| Index: third_party/sqlite/sqlite-src-3080704/src/vdbe.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbe.c b/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..366c7a01661b2d48e986d903d412981e69df33f5
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/vdbe.c
|
| @@ -0,0 +1,6477 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** The code in this file implements the function that runs the
|
| +** bytecode of a prepared statement.
|
| +**
|
| +** Various scripts scan this source file in order to generate HTML
|
| +** documentation, headers files, or other derived files. The formatting
|
| +** of the code in this file is, therefore, important. See other comments
|
| +** in this file for details. If in doubt, do not deviate from existing
|
| +** commenting and indentation practices when changing or adding code.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include "vdbeInt.h"
|
| +
|
| +/*
|
| +** Invoke this macro on memory cells just prior to changing the
|
| +** value of the cell. This macro verifies that shallow copies are
|
| +** not misused. A shallow copy of a string or blob just copies a
|
| +** pointer to the string or blob, not the content. If the original
|
| +** is changed while the copy is still in use, the string or blob might
|
| +** be changed out from under the copy. This macro verifies that nothing
|
| +** like that ever happens.
|
| +*/
|
| +#ifdef SQLITE_DEBUG
|
| +# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
|
| +#else
|
| +# define memAboutToChange(P,M)
|
| +#endif
|
| +
|
| +/*
|
| +** The following global variable is incremented every time a cursor
|
| +** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
|
| +** procedures use this information to make sure that indices are
|
| +** working correctly. This variable has no function other than to
|
| +** help verify the correct operation of the library.
|
| +*/
|
| +#ifdef SQLITE_TEST
|
| +int sqlite3_search_count = 0;
|
| +#endif
|
| +
|
| +/*
|
| +** When this global variable is positive, it gets decremented once before
|
| +** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
|
| +** field of the sqlite3 structure is set in order to simulate an interrupt.
|
| +**
|
| +** This facility is used for testing purposes only. It does not function
|
| +** in an ordinary build.
|
| +*/
|
| +#ifdef SQLITE_TEST
|
| +int sqlite3_interrupt_count = 0;
|
| +#endif
|
| +
|
| +/*
|
| +** The next global variable is incremented each type the OP_Sort opcode
|
| +** is executed. The test procedures use this information to make sure that
|
| +** sorting is occurring or not occurring at appropriate times. This variable
|
| +** has no function other than to help verify the correct operation of the
|
| +** library.
|
| +*/
|
| +#ifdef SQLITE_TEST
|
| +int sqlite3_sort_count = 0;
|
| +#endif
|
| +
|
| +/*
|
| +** The next global variable records the size of the largest MEM_Blob
|
| +** or MEM_Str that has been used by a VDBE opcode. The test procedures
|
| +** use this information to make sure that the zero-blob functionality
|
| +** is working correctly. This variable has no function other than to
|
| +** help verify the correct operation of the library.
|
| +*/
|
| +#ifdef SQLITE_TEST
|
| +int sqlite3_max_blobsize = 0;
|
| +static void updateMaxBlobsize(Mem *p){
|
| + if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
|
| + sqlite3_max_blobsize = p->n;
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** The next global variable is incremented each time the OP_Found opcode
|
| +** is executed. This is used to test whether or not the foreign key
|
| +** operation implemented using OP_FkIsZero is working. This variable
|
| +** has no function other than to help verify the correct operation of the
|
| +** library.
|
| +*/
|
| +#ifdef SQLITE_TEST
|
| +int sqlite3_found_count = 0;
|
| +#endif
|
| +
|
| +/*
|
| +** Test a register to see if it exceeds the current maximum blob size.
|
| +** If it does, record the new maximum blob size.
|
| +*/
|
| +#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
|
| +# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
|
| +#else
|
| +# define UPDATE_MAX_BLOBSIZE(P)
|
| +#endif
|
| +
|
| +/*
|
| +** Invoke the VDBE coverage callback, if that callback is defined. This
|
| +** feature is used for test suite validation only and does not appear an
|
| +** production builds.
|
| +**
|
| +** M is an integer, 2 or 3, that indices how many different ways the
|
| +** branch can go. It is usually 2. "I" is the direction the branch
|
| +** goes. 0 means falls through. 1 means branch is taken. 2 means the
|
| +** second alternative branch is taken.
|
| +**
|
| +** iSrcLine is the source code line (from the __LINE__ macro) that
|
| +** generated the VDBE instruction. This instrumentation assumes that all
|
| +** source code is in a single file (the amalgamation). Special values 1
|
| +** and 2 for the iSrcLine parameter mean that this particular branch is
|
| +** always taken or never taken, respectively.
|
| +*/
|
| +#if !defined(SQLITE_VDBE_COVERAGE)
|
| +# define VdbeBranchTaken(I,M)
|
| +#else
|
| +# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
|
| + static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
|
| + if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
|
| + M = iSrcLine;
|
| + /* Assert the truth of VdbeCoverageAlwaysTaken() and
|
| + ** VdbeCoverageNeverTaken() */
|
| + assert( (M & I)==I );
|
| + }else{
|
| + if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
|
| + sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
|
| + iSrcLine,I,M);
|
| + }
|
| + }
|
| +#endif
|
| +
|
| +/*
|
| +** Convert the given register into a string if it isn't one
|
| +** already. Return non-zero if a malloc() fails.
|
| +*/
|
| +#define Stringify(P, enc) \
|
| + if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
|
| + { goto no_mem; }
|
| +
|
| +/*
|
| +** An ephemeral string value (signified by the MEM_Ephem flag) contains
|
| +** a pointer to a dynamically allocated string where some other entity
|
| +** is responsible for deallocating that string. Because the register
|
| +** does not control the string, it might be deleted without the register
|
| +** knowing it.
|
| +**
|
| +** This routine converts an ephemeral string into a dynamically allocated
|
| +** string that the register itself controls. In other words, it
|
| +** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
|
| +*/
|
| +#define Deephemeralize(P) \
|
| + if( ((P)->flags&MEM_Ephem)!=0 \
|
| + && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
|
| +
|
| +/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
|
| +#define isSorter(x) ((x)->pSorter!=0)
|
| +
|
| +/*
|
| +** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
|
| +** if we run out of memory.
|
| +*/
|
| +static VdbeCursor *allocateCursor(
|
| + Vdbe *p, /* The virtual machine */
|
| + int iCur, /* Index of the new VdbeCursor */
|
| + int nField, /* Number of fields in the table or index */
|
| + int iDb, /* Database the cursor belongs to, or -1 */
|
| + int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
|
| +){
|
| + /* Find the memory cell that will be used to store the blob of memory
|
| + ** required for this VdbeCursor structure. It is convenient to use a
|
| + ** vdbe memory cell to manage the memory allocation required for a
|
| + ** VdbeCursor structure for the following reasons:
|
| + **
|
| + ** * Sometimes cursor numbers are used for a couple of different
|
| + ** purposes in a vdbe program. The different uses might require
|
| + ** different sized allocations. Memory cells provide growable
|
| + ** allocations.
|
| + **
|
| + ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
|
| + ** be freed lazily via the sqlite3_release_memory() API. This
|
| + ** minimizes the number of malloc calls made by the system.
|
| + **
|
| + ** Memory cells for cursors are allocated at the top of the address
|
| + ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
|
| + ** cursor 1 is managed by memory cell (p->nMem-1), etc.
|
| + */
|
| + Mem *pMem = &p->aMem[p->nMem-iCur];
|
| +
|
| + int nByte;
|
| + VdbeCursor *pCx = 0;
|
| + nByte =
|
| + ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
|
| + (isBtreeCursor?sqlite3BtreeCursorSize():0);
|
| +
|
| + assert( iCur<p->nCursor );
|
| + if( p->apCsr[iCur] ){
|
| + sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
|
| + p->apCsr[iCur] = 0;
|
| + }
|
| + if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
|
| + p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
|
| + memset(pCx, 0, sizeof(VdbeCursor));
|
| + pCx->iDb = iDb;
|
| + pCx->nField = nField;
|
| + pCx->aOffset = &pCx->aType[nField];
|
| + if( isBtreeCursor ){
|
| + pCx->pCursor = (BtCursor*)
|
| + &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
|
| + sqlite3BtreeCursorZero(pCx->pCursor);
|
| + }
|
| + }
|
| + return pCx;
|
| +}
|
| +
|
| +/*
|
| +** Try to convert a value into a numeric representation if we can
|
| +** do so without loss of information. In other words, if the string
|
| +** looks like a number, convert it into a number. If it does not
|
| +** look like a number, leave it alone.
|
| +**
|
| +** If the bTryForInt flag is true, then extra effort is made to give
|
| +** an integer representation. Strings that look like floating point
|
| +** values but which have no fractional component (example: '48.00')
|
| +** will have a MEM_Int representation when bTryForInt is true.
|
| +**
|
| +** If bTryForInt is false, then if the input string contains a decimal
|
| +** point or exponential notation, the result is only MEM_Real, even
|
| +** if there is an exact integer representation of the quantity.
|
| +*/
|
| +static void applyNumericAffinity(Mem *pRec, int bTryForInt){
|
| + double rValue;
|
| + i64 iValue;
|
| + u8 enc = pRec->enc;
|
| + assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
|
| + if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
|
| + if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
|
| + pRec->u.i = iValue;
|
| + pRec->flags |= MEM_Int;
|
| + }else{
|
| + pRec->u.r = rValue;
|
| + pRec->flags |= MEM_Real;
|
| + if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Processing is determine by the affinity parameter:
|
| +**
|
| +** SQLITE_AFF_INTEGER:
|
| +** SQLITE_AFF_REAL:
|
| +** SQLITE_AFF_NUMERIC:
|
| +** Try to convert pRec to an integer representation or a
|
| +** floating-point representation if an integer representation
|
| +** is not possible. Note that the integer representation is
|
| +** always preferred, even if the affinity is REAL, because
|
| +** an integer representation is more space efficient on disk.
|
| +**
|
| +** SQLITE_AFF_TEXT:
|
| +** Convert pRec to a text representation.
|
| +**
|
| +** SQLITE_AFF_NONE:
|
| +** No-op. pRec is unchanged.
|
| +*/
|
| +static void applyAffinity(
|
| + Mem *pRec, /* The value to apply affinity to */
|
| + char affinity, /* The affinity to be applied */
|
| + u8 enc /* Use this text encoding */
|
| +){
|
| + if( affinity>=SQLITE_AFF_NUMERIC ){
|
| + assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|
| + || affinity==SQLITE_AFF_NUMERIC );
|
| + if( (pRec->flags & MEM_Int)==0 ){
|
| + if( (pRec->flags & MEM_Real)==0 ){
|
| + if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
|
| + }else{
|
| + sqlite3VdbeIntegerAffinity(pRec);
|
| + }
|
| + }
|
| + }else if( affinity==SQLITE_AFF_TEXT ){
|
| + /* Only attempt the conversion to TEXT if there is an integer or real
|
| + ** representation (blob and NULL do not get converted) but no string
|
| + ** representation.
|
| + */
|
| + if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
|
| + sqlite3VdbeMemStringify(pRec, enc, 1);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Try to convert the type of a function argument or a result column
|
| +** into a numeric representation. Use either INTEGER or REAL whichever
|
| +** is appropriate. But only do the conversion if it is possible without
|
| +** loss of information and return the revised type of the argument.
|
| +*/
|
| +int sqlite3_value_numeric_type(sqlite3_value *pVal){
|
| + int eType = sqlite3_value_type(pVal);
|
| + if( eType==SQLITE_TEXT ){
|
| + Mem *pMem = (Mem*)pVal;
|
| + applyNumericAffinity(pMem, 0);
|
| + eType = sqlite3_value_type(pVal);
|
| + }
|
| + return eType;
|
| +}
|
| +
|
| +/*
|
| +** Exported version of applyAffinity(). This one works on sqlite3_value*,
|
| +** not the internal Mem* type.
|
| +*/
|
| +void sqlite3ValueApplyAffinity(
|
| + sqlite3_value *pVal,
|
| + u8 affinity,
|
| + u8 enc
|
| +){
|
| + applyAffinity((Mem *)pVal, affinity, enc);
|
| +}
|
| +
|
| +/*
|
| +** pMem currently only holds a string type (or maybe a BLOB that we can
|
| +** interpret as a string if we want to). Compute its corresponding
|
| +** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
|
| +** accordingly.
|
| +*/
|
| +static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
|
| + assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
|
| + assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
|
| + if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
|
| + return 0;
|
| + }
|
| + if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
|
| + return MEM_Int;
|
| + }
|
| + return MEM_Real;
|
| +}
|
| +
|
| +/*
|
| +** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
|
| +** none.
|
| +**
|
| +** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
|
| +** But it does set pMem->u.r and pMem->u.i appropriately.
|
| +*/
|
| +static u16 numericType(Mem *pMem){
|
| + if( pMem->flags & (MEM_Int|MEM_Real) ){
|
| + return pMem->flags & (MEM_Int|MEM_Real);
|
| + }
|
| + if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
| + return computeNumericType(pMem);
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Write a nice string representation of the contents of cell pMem
|
| +** into buffer zBuf, length nBuf.
|
| +*/
|
| +void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
|
| + char *zCsr = zBuf;
|
| + int f = pMem->flags;
|
| +
|
| + static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
|
| +
|
| + if( f&MEM_Blob ){
|
| + int i;
|
| + char c;
|
| + if( f & MEM_Dyn ){
|
| + c = 'z';
|
| + assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
| + }else if( f & MEM_Static ){
|
| + c = 't';
|
| + assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
| + }else if( f & MEM_Ephem ){
|
| + c = 'e';
|
| + assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
| + }else{
|
| + c = 's';
|
| + }
|
| +
|
| + sqlite3_snprintf(100, zCsr, "%c", c);
|
| + zCsr += sqlite3Strlen30(zCsr);
|
| + sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
|
| + zCsr += sqlite3Strlen30(zCsr);
|
| + for(i=0; i<16 && i<pMem->n; i++){
|
| + sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
|
| + zCsr += sqlite3Strlen30(zCsr);
|
| + }
|
| + for(i=0; i<16 && i<pMem->n; i++){
|
| + char z = pMem->z[i];
|
| + if( z<32 || z>126 ) *zCsr++ = '.';
|
| + else *zCsr++ = z;
|
| + }
|
| +
|
| + sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
|
| + zCsr += sqlite3Strlen30(zCsr);
|
| + if( f & MEM_Zero ){
|
| + sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
|
| + zCsr += sqlite3Strlen30(zCsr);
|
| + }
|
| + *zCsr = '\0';
|
| + }else if( f & MEM_Str ){
|
| + int j, k;
|
| + zBuf[0] = ' ';
|
| + if( f & MEM_Dyn ){
|
| + zBuf[1] = 'z';
|
| + assert( (f & (MEM_Static|MEM_Ephem))==0 );
|
| + }else if( f & MEM_Static ){
|
| + zBuf[1] = 't';
|
| + assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
|
| + }else if( f & MEM_Ephem ){
|
| + zBuf[1] = 'e';
|
| + assert( (f & (MEM_Static|MEM_Dyn))==0 );
|
| + }else{
|
| + zBuf[1] = 's';
|
| + }
|
| + k = 2;
|
| + sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
|
| + k += sqlite3Strlen30(&zBuf[k]);
|
| + zBuf[k++] = '[';
|
| + for(j=0; j<15 && j<pMem->n; j++){
|
| + u8 c = pMem->z[j];
|
| + if( c>=0x20 && c<0x7f ){
|
| + zBuf[k++] = c;
|
| + }else{
|
| + zBuf[k++] = '.';
|
| + }
|
| + }
|
| + zBuf[k++] = ']';
|
| + sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
|
| + k += sqlite3Strlen30(&zBuf[k]);
|
| + zBuf[k++] = 0;
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Print the value of a register for tracing purposes:
|
| +*/
|
| +static void memTracePrint(Mem *p){
|
| + if( p->flags & MEM_Undefined ){
|
| + printf(" undefined");
|
| + }else if( p->flags & MEM_Null ){
|
| + printf(" NULL");
|
| + }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
|
| + printf(" si:%lld", p->u.i);
|
| + }else if( p->flags & MEM_Int ){
|
| + printf(" i:%lld", p->u.i);
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| + }else if( p->flags & MEM_Real ){
|
| + printf(" r:%g", p->u.r);
|
| +#endif
|
| + }else if( p->flags & MEM_RowSet ){
|
| + printf(" (rowset)");
|
| + }else{
|
| + char zBuf[200];
|
| + sqlite3VdbeMemPrettyPrint(p, zBuf);
|
| + printf(" %s", zBuf);
|
| + }
|
| +}
|
| +static void registerTrace(int iReg, Mem *p){
|
| + printf("REG[%d] = ", iReg);
|
| + memTracePrint(p);
|
| + printf("\n");
|
| +}
|
| +#endif
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
|
| +#else
|
| +# define REGISTER_TRACE(R,M)
|
| +#endif
|
| +
|
| +
|
| +#ifdef VDBE_PROFILE
|
| +
|
| +/*
|
| +** hwtime.h contains inline assembler code for implementing
|
| +** high-performance timing routines.
|
| +*/
|
| +#include "hwtime.h"
|
| +
|
| +#endif
|
| +
|
| +#ifndef NDEBUG
|
| +/*
|
| +** This function is only called from within an assert() expression. It
|
| +** checks that the sqlite3.nTransaction variable is correctly set to
|
| +** the number of non-transaction savepoints currently in the
|
| +** linked list starting at sqlite3.pSavepoint.
|
| +**
|
| +** Usage:
|
| +**
|
| +** assert( checkSavepointCount(db) );
|
| +*/
|
| +static int checkSavepointCount(sqlite3 *db){
|
| + int n = 0;
|
| + Savepoint *p;
|
| + for(p=db->pSavepoint; p; p=p->pNext) n++;
|
| + assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
|
| + return 1;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Execute as much of a VDBE program as we can.
|
| +** This is the core of sqlite3_step().
|
| +*/
|
| +int sqlite3VdbeExec(
|
| + Vdbe *p /* The VDBE */
|
| +){
|
| + int pc=0; /* The program counter */
|
| + Op *aOp = p->aOp; /* Copy of p->aOp */
|
| + Op *pOp; /* Current operation */
|
| + int rc = SQLITE_OK; /* Value to return */
|
| + sqlite3 *db = p->db; /* The database */
|
| + u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
|
| + u8 encoding = ENC(db); /* The database encoding */
|
| + int iCompare = 0; /* Result of last OP_Compare operation */
|
| + unsigned nVmStep = 0; /* Number of virtual machine steps */
|
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
| + unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
|
| +#endif
|
| + Mem *aMem = p->aMem; /* Copy of p->aMem */
|
| + Mem *pIn1 = 0; /* 1st input operand */
|
| + Mem *pIn2 = 0; /* 2nd input operand */
|
| + Mem *pIn3 = 0; /* 3rd input operand */
|
| + Mem *pOut = 0; /* Output operand */
|
| + int *aPermute = 0; /* Permutation of columns for OP_Compare */
|
| + i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
|
| +#ifdef VDBE_PROFILE
|
| + u64 start; /* CPU clock count at start of opcode */
|
| +#endif
|
| + /*** INSERT STACK UNION HERE ***/
|
| +
|
| + assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
|
| + sqlite3VdbeEnter(p);
|
| + if( p->rc==SQLITE_NOMEM ){
|
| + /* This happens if a malloc() inside a call to sqlite3_column_text() or
|
| + ** sqlite3_column_text16() failed. */
|
| + goto no_mem;
|
| + }
|
| + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
|
| + assert( p->bIsReader || p->readOnly!=0 );
|
| + p->rc = SQLITE_OK;
|
| + p->iCurrentTime = 0;
|
| + assert( p->explain==0 );
|
| + p->pResultSet = 0;
|
| + db->busyHandler.nBusy = 0;
|
| + if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
| + sqlite3VdbeIOTraceSql(p);
|
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
| + if( db->xProgress ){
|
| + assert( 0 < db->nProgressOps );
|
| + nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
|
| + if( nProgressLimit==0 ){
|
| + nProgressLimit = db->nProgressOps;
|
| + }else{
|
| + nProgressLimit %= (unsigned)db->nProgressOps;
|
| + }
|
| + }
|
| +#endif
|
| +#ifdef SQLITE_DEBUG
|
| + sqlite3BeginBenignMalloc();
|
| + if( p->pc==0
|
| + && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
|
| + ){
|
| + int i;
|
| + int once = 1;
|
| + sqlite3VdbePrintSql(p);
|
| + if( p->db->flags & SQLITE_VdbeListing ){
|
| + printf("VDBE Program Listing:\n");
|
| + for(i=0; i<p->nOp; i++){
|
| + sqlite3VdbePrintOp(stdout, i, &aOp[i]);
|
| + }
|
| + }
|
| + if( p->db->flags & SQLITE_VdbeEQP ){
|
| + for(i=0; i<p->nOp; i++){
|
| + if( aOp[i].opcode==OP_Explain ){
|
| + if( once ) printf("VDBE Query Plan:\n");
|
| + printf("%s\n", aOp[i].p4.z);
|
| + once = 0;
|
| + }
|
| + }
|
| + }
|
| + if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
|
| + }
|
| + sqlite3EndBenignMalloc();
|
| +#endif
|
| + for(pc=p->pc; rc==SQLITE_OK; pc++){
|
| + assert( pc>=0 && pc<p->nOp );
|
| + if( db->mallocFailed ) goto no_mem;
|
| +#ifdef VDBE_PROFILE
|
| + start = sqlite3Hwtime();
|
| +#endif
|
| + nVmStep++;
|
| + pOp = &aOp[pc];
|
| +
|
| + /* Only allow tracing if SQLITE_DEBUG is defined.
