
| 5174 ** |
| 5175 ** The root page numbers of all tables in the database are integer |
| 5176 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables |
| 5177 ** total. |
| 5178 ** |
| 5179 ** If P5 is not zero, the check is done on the auxiliary database |
| 5180 ** file, not the main database file. |
| 5181 ** |
| 5182 ** This opcode is used to implement the integrity_check pragma. |
| 5183 */ |
| 5184 case OP_IntegrityCk: { |
| 5185 int nRoot; /* Number of tables to check. (Number of root pages.) */ |
| 5186 int *aRoot; /* Array of rootpage numbers for tables to be checked */ |
| 5187 int j; /* Loop counter */ |
| 5188 int nErr; /* Number of errors reported */ |
| 5189 char *z; /* Text of the error report */ |
| 5190 Mem *pnErr; /* Register keeping track of errors remaining */ |
| 5191 |
| 5192 assert( p->bIsReader ); |
| 5193 nRoot = pOp->p2; |
| 5194 assert( nRoot>0 ); |
| 5195 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); |
| 5196 if( aRoot==0 ) goto no_mem; |
| 5197 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 5198 pnErr = &aMem[pOp->p3]; |
| 5199 assert( (pnErr->flags & MEM_Int)!=0 ); |
| 5200 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); |
| 5201 pIn1 = &aMem[pOp->p1]; |
| 5202 for(j=0; j<nRoot; j++){ |
| 5203 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); |
| 5204 } |
| 5205 aRoot[j] = 0; |
| 5206 assert( pOp->p5<db->nDb ); |
| 5207 assert( DbMaskTest(p->btreeMask, pOp->p5) ); |
| 5208 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, |
| 5209 (int)pnErr->u.i, &nErr); |
| 5210 sqlite3DbFree(db, aRoot); |
| 5211 pnErr->u.i -= nErr; |
| 5212 sqlite3VdbeMemSetNull(pIn1); |
| 5213 if( nErr==0 ){ |
| 5214 assert( z==0 ); |
| 5215 }else if( z==0 ){ |
| 5216 goto no_mem; |
| 5217 }else{ |
| 5218 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); |
| 5219 } |
| 5220 UPDATE_MAX_BLOBSIZE(pIn1); |
| 5221 sqlite3VdbeChangeEncoding(pIn1, encoding); |
| 5222 break; |
| 5223 } |
| 5224 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 5225 |
| 5226 /* Opcode: RowSetAdd P1 P2 * * * |
| 5227 ** Synopsis: rowset(P1)=r[P2] |
| 5228 ** |
| 5229 ** Insert the integer value held by register P2 into a boolean index |
| 5230 ** held in register P1. |
| 5231 ** |
| 5232 ** An assertion fails if P2 is not an integer. |
| 5233 */ |
| 5234 case OP_RowSetAdd: { /* in1, in2 */ |
| 5235 pIn1 = &aMem[pOp->p1]; |
| 5236 pIn2 = &aMem[pOp->p2]; |
| 5237 assert( (pIn2->flags & MEM_Int)!=0 ); |
| 5238 if( (pIn1->flags & MEM_RowSet)==0 ){ |
| 5239 sqlite3VdbeMemSetRowSet(pIn1); |
| 5240 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
| 5241 } |
| 5242 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); |
| 5243 break; |
| 5244 } |
| 5245 |
| 5246 /* Opcode: RowSetRead P1 P2 P3 * * |
| 5247 ** Synopsis: r[P3]=rowset(P1) |
| 5248 ** |
| 5249 ** Extract the smallest value from boolean index P1 and put that value into |
| 5250 ** register P3. Or, if boolean index P1 is initially empty, leave P3 |
| 5251 ** unchanged and jump to instruction P2. |
| 5252 */ |
| 5253 case OP_RowSetRead: { /* jump, in1, out3 */ |
| 5254 i64 val; |
| 5255 |
| 5256 pIn1 = &aMem[pOp->p1]; |
| 5257 if( (pIn1->flags & MEM_RowSet)==0 |
| 5258 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 |
| 5259 ){ |
| 5260 /* The boolean index is empty */ |
| 5261 sqlite3VdbeMemSetNull(pIn1); |
| 5262 pc = pOp->p2 - 1; |
| 5263 VdbeBranchTaken(1,2); |
| 5264 }else{ |
| 5265 /* A value was pulled from the index */ |
| 5266 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); |
| 5267 VdbeBranchTaken(0,2); |
| 5268 } |
| 5269 goto check_for_interrupt; |
| 5270 } |
| 5271 |
| 5272 /* Opcode: RowSetTest P1 P2 P3 P4 |
| 5273 ** Synopsis: if r[P3] in rowset(P1) goto P2 |
| 5274 ** |
| 5275 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
| 5276 ** contains a RowSet object and that RowSet object contains |
| 5277 ** the value held in P3, jump to register P2. Otherwise, insert the |
| 5278 ** integer in P3 into the RowSet and continue on to the |
| 5279 ** next opcode. |
| 5280 ** |
| 5281 ** The RowSet object is optimized for the case where successive sets |
| 5282 ** of integers, where each set contains no duplicates. Each set |
| 5283 ** of values is identified by a unique P4 value. The first set |
| 5284 ** must have P4==0, the final set P4=-1. P4 must be either -1 or |
| 5285 ** non-negative. For non-negative values of P4 only the lower 4 |
| 5286 ** bits are significant. |
| 5287 ** |
| 5288 ** This allows optimizations: (a) when P4==0 there is no need to test |
| 5289 ** the rowset object for P3, as it is guaranteed not to contain it, |
| 5290 ** (b) when P4==-1 there is no need to insert the value, as it will |
| 5291 ** never be tested for, and (c) when a value that is part of set X is |
| 5292 ** inserted, there is no need to search to see if the same value was |
| 5293 ** previously inserted as part of set X (only if it was previously |
| 5294 ** inserted as part of some other set). |
| 5295 */ |
| 5296 case OP_RowSetTest: { /* jump, in1, in3 */ |
| 5297 int iSet; |
| 5298 int exists; |
| 5299 |
| 5300 pIn1 = &aMem[pOp->p1]; |
| 5301 pIn3 = &aMem[pOp->p3]; |
| 5302 iSet = pOp->p4.i; |
| 5303 assert( pIn3->flags&MEM_Int ); |
| 5304 |
| 5305 /* If there is anything other than a rowset object in memory cell P1, |
| 5306 ** delete it now and initialize P1 with an empty rowset |
| 5307 */ |
| 5308 if( (pIn1->flags & MEM_RowSet)==0 ){ |
| 5309 sqlite3VdbeMemSetRowSet(pIn1); |
| 5310 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
| 5311 } |
| 5312 |
| 5313 assert( pOp->p4type==P4_INT32 ); |
| 5314 assert( iSet==-1 || iSet>=0 ); |
| 5315 if( iSet ){ |
| 5316 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); |
| 5317 VdbeBranchTaken(exists!=0,2); |
| 5318 if( exists ){ |
| 5319 pc = pOp->p2 - 1; |
| 5320 break; |
| 5321 } |
| 5322 } |
| 5323 if( iSet>=0 ){ |
| 5324 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
| 5325 } |
| 5326 break; |
| 5327 } |
| 5328 |
| 5329 |
| 5330 #ifndef SQLITE_OMIT_TRIGGER |
| 5331 |
| 5332 /* Opcode: Program P1 P2 P3 P4 P5 |
| 5333 ** |