|
| + */
|
| +#ifdef SQLITE_DEBUG
|
| + if( db->flags & SQLITE_VdbeTrace ){
|
| + sqlite3VdbePrintOp(stdout, pc, pOp);
|
| + }
|
| +#endif
|
| +
|
| +
|
| + /* Check to see if we need to simulate an interrupt. This only happens
|
| + ** if we have a special test build.
|
| + */
|
| +#ifdef SQLITE_TEST
|
| + if( sqlite3_interrupt_count>0 ){
|
| + sqlite3_interrupt_count--;
|
| + if( sqlite3_interrupt_count==0 ){
|
| + sqlite3_interrupt(db);
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* On any opcode with the "out2-prerelease" tag, free any
|
| + ** external allocations out of mem[p2] and set mem[p2] to be
|
| + ** an undefined integer. Opcodes will either fill in the integer
|
| + ** value or convert mem[p2] to a different type.
|
| + */
|
| + assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
|
| + if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
|
| + assert( pOp->p2>0 );
|
| + assert( pOp->p2<=(p->nMem-p->nCursor) );
|
| + pOut = &aMem[pOp->p2];
|
| + memAboutToChange(p, pOut);
|
| + if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
|
| + pOut->flags = MEM_Int;
|
| + }
|
| +
|
| + /* Sanity checking on other operands */
|
| +#ifdef SQLITE_DEBUG
|
| + if( (pOp->opflags & OPFLG_IN1)!=0 ){
|
| + assert( pOp->p1>0 );
|
| + assert( pOp->p1<=(p->nMem-p->nCursor) );
|
| + assert( memIsValid(&aMem[pOp->p1]) );
|
| + assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
|
| + REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
|
| + }
|
| + if( (pOp->opflags & OPFLG_IN2)!=0 ){
|
| + assert( pOp->p2>0 );
|
| + assert( pOp->p2<=(p->nMem-p->nCursor) );
|
| + assert( memIsValid(&aMem[pOp->p2]) );
|
| + assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
|
| + REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
|
| + }
|
| + if( (pOp->opflags & OPFLG_IN3)!=0 ){
|
| + assert( pOp->p3>0 );
|
| + assert( pOp->p3<=(p->nMem-p->nCursor) );
|
| + assert( memIsValid(&aMem[pOp->p3]) );
|
| + assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
|
| + REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
|
| + }
|
| + if( (pOp->opflags & OPFLG_OUT2)!=0 ){
|
| + assert( pOp->p2>0 );
|
| + assert( pOp->p2<=(p->nMem-p->nCursor) );
|
| + memAboutToChange(p, &aMem[pOp->p2]);
|
| + }
|
| + if( (pOp->opflags & OPFLG_OUT3)!=0 ){
|
| + assert( pOp->p3>0 );
|
| + assert( pOp->p3<=(p->nMem-p->nCursor) );
|
| + memAboutToChange(p, &aMem[pOp->p3]);
|
| + }
|
| +#endif
|
| +
|
| + switch( pOp->opcode ){
|
| +
|
| +/*****************************************************************************
|
| +** What follows is a massive switch statement where each case implements a
|
| +** separate instruction in the virtual machine. If we follow the usual
|
| +** indentation conventions, each case should be indented by 6 spaces. But
|
| +** that is a lot of wasted space on the left margin. So the code within
|
| +** the switch statement will break with convention and be flush-left. Another
|
| +** big comment (similar to this one) will mark the point in the code where
|
| +** we transition back to normal indentation.
|
| +**
|
| +** The formatting of each case is important. The makefile for SQLite
|
| +** generates two C files "opcodes.h" and "opcodes.c" by scanning this
|
| +** file looking for lines that begin with "case OP_". The opcodes.h files
|
| +** will be filled with #defines that give unique integer values to each
|
| +** opcode and the opcodes.c file is filled with an array of strings where
|
| +** each string is the symbolic name for the corresponding opcode. If the
|
| +** case statement is followed by a comment of the form "/# same as ... #/"
|
| +** that comment is used to determine the particular value of the opcode.
|
| +**
|
| +** Other keywords in the comment that follows each case are used to
|
| +** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
|
| +** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
|
| +** the mkopcodeh.awk script for additional information.
|
| +**
|
| +** Documentation about VDBE opcodes is generated by scanning this file
|
| +** for lines of that contain "Opcode:". That line and all subsequent
|
| +** comment lines are used in the generation of the opcode.html documentation
|
| +** file.
|
| +**
|
| +** SUMMARY:
|
| +**
|
| +** Formatting is important to scripts that scan this file.
|
| +** Do not deviate from the formatting style currently in use.
|
| +**
|
| +*****************************************************************************/
|
| +
|
| +/* Opcode: Goto * P2 * * *
|
| +**
|
| +** An unconditional jump to address P2.
|
| +** The next instruction executed will be
|
| +** the one at index P2 from the beginning of
|
| +** the program.
|
| +**
|
| +** The P1 parameter is not actually used by this opcode. However, it
|
| +** is sometimes set to 1 instead of 0 as a hint to the command-line shell
|
| +** that this Goto is the bottom of a loop and that the lines from P2 down
|
| +** to the current line should be indented for EXPLAIN output.
|
| +*/
|
| +case OP_Goto: { /* jump */
|
| + pc = pOp->p2 - 1;
|
| +
|
| + /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
|
| + ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
|
| + ** completion. Check to see if sqlite3_interrupt() has been called
|
| + ** or if the progress callback needs to be invoked.
|
| + **
|
| + ** This code uses unstructured "goto" statements and does not look clean.
|
| + ** But that is not due to sloppy coding habits. The code is written this
|
| + ** way for performance, to avoid having to run the interrupt and progress
|
| + ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
|
| + ** faster according to "valgrind --tool=cachegrind" */
|
| +check_for_interrupt:
|
| + if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
|
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
| + /* Call the progress callback if it is configured and the required number
|
| + ** of VDBE ops have been executed (either since this invocation of
|
| + ** sqlite3VdbeExec() or since last time the progress callback was called).
|
| + ** If the progress callback returns non-zero, exit the virtual machine with
|
| + ** a return code SQLITE_ABORT.
|
| + */
|
| + if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
|
| + assert( db->nProgressOps!=0 );
|
| + nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
|
| + if( db->xProgress(db->pProgressArg) ){
|
| + rc = SQLITE_INTERRUPT;
|
| + goto vdbe_error_halt;
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Gosub P1 P2 * * *
|
| +**
|
| +** Write the current address onto register P1
|
| +** and then jump to address P2.
|
| +*/
|
| +case OP_Gosub: { /* jump */
|
| + assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( VdbeMemDynamic(pIn1)==0 );
|
| + memAboutToChange(p, pIn1);
|
| + pIn1->flags = MEM_Int;
|
| + pIn1->u.i = pc;
|
| + REGISTER_TRACE(pOp->p1, pIn1);
|
| + pc = pOp->p2 - 1;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Return P1 * * * *
|
| +**
|
| +** Jump to the next instruction after the address in register P1. After
|
| +** the jump, register P1 becomes undefined.
|
| +*/
|
| +case OP_Return: { /* in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( pIn1->flags==MEM_Int );
|
| + pc = (int)pIn1->u.i;
|
| + pIn1->flags = MEM_Undefined;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: InitCoroutine P1 P2 P3 * *
|
| +**
|
| +** Set up register P1 so that it will Yield to the coroutine
|
| +** located at address P3.
|
| +**
|
| +** If P2!=0 then the coroutine implementation immediately follows
|
| +** this opcode. So jump over the coroutine implementation to
|
| +** address P2.
|
| +**
|
| +** See also: EndCoroutine
|
| +*/
|
| +case OP_InitCoroutine: { /* jump */
|
| + assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
|
| + assert( pOp->p2>=0 && pOp->p2<p->nOp );
|
| + assert( pOp->p3>=0 && pOp->p3<p->nOp );
|
| + pOut = &aMem[pOp->p1];
|
| + assert( !VdbeMemDynamic(pOut) );
|
| + pOut->u.i = pOp->p3 - 1;
|
| + pOut->flags = MEM_Int;
|
| + if( pOp->p2 ) pc = pOp->p2 - 1;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: EndCoroutine P1 * * * *
|
| +**
|
| +** The instruction at the address in register P1 is a Yield.
|
| +** Jump to the P2 parameter of that Yield.
|
| +** After the jump, register P1 becomes undefined.
|
| +**
|
| +** See also: InitCoroutine
|
| +*/
|
| +case OP_EndCoroutine: { /* in1 */
|
| + VdbeOp *pCaller;
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( pIn1->flags==MEM_Int );
|
| + assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
|
| + pCaller = &aOp[pIn1->u.i];
|
| + assert( pCaller->opcode==OP_Yield );
|
| + assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
|
| + pc = pCaller->p2 - 1;
|
| + pIn1->flags = MEM_Undefined;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Yield P1 P2 * * *
|
| +**
|
| +** Swap the program counter with the value in register P1. This
|
| +** has the effect of yielding to a coroutine.
|
| +**
|
| +** If the coroutine that is launched by this instruction ends with
|
| +** Yield or Return then continue to the next instruction. But if
|
| +** the coroutine launched by this instruction ends with
|
| +** EndCoroutine, then jump to P2 rather than continuing with the
|
| +** next instruction.
|
| +**
|
| +** See also: InitCoroutine
|
| +*/
|
| +case OP_Yield: { /* in1, jump */
|
| + int pcDest;
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( VdbeMemDynamic(pIn1)==0 );
|
| + pIn1->flags = MEM_Int;
|
| + pcDest = (int)pIn1->u.i;
|
| + pIn1->u.i = pc;
|
| + REGISTER_TRACE(pOp->p1, pIn1);
|
| + pc = pcDest;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: HaltIfNull P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P3]=null halt
|
| +**
|
| +** Check the value in register P3. If it is NULL then Halt using
|
| +** parameter P1, P2, and P4 as if this were a Halt instruction. If the
|
| +** value in register P3 is not NULL, then this routine is a no-op.
|
| +** The P5 parameter should be 1.
|
| +*/
|
| +case OP_HaltIfNull: { /* in3 */
|
| + pIn3 = &aMem[pOp->p3];
|
| + if( (pIn3->flags & MEM_Null)==0 ) break;
|
| + /* Fall through into OP_Halt */
|
| +}
|
| +
|
| +/* Opcode: Halt P1 P2 * P4 P5
|
| +**
|
| +** Exit immediately. All open cursors, etc are closed
|
| +** automatically.
|
| +**
|
| +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
|
| +** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
|
| +** For errors, it can be some other value. If P1!=0 then P2 will determine
|
| +** whether or not to rollback the current transaction. Do not rollback
|
| +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
|
| +** then back out all changes that have occurred during this execution of the
|
| +** VDBE, but do not rollback the transaction.
|
| +**
|
| +** If P4 is not null then it is an error message string.
|
| +**
|
| +** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
|
| +**
|
| +** 0: (no change)
|
| +** 1: NOT NULL contraint failed: P4
|
| +** 2: UNIQUE constraint failed: P4
|
| +** 3: CHECK constraint failed: P4
|
| +** 4: FOREIGN KEY constraint failed: P4
|
| +**
|
| +** If P5 is not zero and P4 is NULL, then everything after the ":" is
|
| +** omitted.
|
| +**
|
| +** There is an implied "Halt 0 0 0" instruction inserted at the very end of
|
| +** every program. So a jump past the last instruction of the program
|
| +** is the same as executing Halt.
|
| +*/
|
| +case OP_Halt: {
|
| + const char *zType;
|
| + const char *zLogFmt;
|
| +
|
| + if( pOp->p1==SQLITE_OK && p->pFrame ){
|
| + /* Halt the sub-program. Return control to the parent frame. */
|
| + VdbeFrame *pFrame = p->pFrame;
|
| + p->pFrame = pFrame->pParent;
|
| + p->nFrame--;
|
| + sqlite3VdbeSetChanges(db, p->nChange);
|
| + pc = sqlite3VdbeFrameRestore(pFrame);
|
| + lastRowid = db->lastRowid;
|
| + if( pOp->p2==OE_Ignore ){
|
| + /* Instruction pc is the OP_Program that invoked the sub-program
|
| + ** currently being halted. If the p2 instruction of this OP_Halt
|
| + ** instruction is set to OE_Ignore, then the sub-program is throwing
|
| + ** an IGNORE exception. In this case jump to the address specified
|
| + ** as the p2 of the calling OP_Program. */
|
| + pc = p->aOp[pc].p2-1;
|
| + }
|
| + aOp = p->aOp;
|
| + aMem = p->aMem;
|
| + break;
|
| + }
|
| + p->rc = pOp->p1;
|
| + p->errorAction = (u8)pOp->p2;
|
| + p->pc = pc;
|
| + if( p->rc ){
|
| + if( pOp->p5 ){
|
| + static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
|
| + "FOREIGN KEY" };
|
| + assert( pOp->p5>=1 && pOp->p5<=4 );
|
| + testcase( pOp->p5==1 );
|
| + testcase( pOp->p5==2 );
|
| + testcase( pOp->p5==3 );
|
| + testcase( pOp->p5==4 );
|
| + zType = azType[pOp->p5-1];
|
| + }else{
|
| + zType = 0;
|
| + }
|
| + assert( zType!=0 || pOp->p4.z!=0 );
|
| + zLogFmt = "abort at %d in [%s]: %s";
|
| + if( zType && pOp->p4.z ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
|
| + zType, pOp->p4.z);
|
| + }else if( pOp->p4.z ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
|
| + }else{
|
| + sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
|
| + }
|
| + sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
|
| + }
|
| + rc = sqlite3VdbeHalt(p);
|
| + assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
|
| + if( rc==SQLITE_BUSY ){
|
| + p->rc = rc = SQLITE_BUSY;
|
| + }else{
|
| + assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
|
| + assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
|
| + rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
|
| + }
|
| + goto vdbe_return;
|
| +}
|
| +
|
| +/* Opcode: Integer P1 P2 * * *
|
| +** Synopsis: r[P2]=P1
|
| +**
|
| +** The 32-bit integer value P1 is written into register P2.
|
| +*/
|
| +case OP_Integer: { /* out2-prerelease */
|
| + pOut->u.i = pOp->p1;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Int64 * P2 * P4 *
|
| +** Synopsis: r[P2]=P4
|
| +**
|
| +** P4 is a pointer to a 64-bit integer value.
|
| +** Write that value into register P2.
|
| +*/
|
| +case OP_Int64: { /* out2-prerelease */
|
| + assert( pOp->p4.pI64!=0 );
|
| + pOut->u.i = *pOp->p4.pI64;
|
| + break;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/* Opcode: Real * P2 * P4 *
|
| +** Synopsis: r[P2]=P4
|
| +**
|
| +** P4 is a pointer to a 64-bit floating point value.
|
| +** Write that value into register P2.
|
| +*/
|
| +case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
|
| + pOut->flags = MEM_Real;
|
| + assert( !sqlite3IsNaN(*pOp->p4.pReal) );
|
| + pOut->u.r = *pOp->p4.pReal;
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +/* Opcode: String8 * P2 * P4 *
|
| +** Synopsis: r[P2]='P4'
|
| +**
|
| +** P4 points to a nul terminated UTF-8 string. This opcode is transformed
|
| +** into a String before it is executed for the first time. During
|
| +** this transformation, the length of string P4 is computed and stored
|
| +** as the P1 parameter.
|
| +*/
|
| +case OP_String8: { /* same as TK_STRING, out2-prerelease */
|
| + assert( pOp->p4.z!=0 );
|
| + pOp->opcode = OP_String;
|
| + pOp->p1 = sqlite3Strlen30(pOp->p4.z);
|
| +
|
| +#ifndef SQLITE_OMIT_UTF16
|
| + if( encoding!=SQLITE_UTF8 ){
|
| + rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
|
| + if( rc==SQLITE_TOOBIG ) goto too_big;
|
| + if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
|
| + assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
|
| + assert( VdbeMemDynamic(pOut)==0 );
|
| + pOut->szMalloc = 0;
|
| + pOut->flags |= MEM_Static;
|
| + if( pOp->p4type==P4_DYNAMIC ){
|
| + sqlite3DbFree(db, pOp->p4.z);
|
| + }
|
| + pOp->p4type = P4_DYNAMIC;
|
| + pOp->p4.z = pOut->z;
|
| + pOp->p1 = pOut->n;
|
| + }
|
| +#endif
|
| + if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| + /* Fall through to the next case, OP_String */
|
| +}
|
| +
|
| +/* Opcode: String P1 P2 * P4 *
|
| +** Synopsis: r[P2]='P4' (len=P1)
|
| +**
|
| +** The string value P4 of length P1 (bytes) is stored in register P2.
|
| +*/
|
| +case OP_String: { /* out2-prerelease */
|
| + assert( pOp->p4.z!=0 );
|
| + pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
| + pOut->z = pOp->p4.z;
|
| + pOut->n = pOp->p1;
|
| + pOut->enc = encoding;
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Null P1 P2 P3 * *
|
| +** Synopsis: r[P2..P3]=NULL
|
| +**
|
| +** Write a NULL into registers P2. If P3 greater than P2, then also write
|
| +** NULL into register P3 and every register in between P2 and P3. If P3
|
| +** is less than P2 (typically P3 is zero) then only register P2 is
|
| +** set to NULL.
|
| +**
|
| +** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
|
| +** NULL values will not compare equal even if SQLITE_NULLEQ is set on
|
| +** OP_Ne or OP_Eq.
|
| +*/
|
| +case OP_Null: { /* out2-prerelease */
|
| + int cnt;
|
| + u16 nullFlag;
|
| + cnt = pOp->p3-pOp->p2;
|
| + assert( pOp->p3<=(p->nMem-p->nCursor) );
|
| + pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
|
| + while( cnt>0 ){
|
| + pOut++;
|
| + memAboutToChange(p, pOut);
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + pOut->flags = nullFlag;
|
| + cnt--;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SoftNull P1 * * * *
|
| +** Synopsis: r[P1]=NULL
|
| +**
|
| +** Set register P1 to have the value NULL as seen by the OP_MakeRecord
|
| +** instruction, but do not free any string or blob memory associated with
|
| +** the register, so that if the value was a string or blob that was
|
| +** previously copied using OP_SCopy, the copies will continue to be valid.
|
| +*/
|
| +case OP_SoftNull: {
|
| + assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
|
| + pOut = &aMem[pOp->p1];
|
| + pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Blob P1 P2 * P4 *
|
| +** Synopsis: r[P2]=P4 (len=P1)
|
| +**
|
| +** P4 points to a blob of data P1 bytes long. Store this
|
| +** blob in register P2.
|
| +*/
|
| +case OP_Blob: { /* out2-prerelease */
|
| + assert( pOp->p1 <= SQLITE_MAX_LENGTH );
|
| + sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
|
| + pOut->enc = encoding;
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Variable P1 P2 * P4 *
|
| +** Synopsis: r[P2]=parameter(P1,P4)
|
| +**
|
| +** Transfer the values of bound parameter P1 into register P2
|
| +**
|
| +** If the parameter is named, then its name appears in P4.
|
| +** The P4 value is used by sqlite3_bind_parameter_name().
|
| +*/
|
| +case OP_Variable: { /* out2-prerelease */
|
| + Mem *pVar; /* Value being transferred */
|
| +
|
| + assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
| + assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
|
| + pVar = &p->aVar[pOp->p1 - 1];
|
| + if( sqlite3VdbeMemTooBig(pVar) ){
|
| + goto too_big;
|
| + }
|
| + sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Move P1 P2 P3 * *
|
| +** Synopsis: r[P2@P3]=r[P1@P3]
|
| +**
|
| +** Move the P3 values in register P1..P1+P3-1 over into
|
| +** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
|
| +** left holding a NULL. It is an error for register ranges
|
| +** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
|
| +** for P3 to be less than 1.
|
| +*/
|
| +case OP_Move: {
|
| + int n; /* Number of registers left to copy */
|
| + int p1; /* Register to copy from */
|
| + int p2; /* Register to copy to */
|
| +
|
| + n = pOp->p3;
|
| + p1 = pOp->p1;
|
| + p2 = pOp->p2;
|
| + assert( n>0 && p1>0 && p2>0 );
|
| + assert( p1+n<=p2 || p2+n<=p1 );
|
| +
|
| + pIn1 = &aMem[p1];
|
| + pOut = &aMem[p2];
|
| + do{
|
| + assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
|
| + assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
|
| + assert( memIsValid(pIn1) );
|
| + memAboutToChange(p, pOut);
|
| + sqlite3VdbeMemMove(pOut, pIn1);
|
| +#ifdef SQLITE_DEBUG
|
| + if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
|
| + pOut->pScopyFrom += p1 - pOp->p2;
|
| + }
|
| +#endif
|
| + REGISTER_TRACE(p2++, pOut);
|
| + pIn1++;
|
| + pOut++;
|
| + }while( --n );
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Copy P1 P2 P3 * *
|
| +** Synopsis: r[P2@P3+1]=r[P1@P3+1]
|
| +**
|
| +** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
|
| +**
|
| +** This instruction makes a deep copy of the value. A duplicate
|
| +** is made of any string or blob constant. See also OP_SCopy.