| 5334 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). |
| 5335 ** |
| 5336 ** P1 contains the address of the memory cell that contains the first memory |
| 5337 ** cell in an array of values used as arguments to the sub-program. P2 |
| 5338 ** contains the address to jump to if the sub-program throws an IGNORE |
| 5339 ** exception using the RAISE() function. Register P3 contains the address |
| 5340 ** of a memory cell in this (the parent) VM that is used to allocate the |
| 5341 ** memory required by the sub-vdbe at runtime. |
| 5342 ** |
| 5343 ** P4 is a pointer to the VM containing the trigger program. |
| 5344 ** |
| 5345 ** If P5 is non-zero, then recursive program invocation is enabled. |
| 5346 */ |
| 5347 case OP_Program: { /* jump */ |
| 5348 int nMem; /* Number of memory registers for sub-program */ |
| 5349 int nByte; /* Bytes of runtime space required for sub-program */ |
| 5350 Mem *pRt; /* Register to allocate runtime space */ |
| 5351 Mem *pMem; /* Used to iterate through memory cells */ |
| 5352 Mem *pEnd; /* Last memory cell in new array */ |
| 5353 VdbeFrame *pFrame; /* New vdbe frame to execute in */ |
| 5354 SubProgram *pProgram; /* Sub-program to execute */ |
| 5355 void *t; /* Token identifying trigger */ |
| 5356 |
| 5357 pProgram = pOp->p4.pProgram; |
| 5358 pRt = &aMem[pOp->p3]; |
| 5359 assert( pProgram->nOp>0 ); |
| 5360 |
| 5361 /* If the p5 flag is clear, then recursive invocation of triggers is |
| 5362 ** disabled for backwards compatibility (p5 is set if this sub-program |
| 5363 ** is really a trigger, not a foreign key action, and the flag set |
| 5364 ** and cleared by the "PRAGMA recursive_triggers" command is clear). |
| 5365 ** |
| 5366 ** It is recursive invocation of triggers, at the SQL level, that is |
| 5367 ** disabled. In some cases a single trigger may generate more than one |
| 5368 ** SubProgram (if the trigger may be executed with more than one different |
| 5369 ** ON CONFLICT algorithm). SubProgram structures associated with a |
| 5370 ** single trigger all have the same value for the SubProgram.token |
| 5371 ** variable. */ |
| 5372 if( pOp->p5 ){ |
| 5373 t = pProgram->token; |
| 5374 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); |
| 5375 if( pFrame ) break; |
| 5376 } |
| 5377 |
| 5378 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ |
| 5379 rc = SQLITE_ERROR; |
| 5380 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); |
| 5381 break; |
| 5382 } |
| 5383 |
| 5384 /* Register pRt is used to store the memory required to save the state |
| 5385 ** of the current program, and the memory required at runtime to execute |
| 5386 ** the trigger program. If this trigger has been fired before, then pRt |
| 5387 ** is already allocated. Otherwise, it must be initialized. */ |
| 5388 if( (pRt->flags&MEM_Frame)==0 ){ |
| 5389 /* SubProgram.nMem is set to the number of memory cells used by the |
| 5390 ** program stored in SubProgram.aOp. As well as these, one memory |
| 5391 ** cell is required for each cursor used by the program. Set local |
| 5392 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. |
| 5393 */ |
| 5394 nMem = pProgram->nMem + pProgram->nCsr; |
| 5395 nByte = ROUND8(sizeof(VdbeFrame)) |
| 5396 + nMem * sizeof(Mem) |
| 5397 + pProgram->nCsr * sizeof(VdbeCursor *) |
| 5398 + pProgram->nOnce * sizeof(u8); |
| 5399 pFrame = sqlite3DbMallocZero(db, nByte); |
| 5400 if( !pFrame ){ |
| 5401 goto no_mem; |
| 5402 } |
| 5403 sqlite3VdbeMemRelease(pRt); |
| 5404 pRt->flags = MEM_Frame; |
| 5405 pRt->u.pFrame = pFrame; |
| 5406 |
| 5407 pFrame->v = p; |
| 5408 pFrame->nChildMem = nMem; |
| 5409 pFrame->nChildCsr = pProgram->nCsr; |
| 5410 pFrame->pc = pc; |
| 5411 pFrame->aMem = p->aMem; |
| 5412 pFrame->nMem = p->nMem; |
| 5413 pFrame->apCsr = p->apCsr; |
| 5414 pFrame->nCursor = p->nCursor; |
| 5415 pFrame->aOp = p->aOp; |
| 5416 pFrame->nOp = p->nOp; |
| 5417 pFrame->token = pProgram->token; |
| 5418 pFrame->aOnceFlag = p->aOnceFlag; |
| 5419 pFrame->nOnceFlag = p->nOnceFlag; |
| 5420 |
| 5421 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; |
| 5422 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ |
| 5423 pMem->flags = MEM_Undefined; |
| 5424 pMem->db = db; |
| 5425 } |
| 5426 }else{ |
| 5427 pFrame = pRt->u.pFrame; |
| 5428 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); |
| 5429 assert( pProgram->nCsr==pFrame->nChildCsr ); |
| 5430 assert( pc==pFrame->pc ); |
| 5431 } |
| 5432 |
| 5433 p->nFrame++; |
| 5434 pFrame->pParent = p->pFrame; |
| 5435 pFrame->lastRowid = lastRowid; |
| 5436 pFrame->nChange = p->nChange; |
| 5437 p->nChange = 0; |
| 5438 p->pFrame = pFrame; |
| 5439 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; |
| 5440 p->nMem = pFrame->nChildMem; |
| 5441 p->nCursor = (u16)pFrame->nChildCsr; |
| 5442 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; |
| 5443 p->aOp = aOp = pProgram->aOp; |
| 5444 p->nOp = pProgram->nOp; |
| 5445 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor]; |
| 5446 p->nOnceFlag = pProgram->nOnce; |
| 5447 pc = -1; |
| 5448 memset(p->aOnceFlag, 0, p->nOnceFlag); |
| 5449 |
| 5450 break; |
| 5451 } |
| 5452 |
| 5453 /* Opcode: Param P1 P2 * * * |
| 5454 ** |
| 5455 ** This opcode is only ever present in sub-programs called via the |
| 5456 ** OP_Program instruction. Copy a value currently stored in a memory |
| 5457 ** cell of the calling (parent) frame to cell P2 in the current frames |
| 5458 ** address space. This is used by trigger programs to access the new.* |
| 5459 ** and old.* values. |
| 5460 ** |
| 5461 ** The address of the cell in the parent frame is determined by adding |
| 5462 ** the value of the P1 argument to the value of the P1 argument to the |
| 5463 ** calling OP_Program instruction. |
| 5464 */ |
| 5465 case OP_Param: { /* out2-prerelease */ |
| 5466 VdbeFrame *pFrame; |
| 5467 Mem *pIn; |
| 5468 pFrame = p->pFrame; |
| 5469 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; |
| 5470 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); |
| 5471 break; |
| 5472 } |
| 5473 |
| 5474 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
| 5475 |
| 5476 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 5477 /* Opcode: FkCounter P1 P2 * * * |
| 5478 ** Synopsis: fkctr[P1]+=P2 |
| 5479 ** |
| 5480 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). |
| 5481 ** If P1 is non-zero, the database constraint counter is incremented |
| 5482 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the |
| 5483 ** statement counter is incremented (immediate foreign key constraints). |
| 5484 */ |
| 5485 case OP_FkCounter: { |
| 5486 if( db->flags & SQLITE_DeferFKs ){ |
| 5487 db->nDeferredImmCons += pOp->p2; |
| 5488 }else if( pOp->p1 ){ |
| 5489 db->nDeferredCons += pOp->p2; |
| 5490 }else{ |
| 5491 p->nFkConstraint += pOp->p2; |
| 5492 } |
| 5493 break; |
| 5494 } |
| 5495 |
| 5496 /* Opcode: FkIfZero P1 P2 * * * |
| 5497 ** Synopsis: if fkctr[P1]==0 goto P2 |
| 5498 ** |
| 5499 ** This opcode tests if a foreign key constraint-counter is currently zero. |
| 5500 ** If so, jump to instruction P2. Otherwise, fall through to the next |
| 5501 ** instruction. |
| 5502 ** |
| 5503 ** If P1 is non-zero, then the jump is taken if the database constraint-counter |
| 5504 ** is zero (the one that counts deferred constraint violations). If P1 is |
| 5505 ** zero, the jump is taken if the statement constraint-counter is zero |
| 5506 ** (immediate foreign key constraint violations). |
| 5507 */ |
| 5508 case OP_FkIfZero: { /* jump */ |
| 5509 if( pOp->p1 ){ |
| 5510 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); |
| 5511 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; |
| 5512 }else{ |
| 5513 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); |
| 5514 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1; |
| 5515 } |
| 5516 break; |
| 5517 } |
| 5518 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ |
| 5519 |
| 5520 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 5521 /* Opcode: MemMax P1 P2 * * * |
| 5522 ** Synopsis: r[P1]=max(r[P1],r[P2]) |
| 5523 ** |
| 5524 ** P1 is a register in the root frame of this VM (the root frame is |
| 5525 ** different from the current frame if this instruction is being executed |
| 5526 ** within a sub-program). Set the value of register P1 to the maximum of |
| 5527 ** its current value and the value in register P2. |
| 5528 ** |
| 5529 ** This instruction throws an error if the memory cell is not initially |
| 5530 ** an integer. |
| 5531 */ |
| 5532 case OP_MemMax: { /* in2 */ |
| 5533 VdbeFrame *pFrame; |
| 5534 if( p->pFrame ){ |
| 5535 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 5536 pIn1 = &pFrame->aMem[pOp->p1]; |
| 5537 }else{ |
| 5538 pIn1 = &aMem[pOp->p1]; |
| 5539 } |
| 5540 assert( memIsValid(pIn1) ); |
| 5541 sqlite3VdbeMemIntegerify(pIn1); |
| 5542 pIn2 = &aMem[pOp->p2]; |
| 5543 sqlite3VdbeMemIntegerify(pIn2); |
| 5544 if( pIn1->u.i<pIn2->u.i){ |
| 5545 pIn1->u.i = pIn2->u.i; |
| 5546 } |
| 5547 break; |
| 5548 } |
| 5549 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| 5550 |
| 5551 /* Opcode: IfPos P1 P2 * * * |
| 5552 ** Synopsis: if r[P1]>0 goto P2 |
| 5553 ** |
| 5554 ** If the value of register P1 is 1 or greater, jump to P2. |
| 5555 ** |
| 5556 ** It is illegal to use this instruction on a register that does |
| 5557 ** not contain an integer. An assertion fault will result if you try. |
| 5558 */ |
| 5559 case OP_IfPos: { /* jump, in1 */ |
| 5560 pIn1 = &aMem[pOp->p1]; |
| 5561 assert( pIn1->flags&MEM_Int ); |
| 5562 VdbeBranchTaken( pIn1->u.i>0, 2); |
| 5563 if( pIn1->u.i>0 ){ |
| 5564 pc = pOp->p2 - 1; |
| 5565 } |
| 5566 break; |
| 5567 } |
| 5568 |
| 5569 /* Opcode: IfNeg P1 P2 P3 * * |
| 5570 ** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2 |
| 5571 ** |
| 5572 ** Register P1 must contain an integer. Add literal P3 to the value in |
| 5573 ** register P1 then if the value of register P1 is less than zero, jump to P2. |
| 5574 */ |
| 5575 case OP_IfNeg: { /* jump, in1 */ |
| 5576 pIn1 = &aMem[pOp->p1]; |
| 5577 assert( pIn1->flags&MEM_Int ); |
| 5578 pIn1->u.i += pOp->p3; |
| 5579 VdbeBranchTaken(pIn1->u.i<0, 2); |
| 5580 if( pIn1->u.i<0 ){ |
| 5581 pc = pOp->p2 - 1; |
| 5582 } |
| 5583 break; |
| 5584 } |
| 5585 |
| 5586 /* Opcode: IfZero P1 P2 P3 * * |
| 5587 ** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2 |
| 5588 ** |
| 5589 ** The register P1 must contain an integer. Add literal P3 to the |
| 5590 ** value in register P1. If the result is exactly 0, jump to P2. |
| 5591 */ |
| 5592 case OP_IfZero: { /* jump, in1 */ |
| 5593 pIn1 = &aMem[pOp->p1]; |
| 5594 assert( pIn1->flags&MEM_Int ); |
| 5595 pIn1->u.i += pOp->p3; |
| 5596 VdbeBranchTaken(pIn1->u.i==0, 2); |
| 5597 if( pIn1->u.i==0 ){ |
| 5598 pc = pOp->p2 - 1; |
| 5599 } |
| 5600 break; |
| 5601 } |
| 5602 |
| 5603 /* Opcode: AggStep * P2 P3 P4 P5 |
| 5604 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
| 5605 ** |
| 5606 ** Execute the step function for an aggregate. The |
| 5607 ** function has P5 arguments. P4 is a pointer to the FuncDef |
| 5608 ** structure that specifies the function. Use register |
| 5609 ** P3 as the accumulator. |
| 5610 ** |
| 5611 ** The P5 arguments are taken from register P2 and its |
| 5612 ** successors. |
| 5613 */ |
| 5614 case OP_AggStep: { |
| 5615 int n; |
| 5616 int i; |
| 5617 Mem *pMem; |
| 5618 Mem *pRec; |
| 5619 Mem t; |
| 5620 sqlite3_context ctx; |
| 5621 sqlite3_value **apVal; |
| 5622 |
| 5623 n = pOp->p5; |
| 5624 assert( n>=0 ); |
| 5625 pRec = &aMem[pOp->p2]; |
| 5626 apVal = p->apArg; |
| 5627 assert( apVal || n==0 ); |
| 5628 for(i=0; i<n; i++, pRec++){ |
| 5629 assert( memIsValid(pRec) ); |
| 5630 apVal[i] = pRec; |
| 5631 memAboutToChange(p, pRec); |
| 5632 } |
| 5633 ctx.pFunc = pOp->p4.pFunc; |
| 5634 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 5635 ctx.pMem = pMem = &aMem[pOp->p3]; |
| 5636 pMem->n++; |
| 5637 sqlite3VdbeMemInit(&t, db, MEM_Null); |
| 5638 ctx.pOut = &t; |
| 5639 ctx.isError = 0; |
| 5640 ctx.pVdbe = p; |
| 5641 ctx.iOp = pc; |
| 5642 ctx.skipFlag = 0; |
| 5643 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
| 5644 if( ctx.isError ){ |