|
| +*/
|
| +case OP_Copy: {
|
| + int n;
|
| +
|
| + n = pOp->p3;
|
| + pIn1 = &aMem[pOp->p1];
|
| + pOut = &aMem[pOp->p2];
|
| + assert( pOut!=pIn1 );
|
| + while( 1 ){
|
| + sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
| + Deephemeralize(pOut);
|
| +#ifdef SQLITE_DEBUG
|
| + pOut->pScopyFrom = 0;
|
| +#endif
|
| + REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
|
| + if( (n--)==0 ) break;
|
| + pOut++;
|
| + pIn1++;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SCopy P1 P2 * * *
|
| +** Synopsis: r[P2]=r[P1]
|
| +**
|
| +** Make a shallow copy of register P1 into register P2.
|
| +**
|
| +** This instruction makes a shallow copy of the value. If the value
|
| +** is a string or blob, then the copy is only a pointer to the
|
| +** original and hence if the original changes so will the copy.
|
| +** Worse, if the original is deallocated, the copy becomes invalid.
|
| +** Thus the program must guarantee that the original will not change
|
| +** during the lifetime of the copy. Use OP_Copy to make a complete
|
| +** copy.
|
| +*/
|
| +case OP_SCopy: { /* out2 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + pOut = &aMem[pOp->p2];
|
| + assert( pOut!=pIn1 );
|
| + sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
|
| +#ifdef SQLITE_DEBUG
|
| + if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
|
| +#endif
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: ResultRow P1 P2 * * *
|
| +** Synopsis: output=r[P1@P2]
|
| +**
|
| +** The registers P1 through P1+P2-1 contain a single row of
|
| +** results. This opcode causes the sqlite3_step() call to terminate
|
| +** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
|
| +** structure to provide access to the r(P1)..r(P1+P2-1) values as
|
| +** the result row.
|
| +*/
|
| +case OP_ResultRow: {
|
| + Mem *pMem;
|
| + int i;
|
| + assert( p->nResColumn==pOp->p2 );
|
| + assert( pOp->p1>0 );
|
| + assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
|
| +
|
| +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
| + /* Run the progress counter just before returning.
|
| + */
|
| + if( db->xProgress!=0
|
| + && nVmStep>=nProgressLimit
|
| + && db->xProgress(db->pProgressArg)!=0
|
| + ){
|
| + rc = SQLITE_INTERRUPT;
|
| + goto vdbe_error_halt;
|
| + }
|
| +#endif
|
| +
|
| + /* If this statement has violated immediate foreign key constraints, do
|
| + ** not return the number of rows modified. And do not RELEASE the statement
|
| + ** transaction. It needs to be rolled back. */
|
| + if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
|
| + assert( db->flags&SQLITE_CountRows );
|
| + assert( p->usesStmtJournal );
|
| + break;
|
| + }
|
| +
|
| + /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
|
| + ** DML statements invoke this opcode to return the number of rows
|
| + ** modified to the user. This is the only way that a VM that
|
| + ** opens a statement transaction may invoke this opcode.
|
| + **
|
| + ** In case this is such a statement, close any statement transaction
|
| + ** opened by this VM before returning control to the user. This is to
|
| + ** ensure that statement-transactions are always nested, not overlapping.
|
| + ** If the open statement-transaction is not closed here, then the user
|
| + ** may step another VM that opens its own statement transaction. This
|
| + ** may lead to overlapping statement transactions.
|
| + **
|
| + ** The statement transaction is never a top-level transaction. Hence
|
| + ** the RELEASE call below can never fail.
|
| + */
|
| + assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
|
| + rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
|
| + if( NEVER(rc!=SQLITE_OK) ){
|
| + break;
|
| + }
|
| +
|
| + /* Invalidate all ephemeral cursor row caches */
|
| + p->cacheCtr = (p->cacheCtr + 2)|1;
|
| +
|
| + /* Make sure the results of the current row are \000 terminated
|
| + ** and have an assigned type. The results are de-ephemeralized as
|
| + ** a side effect.
|
| + */
|
| + pMem = p->pResultSet = &aMem[pOp->p1];
|
| + for(i=0; i<pOp->p2; i++){
|
| + assert( memIsValid(&pMem[i]) );
|
| + Deephemeralize(&pMem[i]);
|
| + assert( (pMem[i].flags & MEM_Ephem)==0
|
| + || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
|
| + sqlite3VdbeMemNulTerminate(&pMem[i]);
|
| + REGISTER_TRACE(pOp->p1+i, &pMem[i]);
|
| + }
|
| + if( db->mallocFailed ) goto no_mem;
|
| +
|
| + /* Return SQLITE_ROW
|
| + */
|
| + p->pc = pc + 1;
|
| + rc = SQLITE_ROW;
|
| + goto vdbe_return;
|
| +}
|
| +
|
| +/* Opcode: Concat P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]+r[P1]
|
| +**
|
| +** Add the text in register P1 onto the end of the text in
|
| +** register P2 and store the result in register P3.
|
| +** If either the P1 or P2 text are NULL then store NULL in P3.
|
| +**
|
| +** P3 = P2 || P1
|
| +**
|
| +** It is illegal for P1 and P3 to be the same register. Sometimes,
|
| +** if P3 is the same register as P2, the implementation is able
|
| +** to avoid a memcpy().
|
| +*/
|
| +case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
|
| + i64 nByte;
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + pIn2 = &aMem[pOp->p2];
|
| + pOut = &aMem[pOp->p3];
|
| + assert( pIn1!=pOut );
|
| + if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + break;
|
| + }
|
| + if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
|
| + Stringify(pIn1, encoding);
|
| + Stringify(pIn2, encoding);
|
| + nByte = pIn1->n + pIn2->n;
|
| + if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| + if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
|
| + goto no_mem;
|
| + }
|
| + MemSetTypeFlag(pOut, MEM_Str);
|
| + if( pOut!=pIn2 ){
|
| + memcpy(pOut->z, pIn2->z, pIn2->n);
|
| + }
|
| + memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
|
| + pOut->z[nByte]=0;
|
| + pOut->z[nByte+1] = 0;
|
| + pOut->flags |= MEM_Term;
|
| + pOut->n = (int)nByte;
|
| + pOut->enc = encoding;
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Add P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P1]+r[P2]
|
| +**
|
| +** Add the value in register P1 to the value in register P2
|
| +** and store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: Multiply P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P1]*r[P2]
|
| +**
|
| +**
|
| +** Multiply the value in register P1 by the value in register P2
|
| +** and store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: Subtract P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]-r[P1]
|
| +**
|
| +** Subtract the value in register P1 from the value in register P2
|
| +** and store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: Divide P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]/r[P1]
|
| +**
|
| +** Divide the value in register P1 by the value in register P2
|
| +** and store the result in register P3 (P3=P2/P1). If the value in
|
| +** register P1 is zero, then the result is NULL. If either input is
|
| +** NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: Remainder P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]%r[P1]
|
| +**
|
| +** Compute the remainder after integer register P2 is divided by
|
| +** register P1 and store the result in register P3.
|
| +** If the value in register P1 is zero the result is NULL.
|
| +** If either operand is NULL, the result is NULL.
|
| +*/
|
| +case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
|
| +case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
|
| +case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
|
| +case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
|
| +case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
|
| + char bIntint; /* Started out as two integer operands */
|
| + u16 flags; /* Combined MEM_* flags from both inputs */
|
| + u16 type1; /* Numeric type of left operand */
|
| + u16 type2; /* Numeric type of right operand */
|
| + i64 iA; /* Integer value of left operand */
|
| + i64 iB; /* Integer value of right operand */
|
| + double rA; /* Real value of left operand */
|
| + double rB; /* Real value of right operand */
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + type1 = numericType(pIn1);
|
| + pIn2 = &aMem[pOp->p2];
|
| + type2 = numericType(pIn2);
|
| + pOut = &aMem[pOp->p3];
|
| + flags = pIn1->flags | pIn2->flags;
|
| + if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
|
| + if( (type1 & type2 & MEM_Int)!=0 ){
|
| + iA = pIn1->u.i;
|
| + iB = pIn2->u.i;
|
| + bIntint = 1;
|
| + switch( pOp->opcode ){
|
| + case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
|
| + case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
|
| + case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
|
| + case OP_Divide: {
|
| + if( iA==0 ) goto arithmetic_result_is_null;
|
| + if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
|
| + iB /= iA;
|
| + break;
|
| + }
|
| + default: {
|
| + if( iA==0 ) goto arithmetic_result_is_null;
|
| + if( iA==-1 ) iA = 1;
|
| + iB %= iA;
|
| + break;
|
| + }
|
| + }
|
| + pOut->u.i = iB;
|
| + MemSetTypeFlag(pOut, MEM_Int);
|
| + }else{
|
| + bIntint = 0;
|
| +fp_math:
|
| + rA = sqlite3VdbeRealValue(pIn1);
|
| + rB = sqlite3VdbeRealValue(pIn2);
|
| + switch( pOp->opcode ){
|
| + case OP_Add: rB += rA; break;
|
| + case OP_Subtract: rB -= rA; break;
|
| + case OP_Multiply: rB *= rA; break;
|
| + case OP_Divide: {
|
| + /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
| + if( rA==(double)0 ) goto arithmetic_result_is_null;
|
| + rB /= rA;
|
| + break;
|
| + }
|
| + default: {
|
| + iA = (i64)rA;
|
| + iB = (i64)rB;
|
| + if( iA==0 ) goto arithmetic_result_is_null;
|
| + if( iA==-1 ) iA = 1;
|
| + rB = (double)(iB % iA);
|
| + break;
|
| + }
|
| + }
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + pOut->u.i = rB;
|
| + MemSetTypeFlag(pOut, MEM_Int);
|
| +#else
|
| + if( sqlite3IsNaN(rB) ){
|
| + goto arithmetic_result_is_null;
|
| + }
|
| + pOut->u.r = rB;
|
| + MemSetTypeFlag(pOut, MEM_Real);
|
| + if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
|
| + sqlite3VdbeIntegerAffinity(pOut);
|
| + }
|
| +#endif
|
| + }
|
| + break;
|
| +
|
| +arithmetic_result_is_null:
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: CollSeq P1 * * P4
|
| +**
|
| +** P4 is a pointer to a CollSeq struct. If the next call to a user function
|
| +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
|
| +** be returned. This is used by the built-in min(), max() and nullif()
|
| +** functions.
|
| +**
|
| +** If P1 is not zero, then it is a register that a subsequent min() or
|
| +** max() aggregate will set to 1 if the current row is not the minimum or
|
| +** maximum. The P1 register is initialized to 0 by this instruction.
|
| +**
|
| +** The interface used by the implementation of the aforementioned functions
|
| +** to retrieve the collation sequence set by this opcode is not available
|
| +** publicly, only to user functions defined in func.c.
|
| +*/
|
| +case OP_CollSeq: {
|
| + assert( pOp->p4type==P4_COLLSEQ );
|
| + if( pOp->p1 ){
|
| + sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Function P1 P2 P3 P4 P5
|
| +** Synopsis: r[P3]=func(r[P2@P5])
|
| +**
|
| +** Invoke a user function (P4 is a pointer to a Function structure that
|
| +** defines the function) with P5 arguments taken from register P2 and
|
| +** successors. The result of the function is stored in register P3.
|
| +** Register P3 must not be one of the function inputs.
|
| +**
|
| +** P1 is a 32-bit bitmask indicating whether or not each argument to the
|
| +** function was determined to be constant at compile time. If the first
|
| +** argument was constant then bit 0 of P1 is set. This is used to determine
|
| +** whether meta data associated with a user function argument using the
|
| +** sqlite3_set_auxdata() API may be safely retained until the next
|
| +** invocation of this opcode.
|
| +**
|
| +** See also: AggStep and AggFinal
|
| +*/
|
| +case OP_Function: {
|
| + int i;
|
| + Mem *pArg;
|
| + sqlite3_context ctx;
|
| + sqlite3_value **apVal;
|
| + int n;
|
| +
|
| + n = pOp->p5;
|
| + apVal = p->apArg;
|
| + assert( apVal || n==0 );
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + ctx.pOut = &aMem[pOp->p3];
|
| + memAboutToChange(p, ctx.pOut);
|
| +
|
| + assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
|
| + assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
|
| + pArg = &aMem[pOp->p2];
|
| + for(i=0; i<n; i++, pArg++){
|
| + assert( memIsValid(pArg) );
|
| + apVal[i] = pArg;
|
| + Deephemeralize(pArg);
|
| + REGISTER_TRACE(pOp->p2+i, pArg);
|
| + }
|
| +
|
| + assert( pOp->p4type==P4_FUNCDEF );
|
| + ctx.pFunc = pOp->p4.pFunc;
|
| + ctx.iOp = pc;
|
| + ctx.pVdbe = p;
|
| + MemSetTypeFlag(ctx.pOut, MEM_Null);
|
| + ctx.fErrorOrAux = 0;
|
| + db->lastRowid = lastRowid;
|
| + (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
|
| + lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
|
| +
|
| + /* If the function returned an error, throw an exception */
|
| + if( ctx.fErrorOrAux ){
|
| + if( ctx.isError ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
|
| + rc = ctx.isError;
|
| + }
|
| + sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
|
| + }
|
| +
|
| + /* Copy the result of the function into register P3 */
|
| + sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
|
| + if( sqlite3VdbeMemTooBig(ctx.pOut) ){
|
| + goto too_big;
|
| + }
|
| +
|
| + REGISTER_TRACE(pOp->p3, ctx.pOut);
|
| + UPDATE_MAX_BLOBSIZE(ctx.pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: BitAnd P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P1]&r[P2]
|
| +**
|
| +** Take the bit-wise AND of the values in register P1 and P2 and
|
| +** store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: BitOr P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P1]|r[P2]
|
| +**
|
| +** Take the bit-wise OR of the values in register P1 and P2 and
|
| +** store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: ShiftLeft P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]<<r[P1]
|
| +**
|
| +** Shift the integer value in register P2 to the left by the
|
| +** number of bits specified by the integer in register P1.
|
| +** Store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +/* Opcode: ShiftRight P1 P2 P3 * *
|
| +** Synopsis: r[P3]=r[P2]>>r[P1]
|
| +**
|
| +** Shift the integer value in register P2 to the right by the
|
| +** number of bits specified by the integer in register P1.
|
| +** Store the result in register P3.
|
| +** If either input is NULL, the result is NULL.
|
| +*/
|
| +case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
|
| +case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
|
| +case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
|
| +case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
|
| + i64 iA;
|
| + u64 uA;
|
| + i64 iB;
|
| + u8 op;
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + pIn2 = &aMem[pOp->p2];
|
| + pOut = &aMem[pOp->p3];
|
| + if( (pIn1->flags | pIn2->flags) & MEM_Null ){
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + break;
|
| + }
|
| + iA = sqlite3VdbeIntValue(pIn2);
|
| + iB = sqlite3VdbeIntValue(pIn1);
|
| + op = pOp->opcode;
|
| + if( op==OP_BitAnd ){
|
| + iA &= iB;
|
| + }else if( op==OP_BitOr ){
|
| + iA |= iB;
|
| + }else if( iB!=0 ){
|
| + assert( op==OP_ShiftRight || op==OP_ShiftLeft );
|
| +
|
| + /* If shifting by a negative amount, shift in the other direction */
|
| + if( iB<0 ){
|
| + assert( OP_ShiftRight==OP_ShiftLeft+1 );
|
| + op = 2*OP_ShiftLeft + 1 - op;
|
| + iB = iB>(-64) ? -iB : 64;
|
| + }
|
| +
|
| + if( iB>=64 ){
|
| + iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
|
| + }else{
|
| + memcpy(&uA, &iA, sizeof(uA));
|
| + if( op==OP_ShiftLeft ){
|
| + uA <<= iB;
|
| + }else{
|
| + uA >>= iB;
|
| + /* Sign-extend on a right shift of a negative number */
|
| + if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
|
| + }
|
| + memcpy(&iA, &uA, sizeof(iA));
|
| + }
|
| + }
|
| + pOut->u.i = iA;
|
| + MemSetTypeFlag(pOut, MEM_Int);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: AddImm P1 P2 * * *
|
| +** Synopsis: r[P1]=r[P1]+P2
|
| +**
|
| +** Add the constant P2 to the value in register P1.
|
| +** The result is always an integer.
|
| +**
|
| +** To force any register to be an integer, just add 0.
|
| +*/
|
| +case OP_AddImm: { /* in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + memAboutToChange(p, pIn1);
|
| + sqlite3VdbeMemIntegerify(pIn1);
|
| + pIn1->u.i += pOp->p2;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: MustBeInt P1 P2 * * *
|
| +**
|
| +** Force the value in register P1 to be an integer. If the value
|
| +** in P1 is not an integer and cannot be converted into an integer
|
| +** without data loss, then jump immediately to P2, or if P2==0
|
| +** raise an SQLITE_MISMATCH exception.
|
| +*/
|
| +case OP_MustBeInt: { /* jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + if( (pIn1->flags & MEM_Int)==0 ){
|
| + applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
|
| + VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
|
| + if( (pIn1->flags & MEM_Int)==0 ){
|
| + if( pOp->p2==0 ){
|
| + rc = SQLITE_MISMATCH;
|
| + goto abort_due_to_error;
|
| + }else{
|
| + pc = pOp->p2 - 1;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + MemSetTypeFlag(pIn1, MEM_Int);
|
| + break;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/* Opcode: RealAffinity P1 * * * *
|
| +**
|
| +** If register P1 holds an integer convert it to a real value.
|
| +**
|
| +** This opcode is used when extracting information from a column that
|
| +** has REAL affinity. Such column values may still be stored as
|
| +** integers, for space efficiency, but after extraction we want them
|
| +** to have only a real value.
|
| +*/
|
| +case OP_RealAffinity: { /* in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + if( pIn1->flags & MEM_Int ){
|
| + sqlite3VdbeMemRealify(pIn1);
|
| + }
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_CAST
|
| +/* Opcode: Cast P1 P2 * * *
|
| +** Synopsis: affinity(r[P1])
|
| +**
|
| +** Force the value in register P1 to be the type defined by P2.
|
| +**
|
| +** <ul>
|
| +** <li value="97"> TEXT
|
| +** <li value="98"> BLOB
|
| +** <li value="99"> NUMERIC
|
| +** <li value="100"> INTEGER
|
| +** <li value="101"> REAL
|
| +** </ul>
|
| +**
|
| +** A NULL value is not changed by this routine. It remains NULL.
|
| +*/
|
| +case OP_Cast: { /* in1 */
|
| + assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
|
| + testcase( pOp->p2==SQLITE_AFF_TEXT );
|
| + testcase( pOp->p2==SQLITE_AFF_NONE );
|
| + testcase( pOp->p2==SQLITE_AFF_NUMERIC );
|
| + testcase( pOp->p2==SQLITE_AFF_INTEGER );
|
| + testcase( pOp->p2==SQLITE_AFF_REAL );
|
| + pIn1 = &aMem[pOp->p1];
|
| + memAboutToChange(p, pIn1);
|
| + rc = ExpandBlob(pIn1);
|
| + sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
|
| + UPDATE_MAX_BLOBSIZE(pIn1);
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_CAST */
|
| +
|
| +/* Opcode: Lt P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]<r[P3] goto P2
|
| +**
|
| +** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
|
| +** jump to address P2.
|
| +**
|
| +** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
|
| +** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
|
| +** bit is clear then fall through if either operand is NULL.
|
| +**
|
| +** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
|
| +** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
|
| +** to coerce both inputs according to this affinity before the
|
| +** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
|
| +** affinity is used. Note that the affinity conversions are stored
|
| +** back into the input registers P1 and P3. So this opcode can cause
|
| +** persistent changes to registers P1 and P3.
|
| +**
|
| +** Once any conversions have taken place, and neither value is NULL,
|
| +** the values are compared. If both values are blobs then memcmp() is
|
| +** used to determine the results of the comparison. If both values
|
| +** are text, then the appropriate collating function specified in
|
| +** P4 is used to do the comparison. If P4 is not specified then
|
| +** memcmp() is used to compare text string. If both values are
|
| +** numeric, then a numeric comparison is used. If the two values
|
| +** are of different types, then numbers are considered less than
|
| +** strings and strings are considered less than blobs.
|
| +**
|
| +** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
|
| +** store a boolean result (either 0, or 1, or NULL) in register P2.
|
| +**
|
| +** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
|
| +** equal to one another, provided that they do not have their MEM_Cleared
|
| +** bit set.