| 5645 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); |
| 5646 rc = ctx.isError; |
| 5647 } |
| 5648 if( ctx.skipFlag ){ |
| 5649 assert( pOp[-1].opcode==OP_CollSeq ); |
| 5650 i = pOp[-1].p1; |
| 5651 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); |
| 5652 } |
| 5653 sqlite3VdbeMemRelease(&t); |
| 5654 break; |
| 5655 } |
| 5656 |
| 5657 /* Opcode: AggFinal P1 P2 * P4 * |
| 5658 ** Synopsis: accum=r[P1] N=P2 |
| 5659 ** |
| 5660 ** Execute the finalizer function for an aggregate. P1 is |
| 5661 ** the memory location that is the accumulator for the aggregate. |
| 5662 ** |
| 5663 ** P2 is the number of arguments that the step function takes and |
| 5664 ** P4 is a pointer to the FuncDef for this function. The P2 |
| 5665 ** argument is not used by this opcode. It is only there to disambiguate |
| 5666 ** functions that can take varying numbers of arguments. The |
| 5667 ** P4 argument is only needed for the degenerate case where |
| 5668 ** the step function was not previously called. |
| 5669 */ |
| 5670 case OP_AggFinal: { |
| 5671 Mem *pMem; |
| 5672 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) ); |
| 5673 pMem = &aMem[pOp->p1]; |
| 5674 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
| 5675 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); |
| 5676 if( rc ){ |
| 5677 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); |
| 5678 } |
| 5679 sqlite3VdbeChangeEncoding(pMem, encoding); |
| 5680 UPDATE_MAX_BLOBSIZE(pMem); |
| 5681 if( sqlite3VdbeMemTooBig(pMem) ){ |
| 5682 goto too_big; |
| 5683 } |
| 5684 break; |
| 5685 } |
| 5686 |
| 5687 #ifndef SQLITE_OMIT_WAL |
| 5688 /* Opcode: Checkpoint P1 P2 P3 * * |
| 5689 ** |
| 5690 ** Checkpoint database P1. This is a no-op if P1 is not currently in |
| 5691 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL |
| 5692 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns |
| 5693 ** SQLITE_BUSY or not, respectively. Write the number of pages in the |
| 5694 ** WAL after the checkpoint into mem[P3+1] and the number of pages |
| 5695 ** in the WAL that have been checkpointed after the checkpoint |
| 5696 ** completes into mem[P3+2]. However on an error, mem[P3+1] and |
| 5697 ** mem[P3+2] are initialized to -1. |
| 5698 */ |
| 5699 case OP_Checkpoint: { |
| 5700 int i; /* Loop counter */ |
| 5701 int aRes[3]; /* Results */ |
| 5702 Mem *pMem; /* Write results here */ |
| 5703 |
| 5704 assert( p->readOnly==0 ); |
| 5705 aRes[0] = 0; |
| 5706 aRes[1] = aRes[2] = -1; |
| 5707 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE |
| 5708 || pOp->p2==SQLITE_CHECKPOINT_FULL |
| 5709 || pOp->p2==SQLITE_CHECKPOINT_RESTART |
| 5710 ); |
| 5711 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); |
| 5712 if( rc==SQLITE_BUSY ){ |
| 5713 rc = SQLITE_OK; |
| 5714 aRes[0] = 1; |
| 5715 } |
| 5716 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ |
| 5717 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); |
| 5718 } |
| 5719 break; |
| 5720 }; |
| 5721 #endif |
| 5722 |
| 5723 #ifndef SQLITE_OMIT_PRAGMA |
| 5724 /* Opcode: JournalMode P1 P2 P3 * * |
| 5725 ** |
| 5726 ** Change the journal mode of database P1 to P3. P3 must be one of the |
| 5727 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback |
| 5728 ** modes (delete, truncate, persist, off and memory), this is a simple |
| 5729 ** operation. No IO is required. |
| 5730 ** |
| 5731 ** If changing into or out of WAL mode the procedure is more complicated. |
| 5732 ** |
| 5733 ** Write a string containing the final journal-mode to register P2. |
| 5734 */ |
| 5735 case OP_JournalMode: { /* out2-prerelease */ |
| 5736 Btree *pBt; /* Btree to change journal mode of */ |
| 5737 Pager *pPager; /* Pager associated with pBt */ |
| 5738 int eNew; /* New journal mode */ |
| 5739 int eOld; /* The old journal mode */ |
| 5740 #ifndef SQLITE_OMIT_WAL |
| 5741 const char *zFilename; /* Name of database file for pPager */ |
| 5742 #endif |
| 5743 |
| 5744 eNew = pOp->p3; |
| 5745 assert( eNew==PAGER_JOURNALMODE_DELETE |
| 5746 || eNew==PAGER_JOURNALMODE_TRUNCATE |
| 5747 || eNew==PAGER_JOURNALMODE_PERSIST |
| 5748 || eNew==PAGER_JOURNALMODE_OFF |
| 5749 || eNew==PAGER_JOURNALMODE_MEMORY |
| 5750 || eNew==PAGER_JOURNALMODE_WAL |
| 5751 || eNew==PAGER_JOURNALMODE_QUERY |
| 5752 ); |
| 5753 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5754 assert( p->readOnly==0 ); |
| 5755 |
| 5756 pBt = db->aDb[pOp->p1].pBt; |
| 5757 pPager = sqlite3BtreePager(pBt); |
| 5758 eOld = sqlite3PagerGetJournalMode(pPager); |
| 5759 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; |
| 5760 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; |
| 5761 |
| 5762 #ifndef SQLITE_OMIT_WAL |
| 5763 zFilename = sqlite3PagerFilename(pPager, 1); |
| 5764 |
| 5765 /* Do not allow a transition to journal_mode=WAL for a database |
| 5766 ** in temporary storage or if the VFS does not support shared memory |
| 5767 */ |
| 5768 if( eNew==PAGER_JOURNALMODE_WAL |
| 5769 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ |
| 5770 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ |
| 5771 ){ |
| 5772 eNew = eOld; |
| 5773 } |
| 5774 |
| 5775 if( (eNew!=eOld) |
| 5776 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) |
| 5777 ){ |
| 5778 if( !db->autoCommit || db->nVdbeRead>1 ){ |
| 5779 rc = SQLITE_ERROR; |
| 5780 sqlite3SetString(&p->zErrMsg, db, |
| 5781 "cannot change %s wal mode from within a transaction", |
| 5782 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") |
| 5783 ); |
| 5784 break; |
| 5785 }else{ |
| 5786 |
| 5787 if( eOld==PAGER_JOURNALMODE_WAL ){ |
| 5788 /* If leaving WAL mode, close the log file. If successful, the call |
| 5789 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log |
| 5790 ** file. An EXCLUSIVE lock may still be held on the database file |
| 5791 ** after a successful return. |
| 5792 */ |
| 5793 rc = sqlite3PagerCloseWal(pPager); |
| 5794 if( rc==SQLITE_OK ){ |
| 5795 sqlite3PagerSetJournalMode(pPager, eNew); |
| 5796 } |
| 5797 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ |
| 5798 /* Cannot transition directly from MEMORY to WAL. Use mode OFF |