|
| +*/
|
| +/* Opcode: Ne P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]!=r[P3] goto P2
|
| +**
|
| +** This works just like the Lt opcode except that the jump is taken if
|
| +** the operands in registers P1 and P3 are not equal. See the Lt opcode for
|
| +** additional information.
|
| +**
|
| +** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
|
| +** true or false and is never NULL. If both operands are NULL then the result
|
| +** of comparison is false. If either operand is NULL then the result is true.
|
| +** If neither operand is NULL the result is the same as it would be if
|
| +** the SQLITE_NULLEQ flag were omitted from P5.
|
| +*/
|
| +/* Opcode: Eq P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]==r[P3] goto P2
|
| +**
|
| +** This works just like the Lt opcode except that the jump is taken if
|
| +** the operands in registers P1 and P3 are equal.
|
| +** See the Lt opcode for additional information.
|
| +**
|
| +** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
|
| +** true or false and is never NULL. If both operands are NULL then the result
|
| +** of comparison is true. If either operand is NULL then the result is false.
|
| +** If neither operand is NULL the result is the same as it would be if
|
| +** the SQLITE_NULLEQ flag were omitted from P5.
|
| +*/
|
| +/* Opcode: Le P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]<=r[P3] goto P2
|
| +**
|
| +** This works just like the Lt opcode except that the jump is taken if
|
| +** the content of register P3 is less than or equal to the content of
|
| +** register P1. See the Lt opcode for additional information.
|
| +*/
|
| +/* Opcode: Gt P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]>r[P3] goto P2
|
| +**
|
| +** This works just like the Lt opcode except that the jump is taken if
|
| +** the content of register P3 is greater than the content of
|
| +** register P1. See the Lt opcode for additional information.
|
| +*/
|
| +/* Opcode: Ge P1 P2 P3 P4 P5
|
| +** Synopsis: if r[P1]>=r[P3] goto P2
|
| +**
|
| +** This works just like the Lt opcode except that the jump is taken if
|
| +** the content of register P3 is greater than or equal to the content of
|
| +** register P1. See the Lt opcode for additional information.
|
| +*/
|
| +case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
|
| +case OP_Ne: /* same as TK_NE, jump, in1, in3 */
|
| +case OP_Lt: /* same as TK_LT, jump, in1, in3 */
|
| +case OP_Le: /* same as TK_LE, jump, in1, in3 */
|
| +case OP_Gt: /* same as TK_GT, jump, in1, in3 */
|
| +case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
|
| + int res; /* Result of the comparison of pIn1 against pIn3 */
|
| + char affinity; /* Affinity to use for comparison */
|
| + u16 flags1; /* Copy of initial value of pIn1->flags */
|
| + u16 flags3; /* Copy of initial value of pIn3->flags */
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + pIn3 = &aMem[pOp->p3];
|
| + flags1 = pIn1->flags;
|
| + flags3 = pIn3->flags;
|
| + if( (flags1 | flags3)&MEM_Null ){
|
| + /* One or both operands are NULL */
|
| + if( pOp->p5 & SQLITE_NULLEQ ){
|
| + /* If SQLITE_NULLEQ is set (which will only happen if the operator is
|
| + ** OP_Eq or OP_Ne) then take the jump or not depending on whether
|
| + ** or not both operands are null.
|
| + */
|
| + assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
|
| + assert( (flags1 & MEM_Cleared)==0 );
|
| + assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
|
| + if( (flags1&MEM_Null)!=0
|
| + && (flags3&MEM_Null)!=0
|
| + && (flags3&MEM_Cleared)==0
|
| + ){
|
| + res = 0; /* Results are equal */
|
| + }else{
|
| + res = 1; /* Results are not equal */
|
| + }
|
| + }else{
|
| + /* SQLITE_NULLEQ is clear and at least one operand is NULL,
|
| + ** then the result is always NULL.
|
| + ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
|
| + */
|
| + if( pOp->p5 & SQLITE_STOREP2 ){
|
| + pOut = &aMem[pOp->p2];
|
| + MemSetTypeFlag(pOut, MEM_Null);
|
| + REGISTER_TRACE(pOp->p2, pOut);
|
| + }else{
|
| + VdbeBranchTaken(2,3);
|
| + if( pOp->p5 & SQLITE_JUMPIFNULL ){
|
| + pc = pOp->p2-1;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + }else{
|
| + /* Neither operand is NULL. Do a comparison. */
|
| + affinity = pOp->p5 & SQLITE_AFF_MASK;
|
| + if( affinity>=SQLITE_AFF_NUMERIC ){
|
| + if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
|
| + applyNumericAffinity(pIn1,0);
|
| + }
|
| + if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
|
| + applyNumericAffinity(pIn3,0);
|
| + }
|
| + }else if( affinity==SQLITE_AFF_TEXT ){
|
| + if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
|
| + testcase( pIn1->flags & MEM_Int );
|
| + testcase( pIn1->flags & MEM_Real );
|
| + sqlite3VdbeMemStringify(pIn1, encoding, 1);
|
| + }
|
| + if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
|
| + testcase( pIn3->flags & MEM_Int );
|
| + testcase( pIn3->flags & MEM_Real );
|
| + sqlite3VdbeMemStringify(pIn3, encoding, 1);
|
| + }
|
| + }
|
| + assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
|
| + if( pIn1->flags & MEM_Zero ){
|
| + sqlite3VdbeMemExpandBlob(pIn1);
|
| + flags1 &= ~MEM_Zero;
|
| + }
|
| + if( pIn3->flags & MEM_Zero ){
|
| + sqlite3VdbeMemExpandBlob(pIn3);
|
| + flags3 &= ~MEM_Zero;
|
| + }
|
| + if( db->mallocFailed ) goto no_mem;
|
| + res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
|
| + }
|
| + switch( pOp->opcode ){
|
| + case OP_Eq: res = res==0; break;
|
| + case OP_Ne: res = res!=0; break;
|
| + case OP_Lt: res = res<0; break;
|
| + case OP_Le: res = res<=0; break;
|
| + case OP_Gt: res = res>0; break;
|
| + default: res = res>=0; break;
|
| + }
|
| +
|
| + if( pOp->p5 & SQLITE_STOREP2 ){
|
| + pOut = &aMem[pOp->p2];
|
| + memAboutToChange(p, pOut);
|
| + MemSetTypeFlag(pOut, MEM_Int);
|
| + pOut->u.i = res;
|
| + REGISTER_TRACE(pOp->p2, pOut);
|
| + }else{
|
| + VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
|
| + if( res ){
|
| + pc = pOp->p2-1;
|
| + }
|
| + }
|
| + /* Undo any changes made by applyAffinity() to the input registers. */
|
| + pIn1->flags = flags1;
|
| + pIn3->flags = flags3;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Permutation * * * P4 *
|
| +**
|
| +** Set the permutation used by the OP_Compare operator to be the array
|
| +** of integers in P4.
|
| +**
|
| +** The permutation is only valid until the next OP_Compare that has
|
| +** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
|
| +** occur immediately prior to the OP_Compare.
|
| +*/
|
| +case OP_Permutation: {
|
| + assert( pOp->p4type==P4_INTARRAY );
|
| + assert( pOp->p4.ai );
|
| + aPermute = pOp->p4.ai;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Compare P1 P2 P3 P4 P5
|
| +** Synopsis: r[P1@P3] <-> r[P2@P3]
|
| +**
|
| +** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
|
| +** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
|
| +** the comparison for use by the next OP_Jump instruct.
|
| +**
|
| +** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
|
| +** determined by the most recent OP_Permutation operator. If the
|
| +** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
|
| +** order.
|
| +**
|
| +** P4 is a KeyInfo structure that defines collating sequences and sort
|
| +** orders for the comparison. The permutation applies to registers
|
| +** only. The KeyInfo elements are used sequentially.
|
| +**
|
| +** The comparison is a sort comparison, so NULLs compare equal,
|
| +** NULLs are less than numbers, numbers are less than strings,
|
| +** and strings are less than blobs.
|
| +*/
|
| +case OP_Compare: {
|
| + int n;
|
| + int i;
|
| + int p1;
|
| + int p2;
|
| + const KeyInfo *pKeyInfo;
|
| + int idx;
|
| + CollSeq *pColl; /* Collating sequence to use on this term */
|
| + int bRev; /* True for DESCENDING sort order */
|
| +
|
| + if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
|
| + n = pOp->p3;
|
| + pKeyInfo = pOp->p4.pKeyInfo;
|
| + assert( n>0 );
|
| + assert( pKeyInfo!=0 );
|
| + p1 = pOp->p1;
|
| + p2 = pOp->p2;
|
| +#if SQLITE_DEBUG
|
| + if( aPermute ){
|
| + int k, mx = 0;
|
| + for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
|
| + assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
|
| + assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
|
| + }else{
|
| + assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
|
| + assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
|
| + }
|
| +#endif /* SQLITE_DEBUG */
|
| + for(i=0; i<n; i++){
|
| + idx = aPermute ? aPermute[i] : i;
|
| + assert( memIsValid(&aMem[p1+idx]) );
|
| + assert( memIsValid(&aMem[p2+idx]) );
|
| + REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
|
| + REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
|
| + assert( i<pKeyInfo->nField );
|
| + pColl = pKeyInfo->aColl[i];
|
| + bRev = pKeyInfo->aSortOrder[i];
|
| + iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
|
| + if( iCompare ){
|
| + if( bRev ) iCompare = -iCompare;
|
| + break;
|
| + }
|
| + }
|
| + aPermute = 0;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Jump P1 P2 P3 * *
|
| +**
|
| +** Jump to the instruction at address P1, P2, or P3 depending on whether
|
| +** in the most recent OP_Compare instruction the P1 vector was less than
|
| +** equal to, or greater than the P2 vector, respectively.
|
| +*/
|
| +case OP_Jump: { /* jump */
|
| + if( iCompare<0 ){
|
| + pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
|
| + }else if( iCompare==0 ){
|
| + pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
|
| + }else{
|
| + pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: And P1 P2 P3 * *
|
| +** Synopsis: r[P3]=(r[P1] && r[P2])
|
| +**
|
| +** Take the logical AND of the values in registers P1 and P2 and
|
| +** write the result into register P3.
|
| +**
|
| +** If either P1 or P2 is 0 (false) then the result is 0 even if
|
| +** the other input is NULL. A NULL and true or two NULLs give
|
| +** a NULL output.
|
| +*/
|
| +/* Opcode: Or P1 P2 P3 * *
|
| +** Synopsis: r[P3]=(r[P1] || r[P2])
|
| +**
|
| +** Take the logical OR of the values in register P1 and P2 and
|
| +** store the answer in register P3.
|
| +**
|
| +** If either P1 or P2 is nonzero (true) then the result is 1 (true)
|
| +** even if the other input is NULL. A NULL and false or two NULLs
|
| +** give a NULL output.
|
| +*/
|
| +case OP_And: /* same as TK_AND, in1, in2, out3 */
|
| +case OP_Or: { /* same as TK_OR, in1, in2, out3 */
|
| + int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
| + int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + if( pIn1->flags & MEM_Null ){
|
| + v1 = 2;
|
| + }else{
|
| + v1 = sqlite3VdbeIntValue(pIn1)!=0;
|
| + }
|
| + pIn2 = &aMem[pOp->p2];
|
| + if( pIn2->flags & MEM_Null ){
|
| + v2 = 2;
|
| + }else{
|
| + v2 = sqlite3VdbeIntValue(pIn2)!=0;
|
| + }
|
| + if( pOp->opcode==OP_And ){
|
| + static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
|
| + v1 = and_logic[v1*3+v2];
|
| + }else{
|
| + static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
|
| + v1 = or_logic[v1*3+v2];
|
| + }
|
| + pOut = &aMem[pOp->p3];
|
| + if( v1==2 ){
|
| + MemSetTypeFlag(pOut, MEM_Null);
|
| + }else{
|
| + pOut->u.i = v1;
|
| + MemSetTypeFlag(pOut, MEM_Int);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Not P1 P2 * * *
|
| +** Synopsis: r[P2]= !r[P1]
|
| +**
|
| +** Interpret the value in register P1 as a boolean value. Store the
|
| +** boolean complement in register P2. If the value in register P1 is
|
| +** NULL, then a NULL is stored in P2.
|
| +*/
|
| +case OP_Not: { /* same as TK_NOT, in1, out2 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + pOut = &aMem[pOp->p2];
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + if( (pIn1->flags & MEM_Null)==0 ){
|
| + pOut->flags = MEM_Int;
|
| + pOut->u.i = !sqlite3VdbeIntValue(pIn1);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: BitNot P1 P2 * * *
|
| +** Synopsis: r[P1]= ~r[P1]
|
| +**
|
| +** Interpret the content of register P1 as an integer. Store the
|
| +** ones-complement of the P1 value into register P2. If P1 holds
|
| +** a NULL then store a NULL in P2.
|
| +*/
|
| +case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + pOut = &aMem[pOp->p2];
|
| + sqlite3VdbeMemSetNull(pOut);
|
| + if( (pIn1->flags & MEM_Null)==0 ){
|
| + pOut->flags = MEM_Int;
|
| + pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Once P1 P2 * * *
|
| +**
|
| +** Check the "once" flag number P1. If it is set, jump to instruction P2.
|
| +** Otherwise, set the flag and fall through to the next instruction.
|
| +** In other words, this opcode causes all following opcodes up through P2
|
| +** (but not including P2) to run just once and to be skipped on subsequent
|
| +** times through the loop.
|
| +**
|
| +** All "once" flags are initially cleared whenever a prepared statement
|
| +** first begins to run.
|
| +*/
|
| +case OP_Once: { /* jump */
|
| + assert( pOp->p1<p->nOnceFlag );
|
| + VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
|
| + if( p->aOnceFlag[pOp->p1] ){
|
| + pc = pOp->p2-1;
|
| + }else{
|
| + p->aOnceFlag[pOp->p1] = 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: If P1 P2 P3 * *
|
| +**
|
| +** Jump to P2 if the value in register P1 is true. The value
|
| +** is considered true if it is numeric and non-zero. If the value
|
| +** in P1 is NULL then take the jump if and only if P3 is non-zero.
|
| +*/
|
| +/* Opcode: IfNot P1 P2 P3 * *
|
| +**
|
| +** Jump to P2 if the value in register P1 is False. The value
|
| +** is considered false if it has a numeric value of zero. If the value
|
| +** in P1 is NULL then take the jump if and only if P3 is non-zero.
|
| +*/
|
| +case OP_If: /* jump, in1 */
|
| +case OP_IfNot: { /* jump, in1 */
|
| + int c;
|
| + pIn1 = &aMem[pOp->p1];
|
| + if( pIn1->flags & MEM_Null ){
|
| + c = pOp->p3;
|
| + }else{
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + c = sqlite3VdbeIntValue(pIn1)!=0;
|
| +#else
|
| + c = sqlite3VdbeRealValue(pIn1)!=0.0;
|
| +#endif
|
| + if( pOp->opcode==OP_IfNot ) c = !c;
|
| + }
|
| + VdbeBranchTaken(c!=0, 2);
|
| + if( c ){
|
| + pc = pOp->p2-1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IsNull P1 P2 * * *
|
| +** Synopsis: if r[P1]==NULL goto P2
|
| +**
|
| +** Jump to P2 if the value in register P1 is NULL.
|
| +*/
|
| +case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
|
| + if( (pIn1->flags & MEM_Null)!=0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: NotNull P1 P2 * * *
|
| +** Synopsis: if r[P1]!=NULL goto P2
|
| +**
|
| +** Jump to P2 if the value in register P1 is not NULL.
|
| +*/
|
| +case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
|
| + if( (pIn1->flags & MEM_Null)==0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Column P1 P2 P3 P4 P5
|
| +** Synopsis: r[P3]=PX
|
| +**
|
| +** Interpret the data that cursor P1 points to as a structure built using
|
| +** the MakeRecord instruction. (See the MakeRecord opcode for additional
|
| +** information about the format of the data.) Extract the P2-th column
|
| +** from this record. If there are less that (P2+1)
|
| +** values in the record, extract a NULL.
|
| +**
|
| +** The value extracted is stored in register P3.
|
| +**
|
| +** If the column contains fewer than P2 fields, then extract a NULL. Or,
|
| +** if the P4 argument is a P4_MEM use the value of the P4 argument as
|
| +** the result.
|
| +**
|
| +** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
|
| +** then the cache of the cursor is reset prior to extracting the column.
|
| +** The first OP_Column against a pseudo-table after the value of the content
|
| +** register has changed should have this bit set.
|
| +**
|
| +** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
|
| +** the result is guaranteed to only be used as the argument of a length()
|
| +** or typeof() function, respectively. The loading of large blobs can be
|
| +** skipped for length() and all content loading can be skipped for typeof().
|
| +*/
|
| +case OP_Column: {
|
| + i64 payloadSize64; /* Number of bytes in the record */
|
| + int p2; /* column number to retrieve */
|
| + VdbeCursor *pC; /* The VDBE cursor */
|
| + BtCursor *pCrsr; /* The BTree cursor */
|
| + u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
|
| + int len; /* The length of the serialized data for the column */
|
| + int i; /* Loop counter */
|
| + Mem *pDest; /* Where to write the extracted value */
|
| + Mem sMem; /* For storing the record being decoded */
|
| + const u8 *zData; /* Part of the record being decoded */
|
| + const u8 *zHdr; /* Next unparsed byte of the header */
|
| + const u8 *zEndHdr; /* Pointer to first byte after the header */
|
| + u32 offset; /* Offset into the data */
|
| + u32 szField; /* Number of bytes in the content of a field */
|
| + u32 avail; /* Number of bytes of available data */
|
| + u32 t; /* A type code from the record header */
|
| + u16 fx; /* pDest->flags value */
|
| + Mem *pReg; /* PseudoTable input register */
|
| +
|
| + p2 = pOp->p2;
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + pDest = &aMem[pOp->p3];
|
| + memAboutToChange(p, pDest);
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( p2<pC->nField );
|
| + aOffset = pC->aOffset;
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
|
| +#endif
|
| + pCrsr = pC->pCursor;
|
| + assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
|
| + assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
|
| +
|
| + /* If the cursor cache is stale, bring it up-to-date */
|
| + rc = sqlite3VdbeCursorMoveto(pC);
|
| + if( rc ) goto abort_due_to_error;
|
| + if( pC->cacheStatus!=p->cacheCtr ){
|
| + if( pC->nullRow ){
|
| + if( pCrsr==0 ){
|
| + assert( pC->pseudoTableReg>0 );
|
| + pReg = &aMem[pC->pseudoTableReg];
|
| + assert( pReg->flags & MEM_Blob );
|
| + assert( memIsValid(pReg) );
|
| + pC->payloadSize = pC->szRow = avail = pReg->n;
|
| + pC->aRow = (u8*)pReg->z;
|
| + }else{
|
| + sqlite3VdbeMemSetNull(pDest);
|
| + goto op_column_out;
|
| + }
|
| + }else{
|
| + assert( pCrsr );
|
| + if( pC->isTable==0 ){
|
| + assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
| + VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
|
| + assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
|
| + /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
|
| + ** payload size, so it is impossible for payloadSize64 to be
|
| + ** larger than 32 bits. */
|
| + assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
|
| + pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
|
| + pC->payloadSize = (u32)payloadSize64;
|
| + }else{
|
| + assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
| + VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
|
| + assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
|
| + pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
|
| + }
|
| + assert( avail<=65536 ); /* Maximum page size is 64KiB */
|
| + if( pC->payloadSize <= (u32)avail ){
|
| + pC->szRow = pC->payloadSize;
|
| + }else{
|
| + pC->szRow = avail;
|
| + }
|
| + if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| + }
|
| + pC->cacheStatus = p->cacheCtr;
|
| + pC->iHdrOffset = getVarint32(pC->aRow, offset);
|
| + pC->nHdrParsed = 0;
|
| + aOffset[0] = offset;
|
| +
|
| + /* Make sure a corrupt database has not given us an oversize header.
|
| + ** Do this now to avoid an oversize memory allocation.
|
| + **
|
| + ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
|
| + ** types use so much data space that there can only be 4096 and 32 of
|
| + ** them, respectively. So the maximum header length results from a
|
| + ** 3-byte type for each of the maximum of 32768 columns plus three
|
| + ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
|
| + */
|
| + if( offset > 98307 || offset > pC->payloadSize ){
|
| + rc = SQLITE_CORRUPT_BKPT;
|
| + goto op_column_error;
|
| + }
|
| +
|
| + if( avail<offset ){
|
| + /* pC->aRow does not have to hold the entire row, but it does at least
|
| + ** need to cover the header of the record. If pC->aRow does not contain
|
| + ** the complete header, then set it to zero, forcing the header to be
|
| + ** dynamically allocated. */
|
| + pC->aRow = 0;
|
| + pC->szRow = 0;
|
| + }
|
| +
|
| + /* The following goto is an optimization. It can be omitted and
|
| + ** everything will still work. But OP_Column is measurably faster
|
| + ** by skipping the subsequent conditional, which is always true.
|
| + */
|
| + assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
|
| + goto op_column_read_header;
|
| + }
|
| +
|
| + /* Make sure at least the first p2+1 entries of the header have been
|
| + ** parsed and valid information is in aOffset[] and pC->aType[].
|
| + */
|
| + if( pC->nHdrParsed<=p2 ){
|
| + /* If there is more header available for parsing in the record, try
|
| + ** to extract additional fields up through the p2+1-th field
|
| + */
|
| + op_column_read_header:
|
| + if( pC->iHdrOffset<aOffset[0] ){
|
| + /* Make sure zData points to enough of the record to cover the header. */
|
| + if( pC->aRow==0 ){
|
| + memset(&sMem, 0, sizeof(sMem));
|
| + rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
|
| + !pC->isTable, &sMem);
|
| + if( rc!=SQLITE_OK ){
|
| + goto op_column_error;
|
| + }
|
| + zData = (u8*)sMem.z;
|
| + }else{
|
| + zData = pC->aRow;
|
| + }
|
| +
|
| + /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
|
| + i = pC->nHdrParsed;
|
| + offset = aOffset[i];
|
| + zHdr = zData + pC->iHdrOffset;
|
| + zEndHdr = zData + aOffset[0];
|
| + assert( i<=p2 && zHdr<zEndHdr );
|
| + do{
|
| + if( zHdr[0]<0x80 ){
|
| + t = zHdr[0];
|
| + zHdr++;
|
| + }else{
|
| + zHdr += sqlite3GetVarint32(zHdr, &t);
|
| + }
|
| + pC->aType[i] = t;
|
| + szField = sqlite3VdbeSerialTypeLen(t);
|
| + offset += szField;
|
| + if( offset<szField ){ /* True if offset overflows */
|
| + zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
|
| + break;
|
| + }
|
| + i++;
|
| + aOffset[i] = offset;
|
| + }while( i<=p2 && zHdr<zEndHdr );
|
| + pC->nHdrParsed = i;
|
| + pC->iHdrOffset = (u32)(zHdr - zData);
|
| + if( pC->aRow==0 ){
|
| + sqlite3VdbeMemRelease(&sMem);
|
| + sMem.flags = MEM_Null;
|
| + }
|
| +
|
| + /* The record is corrupt if any of the following are true:
|
| + ** (1) the bytes of the header extend past the declared header size
|
| + ** (zHdr>zEndHdr)
|
| + ** (2) the entire header was used but not all data was used
|
| + ** (zHdr==zEndHdr && offset!=pC->payloadSize)
|
| + ** (3) the end of the data extends beyond the end of the record.
|
| + ** (offset > pC->payloadSize)
|
| + */
|
| + if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
|
| + || (offset > pC->payloadSize)
|
| + ){
|
| + rc = SQLITE_CORRUPT_BKPT;
|
| + goto op_column_error;
|
| + }
|
| + }
|
| +
|
| + /* If after trying to extra new entries from the header, nHdrParsed is
|
| + ** still not up to p2, that means that the record has fewer than p2
|
| + ** columns. So the result will be either the default value or a NULL.
|
| + */
|
| + if( pC->nHdrParsed<=p2 ){
|
| + if( pOp->p4type==P4_MEM ){
|
| + sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
|
| + }else{
|
| + sqlite3VdbeMemSetNull(pDest);
|
| + }
|
| + goto op_column_out;
|
| + }
|
| + }
|
| +
|
| + /* Extract the content for the p2+1-th column. Control can only
|
| + ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
|
| + ** all valid.
|
| + */
|
| + assert( p2<pC->nHdrParsed );
|
| + assert( rc==SQLITE_OK );
|
| + assert( sqlite3VdbeCheckMemInvariants(pDest) );
|
| + if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
|
| + t = pC->aType[p2];
|
| + if( pC->szRow>=aOffset[p2+1] ){
|
| + /* This is the common case where the desired content fits on the original
|
| + ** page - where the content is not on an overflow page */
|
| + sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
|
| + }else{
|
| + /* This branch happens only when content is on overflow pages */
|
| + if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
|
| + && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
|
| + || (len = sqlite3VdbeSerialTypeLen(t))==0
|
| + ){
|
| + /* Content is irrelevant for
|
| + ** 1. the typeof() function,
|
| + ** 2. the length(X) function if X is a blob, and
|
| + ** 3. if the content length is zero.
|
| + ** So we might as well use bogus content rather than reading
|
| + ** content from disk. NULL will work for the value for strings
|
| + ** and blobs and whatever is in the payloadSize64 variable
|
| + ** will work for everything else. */
|
| + sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
|
| + }else{
|
| + rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
|
| + pDest);
|
| + if( rc!=SQLITE_OK ){
|
| + goto op_column_error;
|
| + }
|
| + sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
|
| + pDest->flags &= ~MEM_Ephem;
|
| + }
|
| + }
|
| + pDest->enc = encoding;
|
| +
|
| +op_column_out:
|
| + /* If the column value is an ephemeral string, go ahead and persist
|
| + ** that string in case the cursor moves before the column value is
|
| + ** used. The following code does the equivalent of Deephemeralize()
|
| + ** but does it faster. */
|
| + if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
|
| + fx = pDest->flags & (MEM_Str|MEM_Blob);
|
| + assert( fx!=0 );
|
| + zData = (const u8*)pDest->z;
|
| + len = pDest->n;
|
| + if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
|
| + memcpy(pDest->z, zData, len);
|
| + pDest->z[len] = 0;
|
| + pDest->z[len+1] = 0;
|
| + pDest->flags = fx|MEM_Term;
|
| + }
|
| +op_column_error:
|
| + UPDATE_MAX_BLOBSIZE(pDest);
|
| + REGISTER_TRACE(pOp->p3, pDest);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Affinity P1 P2 * P4 *
|
| +** Synopsis: affinity(r[P1@P2])
|
| +**
|
| +** Apply affinities to a range of P2 registers starting with P1.
|
| +**
|
| +** P4 is a string that is P2 characters long. The nth character of the
|
| +** string indicates the column affinity that should be used for the nth
|
| +** memory cell in the range.
|
| +*/
|
| +case OP_Affinity: {
|
| + const char *zAffinity; /* The affinity to be applied */
|
| + char cAff; /* A single character of affinity */
|
| +
|
| + zAffinity = pOp->p4.z;
|
| + assert( zAffinity!=0 );
|
| + assert( zAffinity[pOp->p2]==0 );
|
| + pIn1 = &aMem[pOp->p1];
|
| + while( (cAff = *(zAffinity++))!=0 ){
|
| + assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
|
| + assert( memIsValid(pIn1) );
|
| + applyAffinity(pIn1, cAff, encoding);
|
| + pIn1++;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: MakeRecord P1 P2 P3 P4 *
|
| +** Synopsis: r[P3]=mkrec(r[P1@P2])
|
| +**
|
| +** Convert P2 registers beginning with P1 into the [record format]
|
| +** use as a data record in a database table or as a key
|
| +** in an index. The OP_Column opcode can decode the record later.
|
| +**
|
| +** P4 may be a string that is P2 characters long. The nth character of the
|
| +** string indicates the column affinity that should be used for the nth
|
| +** field of the index key.
|
| +**
|
| +** The mapping from character to affinity is given by the SQLITE_AFF_
|
| +** macros defined in sqliteInt.h.
|
| +**
|
| +** If P4 is NULL then all index fields have the affinity NONE.
|
| +*/
|
| +case OP_MakeRecord: {
|
| + u8 *zNewRecord; /* A buffer to hold the data for the new record */
|
| + Mem *pRec; /* The new record */
|
| + u64 nData; /* Number of bytes of data space */
|
| + int nHdr; /* Number of bytes of header space */
|
| + i64 nByte; /* Data space required for this record */
|
| + int nZero; /* Number of zero bytes at the end of the record */
|
| + int nVarint; /* Number of bytes in a varint */
|
| + u32 serial_type; /* Type field */
|
| + Mem *pData0; /* First field to be combined into the record */
|
| + Mem *pLast; /* Last field of the record */
|
| + int nField; /* Number of fields in the record */
|
| + char *zAffinity; /* The affinity string for the record */
|
| + int file_format; /* File format to use for encoding */
|
| + int i; /* Space used in zNewRecord[] header */
|
| + int j; /* Space used in zNewRecord[] content */
|
| + int len; /* Length of a field */
|
| +
|
| + /* Assuming the record contains N fields, the record format looks
|
| + ** like this:
|
| + **
|
| + ** ------------------------------------------------------------------------
|
| + ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
|
| + ** ------------------------------------------------------------------------
|
| + **
|
| + ** Data(0) is taken from register P1. Data(1) comes from register P1+1
|
| + ** and so forth.
|
| + **
|
| + ** Each type field is a varint representing the serial type of the
|
| + ** corresponding data element (see sqlite3VdbeSerialType()). The
|
| + ** hdr-size field is also a varint which is the offset from the beginning
|
| + ** of the record to data0.
|
| + */
|
| + nData = 0; /* Number of bytes of data space */
|
| + nHdr = 0; /* Number of bytes of header space */
|
| + nZero = 0; /* Number of zero bytes at the end of the record */
|
| + nField = pOp->p1;
|
| + zAffinity = pOp->p4.z;
|
| + assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
|
| + pData0 = &aMem[nField];
|
| + nField = pOp->p2;
|
| + pLast = &pData0[nField-1];
|
| + file_format = p->minWriteFileFormat;
|
| +
|
| + /* Identify the output register */
|
| + assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
|
| + pOut = &aMem[pOp->p3];
|
| + memAboutToChange(p, pOut);
|
| +
|
| + /* Apply the requested affinity to all inputs
|
| + */
|
| + assert( pData0<=pLast );
|
| + if( zAffinity ){
|
| + pRec = pData0;
|
| + do{
|
| + applyAffinity(pRec++, *(zAffinity++), encoding);
|
| + assert( zAffinity[0]==0 || pRec<=pLast );
|
| + }while( zAffinity[0] );
|
| + }
|
| +
|
| + /* Loop through the elements that will make up the record to figure
|
| + ** out how much space is required for the new record.
|
| + */
|
| + pRec = pLast;
|
| + do{
|
| + assert( memIsValid(pRec) );
|
| + pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
|
| + len = sqlite3VdbeSerialTypeLen(serial_type);
|
| + if( pRec->flags & MEM_Zero ){
|
| + if( nData ){
|
| + sqlite3VdbeMemExpandBlob(pRec);
|
| + }else{
|
| + nZero += pRec->u.nZero;
|
| + len -= pRec->u.nZero;
|
| + }
|
| + }
|
| + nData += len;
|
| + testcase( serial_type==127 );
|
| + testcase( serial_type==128 );
|
| + nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
|
| + }while( (--pRec)>=pData0 );
|
| +
|
| + /* Add the initial header varint and total the size */
|
| + testcase( nHdr==126 );
|
| + testcase( nHdr==127 );
|
| + if( nHdr<=126 ){
|
| + /* The common case */
|
| + nHdr += 1;
|
| + }else{
|
| + /* Rare case of a really large header */
|
| + nVarint = sqlite3VarintLen(nHdr);
|
| + nHdr += nVarint;
|
| + if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
|
| + }
|
| + nByte = nHdr+nData;
|
| + if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| +
|
| + /* Make sure the output register has a buffer large enough to store
|
| + ** the new record. The output register (pOp->p3) is not allowed to
|
| + ** be one of the input registers (because the following call to
|
| + ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
|
| + */
|
| + if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
|
| + goto no_mem;
|
| + }
|
| + zNewRecord = (u8 *)pOut->z;
|
| +
|
| + /* Write the record */
|
| + i = putVarint32(zNewRecord, nHdr);
|
| + j = nHdr;
|
| + assert( pData0<=pLast );
|
| + pRec = pData0;
|
| + do{
|
| + serial_type = pRec->uTemp;
|
| + i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
|
| + j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
|
| + }while( (++pRec)<=pLast );
|
| + assert( i==nHdr );
|
| + assert( j==nByte );
|
| +
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + pOut->n = (int)nByte;
|
| + pOut->flags = MEM_Blob;
|
| + if( nZero ){
|
| + pOut->u.nZero = nZero;
|
| + pOut->flags |= MEM_Zero;
|
| + }
|
| + pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
|
| + REGISTER_TRACE(pOp->p3, pOut);
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Count P1 P2 * * *
|
| +** Synopsis: r[P2]=count()
|
| +**
|
| +** Store the number of entries (an integer value) in the table or index
|
| +** opened by cursor P1 in register P2
|
| +*/
|
| +#ifndef SQLITE_OMIT_BTREECOUNT
|
| +case OP_Count: { /* out2-prerelease */
|
| + i64 nEntry;
|
| + BtCursor *pCrsr;
|
| +
|
| + pCrsr = p->apCsr[pOp->p1]->pCursor;
|
| + assert( pCrsr );
|
| + nEntry = 0; /* Not needed. Only used to silence a warning. */
|
| + rc = sqlite3BtreeCount(pCrsr, &nEntry);
|
| + pOut->u.i = nEntry;
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +/* Opcode: Savepoint P1 * * P4 *
|
| +**
|
| +** Open, release or rollback the savepoint named by parameter P4, depending
|
| +** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
|
| +** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
|
| +*/
|
| +case OP_Savepoint: {
|
| + int p1; /* Value of P1 operand */
|
| + char *zName; /* Name of savepoint */
|
| + int nName;
|
| + Savepoint *pNew;
|
| + Savepoint *pSavepoint;
|
| + Savepoint *pTmp;
|
| + int iSavepoint;
|
| + int ii;
|
| +
|
| + p1 = pOp->p1;
|
| + zName = pOp->p4.z;
|
| +
|
| + /* Assert that the p1 parameter is valid. Also that if there is no open
|
| + ** transaction, then there cannot be any savepoints.
|
| + */
|
| + assert( db->pSavepoint==0 || db->autoCommit==0 );
|
| + assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
|
| + assert( db->pSavepoint || db->isTransactionSavepoint==0 );
|
| + assert( checkSavepointCount(db) );
|
| + assert( p->bIsReader );
|
| +
|
| + if( p1==SAVEPOINT_BEGIN ){
|
| + if( db->nVdbeWrite>0 ){
|
| + /* A new savepoint cannot be created if there are active write
|
| + ** statements (i.e. open read/write incremental blob handles).
|
| + */
|
| + sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
|
| + "SQL statements in progress");
|
| + rc = SQLITE_BUSY;
|
| + }else{
|
| + nName = sqlite3Strlen30(zName);
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + /* This call is Ok even if this savepoint is actually a transaction
|
| + ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
|
| + ** If this is a transaction savepoint being opened, it is guaranteed
|
| + ** that the db->aVTrans[] array is empty. */
|
| + assert( db->autoCommit==0 || db->nVTrans==0 );
|
| + rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
|
| + db->nStatement+db->nSavepoint);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| +#endif
|
| +
|
| + /* Create a new savepoint structure. */
|
| + pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
|
| + if( pNew ){
|
| + pNew->zName = (char *)&pNew[1];
|
| + memcpy(pNew->zName, zName, nName+1);
|
| +
|
| + /* If there is no open transaction, then mark this as a special
|
| + ** "transaction savepoint". */
|
| + if( db->autoCommit ){
|
| + db->autoCommit = 0;
|
| + db->isTransactionSavepoint = 1;
|
| + }else{
|
| + db->nSavepoint++;
|
| + }
|
| +
|
| + /* Link the new savepoint into the database handle's list. */
|
| + pNew->pNext = db->pSavepoint;
|
| + db->pSavepoint = pNew;
|
| + pNew->nDeferredCons = db->nDeferredCons;
|
| + pNew->nDeferredImmCons = db->nDeferredImmCons;
|
| + }
|
| + }
|
| + }else{
|
| + iSavepoint = 0;
|
| +
|
| + /* Find the named savepoint. If there is no such savepoint, then an
|
| + ** an error is returned to the user. */
|
| + for(
|
| + pSavepoint = db->pSavepoint;
|
| + pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
|
| + pSavepoint = pSavepoint->pNext
|
| + ){
|
| + iSavepoint++;
|
| + }
|
| + if( !pSavepoint ){
|
| + sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
|
| + rc = SQLITE_ERROR;
|
| + }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
|
| + /* It is not possible to release (commit) a savepoint if there are
|
| + ** active write statements.
|
| + */
|
| + sqlite3SetString(&p->zErrMsg, db,
|
| + "cannot release savepoint - SQL statements in progress"
|
| + );
|
| + rc = SQLITE_BUSY;
|
| + }else{
|
| +
|
| + /* Determine whether or not this is a transaction savepoint. If so,
|
| + ** and this is a RELEASE command, then the current transaction
|
| + ** is committed.
|
| + */
|
| + int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
|
| + if( isTransaction && p1==SAVEPOINT_RELEASE ){
|
| + if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
| + goto vdbe_return;
|
| + }
|
| + db->autoCommit = 1;
|
| + if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
| + p->pc = pc;
|
| + db->autoCommit = 0;
|
| + p->rc = rc = SQLITE_BUSY;
|
| + goto vdbe_return;
|
| + }
|
| + db->isTransactionSavepoint = 0;
|
| + rc = p->rc;
|
| + }else{
|
| + int isSchemaChange;
|
| + iSavepoint = db->nSavepoint - iSavepoint - 1;
|
| + if( p1==SAVEPOINT_ROLLBACK ){
|
| + isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
|
| + for(ii=0; ii<db->nDb; ii++){
|
| + rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
|
| + SQLITE_ABORT_ROLLBACK,
|
| + isSchemaChange==0);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| + }
|
| + }else{
|
| + isSchemaChange = 0;
|
| + }
|
| + for(ii=0; ii<db->nDb; ii++){
|
| + rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| + }
|
| + if( isSchemaChange ){
|
| + sqlite3ExpirePreparedStatements(db);
|
| + sqlite3ResetAllSchemasOfConnection(db);
|
| + db->flags = (db->flags | SQLITE_InternChanges);
|
| + }
|
| + }
|
| +
|
| + /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
|
| + ** savepoints nested inside of the savepoint being operated on. */
|
| + while( db->pSavepoint!=pSavepoint ){
|
| + pTmp = db->pSavepoint;
|
| + db->pSavepoint = pTmp->pNext;
|
| + sqlite3DbFree(db, pTmp);
|
| + db->nSavepoint--;
|
| + }
|
| +
|
| + /* If it is a RELEASE, then destroy the savepoint being operated on
|
| + ** too. If it is a ROLLBACK TO, then set the number of deferred
|
| + ** constraint violations present in the database to the value stored
|
| + ** when the savepoint was created. */
|
| + if( p1==SAVEPOINT_RELEASE ){
|
| + assert( pSavepoint==db->pSavepoint );
|
| + db->pSavepoint = pSavepoint->pNext;
|
| + sqlite3DbFree(db, pSavepoint);
|
| + if( !isTransaction ){
|
| + db->nSavepoint--;
|
| + }
|
| + }else{
|
| + db->nDeferredCons = pSavepoint->nDeferredCons;
|
| + db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
|
| + }
|
| +
|
| + if( !isTransaction ){
|
| + rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| + }
|
| + }
|
| + }
|
| +
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: AutoCommit P1 P2 * * *
|
| +**
|
| +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
|
| +** back any currently active btree transactions. If there are any active
|
| +** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
|
| +** there are active writing VMs or active VMs that use shared cache.
|
| +**
|
| +** This instruction causes the VM to halt.
|
| +*/
|
| +case OP_AutoCommit: {
|
| + int desiredAutoCommit;
|
| + int iRollback;
|
| + int turnOnAC;
|
| +
|
| + desiredAutoCommit = pOp->p1;
|
| + iRollback = pOp->p2;
|
| + turnOnAC = desiredAutoCommit && !db->autoCommit;
|
| + assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
|
| + assert( desiredAutoCommit==1 || iRollback==0 );
|
| + assert( db->nVdbeActive>0 ); /* At least this one VM is active */
|
| + assert( p->bIsReader );
|
| +
|
| +#if 0
|
| + if( turnOnAC && iRollback && db->nVdbeActive>1 ){
|
| + /* If this instruction implements a ROLLBACK and other VMs are
|
| + ** still running, and a transaction is active, return an error indicating
|
| + ** that the other VMs must complete first.
|
| + */
|
| + sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
|
| + "SQL statements in progress");
|
| + rc = SQLITE_BUSY;
|
| + }else
|
| +#endif
|
| + if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
|
| + /* If this instruction implements a COMMIT and other VMs are writing
|
| + ** return an error indicating that the other VMs must complete first.
|
| + */
|
| + sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
|
| + "SQL statements in progress");
|
| + rc = SQLITE_BUSY;
|
| + }else if( desiredAutoCommit!=db->autoCommit ){
|
| + if( iRollback ){
|
| + assert( desiredAutoCommit==1 );
|
| + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| + db->autoCommit = 1;
|
| + }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
|
| + goto vdbe_return;
|
| + }else{
|
| + db->autoCommit = (u8)desiredAutoCommit;
|
| + if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
|
| + p->pc = pc;
|
| + db->autoCommit = (u8)(1-desiredAutoCommit);
|
| + p->rc = rc = SQLITE_BUSY;
|
| + goto vdbe_return;
|
| + }
|
| + }
|
| + assert( db->nStatement==0 );
|
| + sqlite3CloseSavepoints(db);
|
| + if( p->rc==SQLITE_OK ){
|
| + rc = SQLITE_DONE;
|
| + }else{
|
| + rc = SQLITE_ERROR;
|
| + }
|
| + goto vdbe_return;
|
| + }else{
|
| + sqlite3SetString(&p->zErrMsg, db,
|
| + (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
|
| + (iRollback)?"cannot rollback - no transaction is active":
|
| + "cannot commit - no transaction is active"));
|
| +
|
| + rc = SQLITE_ERROR;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Transaction P1 P2 P3 P4 P5
|
| +**
|
| +** Begin a transaction on database P1 if a transaction is not already
|
| +** active.