| 5799 ** as an intermediate */ |
| 5800 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); |
| 5801 } |
| 5802 |
| 5803 /* Open a transaction on the database file. Regardless of the journal |
| 5804 ** mode, this transaction always uses a rollback journal. |
| 5805 */ |
| 5806 assert( sqlite3BtreeIsInTrans(pBt)==0 ); |
| 5807 if( rc==SQLITE_OK ){ |
| 5808 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); |
| 5809 } |
| 5810 } |
| 5811 } |
| 5812 #endif /* ifndef SQLITE_OMIT_WAL */ |
| 5813 |
| 5814 if( rc ){ |
| 5815 eNew = eOld; |
| 5816 } |
| 5817 eNew = sqlite3PagerSetJournalMode(pPager, eNew); |
| 5818 |
| 5819 pOut = &aMem[pOp->p2]; |
| 5820 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
| 5821 pOut->z = (char *)sqlite3JournalModename(eNew); |
| 5822 pOut->n = sqlite3Strlen30(pOut->z); |
| 5823 pOut->enc = SQLITE_UTF8; |
| 5824 sqlite3VdbeChangeEncoding(pOut, encoding); |
| 5825 break; |
| 5826 }; |
| 5827 #endif /* SQLITE_OMIT_PRAGMA */ |
| 5828 |
| 5829 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
| 5830 /* Opcode: Vacuum * * * * * |
| 5831 ** |
| 5832 ** Vacuum the entire database. This opcode will cause other virtual |
| 5833 ** machines to be created and run. It may not be called from within |
| 5834 ** a transaction. |
| 5835 */ |
| 5836 case OP_Vacuum: { |
| 5837 assert( p->readOnly==0 ); |
| 5838 rc = sqlite3RunVacuum(&p->zErrMsg, db); |
| 5839 break; |
| 5840 } |
| 5841 #endif |
| 5842 |
| 5843 #if !defined(SQLITE_OMIT_AUTOVACUUM) |
| 5844 /* Opcode: IncrVacuum P1 P2 * * * |
| 5845 ** |
| 5846 ** Perform a single step of the incremental vacuum procedure on |
| 5847 ** the P1 database. If the vacuum has finished, jump to instruction |
| 5848 ** P2. Otherwise, fall through to the next instruction. |
| 5849 */ |
| 5850 case OP_IncrVacuum: { /* jump */ |
| 5851 Btree *pBt; |
| 5852 |
| 5853 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5854 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 5855 assert( p->readOnly==0 ); |
| 5856 pBt = db->aDb[pOp->p1].pBt; |
| 5857 rc = sqlite3BtreeIncrVacuum(pBt); |
| 5858 VdbeBranchTaken(rc==SQLITE_DONE,2); |
| 5859 if( rc==SQLITE_DONE ){ |
| 5860 pc = pOp->p2 - 1; |
| 5861 rc = SQLITE_OK; |
| 5862 } |
| 5863 break; |
| 5864 } |
| 5865 #endif |
| 5866 |
| 5867 /* Opcode: Expire P1 * * * * |
| 5868 ** |
| 5869 ** Cause precompiled statements to expire. When an expired statement |
| 5870 ** is executed using sqlite3_step() it will either automatically |
| 5871 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) |
| 5872 ** or it will fail with SQLITE_SCHEMA. |
| 5873 ** |
| 5874 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, |
| 5875 ** then only the currently executing statement is expired. |
| 5876 */ |
| 5877 case OP_Expire: { |
| 5878 if( !pOp->p1 ){ |
| 5879 sqlite3ExpirePreparedStatements(db); |
| 5880 }else{ |
| 5881 p->expired = 1; |
| 5882 } |
| 5883 break; |
| 5884 } |
| 5885 |
| 5886 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 5887 /* Opcode: TableLock P1 P2 P3 P4 * |
| 5888 ** Synopsis: iDb=P1 root=P2 write=P3 |
| 5889 ** |
| 5890 ** Obtain a lock on a particular table. This instruction is only used when |
| 5891 ** the shared-cache feature is enabled. |
| 5892 ** |
| 5893 ** P1 is the index of the database in sqlite3.aDb[] of the database |
| 5894 ** on which the lock is acquired. A readlock is obtained if P3==0 or |
| 5895 ** a write lock if P3==1. |
| 5896 ** |
| 5897 ** P2 contains the root-page of the table to lock. |
| 5898 ** |
| 5899 ** P4 contains a pointer to the name of the table being locked. This is only |
| 5900 ** used to generate an error message if the lock cannot be obtained. |
| 5901 */ |
| 5902 case OP_TableLock: { |
| 5903 u8 isWriteLock = (u8)pOp->p3; |
| 5904 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ |
| 5905 int p1 = pOp->p1; |
| 5906 assert( p1>=0 && p1<db->nDb ); |
| 5907 assert( DbMaskTest(p->btreeMask, p1) ); |
| 5908 assert( isWriteLock==0 || isWriteLock==1 ); |
| 5909 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
| 5910 if( (rc&0xFF)==SQLITE_LOCKED ){ |
| 5911 const char *z = pOp->p4.z; |
| 5912 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); |
| 5913 } |
| 5914 } |
| 5915 break; |
| 5916 } |
| 5917 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 5918 |
| 5919 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 5920 /* Opcode: VBegin * * * P4 * |
| 5921 ** |
| 5922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the |
| 5923 ** xBegin method for that table. |
| 5924 ** |
| 5925 ** Also, whether or not P4 is set, check that this is not being called from |
| 5926 ** within a callback to a virtual table xSync() method. If it is, the error |
| 5927 ** code will be set to SQLITE_LOCKED. |
| 5928 */ |
| 5929 case OP_VBegin: { |
| 5930 VTable *pVTab; |
| 5931 pVTab = pOp->p4.pVtab; |
| 5932 rc = sqlite3VtabBegin(db, pVTab); |
| 5933 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); |
| 5934 break; |
| 5935 } |
| 5936 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 5937 |
| 5938 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 5939 /* Opcode: VCreate P1 * * P4 * |
| 5940 ** |
| 5941 ** P4 is the name of a virtual table in database P1. Call the xCreate method |
| 5942 ** for that table. |
| 5943 */ |
| 5944 case OP_VCreate: { |
| 5945 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); |
| 5946 break; |
| 5947 } |
| 5948 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 5949 |
| 5950 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 5951 /* Opcode: VDestroy P1 * * P4 * |
| 5952 ** |
| 5953 ** P4 is the name of a virtual table in database P1. Call the xDestroy method |
| 5954 ** of that table. |
| 5955 */ |
| 5956 case OP_VDestroy: { |
| 5957 p->inVtabMethod = 2; |
| 5958 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); |
| 5959 p->inVtabMethod = 0; |
| 5960 break; |
| 5961 } |
| 5962 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 5963 |
| 5964 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 5965 /* Opcode: VOpen P1 * * P4 * |
| 5966 ** |
| 5967 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 5968 ** P1 is a cursor number. This opcode opens a cursor to the virtual |
| 5969 ** table and stores that cursor in P1. |
| 5970 */ |
| 5971 case OP_VOpen: { |
| 5972 VdbeCursor *pCur; |
| 5973 sqlite3_vtab_cursor *pVtabCursor; |
| 5974 sqlite3_vtab *pVtab; |
| 5975 sqlite3_module *pModule; |
| 5976 |
| 5977 assert( p->bIsReader ); |
| 5978 pCur = 0; |
| 5979 pVtabCursor = 0; |
| 5980 pVtab = pOp->p4.pVtab->pVtab; |
| 5981 pModule = (sqlite3_module *)pVtab->pModule; |
| 5982 assert(pVtab && pModule); |
| 5983 rc = pModule->xOpen(pVtab, &pVtabCursor); |
| 5984 sqlite3VtabImportErrmsg(p, pVtab); |
| 5985 if( SQLITE_OK==rc ){ |
| 5986 /* Initialize sqlite3_vtab_cursor base class */ |
| 5987 pVtabCursor->pVtab = pVtab; |
| 5988 |
| 5989 /* Initialize vdbe cursor object */ |
| 5990 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); |
| 5991 if( pCur ){ |
| 5992 pCur->pVtabCursor = pVtabCursor; |
| 5993 }else{ |
| 5994 db->mallocFailed = 1; |
| 5995 pModule->xClose(pVtabCursor); |
| 5996 } |
| 5997 } |
| 5998 break; |
| 5999 } |
| 6000 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6001 |
| 6002 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6003 /* Opcode: VFilter P1 P2 P3 P4 * |
| 6004 ** Synopsis: iplan=r[P3] zplan='P4' |
| 6005 ** |
| 6006 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if |
| 6007 ** the filtered result set is empty. |
| 6008 ** |
| 6009 ** P4 is either NULL or a string that was generated by the xBestIndex |
| 6010 ** method of the module. The interpretation of the P4 string is left |
| 6011 ** to the module implementation. |
| 6012 ** |
| 6013 ** This opcode invokes the xFilter method on the virtual table specified |
| 6014 ** by P1. The integer query plan parameter to xFilter is stored in register |
| 6015 ** P3. Register P3+1 stores the argc parameter to be passed to the |
| 6016 ** xFilter method. Registers P3+2..P3+1+argc are the argc |
| 6017 ** additional parameters which are passed to |
| 6018 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. |
| 6019 ** |
| 6020 ** A jump is made to P2 if the result set after filtering would be empty. |
| 6021 */ |
| 6022 case OP_VFilter: { /* jump */ |
| 6023 int nArg; |
| 6024 int iQuery; |
| 6025 const sqlite3_module *pModule; |
| 6026 Mem *pQuery; |
| 6027 Mem *pArgc; |
| 6028 sqlite3_vtab_cursor *pVtabCursor; |
| 6029 sqlite3_vtab *pVtab; |
| 6030 VdbeCursor *pCur; |
| 6031 int res; |
| 6032 int i; |
| 6033 Mem **apArg; |
| 6034 |
| 6035 pQuery = &aMem[pOp->p3]; |
| 6036 pArgc = &pQuery[1]; |
| 6037 pCur = p->apCsr[pOp->p1]; |
| 6038 assert( memIsValid(pQuery) ); |
| 6039 REGISTER_TRACE(pOp->p3, pQuery); |
| 6040 assert( pCur->pVtabCursor ); |
| 6041 pVtabCursor = pCur->pVtabCursor; |
| 6042 pVtab = pVtabCursor->pVtab; |
| 6043 pModule = pVtab->pModule; |
| 6044 |
| 6045 /* Grab the index number and argc parameters */ |
| 6046 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); |
| 6047 nArg = (int)pArgc->u.i; |
| 6048 iQuery = (int)pQuery->u.i; |
| 6049 |
| 6050 /* Invoke the xFilter method */ |
| 6051 { |
| 6052 res = 0; |
| 6053 apArg = p->apArg; |
| 6054 for(i = 0; i<nArg; i++){ |
| 6055 apArg[i] = &pArgc[i+1]; |
| 6056 } |
| 6057 |
| 6058 p->inVtabMethod = 1; |
| 6059 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); |
| 6060 p->inVtabMethod = 0; |
| 6061 sqlite3VtabImportErrmsg(p, pVtab); |
| 6062 if( rc==SQLITE_OK ){ |
| 6063 res = pModule->xEof(pVtabCursor); |
| 6064 } |
| 6065 VdbeBranchTaken(res!=0,2); |
| 6066 if( res ){ |
| 6067 pc = pOp->p2 - 1; |
| 6068 } |
| 6069 } |
| 6070 pCur->nullRow = 0; |
| 6071 |
| 6072 break; |
| 6073 } |
| 6074 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6075 |
| 6076 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6077 /* Opcode: VColumn P1 P2 P3 * * |
| 6078 ** Synopsis: r[P3]=vcolumn(P2) |
| 6079 ** |
| 6080 ** Store the value of the P2-th column of |
| 6081 ** the row of the virtual-table that the |
| 6082 ** P1 cursor is pointing to into register P3. |
| 6083 */ |
| 6084 case OP_VColumn: { |
| 6085 sqlite3_vtab *pVtab; |
| 6086 const sqlite3_module *pModule; |
| 6087 Mem *pDest; |
| 6088 sqlite3_context sContext; |
| 6089 |
| 6090 VdbeCursor *pCur = p->apCsr[pOp->p1]; |
| 6091 assert( pCur->pVtabCursor ); |
| 6092 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); |
| 6093 pDest = &aMem[pOp->p3]; |
| 6094 memAboutToChange(p, pDest); |
| 6095 if( pCur->nullRow ){ |
| 6096 sqlite3VdbeMemSetNull(pDest); |
| 6097 break; |
| 6098 } |
| 6099 pVtab = pCur->pVtabCursor->pVtab; |
| 6100 pModule = pVtab->pModule; |
| 6101 assert( pModule->xColumn ); |
| 6102 memset(&sContext, 0, sizeof(sContext)); |
| 6103 sContext.pOut = pDest; |
| 6104 MemSetTypeFlag(pDest, MEM_Null); |
| 6105 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); |
| 6106 sqlite3VtabImportErrmsg(p, pVtab); |
| 6107 if( sContext.isError ){ |
| 6108 rc = sContext.isError; |
| 6109 } |
| 6110 sqlite3VdbeChangeEncoding(pDest, encoding); |
| 6111 REGISTER_TRACE(pOp->p3, pDest); |
| 6112 UPDATE_MAX_BLOBSIZE(pDest); |
| 6113 |
| 6114 if( sqlite3VdbeMemTooBig(pDest) ){ |
| 6115 goto too_big; |
| 6116 } |
| 6117 break; |
| 6118 } |
| 6119 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6120 |
| 6121 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6122 /* Opcode: VNext P1 P2 * * * |
| 6123 ** |
| 6124 ** Advance virtual table P1 to the next row in its result set and |
| 6125 ** jump to instruction P2. Or, if the virtual table has reached |
| 6126 ** the end of its result set, then fall through to the next instruction. |
| 6127 */ |
| 6128 case OP_VNext: { /* jump */ |
| 6129 sqlite3_vtab *pVtab; |
| 6130 const sqlite3_module *pModule; |
| 6131 int res; |
| 6132 VdbeCursor *pCur; |
| 6133 |
| 6134 res = 0; |
| 6135 pCur = p->apCsr[pOp->p1]; |
| 6136 assert( pCur->pVtabCursor ); |
| 6137 if( pCur->nullRow ){ |
| 6138 break; |
| 6139 } |
| 6140 pVtab = pCur->pVtabCursor->pVtab; |
| 6141 pModule = pVtab->pModule; |
| 6142 assert( pModule->xNext ); |
| 6143 |
| 6144 /* Invoke the xNext() method of the module. There is no way for the |