|
| +** If P2 is non-zero, then a write-transaction is started, or if a
|
| +** read-transaction is already active, it is upgraded to a write-transaction.
|
| +** If P2 is zero, then a read-transaction is started.
|
| +**
|
| +** P1 is the index of the database file on which the transaction is
|
| +** started. Index 0 is the main database file and index 1 is the
|
| +** file used for temporary tables. Indices of 2 or more are used for
|
| +** attached databases.
|
| +**
|
| +** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
|
| +** true (this flag is set if the Vdbe may modify more than one row and may
|
| +** throw an ABORT exception), a statement transaction may also be opened.
|
| +** More specifically, a statement transaction is opened iff the database
|
| +** connection is currently not in autocommit mode, or if there are other
|
| +** active statements. A statement transaction allows the changes made by this
|
| +** VDBE to be rolled back after an error without having to roll back the
|
| +** entire transaction. If no error is encountered, the statement transaction
|
| +** will automatically commit when the VDBE halts.
|
| +**
|
| +** If P5!=0 then this opcode also checks the schema cookie against P3
|
| +** and the schema generation counter against P4.
|
| +** The cookie changes its value whenever the database schema changes.
|
| +** This operation is used to detect when that the cookie has changed
|
| +** and that the current process needs to reread the schema. If the schema
|
| +** cookie in P3 differs from the schema cookie in the database header or
|
| +** if the schema generation counter in P4 differs from the current
|
| +** generation counter, then an SQLITE_SCHEMA error is raised and execution
|
| +** halts. The sqlite3_step() wrapper function might then reprepare the
|
| +** statement and rerun it from the beginning.
|
| +*/
|
| +case OP_Transaction: {
|
| + Btree *pBt;
|
| + int iMeta;
|
| + int iGen;
|
| +
|
| + assert( p->bIsReader );
|
| + assert( p->readOnly==0 || pOp->p2==0 );
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
| + if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
|
| + rc = SQLITE_READONLY;
|
| + goto abort_due_to_error;
|
| + }
|
| + pBt = db->aDb[pOp->p1].pBt;
|
| +
|
| + if( pBt ){
|
| + rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
|
| + if( rc==SQLITE_BUSY ){
|
| + p->pc = pc;
|
| + p->rc = rc = SQLITE_BUSY;
|
| + goto vdbe_return;
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| +
|
| + if( pOp->p2 && p->usesStmtJournal
|
| + && (db->autoCommit==0 || db->nVdbeRead>1)
|
| + ){
|
| + assert( sqlite3BtreeIsInTrans(pBt) );
|
| + if( p->iStatement==0 ){
|
| + assert( db->nStatement>=0 && db->nSavepoint>=0 );
|
| + db->nStatement++;
|
| + p->iStatement = db->nSavepoint + db->nStatement;
|
| + }
|
| +
|
| + rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
|
| + }
|
| +
|
| + /* Store the current value of the database handles deferred constraint
|
| + ** counter. If the statement transaction needs to be rolled back,
|
| + ** the value of this counter needs to be restored too. */
|
| + p->nStmtDefCons = db->nDeferredCons;
|
| + p->nStmtDefImmCons = db->nDeferredImmCons;
|
| + }
|
| +
|
| + /* Gather the schema version number for checking */
|
| + sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
|
| + iGen = db->aDb[pOp->p1].pSchema->iGeneration;
|
| + }else{
|
| + iGen = iMeta = 0;
|
| + }
|
| + assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
|
| + if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
|
| + sqlite3DbFree(db, p->zErrMsg);
|
| + p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
|
| + /* If the schema-cookie from the database file matches the cookie
|
| + ** stored with the in-memory representation of the schema, do
|
| + ** not reload the schema from the database file.
|
| + **
|
| + ** If virtual-tables are in use, this is not just an optimization.
|
| + ** Often, v-tables store their data in other SQLite tables, which
|
| + ** are queried from within xNext() and other v-table methods using
|
| + ** prepared queries. If such a query is out-of-date, we do not want to
|
| + ** discard the database schema, as the user code implementing the
|
| + ** v-table would have to be ready for the sqlite3_vtab structure itself
|
| + ** to be invalidated whenever sqlite3_step() is called from within
|
| + ** a v-table method.
|
| + */
|
| + if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
|
| + sqlite3ResetOneSchema(db, pOp->p1);
|
| + }
|
| + p->expired = 1;
|
| + rc = SQLITE_SCHEMA;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: ReadCookie P1 P2 P3 * *
|
| +**
|
| +** Read cookie number P3 from database P1 and write it into register P2.
|
| +** P3==1 is the schema version. P3==2 is the database format.
|
| +** P3==3 is the recommended pager cache size, and so forth. P1==0 is
|
| +** the main database file and P1==1 is the database file used to store
|
| +** temporary tables.
|
| +**
|
| +** There must be a read-lock on the database (either a transaction
|
| +** must be started or there must be an open cursor) before
|
| +** executing this instruction.
|
| +*/
|
| +case OP_ReadCookie: { /* out2-prerelease */
|
| + int iMeta;
|
| + int iDb;
|
| + int iCookie;
|
| +
|
| + assert( p->bIsReader );
|
| + iDb = pOp->p1;
|
| + iCookie = pOp->p3;
|
| + assert( pOp->p3<SQLITE_N_BTREE_META );
|
| + assert( iDb>=0 && iDb<db->nDb );
|
| + assert( db->aDb[iDb].pBt!=0 );
|
| + assert( DbMaskTest(p->btreeMask, iDb) );
|
| +
|
| + sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
|
| + pOut->u.i = iMeta;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SetCookie P1 P2 P3 * *
|
| +**
|
| +** Write the content of register P3 (interpreted as an integer)
|
| +** into cookie number P2 of database P1. P2==1 is the schema version.
|
| +** P2==2 is the database format. P2==3 is the recommended pager cache
|
| +** size, and so forth. P1==0 is the main database file and P1==1 is the
|
| +** database file used to store temporary tables.
|
| +**
|
| +** A transaction must be started before executing this opcode.
|
| +*/
|
| +case OP_SetCookie: { /* in3 */
|
| + Db *pDb;
|
| + assert( pOp->p2<SQLITE_N_BTREE_META );
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
| + assert( p->readOnly==0 );
|
| + pDb = &db->aDb[pOp->p1];
|
| + assert( pDb->pBt!=0 );
|
| + assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
|
| + pIn3 = &aMem[pOp->p3];
|
| + sqlite3VdbeMemIntegerify(pIn3);
|
| + /* See note about index shifting on OP_ReadCookie */
|
| + rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
|
| + if( pOp->p2==BTREE_SCHEMA_VERSION ){
|
| + /* When the schema cookie changes, record the new cookie internally */
|
| + pDb->pSchema->schema_cookie = (int)pIn3->u.i;
|
| + db->flags |= SQLITE_InternChanges;
|
| + }else if( pOp->p2==BTREE_FILE_FORMAT ){
|
| + /* Record changes in the file format */
|
| + pDb->pSchema->file_format = (u8)pIn3->u.i;
|
| + }
|
| + if( pOp->p1==1 ){
|
| + /* Invalidate all prepared statements whenever the TEMP database
|
| + ** schema is changed. Ticket #1644 */
|
| + sqlite3ExpirePreparedStatements(db);
|
| + p->expired = 0;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: OpenRead P1 P2 P3 P4 P5
|
| +** Synopsis: root=P2 iDb=P3
|
| +**
|
| +** Open a read-only cursor for the database table whose root page is
|
| +** P2 in a database file. The database file is determined by P3.
|
| +** P3==0 means the main database, P3==1 means the database used for
|
| +** temporary tables, and P3>1 means used the corresponding attached
|
| +** database. Give the new cursor an identifier of P1. The P1
|
| +** values need not be contiguous but all P1 values should be small integers.
|
| +** It is an error for P1 to be negative.
|
| +**
|
| +** If P5!=0 then use the content of register P2 as the root page, not
|
| +** the value of P2 itself.
|
| +**
|
| +** There will be a read lock on the database whenever there is an
|
| +** open cursor. If the database was unlocked prior to this instruction
|
| +** then a read lock is acquired as part of this instruction. A read
|
| +** lock allows other processes to read the database but prohibits
|
| +** any other process from modifying the database. The read lock is
|
| +** released when all cursors are closed. If this instruction attempts
|
| +** to get a read lock but fails, the script terminates with an
|
| +** SQLITE_BUSY error code.
|
| +**
|
| +** The P4 value may be either an integer (P4_INT32) or a pointer to
|
| +** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
| +** structure, then said structure defines the content and collating
|
| +** sequence of the index being opened. Otherwise, if P4 is an integer
|
| +** value, it is set to the number of columns in the table.
|
| +**
|
| +** See also: OpenWrite, ReopenIdx
|
| +*/
|
| +/* Opcode: ReopenIdx P1 P2 P3 P4 P5
|
| +** Synopsis: root=P2 iDb=P3
|
| +**
|
| +** The ReopenIdx opcode works exactly like ReadOpen except that it first
|
| +** checks to see if the cursor on P1 is already open with a root page
|
| +** number of P2 and if it is this opcode becomes a no-op. In other words,
|
| +** if the cursor is already open, do not reopen it.
|
| +**
|
| +** The ReopenIdx opcode may only be used with P5==0 and with P4 being
|
| +** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
|
| +** every other ReopenIdx or OpenRead for the same cursor number.
|
| +**
|
| +** See the OpenRead opcode documentation for additional information.
|
| +*/
|
| +/* Opcode: OpenWrite P1 P2 P3 P4 P5
|
| +** Synopsis: root=P2 iDb=P3
|
| +**
|
| +** Open a read/write cursor named P1 on the table or index whose root
|
| +** page is P2. Or if P5!=0 use the content of register P2 to find the
|
| +** root page.
|
| +**
|
| +** The P4 value may be either an integer (P4_INT32) or a pointer to
|
| +** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
|
| +** structure, then said structure defines the content and collating
|
| +** sequence of the index being opened. Otherwise, if P4 is an integer
|
| +** value, it is set to the number of columns in the table, or to the
|
| +** largest index of any column of the table that is actually used.
|
| +**
|
| +** This instruction works just like OpenRead except that it opens the cursor
|
| +** in read/write mode. For a given table, there can be one or more read-only
|
| +** cursors or a single read/write cursor but not both.
|
| +**
|
| +** See also OpenRead.
|
| +*/
|
| +case OP_ReopenIdx: {
|
| + VdbeCursor *pCur;
|
| +
|
| + assert( pOp->p5==0 );
|
| + assert( pOp->p4type==P4_KEYINFO );
|
| + pCur = p->apCsr[pOp->p1];
|
| + if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
|
| + assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
|
| + break;
|
| + }
|
| + /* If the cursor is not currently open or is open on a different
|
| + ** index, then fall through into OP_OpenRead to force a reopen */
|
| +}
|
| +case OP_OpenRead:
|
| +case OP_OpenWrite: {
|
| + int nField;
|
| + KeyInfo *pKeyInfo;
|
| + int p2;
|
| + int iDb;
|
| + int wrFlag;
|
| + Btree *pX;
|
| + VdbeCursor *pCur;
|
| + Db *pDb;
|
| +
|
| + assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
|
| + assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
|
| + assert( p->bIsReader );
|
| + assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
|
| + || p->readOnly==0 );
|
| +
|
| + if( p->expired ){
|
| + rc = SQLITE_ABORT_ROLLBACK;
|
| + break;
|
| + }
|
| +
|
| + nField = 0;
|
| + pKeyInfo = 0;
|
| + p2 = pOp->p2;
|
| + iDb = pOp->p3;
|
| + assert( iDb>=0 && iDb<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, iDb) );
|
| + pDb = &db->aDb[iDb];
|
| + pX = pDb->pBt;
|
| + assert( pX!=0 );
|
| + if( pOp->opcode==OP_OpenWrite ){
|
| + wrFlag = 1;
|
| + assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| + if( pDb->pSchema->file_format < p->minWriteFileFormat ){
|
| + p->minWriteFileFormat = pDb->pSchema->file_format;
|
| + }
|
| + }else{
|
| + wrFlag = 0;
|
| + }
|
| + if( pOp->p5 & OPFLAG_P2ISREG ){
|
| + assert( p2>0 );
|
| + assert( p2<=(p->nMem-p->nCursor) );
|
| + pIn2 = &aMem[p2];
|
| + assert( memIsValid(pIn2) );
|
| + assert( (pIn2->flags & MEM_Int)!=0 );
|
| + sqlite3VdbeMemIntegerify(pIn2);
|
| + p2 = (int)pIn2->u.i;
|
| + /* The p2 value always comes from a prior OP_CreateTable opcode and
|
| + ** that opcode will always set the p2 value to 2 or more or else fail.
|
| + ** If there were a failure, the prepared statement would have halted
|
| + ** before reaching this instruction. */
|
| + if( NEVER(p2<2) ) {
|
| + rc = SQLITE_CORRUPT_BKPT;
|
| + goto abort_due_to_error;
|
| + }
|
| + }
|
| + if( pOp->p4type==P4_KEYINFO ){
|
| + pKeyInfo = pOp->p4.pKeyInfo;
|
| + assert( pKeyInfo->enc==ENC(db) );
|
| + assert( pKeyInfo->db==db );
|
| + nField = pKeyInfo->nField+pKeyInfo->nXField;
|
| + }else if( pOp->p4type==P4_INT32 ){
|
| + nField = pOp->p4.i;
|
| + }
|
| + assert( pOp->p1>=0 );
|
| + assert( nField>=0 );
|
| + testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
|
| + pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
|
| + if( pCur==0 ) goto no_mem;
|
| + pCur->nullRow = 1;
|
| + pCur->isOrdered = 1;
|
| + pCur->pgnoRoot = p2;
|
| + rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
|
| + pCur->pKeyInfo = pKeyInfo;
|
| + assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
|
| + sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
|
| +
|
| + /* Set the VdbeCursor.isTable variable. Previous versions of
|
| + ** SQLite used to check if the root-page flags were sane at this point
|
| + ** and report database corruption if they were not, but this check has
|
| + ** since moved into the btree layer. */
|
| + pCur->isTable = pOp->p4type!=P4_KEYINFO;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: OpenEphemeral P1 P2 * P4 P5
|
| +** Synopsis: nColumn=P2
|
| +**
|
| +** Open a new cursor P1 to a transient table.
|
| +** The cursor is always opened read/write even if
|
| +** the main database is read-only. The ephemeral
|
| +** table is deleted automatically when the cursor is closed.
|
| +**
|
| +** P2 is the number of columns in the ephemeral table.
|
| +** The cursor points to a BTree table if P4==0 and to a BTree index
|
| +** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
|
| +** that defines the format of keys in the index.
|
| +**
|
| +** The P5 parameter can be a mask of the BTREE_* flags defined
|
| +** in btree.h. These flags control aspects of the operation of
|
| +** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
|
| +** added automatically.
|
| +*/
|
| +/* Opcode: OpenAutoindex P1 P2 * P4 *
|
| +** Synopsis: nColumn=P2
|
| +**
|
| +** This opcode works the same as OP_OpenEphemeral. It has a
|
| +** different name to distinguish its use. Tables created using
|
| +** by this opcode will be used for automatically created transient
|
| +** indices in joins.
|
| +*/
|
| +case OP_OpenAutoindex:
|
| +case OP_OpenEphemeral: {
|
| + VdbeCursor *pCx;
|
| + KeyInfo *pKeyInfo;
|
| +
|
| + static const int vfsFlags =
|
| + SQLITE_OPEN_READWRITE |
|
| + SQLITE_OPEN_CREATE |
|
| + SQLITE_OPEN_EXCLUSIVE |
|
| + SQLITE_OPEN_DELETEONCLOSE |
|
| + SQLITE_OPEN_TRANSIENT_DB;
|
| + assert( pOp->p1>=0 );
|
| + assert( pOp->p2>=0 );
|
| + pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
|
| + if( pCx==0 ) goto no_mem;
|
| + pCx->nullRow = 1;
|
| + pCx->isEphemeral = 1;
|
| + rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
|
| + BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + /* If a transient index is required, create it by calling
|
| + ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
|
| + ** opening it. If a transient table is required, just use the
|
| + ** automatically created table with root-page 1 (an BLOB_INTKEY table).
|
| + */
|
| + if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
|
| + int pgno;
|
| + assert( pOp->p4type==P4_KEYINFO );
|
| + rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
|
| + if( rc==SQLITE_OK ){
|
| + assert( pgno==MASTER_ROOT+1 );
|
| + assert( pKeyInfo->db==db );
|
| + assert( pKeyInfo->enc==ENC(db) );
|
| + pCx->pKeyInfo = pKeyInfo;
|
| + rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
|
| + }
|
| + pCx->isTable = 0;
|
| + }else{
|
| + rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
|
| + pCx->isTable = 1;
|
| + }
|
| + }
|
| + pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SorterOpen P1 P2 P3 P4 *
|
| +**
|
| +** This opcode works like OP_OpenEphemeral except that it opens
|
| +** a transient index that is specifically designed to sort large
|
| +** tables using an external merge-sort algorithm.
|
| +**
|
| +** If argument P3 is non-zero, then it indicates that the sorter may
|
| +** assume that a stable sort considering the first P3 fields of each
|
| +** key is sufficient to produce the required results.
|
| +*/
|
| +case OP_SorterOpen: {
|
| + VdbeCursor *pCx;
|
| +
|
| + assert( pOp->p1>=0 );
|
| + assert( pOp->p2>=0 );
|
| + pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
|
| + if( pCx==0 ) goto no_mem;
|
| + pCx->pKeyInfo = pOp->p4.pKeyInfo;
|
| + assert( pCx->pKeyInfo->db==db );
|
| + assert( pCx->pKeyInfo->enc==ENC(db) );
|
| + rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SequenceTest P1 P2 * * *
|
| +** Synopsis: if( cursor[P1].ctr++ ) pc = P2
|
| +**
|
| +** P1 is a sorter cursor. If the sequence counter is currently zero, jump
|
| +** to P2. Regardless of whether or not the jump is taken, increment the
|
| +** the sequence value.
|
| +*/
|
| +case OP_SequenceTest: {
|
| + VdbeCursor *pC;
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC->pSorter );
|
| + if( (pC->seqCount++)==0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: OpenPseudo P1 P2 P3 * *
|
| +** Synopsis: P3 columns in r[P2]
|
| +**
|
| +** Open a new cursor that points to a fake table that contains a single
|
| +** row of data. The content of that one row is the content of memory
|
| +** register P2. In other words, cursor P1 becomes an alias for the
|
| +** MEM_Blob content contained in register P2.
|
| +**
|
| +** A pseudo-table created by this opcode is used to hold a single
|
| +** row output from the sorter so that the row can be decomposed into
|
| +** individual columns using the OP_Column opcode. The OP_Column opcode
|
| +** is the only cursor opcode that works with a pseudo-table.
|
| +**
|
| +** P3 is the number of fields in the records that will be stored by
|
| +** the pseudo-table.
|
| +*/
|
| +case OP_OpenPseudo: {
|
| + VdbeCursor *pCx;
|
| +
|
| + assert( pOp->p1>=0 );
|
| + assert( pOp->p3>=0 );
|
| + pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
|
| + if( pCx==0 ) goto no_mem;
|
| + pCx->nullRow = 1;
|
| + pCx->pseudoTableReg = pOp->p2;
|
| + pCx->isTable = 1;
|
| + assert( pOp->p5==0 );
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Close P1 * * * *
|
| +**
|
| +** Close a cursor previously opened as P1. If P1 is not
|
| +** currently open, this instruction is a no-op.
|
| +*/
|
| +case OP_Close: {
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
|
| + p->apCsr[pOp->p1] = 0;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SeekGE P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
| +** use the value in register P3 as the key. If cursor P1 refers
|
| +** to an SQL index, then P3 is the first in an array of P4 registers
|
| +** that are used as an unpacked index key.
|
| +**
|
| +** Reposition cursor P1 so that it points to the smallest entry that
|
| +** is greater than or equal to the key value. If there are no records
|
| +** greater than or equal to the key and P2 is not zero, then jump to P2.
|
| +**
|
| +** This opcode leaves the cursor configured to move in forward order,
|
| +** from the beginning toward the end. In other words, the cursor is
|
| +** configured to use Next, not Prev.
|
| +**
|
| +** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
|
| +*/
|
| +/* Opcode: SeekGT P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
| +** use the value in register P3 as a key. If cursor P1 refers
|
| +** to an SQL index, then P3 is the first in an array of P4 registers
|
| +** that are used as an unpacked index key.