| 6145 ** underlying implementation to return an error if one occurs during |
| 6146 ** xNext(). Instead, if an error occurs, true is returned (indicating that |
| 6147 ** data is available) and the error code returned when xColumn or |
| 6148 ** some other method is next invoked on the save virtual table cursor. |
| 6149 */ |
| 6150 p->inVtabMethod = 1; |
| 6151 rc = pModule->xNext(pCur->pVtabCursor); |
| 6152 p->inVtabMethod = 0; |
| 6153 sqlite3VtabImportErrmsg(p, pVtab); |
| 6154 if( rc==SQLITE_OK ){ |
| 6155 res = pModule->xEof(pCur->pVtabCursor); |
| 6156 } |
| 6157 VdbeBranchTaken(!res,2); |
| 6158 if( !res ){ |
| 6159 /* If there is data, jump to P2 */ |
| 6160 pc = pOp->p2 - 1; |
| 6161 } |
| 6162 goto check_for_interrupt; |
| 6163 } |
| 6164 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6165 |
| 6166 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6167 /* Opcode: VRename P1 * * P4 * |
| 6168 ** |
| 6169 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 6170 ** This opcode invokes the corresponding xRename method. The value |
| 6171 ** in register P1 is passed as the zName argument to the xRename method. |
| 6172 */ |
| 6173 case OP_VRename: { |
| 6174 sqlite3_vtab *pVtab; |
| 6175 Mem *pName; |
| 6176 |
| 6177 pVtab = pOp->p4.pVtab->pVtab; |
| 6178 pName = &aMem[pOp->p1]; |
| 6179 assert( pVtab->pModule->xRename ); |
| 6180 assert( memIsValid(pName) ); |
| 6181 assert( p->readOnly==0 ); |
| 6182 REGISTER_TRACE(pOp->p1, pName); |
| 6183 assert( pName->flags & MEM_Str ); |
| 6184 testcase( pName->enc==SQLITE_UTF8 ); |
| 6185 testcase( pName->enc==SQLITE_UTF16BE ); |
| 6186 testcase( pName->enc==SQLITE_UTF16LE ); |
| 6187 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); |
| 6188 if( rc==SQLITE_OK ){ |
| 6189 rc = pVtab->pModule->xRename(pVtab, pName->z); |
| 6190 sqlite3VtabImportErrmsg(p, pVtab); |
| 6191 p->expired = 0; |
| 6192 } |
| 6193 break; |
| 6194 } |
| 6195 #endif |
| 6196 |
| 6197 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6198 /* Opcode: VUpdate P1 P2 P3 P4 P5 |
| 6199 ** Synopsis: data=r[P3@P2] |
| 6200 ** |
| 6201 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 6202 ** This opcode invokes the corresponding xUpdate method. P2 values |
| 6203 ** are contiguous memory cells starting at P3 to pass to the xUpdate |
| 6204 ** invocation. The value in register (P3+P2-1) corresponds to the |
| 6205 ** p2th element of the argv array passed to xUpdate. |
| 6206 ** |
| 6207 ** The xUpdate method will do a DELETE or an INSERT or both. |
| 6208 ** The argv[0] element (which corresponds to memory cell P3) |
| 6209 ** is the rowid of a row to delete. If argv[0] is NULL then no |
| 6210 ** deletion occurs. The argv[1] element is the rowid of the new |
| 6211 ** row. This can be NULL to have the virtual table select the new |
| 6212 ** rowid for itself. The subsequent elements in the array are |
| 6213 ** the values of columns in the new row. |
| 6214 ** |
| 6215 ** If P2==1 then no insert is performed. argv[0] is the rowid of |
| 6216 ** a row to delete. |
| 6217 ** |
| 6218 ** P1 is a boolean flag. If it is set to true and the xUpdate call |
| 6219 ** is successful, then the value returned by sqlite3_last_insert_rowid() |
| 6220 ** is set to the value of the rowid for the row just inserted. |
| 6221 ** |
| 6222 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to |
| 6223 ** apply in the case of a constraint failure on an insert or update. |
| 6224 */ |
| 6225 case OP_VUpdate: { |
| 6226 sqlite3_vtab *pVtab; |
| 6227 sqlite3_module *pModule; |
| 6228 int nArg; |
| 6229 int i; |
| 6230 sqlite_int64 rowid; |
| 6231 Mem **apArg; |
| 6232 Mem *pX; |
| 6233 |
| 6234 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback |
| 6235 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace |
| 6236 ); |
| 6237 assert( p->readOnly==0 ); |
| 6238 pVtab = pOp->p4.pVtab->pVtab; |
| 6239 pModule = (sqlite3_module *)pVtab->pModule; |
| 6240 nArg = pOp->p2; |
| 6241 assert( pOp->p4type==P4_VTAB ); |
| 6242 if( ALWAYS(pModule->xUpdate) ){ |
| 6243 u8 vtabOnConflict = db->vtabOnConflict; |
| 6244 apArg = p->apArg; |
| 6245 pX = &aMem[pOp->p3]; |
| 6246 for(i=0; i<nArg; i++){ |
| 6247 assert( memIsValid(pX) ); |
| 6248 memAboutToChange(p, pX); |
| 6249 apArg[i] = pX; |
| 6250 pX++; |
| 6251 } |
| 6252 db->vtabOnConflict = pOp->p5; |
| 6253 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); |
| 6254 db->vtabOnConflict = vtabOnConflict; |
| 6255 sqlite3VtabImportErrmsg(p, pVtab); |
| 6256 if( rc==SQLITE_OK && pOp->p1 ){ |
| 6257 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); |
| 6258 db->lastRowid = lastRowid = rowid; |
| 6259 } |
| 6260 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ |
| 6261 if( pOp->p5==OE_Ignore ){ |
| 6262 rc = SQLITE_OK; |
| 6263 }else{ |
| 6264 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); |
| 6265 } |
| 6266 }else{ |
| 6267 p->nChange++; |
| 6268 } |
| 6269 } |
| 6270 break; |
| 6271 } |
| 6272 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6273 |
| 6274 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 6275 /* Opcode: Pagecount P1 P2 * * * |
| 6276 ** |
| 6277 ** Write the current number of pages in database P1 to memory cell P2. |
| 6278 */ |
| 6279 case OP_Pagecount: { /* out2-prerelease */ |
| 6280 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); |
| 6281 break; |
| 6282 } |
| 6283 #endif |
| 6284 |
| 6285 |
| 6286 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 6287 /* Opcode: MaxPgcnt P1 P2 P3 * * |
| 6288 ** |
| 6289 ** Try to set the maximum page count for database P1 to the value in P3. |
| 6290 ** Do not let the maximum page count fall below the current page count and |
| 6291 ** do not change the maximum page count value if P3==0. |
| 6292 ** |
| 6293 ** Store the maximum page count after the change in register P2. |
| 6294 */ |
| 6295 case OP_MaxPgcnt: { /* out2-prerelease */ |
| 6296 unsigned int newMax; |
| 6297 Btree *pBt; |
| 6298 |
| 6299 pBt = db->aDb[pOp->p1].pBt; |
| 6300 newMax = 0; |
| 6301 if( pOp->p3 ){ |
| 6302 newMax = sqlite3BtreeLastPage(pBt); |
| 6303 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; |
| 6304 } |
| 6305 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
| 6306 break; |
| 6307 } |
| 6308 #endif |
| 6309 |
| 6310 |
| 6311 /* Opcode: Init * P2 * P4 * |
| 6312 ** Synopsis: Start at P2 |
| 6313 ** |
| 6314 ** Programs contain a single instance of this opcode as the very first |
| 6315 ** opcode. |
| 6316 ** |
| 6317 ** If tracing is enabled (by the sqlite3_trace()) interface, then |
| 6318 ** the UTF-8 string contained in P4 is emitted on the trace callback. |
| 6319 ** Or if P4 is blank, use the string returned by sqlite3_sql(). |
| 6320 ** |
| 6321 ** If P2 is not zero, jump to instruction P2. |
| 6322 */ |
| 6323 case OP_Init: { /* jump */ |
| 6324 char *zTrace; |
| 6325 char *z; |
| 6326 |
| 6327 if( pOp->p2 ){ |
| 6328 pc = pOp->p2 - 1; |
| 6329 } |
| 6330 #ifndef SQLITE_OMIT_TRACE |
| 6331 if( db->xTrace |
| 6332 && !p->doingRerun |
| 6333 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
| 6334 ){ |
| 6335 z = sqlite3VdbeExpandSql(p, zTrace); |
| 6336 db->xTrace(db->pTraceArg, z); |
| 6337 sqlite3DbFree(db, z); |
| 6338 } |
| 6339 #ifdef SQLITE_USE_FCNTL_TRACE |
| 6340 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); |
| 6341 if( zTrace ){ |
| 6342 int i; |
| 6343 for(i=0; i<db->nDb; i++){ |
| 6344 if( DbMaskTest(p->btreeMask, i)==0 ) continue; |
| 6345 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); |
| 6346 } |
| 6347 } |
| 6348 #endif /* SQLITE_USE_FCNTL_TRACE */ |
| 6349 #ifdef SQLITE_DEBUG |
| 6350 if( (db->flags & SQLITE_SqlTrace)!=0 |
| 6351 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
| 6352 ){ |
| 6353 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
| 6354 } |
| 6355 #endif /* SQLITE_DEBUG */ |
| 6356 #endif /* SQLITE_OMIT_TRACE */ |
| 6357 break; |
| 6358 } |
| 6359 |
| 6360 |
| 6361 /* Opcode: Noop * * * * * |
| 6362 ** |
| 6363 ** Do nothing. This instruction is often useful as a jump |
| 6364 ** destination. |
| 6365 */ |
| 6366 /* |
| 6367 ** The magic Explain opcode are only inserted when explain==2 (which |
| 6368 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
| 6369 ** This opcode records information from the optimizer. It is the |
| 6370 ** the same as a no-op. This opcodesnever appears in a real VM program. |
| 6371 */ |
| 6372 default: { /* This is really OP_Noop and OP_Explain */ |
| 6373 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); |
| 6374 break; |
| 6375 } |
| 6376 |
| 6377 /***************************************************************************** |
| 6378 ** The cases of the switch statement above this line should all be indented |
| 6379 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
| 6380 ** readability. From this point on down, the normal indentation rules are |
| 6381 ** restored. |
| 6382 *****************************************************************************/ |
| 6383 } |
| 6384 |
| 6385 #ifdef VDBE_PROFILE |
| 6386 { |
| 6387 u64 endTime = sqlite3Hwtime(); |
| 6388 if( endTime>start ) pOp->cycles += endTime - start; |
| 6389 pOp->cnt++; |
| 6390 } |
| 6391 #endif |
| 6392 |
| 6393 /* The following code adds nothing to the actual functionality |
| 6394 ** of the program. It is only here for testing and debugging. |
| 6395 ** On the other hand, it does burn CPU cycles every time through |
| 6396 ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
| 6397 */ |
| 6398 #ifndef NDEBUG |
| 6399 assert( pc>=-1 && pc<p->nOp ); |
| 6400 |
| 6401 #ifdef SQLITE_DEBUG |
| 6402 if( db->flags & SQLITE_VdbeTrace ){ |
| 6403 if( rc!=0 ) printf("rc=%d\n",rc); |
| 6404 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ |
| 6405 registerTrace(pOp->p2, &aMem[pOp->p2]); |
| 6406 } |
| 6407 if( pOp->opflags & OPFLG_OUT3 ){ |
| 6408 registerTrace(pOp->p3, &aMem[pOp->p3]); |
| 6409 } |
| 6410 } |
| 6411 #endif /* SQLITE_DEBUG */ |
| 6412 #endif /* NDEBUG */ |
| 6413 } /* The end of the for(;;) loop the loops through opcodes */ |
| 6414 |
| 6415 /* If we reach this point, it means that execution is finished with |
| 6416 ** an error of some kind. |
| 6417 */ |
| 6418 vdbe_error_halt: |
| 6419 assert( rc ); |
| 6420 p->rc = rc; |
| 6421 testcase( sqlite3GlobalConfig.xLog!=0 ); |
| 6422 sqlite3_log(rc, "statement aborts at %d: [%s] %s", |
| 6423 pc, p->zSql, p->zErrMsg); |
| 6424 sqlite3VdbeHalt(p); |
| 6425 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; |
| 6426 rc = SQLITE_ERROR; |
| 6427 if( resetSchemaOnFault>0 ){ |
| 6428 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); |
| 6429 } |
| 6430 |
| 6431 /* This is the only way out of this procedure. We have to |
| 6432 ** release the mutexes on btrees that were acquired at the |
| 6433 ** top. */ |
| 6434 vdbe_return: |
| 6435 db->lastRowid = lastRowid; |
| 6436 testcase( nVmStep>0 ); |
| 6437 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; |
| 6438 sqlite3VdbeLeave(p); |
| 6439 return rc; |
| 6440 |
| 6441 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
| 6442 ** is encountered. |
| 6443 */ |
| 6444 too_big: |
| 6445 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); |
| 6446 rc = SQLITE_TOOBIG; |
| 6447 goto vdbe_error_halt; |
| 6448 |
| 6449 /* Jump to here if a malloc() fails. |
| 6450 */ |
| 6451 no_mem: |
| 6452 db->mallocFailed = 1; |
| 6453 sqlite3SetString(&p->zErrMsg, db, "out of memory"); |
| 6454 rc = SQLITE_NOMEM; |
| 6455 goto vdbe_error_halt; |
| 6456 |
| 6457 /* Jump to here for any other kind of fatal error. The "rc" variable |
| 6458 ** should hold the error number. |
| 6459 */ |
| 6460 abort_due_to_error: |
| 6461 assert( p->zErrMsg==0 ); |
| 6462 if( db->mallocFailed ) rc = SQLITE_NOMEM; |
| 6463 if( rc!=SQLITE_IOERR_NOMEM ){ |
| 6464 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); |
| 6465 } |
| 6466 goto vdbe_error_halt; |
| 6467 |
| 6468 /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
| 6469 ** flag. |
| 6470 */ |
| 6471 abort_due_to_interrupt: |
| 6472 assert( db->u1.isInterrupted ); |
| 6473 rc = SQLITE_INTERRUPT; |
| 6474 p->rc = rc; |
| 6475 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); |
| 6476 goto vdbe_error_halt; |
| 6477 } |
OLD | NEW |