|
| +**
|
| +** Reposition cursor P1 so that it points to the smallest entry that
|
| +** is greater than the key value. If there are no records greater than
|
| +** the key and P2 is not zero, then jump to P2.
|
| +**
|
| +** This opcode leaves the cursor configured to move in forward order,
|
| +** from the beginning toward the end. In other words, the cursor is
|
| +** configured to use Next, not Prev.
|
| +**
|
| +** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
|
| +*/
|
| +/* Opcode: SeekLT P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
| +** use the value in register P3 as a key. If cursor P1 refers
|
| +** to an SQL index, then P3 is the first in an array of P4 registers
|
| +** that are used as an unpacked index key.
|
| +**
|
| +** Reposition cursor P1 so that it points to the largest entry that
|
| +** is less than the key value. If there are no records less than
|
| +** the key and P2 is not zero, then jump to P2.
|
| +**
|
| +** This opcode leaves the cursor configured to move in reverse order,
|
| +** from the end toward the beginning. In other words, the cursor is
|
| +** configured to use Prev, not Next.
|
| +**
|
| +** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
|
| +*/
|
| +/* Opcode: SeekLE P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
|
| +** use the value in register P3 as a key. If cursor P1 refers
|
| +** to an SQL index, then P3 is the first in an array of P4 registers
|
| +** that are used as an unpacked index key.
|
| +**
|
| +** Reposition cursor P1 so that it points to the largest entry that
|
| +** is less than or equal to the key value. If there are no records
|
| +** less than or equal to the key and P2 is not zero, then jump to P2.
|
| +**
|
| +** This opcode leaves the cursor configured to move in reverse order,
|
| +** from the end toward the beginning. In other words, the cursor is
|
| +** configured to use Prev, not Next.
|
| +**
|
| +** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
|
| +*/
|
| +case OP_SeekLT: /* jump, in3 */
|
| +case OP_SeekLE: /* jump, in3 */
|
| +case OP_SeekGE: /* jump, in3 */
|
| +case OP_SeekGT: { /* jump, in3 */
|
| + int res;
|
| + int oc;
|
| + VdbeCursor *pC;
|
| + UnpackedRecord r;
|
| + int nField;
|
| + i64 iKey; /* The rowid we are to seek to */
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + assert( pOp->p2!=0 );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->pseudoTableReg==0 );
|
| + assert( OP_SeekLE == OP_SeekLT+1 );
|
| + assert( OP_SeekGE == OP_SeekLT+2 );
|
| + assert( OP_SeekGT == OP_SeekLT+3 );
|
| + assert( pC->isOrdered );
|
| + assert( pC->pCursor!=0 );
|
| + oc = pOp->opcode;
|
| + pC->nullRow = 0;
|
| +#ifdef SQLITE_DEBUG
|
| + pC->seekOp = pOp->opcode;
|
| +#endif
|
| + if( pC->isTable ){
|
| + /* The input value in P3 might be of any type: integer, real, string,
|
| + ** blob, or NULL. But it needs to be an integer before we can do
|
| + ** the seek, so convert it. */
|
| + pIn3 = &aMem[pOp->p3];
|
| + if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
|
| + applyNumericAffinity(pIn3, 0);
|
| + }
|
| + iKey = sqlite3VdbeIntValue(pIn3);
|
| +
|
| + /* If the P3 value could not be converted into an integer without
|
| + ** loss of information, then special processing is required... */
|
| + if( (pIn3->flags & MEM_Int)==0 ){
|
| + if( (pIn3->flags & MEM_Real)==0 ){
|
| + /* If the P3 value cannot be converted into any kind of a number,
|
| + ** then the seek is not possible, so jump to P2 */
|
| + pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
|
| + break;
|
| + }
|
| +
|
| + /* If the approximation iKey is larger than the actual real search
|
| + ** term, substitute >= for > and < for <=. e.g. if the search term
|
| + ** is 4.9 and the integer approximation 5:
|
| + **
|
| + ** (x > 4.9) -> (x >= 5)
|
| + ** (x <= 4.9) -> (x < 5)
|
| + */
|
| + if( pIn3->u.r<(double)iKey ){
|
| + assert( OP_SeekGE==(OP_SeekGT-1) );
|
| + assert( OP_SeekLT==(OP_SeekLE-1) );
|
| + assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
|
| + if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
|
| + }
|
| +
|
| + /* If the approximation iKey is smaller than the actual real search
|
| + ** term, substitute <= for < and > for >=. */
|
| + else if( pIn3->u.r>(double)iKey ){
|
| + assert( OP_SeekLE==(OP_SeekLT+1) );
|
| + assert( OP_SeekGT==(OP_SeekGE+1) );
|
| + assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
|
| + if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
|
| + }
|
| + }
|
| + rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
|
| + pC->movetoTarget = iKey; /* Used by OP_Delete */
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| + }else{
|
| + nField = pOp->p4.i;
|
| + assert( pOp->p4type==P4_INT32 );
|
| + assert( nField>0 );
|
| + r.pKeyInfo = pC->pKeyInfo;
|
| + r.nField = (u16)nField;
|
| +
|
| + /* The next line of code computes as follows, only faster:
|
| + ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
|
| + ** r.default_rc = -1;
|
| + ** }else{
|
| + ** r.default_rc = +1;
|
| + ** }
|
| + */
|
| + r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
|
| + assert( oc!=OP_SeekGT || r.default_rc==-1 );
|
| + assert( oc!=OP_SeekLE || r.default_rc==-1 );
|
| + assert( oc!=OP_SeekGE || r.default_rc==+1 );
|
| + assert( oc!=OP_SeekLT || r.default_rc==+1 );
|
| +
|
| + r.aMem = &aMem[pOp->p3];
|
| +#ifdef SQLITE_DEBUG
|
| + { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
| +#endif
|
| + ExpandBlob(r.aMem);
|
| + rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| + }
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| +#ifdef SQLITE_TEST
|
| + sqlite3_search_count++;
|
| +#endif
|
| + if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
|
| + if( res<0 || (res==0 && oc==OP_SeekGT) ){
|
| + res = 0;
|
| + rc = sqlite3BtreeNext(pC->pCursor, &res);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| + }else{
|
| + res = 0;
|
| + }
|
| + }else{
|
| + assert( oc==OP_SeekLT || oc==OP_SeekLE );
|
| + if( res>0 || (res==0 && oc==OP_SeekLT) ){
|
| + res = 0;
|
| + rc = sqlite3BtreePrevious(pC->pCursor, &res);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| + }else{
|
| + /* res might be negative because the table is empty. Check to
|
| + ** see if this is the case.
|
| + */
|
| + res = sqlite3BtreeEof(pC->pCursor);
|
| + }
|
| + }
|
| + assert( pOp->p2>0 );
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Seek P1 P2 * * *
|
| +** Synopsis: intkey=r[P2]
|
| +**
|
| +** P1 is an open table cursor and P2 is a rowid integer. Arrange
|
| +** for P1 to move so that it points to the rowid given by P2.
|
| +**
|
| +** This is actually a deferred seek. Nothing actually happens until
|
| +** the cursor is used to read a record. That way, if no reads
|
| +** occur, no unnecessary I/O happens.
|
| +*/
|
| +case OP_Seek: { /* in2 */
|
| + VdbeCursor *pC;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->pCursor!=0 );
|
| + assert( pC->isTable );
|
| + pC->nullRow = 0;
|
| + pIn2 = &aMem[pOp->p2];
|
| + pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
|
| + pC->deferredMoveto = 1;
|
| + break;
|
| +}
|
| +
|
| +
|
| +/* Opcode: Found P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
| +** record.
|
| +**
|
| +** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
| +** is a prefix of any entry in P1 then a jump is made to P2 and
|
| +** P1 is left pointing at the matching entry.
|
| +**
|
| +** This operation leaves the cursor in a state where it can be
|
| +** advanced in the forward direction. The Next instruction will work,
|
| +** but not the Prev instruction.
|
| +**
|
| +** See also: NotFound, NoConflict, NotExists. SeekGe
|
| +*/
|
| +/* Opcode: NotFound P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
| +** record.
|
| +**
|
| +** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
| +** is not the prefix of any entry in P1 then a jump is made to P2. If P1
|
| +** does contain an entry whose prefix matches the P3/P4 record then control
|
| +** falls through to the next instruction and P1 is left pointing at the
|
| +** matching entry.
|
| +**
|
| +** This operation leaves the cursor in a state where it cannot be
|
| +** advanced in either direction. In other words, the Next and Prev
|
| +** opcodes do not work after this operation.
|
| +**
|
| +** See also: Found, NotExists, NoConflict
|
| +*/
|
| +/* Opcode: NoConflict P1 P2 P3 P4 *
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
|
| +** P4>0 then register P3 is the first of P4 registers that form an unpacked
|
| +** record.
|
| +**
|
| +** Cursor P1 is on an index btree. If the record identified by P3 and P4
|
| +** contains any NULL value, jump immediately to P2. If all terms of the
|
| +** record are not-NULL then a check is done to determine if any row in the
|
| +** P1 index btree has a matching key prefix. If there are no matches, jump
|
| +** immediately to P2. If there is a match, fall through and leave the P1
|
| +** cursor pointing to the matching row.
|
| +**
|
| +** This opcode is similar to OP_NotFound with the exceptions that the
|
| +** branch is always taken if any part of the search key input is NULL.
|
| +**
|
| +** This operation leaves the cursor in a state where it cannot be
|
| +** advanced in either direction. In other words, the Next and Prev
|
| +** opcodes do not work after this operation.
|
| +**
|
| +** See also: NotFound, Found, NotExists
|
| +*/
|
| +case OP_NoConflict: /* jump, in3 */
|
| +case OP_NotFound: /* jump, in3 */
|
| +case OP_Found: { /* jump, in3 */
|
| + int alreadyExists;
|
| + int ii;
|
| + VdbeCursor *pC;
|
| + int res;
|
| + char *pFree;
|
| + UnpackedRecord *pIdxKey;
|
| + UnpackedRecord r;
|
| + char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
|
| +
|
| +#ifdef SQLITE_TEST
|
| + if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
|
| +#endif
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + assert( pOp->p4type==P4_INT32 );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| +#ifdef SQLITE_DEBUG
|
| + pC->seekOp = pOp->opcode;
|
| +#endif
|
| + pIn3 = &aMem[pOp->p3];
|
| + assert( pC->pCursor!=0 );
|
| + assert( pC->isTable==0 );
|
| + pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
|
| + if( pOp->p4.i>0 ){
|
| + r.pKeyInfo = pC->pKeyInfo;
|
| + r.nField = (u16)pOp->p4.i;
|
| + r.aMem = pIn3;
|
| + for(ii=0; ii<r.nField; ii++){
|
| + assert( memIsValid(&r.aMem[ii]) );
|
| + ExpandBlob(&r.aMem[ii]);
|
| +#ifdef SQLITE_DEBUG
|
| + if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
|
| +#endif
|
| + }
|
| + pIdxKey = &r;
|
| + }else{
|
| + pIdxKey = sqlite3VdbeAllocUnpackedRecord(
|
| + pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
|
| + );
|
| + if( pIdxKey==0 ) goto no_mem;
|
| + assert( pIn3->flags & MEM_Blob );
|
| + assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
|
| + sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
|
| + }
|
| + pIdxKey->default_rc = 0;
|
| + if( pOp->opcode==OP_NoConflict ){
|
| + /* For the OP_NoConflict opcode, take the jump if any of the
|
| + ** input fields are NULL, since any key with a NULL will not
|
| + ** conflict */
|
| + for(ii=0; ii<r.nField; ii++){
|
| + if( r.aMem[ii].flags & MEM_Null ){
|
| + pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
|
| + if( pOp->p4.i==0 ){
|
| + sqlite3DbFree(db, pFree);
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + break;
|
| + }
|
| + pC->seekResult = res;
|
| + alreadyExists = (res==0);
|
| + pC->nullRow = 1-alreadyExists;
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| + if( pOp->opcode==OP_Found ){
|
| + VdbeBranchTaken(alreadyExists!=0,2);
|
| + if( alreadyExists ) pc = pOp->p2 - 1;
|
| + }else{
|
| + VdbeBranchTaken(alreadyExists==0,2);
|
| + if( !alreadyExists ) pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: NotExists P1 P2 P3 * *
|
| +** Synopsis: intkey=r[P3]
|
| +**
|
| +** P1 is the index of a cursor open on an SQL table btree (with integer
|
| +** keys). P3 is an integer rowid. If P1 does not contain a record with
|
| +** rowid P3 then jump immediately to P2. If P1 does contain a record
|
| +** with rowid P3 then leave the cursor pointing at that record and fall
|
| +** through to the next instruction.
|
| +**
|
| +** The OP_NotFound opcode performs the same operation on index btrees
|
| +** (with arbitrary multi-value keys).
|
| +**
|
| +** This opcode leaves the cursor in a state where it cannot be advanced
|
| +** in either direction. In other words, the Next and Prev opcodes will
|
| +** not work following this opcode.
|
| +**
|
| +** See also: Found, NotFound, NoConflict
|
| +*/
|
| +case OP_NotExists: { /* jump, in3 */
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + int res;
|
| + u64 iKey;
|
| +
|
| + pIn3 = &aMem[pOp->p3];
|
| + assert( pIn3->flags & MEM_Int );
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| +#ifdef SQLITE_DEBUG
|
| + pC->seekOp = 0;
|
| +#endif
|
| + assert( pC->isTable );
|
| + assert( pC->pseudoTableReg==0 );
|
| + pCrsr = pC->pCursor;
|
| + assert( pCrsr!=0 );
|
| + res = 0;
|
| + iKey = pIn3->u.i;
|
| + rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
|
| + pC->movetoTarget = iKey; /* Used by OP_Delete */
|
| + pC->nullRow = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| + pC->deferredMoveto = 0;
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res!=0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + pC->seekResult = res;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Sequence P1 P2 * * *
|
| +** Synopsis: r[P2]=cursor[P1].ctr++
|
| +**
|
| +** Find the next available sequence number for cursor P1.
|
| +** Write the sequence number into register P2.
|
| +** The sequence number on the cursor is incremented after this
|
| +** instruction.
|
| +*/
|
| +case OP_Sequence: { /* out2-prerelease */
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + assert( p->apCsr[pOp->p1]!=0 );
|
| + pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
|
| + break;
|
| +}
|
| +
|
| +
|
| +/* Opcode: NewRowid P1 P2 P3 * *
|
| +** Synopsis: r[P2]=rowid
|
| +**
|
| +** Get a new integer record number (a.k.a "rowid") used as the key to a table.
|
| +** The record number is not previously used as a key in the database
|
| +** table that cursor P1 points to. The new record number is written
|
| +** written to register P2.
|
| +**
|
| +** If P3>0 then P3 is a register in the root frame of this VDBE that holds
|
| +** the largest previously generated record number. No new record numbers are
|
| +** allowed to be less than this value. When this value reaches its maximum,
|
| +** an SQLITE_FULL error is generated. The P3 register is updated with the '
|
| +** generated record number. This P3 mechanism is used to help implement the
|
| +** AUTOINCREMENT feature.
|
| +*/
|
| +case OP_NewRowid: { /* out2-prerelease */
|
| + i64 v; /* The new rowid */
|
| + VdbeCursor *pC; /* Cursor of table to get the new rowid */
|
| + int res; /* Result of an sqlite3BtreeLast() */
|
| + int cnt; /* Counter to limit the number of searches */
|
| + Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
|
| + VdbeFrame *pFrame; /* Root frame of VDBE */
|
| +
|
| + v = 0;
|
| + res = 0;
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + if( NEVER(pC->pCursor==0) ){
|
| + /* The zero initialization above is all that is needed */
|
| + }else{
|
| + /* The next rowid or record number (different terms for the same
|
| + ** thing) is obtained in a two-step algorithm.
|
| + **
|
| + ** First we attempt to find the largest existing rowid and add one
|
| + ** to that. But if the largest existing rowid is already the maximum
|
| + ** positive integer, we have to fall through to the second
|
| + ** probabilistic algorithm
|
| + **
|
| + ** The second algorithm is to select a rowid at random and see if
|
| + ** it already exists in the table. If it does not exist, we have
|
| + ** succeeded. If the random rowid does exist, we select a new one
|
| + ** and try again, up to 100 times.
|
| + */
|
| + assert( pC->isTable );
|
| +
|
| +#ifdef SQLITE_32BIT_ROWID
|
| +# define MAX_ROWID 0x7fffffff
|
| +#else
|
| + /* Some compilers complain about constants of the form 0x7fffffffffffffff.
|
| + ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
|
| + ** to provide the constant while making all compilers happy.
|
| + */
|
| +# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
|
| +#endif
|
| +
|
| + if( !pC->useRandomRowid ){
|
| + rc = sqlite3BtreeLast(pC->pCursor, &res);
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| + if( res ){
|
| + v = 1; /* IMP: R-61914-48074 */
|
| + }else{
|
| + assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
|
| + rc = sqlite3BtreeKeySize(pC->pCursor, &v);
|
| + assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
|
| + if( v>=MAX_ROWID ){
|
| + pC->useRandomRowid = 1;
|
| + }else{
|
| + v++; /* IMP: R-29538-34987 */
|
| + }
|
| + }
|
| + }
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| + if( pOp->p3 ){
|
| + /* Assert that P3 is a valid memory cell. */
|
| + assert( pOp->p3>0 );
|
| + if( p->pFrame ){
|
| + for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
| + /* Assert that P3 is a valid memory cell. */
|
| + assert( pOp->p3<=pFrame->nMem );
|
| + pMem = &pFrame->aMem[pOp->p3];
|
| + }else{
|
| + /* Assert that P3 is a valid memory cell. */
|
| + assert( pOp->p3<=(p->nMem-p->nCursor) );
|
| + pMem = &aMem[pOp->p3];
|
| + memAboutToChange(p, pMem);
|
| + }
|
| + assert( memIsValid(pMem) );
|
| +
|
| + REGISTER_TRACE(pOp->p3, pMem);
|
| + sqlite3VdbeMemIntegerify(pMem);
|
| + assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
|
| + if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
|
| + rc = SQLITE_FULL; /* IMP: R-12275-61338 */
|
| + goto abort_due_to_error;
|
| + }
|
| + if( v<pMem->u.i+1 ){
|
| + v = pMem->u.i + 1;
|
| + }
|
| + pMem->u.i = v;
|
| + }
|
| +#endif
|
| + if( pC->useRandomRowid ){
|
| + /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
|
| + ** largest possible integer (9223372036854775807) then the database
|
| + ** engine starts picking positive candidate ROWIDs at random until
|
| + ** it finds one that is not previously used. */
|
| + assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
|
| + ** an AUTOINCREMENT table. */
|
| + cnt = 0;
|
| + do{
|
| + sqlite3_randomness(sizeof(v), &v);
|
| + v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
|
| + }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
|
| + 0, &res))==SQLITE_OK)
|
| + && (res==0)
|
| + && (++cnt<100));
|
| + if( rc==SQLITE_OK && res==0 ){
|
| + rc = SQLITE_FULL; /* IMP: R-38219-53002 */
|
| + goto abort_due_to_error;
|
| + }
|
| + assert( v>0 ); /* EV: R-40812-03570 */
|
| + }
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| + }
|
| + pOut->u.i = v;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Insert P1 P2 P3 P4 P5
|
| +** Synopsis: intkey=r[P3] data=r[P2]
|
| +**
|
| +** Write an entry into the table of cursor P1. A new entry is
|
| +** created if it doesn't already exist or the data for an existing
|
| +** entry is overwritten. The data is the value MEM_Blob stored in register
|
| +** number P2. The key is stored in register P3. The key must
|
| +** be a MEM_Int.
|
| +**
|
| +** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
|
| +** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
|
| +** then rowid is stored for subsequent return by the
|
| +** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
|
| +**
|
| +** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
|
| +** the last seek operation (OP_NotExists) was a success, then this
|
| +** operation will not attempt to find the appropriate row before doing
|
| +** the insert but will instead overwrite the row that the cursor is
|
| +** currently pointing to. Presumably, the prior OP_NotExists opcode
|
| +** has already positioned the cursor correctly. This is an optimization
|
| +** that boosts performance by avoiding redundant seeks.
|
| +**
|
| +** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
|
| +** UPDATE operation. Otherwise (if the flag is clear) then this opcode
|
| +** is part of an INSERT operation. The difference is only important to
|
| +** the update hook.
|
| +**
|
| +** Parameter P4 may point to a string containing the table-name, or
|
| +** may be NULL. If it is not NULL, then the update-hook
|
| +** (sqlite3.xUpdateCallback) is invoked following a successful insert.
|
| +**
|
| +** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
|
| +** allocated, then ownership of P2 is transferred to the pseudo-cursor
|
| +** and register P2 becomes ephemeral. If the cursor is changed, the
|
| +** value of register P2 will then change. Make sure this does not
|
| +** cause any problems.)
|
| +**
|
| +** This instruction only works on tables. The equivalent instruction
|
| +** for indices is OP_IdxInsert.
|
| +*/
|
| +/* Opcode: InsertInt P1 P2 P3 P4 P5
|
| +** Synopsis: intkey=P3 data=r[P2]
|
| +**
|
| +** This works exactly like OP_Insert except that the key is the
|
| +** integer value P3, not the value of the integer stored in register P3.
|
| +*/
|
| +case OP_Insert:
|
| +case OP_InsertInt: {
|
| + Mem *pData; /* MEM cell holding data for the record to be inserted */
|
| + Mem *pKey; /* MEM cell holding key for the record */
|
| + i64 iKey; /* The integer ROWID or key for the record to be inserted */
|
| + VdbeCursor *pC; /* Cursor to table into which insert is written */
|
| + int nZero; /* Number of zero-bytes to append */
|
| + int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
|
| + const char *zDb; /* database name - used by the update hook */
|
| + const char *zTbl; /* Table name - used by the opdate hook */
|
| + int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
|
| +
|
| + pData = &aMem[pOp->p2];
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + assert( memIsValid(pData) );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->pCursor!=0 );
|
| + assert( pC->pseudoTableReg==0 );
|
| + assert( pC->isTable );
|
| + REGISTER_TRACE(pOp->p2, pData);
|
| +
|
| + if( pOp->opcode==OP_Insert ){
|
| + pKey = &aMem[pOp->p3];
|
| + assert( pKey->flags & MEM_Int );
|
| + assert( memIsValid(pKey) );
|
| + REGISTER_TRACE(pOp->p3, pKey);
|
| + iKey = pKey->u.i;
|
| + }else{
|
| + assert( pOp->opcode==OP_InsertInt );
|
| + iKey = pOp->p3;
|
| + }
|
| +
|
| + if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
| + if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
|
| + if( pData->flags & MEM_Null ){
|
| + pData->z = 0;
|
| + pData->n = 0;
|
| + }else{
|
| + assert( pData->flags & (MEM_Blob|MEM_Str) );
|
| + }
|
| + seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
|
| + if( pData->flags & MEM_Zero ){
|
| + nZero = pData->u.nZero;
|
| + }else{
|
| + nZero = 0;
|
| + }
|
| + rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
|
| + pData->z, pData->n, nZero,
|
| + (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
|
| + );
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| +
|
| + /* Invoke the update-hook if required. */
|
| + if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
|
| + zDb = db->aDb[pC->iDb].zName;
|
| + zTbl = pOp->p4.z;
|
| + op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
|
| + assert( pC->isTable );
|
| + db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
|
| + assert( pC->iDb>=0 );
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Delete P1 P2 * P4 *
|
| +**
|
| +** Delete the record at which the P1 cursor is currently pointing.
|
| +**
|
| +** The cursor will be left pointing at either the next or the previous
|
| +** record in the table. If it is left pointing at the next record, then
|
| +** the next Next instruction will be a no-op. Hence it is OK to delete
|
| +** a record from within a Next loop.
|
| +**
|
| +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
|
| +** incremented (otherwise not).
|
| +**
|
| +** P1 must not be pseudo-table. It has to be a real table with
|
| +** multiple rows.
|
| +**
|
| +** If P4 is not NULL, then it is the name of the table that P1 is
|
| +** pointing to. The update hook will be invoked, if it exists.
|
| +** If P4 is not NULL then the P1 cursor must have been positioned
|
| +** using OP_NotFound prior to invoking this opcode.
|
| +*/
|
| +case OP_Delete: {
|
| + VdbeCursor *pC;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
|
| + assert( pC->deferredMoveto==0 );
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| + /* The seek operation that positioned the cursor prior to OP_Delete will
|
| + ** have also set the pC->movetoTarget field to the rowid of the row that
|
| + ** is being deleted */
|
| + if( pOp->p4.z && pC->isTable ){
|
| + i64 iKey = 0;
|
| + sqlite3BtreeKeySize(pC->pCursor, &iKey);
|
| + assert( pC->movetoTarget==iKey );
|
| + }
|
| +#endif
|
| +
|
| + rc = sqlite3BtreeDelete(pC->pCursor);
|
| + pC->cacheStatus = CACHE_STALE;
|
| +
|
| + /* Invoke the update-hook if required. */
|
| + if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
|
| + db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
|
| + db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
|
| + assert( pC->iDb>=0 );
|
| + }
|
| + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
|
| + break;
|
| +}
|
| +/* Opcode: ResetCount * * * * *
|
| +**
|
| +** The value of the change counter is copied to the database handle
|
| +** change counter (returned by subsequent calls to sqlite3_changes()).
|
| +** Then the VMs internal change counter resets to 0.
|
| +** This is used by trigger programs.
|
| +*/
|
| +case OP_ResetCount: {
|
| + sqlite3VdbeSetChanges(db, p->nChange);
|
| + p->nChange = 0;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: SorterCompare P1 P2 P3 P4
|
| +** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
|
| +**
|
| +** P1 is a sorter cursor. This instruction compares a prefix of the
|
| +** record blob in register P3 against a prefix of the entry that
|
| +** the sorter cursor currently points to. Only the first P4 fields
|
| +** of r[P3] and the sorter record are compared.
|
| +**
|
| +** If either P3 or the sorter contains a NULL in one of their significant
|
| +** fields (not counting the P4 fields at the end which are ignored) then
|
| +** the comparison is assumed to be equal.
|
| +**
|
| +** Fall through to next instruction if the two records compare equal to
|
| +** each other. Jump to P2 if they are different.
|
| +*/
|
| +case OP_SorterCompare: {
|
| + VdbeCursor *pC;
|
| + int res;
|
| + int nKeyCol;
|
| +
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( isSorter(pC) );
|
| + assert( pOp->p4type==P4_INT32 );
|
| + pIn3 = &aMem[pOp->p3];
|
| + nKeyCol = pOp->p4.i;
|
| + res = 0;
|
| + rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res ){
|
| + pc = pOp->p2-1;
|
| + }
|
| + break;
|
| +};
|
| +
|
| +/* Opcode: SorterData P1 P2 P3 * *
|
| +** Synopsis: r[P2]=data
|
| +**
|
| +** Write into register P2 the current sorter data for sorter cursor P1.
|
| +** Then clear the column header cache on cursor P3.
|
| +**
|
| +** This opcode is normally use to move a record out of the sorter and into
|
| +** a register that is the source for a pseudo-table cursor created using
|
| +** OpenPseudo. That pseudo-table cursor is the one that is identified by
|
| +** parameter P3. Clearing the P3 column cache as part of this opcode saves
|
| +** us from having to issue a separate NullRow instruction to clear that cache.
|
| +*/
|
| +case OP_SorterData: {
|
| + VdbeCursor *pC;
|
| +
|
| + pOut = &aMem[pOp->p2];
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( isSorter(pC) );
|
| + rc = sqlite3VdbeSorterRowkey(pC, pOut);
|
| + assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: RowData P1 P2 * * *
|
| +** Synopsis: r[P2]=data
|
| +**
|
| +** Write into register P2 the complete row data for cursor P1.
|
| +** There is no interpretation of the data.
|
| +** It is just copied onto the P2 register exactly as
|
| +** it is found in the database file.
|
| +**
|
| +** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
| +** of a real table, not a pseudo-table.
|
| +*/
|
| +/* Opcode: RowKey P1 P2 * * *
|
| +** Synopsis: r[P2]=key
|
| +**
|
| +** Write into register P2 the complete row key for cursor P1.
|
| +** There is no interpretation of the data.
|
| +** The key is copied onto the P2 register exactly as
|
| +** it is found in the database file.
|
| +**
|
| +** If the P1 cursor must be pointing to a valid row (not a NULL row)
|
| +** of a real table, not a pseudo-table.
|
| +*/
|
| +case OP_RowKey:
|
| +case OP_RowData: {
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + u32 n;
|
| + i64 n64;
|
| +
|
| + pOut = &aMem[pOp->p2];
|
| + memAboutToChange(p, pOut);
|
| +
|
| + /* Note that RowKey and RowData are really exactly the same instruction */
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( isSorter(pC)==0 );
|
| + assert( pC->isTable || pOp->opcode!=OP_RowData );
|
| + assert( pC->isTable==0 || pOp->opcode==OP_RowData );
|
| + assert( pC!=0 );
|
| + assert( pC->nullRow==0 );
|
| + assert( pC->pseudoTableReg==0 );
|
| + assert( pC->pCursor!=0 );
|
| + pCrsr = pC->pCursor;
|
| +
|
| + /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
|
| + ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
|
| + ** the cursor. If this where not the case, on of the following assert()s
|
| + ** would fail. Should this ever change (because of changes in the code
|
| + ** generator) then the fix would be to insert a call to
|
| + ** sqlite3VdbeCursorMoveto().
|
| + */
|
| + assert( pC->deferredMoveto==0 );
|
| + assert( sqlite3BtreeCursorIsValid(pCrsr) );
|
| +#if 0 /* Not required due to the previous to assert() statements */
|
| + rc = sqlite3VdbeCursorMoveto(pC);
|
| + if( rc!=SQLITE_OK ) goto abort_due_to_error;
|
| +#endif
|
| +
|
| + if( pC->isTable==0 ){
|
| + assert( !pC->isTable );
|
| + VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
|
| + assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
|
| + if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| + n = (u32)n64;
|
| + }else{
|
| + VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
|
| + assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
|
| + if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
| + goto too_big;
|
| + }
|
| + }
|
| + testcase( n==0 );
|
| + if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
|
| + goto no_mem;
|
| + }
|
| + pOut->n = n;
|
| + MemSetTypeFlag(pOut, MEM_Blob);
|
| + if( pC->isTable==0 ){
|
| + rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
|
| + }else{
|
| + rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
|
| + }
|
| + pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
|
| + UPDATE_MAX_BLOBSIZE(pOut);
|
| + REGISTER_TRACE(pOp->p2, pOut);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Rowid P1 P2 * * *
|
| +** Synopsis: r[P2]=rowid
|
| +**
|
| +** Store in register P2 an integer which is the key of the table entry that
|
| +** P1 is currently point to.
|
| +**
|
| +** P1 can be either an ordinary table or a virtual table. There used to
|
| +** be a separate OP_VRowid opcode for use with virtual tables, but this
|
| +** one opcode now works for both table types.
|
| +*/
|
| +case OP_Rowid: { /* out2-prerelease */
|
| + VdbeCursor *pC;
|
| + i64 v;
|
| + sqlite3_vtab *pVtab;
|
| + const sqlite3_module *pModule;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->pseudoTableReg==0 || pC->nullRow );
|
| + if( pC->nullRow ){
|
| + pOut->flags = MEM_Null;
|
| + break;
|
| + }else if( pC->deferredMoveto ){
|
| + v = pC->movetoTarget;
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + }else if( pC->pVtabCursor ){
|
| + pVtab = pC->pVtabCursor->pVtab;
|
| + pModule = pVtab->pModule;
|
| + assert( pModule->xRowid );
|
| + rc = pModule->xRowid(pC->pVtabCursor, &v);
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| + }else{
|
| + assert( pC->pCursor!=0 );
|
| + rc = sqlite3VdbeCursorRestore(pC);
|
| + if( rc ) goto abort_due_to_error;
|
| + if( pC->nullRow ){
|
| + pOut->flags = MEM_Null;
|
| + break;
|
| + }
|
| + rc = sqlite3BtreeKeySize(pC->pCursor, &v);
|
| + assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
|
| + }
|
| + pOut->u.i = v;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: NullRow P1 * * * *
|
| +**
|
| +** Move the cursor P1 to a null row. Any OP_Column operations
|
| +** that occur while the cursor is on the null row will always
|
| +** write a NULL.
|
| +*/
|
| +case OP_NullRow: {
|
| + VdbeCursor *pC;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + pC->nullRow = 1;
|
| + pC->cacheStatus = CACHE_STALE;
|
| + if( pC->pCursor ){
|
| + sqlite3BtreeClearCursor(pC->pCursor);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Last P1 P2 * * *
|
| +**
|
| +** The next use of the Rowid or Column or Prev instruction for P1
|
| +** will refer to the last entry in the database table or index.
|
| +** If the table or index is empty and P2>0, then jump immediately to P2.
|
| +** If P2 is 0 or if the table or index is not empty, fall through
|
| +** to the following instruction.
|
| +**
|
| +** This opcode leaves the cursor configured to move in reverse order,
|
| +** from the end toward the beginning. In other words, the cursor is
|
| +** configured to use Prev, not Next.
|
| +*/
|
| +case OP_Last: { /* jump */
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + int res;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + pCrsr = pC->pCursor;
|
| + res = 0;
|
| + assert( pCrsr!=0 );
|
| + rc = sqlite3BtreeLast(pCrsr, &res);
|
| + pC->nullRow = (u8)res;
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| +#ifdef SQLITE_DEBUG
|
| + pC->seekOp = OP_Last;
|
| +#endif
|
| + if( pOp->p2>0 ){
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res ) pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +
|
| +/* Opcode: Sort P1 P2 * * *
|
| +**
|
| +** This opcode does exactly the same thing as OP_Rewind except that
|
| +** it increments an undocumented global variable used for testing.
|
| +**
|
| +** Sorting is accomplished by writing records into a sorting index,
|
| +** then rewinding that index and playing it back from beginning to
|
| +** end. We use the OP_Sort opcode instead of OP_Rewind to do the
|
| +** rewinding so that the global variable will be incremented and
|
| +** regression tests can determine whether or not the optimizer is
|
| +** correctly optimizing out sorts.
|
| +*/
|
| +case OP_SorterSort: /* jump */
|
| +case OP_Sort: { /* jump */
|
| +#ifdef SQLITE_TEST
|
| + sqlite3_sort_count++;
|
| + sqlite3_search_count--;
|
| +#endif
|
| + p->aCounter[SQLITE_STMTSTATUS_SORT]++;
|
| + /* Fall through into OP_Rewind */
|
| +}
|
| +/* Opcode: Rewind P1 P2 * * *
|
| +**
|
| +** The next use of the Rowid or Column or Next instruction for P1
|
| +** will refer to the first entry in the database table or index.
|
| +** If the table or index is empty and P2>0, then jump immediately to P2.
|
| +** If P2 is 0 or if the table or index is not empty, fall through
|
| +** to the following instruction.
|
| +**
|
| +** This opcode leaves the cursor configured to move in forward order,
|
| +** from the beginning toward the end. In other words, the cursor is
|
| +** configured to use Next, not Prev.
|
| +*/
|
| +case OP_Rewind: { /* jump */
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + int res;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
|
| + res = 1;
|
| +#ifdef SQLITE_DEBUG
|
| + pC->seekOp = OP_Rewind;
|
| +#endif
|
| + if( isSorter(pC) ){
|
| + rc = sqlite3VdbeSorterRewind(pC, &res);
|
| + }else{
|
| + pCrsr = pC->pCursor;
|
| + assert( pCrsr );
|
| + rc = sqlite3BtreeFirst(pCrsr, &res);
|
| + pC->deferredMoveto = 0;
|
| + pC->cacheStatus = CACHE_STALE;
|
| + }
|
| + pC->nullRow = (u8)res;
|
| + assert( pOp->p2>0 && pOp->p2<p->nOp );
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Next P1 P2 P3 P4 P5
|
| +**
|
| +** Advance cursor P1 so that it points to the next key/data pair in its
|
| +** table or index. If there are no more key/value pairs then fall through
|
| +** to the following instruction. But if the cursor advance was successful,
|
| +** jump immediately to P2.
|
| +**
|
| +** The Next opcode is only valid following an SeekGT, SeekGE, or
|
| +** OP_Rewind opcode used to position the cursor. Next is not allowed
|
| +** to follow SeekLT, SeekLE, or OP_Last.
|
| +**
|
| +** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
|
| +** been opened prior to this opcode or the program will segfault.
|
| +**
|
| +** The P3 value is a hint to the btree implementation. If P3==1, that
|
| +** means P1 is an SQL index and that this instruction could have been
|
| +** omitted if that index had been unique. P3 is usually 0. P3 is
|
| +** always either 0 or 1.
|
| +**
|
| +** P4 is always of type P4_ADVANCE. The function pointer points to
|
| +** sqlite3BtreeNext().
|
| +**
|
| +** If P5 is positive and the jump is taken, then event counter
|
| +** number P5-1 in the prepared statement is incremented.
|
| +**
|
| +** See also: Prev, NextIfOpen
|
| +*/
|
| +/* Opcode: NextIfOpen P1 P2 P3 P4 P5
|
| +**
|
| +** This opcode works just like Next except that if cursor P1 is not
|
| +** open it behaves a no-op.
|
| +*/
|
| +/* Opcode: Prev P1 P2 P3 P4 P5
|
| +**
|
| +** Back up cursor P1 so that it points to the previous key/data pair in its
|
| +** table or index. If there is no previous key/value pairs then fall through
|
| +** to the following instruction. But if the cursor backup was successful,
|
| +** jump immediately to P2.
|
| +**
|
| +**
|
| +** The Prev opcode is only valid following an SeekLT, SeekLE, or
|
| +** OP_Last opcode used to position the cursor. Prev is not allowed
|
| +** to follow SeekGT, SeekGE, or OP_Rewind.
|
| +**
|
| +** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
|
| +** not open then the behavior is undefined.
|
| +**
|
| +** The P3 value is a hint to the btree implementation. If P3==1, that
|
| +** means P1 is an SQL index and that this instruction could have been
|
| +** omitted if that index had been unique. P3 is usually 0. P3 is
|
| +** always either 0 or 1.
|
| +**
|
| +** P4 is always of type P4_ADVANCE. The function pointer points to
|
| +** sqlite3BtreePrevious().
|
| +**
|
| +** If P5 is positive and the jump is taken, then event counter
|
| +** number P5-1 in the prepared statement is incremented.
|
| +*/
|
| +/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
|
| +**
|
| +** This opcode works just like Prev except that if cursor P1 is not
|
| +** open it behaves a no-op.
|
| +*/
|
| +case OP_SorterNext: { /* jump */
|
| + VdbeCursor *pC;
|
| + int res;
|
| +
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( isSorter(pC) );
|
| + res = 0;
|
| + rc = sqlite3VdbeSorterNext(db, pC, &res);
|
| + goto next_tail;
|
| +case OP_PrevIfOpen: /* jump */
|
| +case OP_NextIfOpen: /* jump */
|
| + if( p->apCsr[pOp->p1]==0 ) break;
|
| + /* Fall through */
|
| +case OP_Prev: /* jump */
|
| +case OP_Next: /* jump */
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + assert( pOp->p5<ArraySize(p->aCounter) );
|
| + pC = p->apCsr[pOp->p1];
|
| + res = pOp->p3;
|
| + assert( pC!=0 );
|
| + assert( pC->deferredMoveto==0 );
|
| + assert( pC->pCursor );
|
| + assert( res==0 || (res==1 && pC->isTable==0) );
|
| + testcase( res==1 );
|
| + assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
|
| + assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
|
| + assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
|
| + assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
|
| +
|
| + /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
|
| + ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
|
| + assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
|
| + || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
|
| + || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
|
| + assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
|
| + || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
|
| + || pC->seekOp==OP_Last );
|
| +
|
| + rc = pOp->p4.xAdvance(pC->pCursor, &res);
|
| +next_tail:
|
| + pC->cacheStatus = CACHE_STALE;
|
| + VdbeBranchTaken(res==0,2);
|
| + if( res==0 ){
|
| + pC->nullRow = 0;
|
| + pc = pOp->p2 - 1;
|
| + p->aCounter[pOp->p5]++;
|
| +#ifdef SQLITE_TEST
|
| + sqlite3_search_count++;
|
| +#endif
|
| + }else{
|
| + pC->nullRow = 1;
|
| + }
|
| + goto check_for_interrupt;
|
| +}
|
| +
|
| +/* Opcode: IdxInsert P1 P2 P3 * P5
|
| +** Synopsis: key=r[P2]
|
| +**
|
| +** Register P2 holds an SQL index key made using the
|
| +** MakeRecord instructions. This opcode writes that key
|
| +** into the index P1. Data for the entry is nil.
|
| +**
|
| +** P3 is a flag that provides a hint to the b-tree layer that this
|
| +** insert is likely to be an append.
|
| +**
|
| +** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
|
| +** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
|
| +** then the change counter is unchanged.
|
| +**
|
| +** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
|
| +** just done a seek to the spot where the new entry is to be inserted.
|
| +** This flag avoids doing an extra seek.
|
| +**
|
| +** This instruction only works for indices. The equivalent instruction
|
| +** for tables is OP_Insert.
|
| +*/
|
| +case OP_SorterInsert: /* in2 */
|
| +case OP_IdxInsert: { /* in2 */
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + int nKey;
|
| + const char *zKey;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
|
| + pIn2 = &aMem[pOp->p2];
|
| + assert( pIn2->flags & MEM_Blob );
|
| + pCrsr = pC->pCursor;
|
| + if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
|
| + assert( pCrsr!=0 );
|
| + assert( pC->isTable==0 );
|
| + rc = ExpandBlob(pIn2);
|
| + if( rc==SQLITE_OK ){
|
| + if( isSorter(pC) ){
|
| + rc = sqlite3VdbeSorterWrite(pC, pIn2);
|
| + }else{
|
| + nKey = pIn2->n;
|
| + zKey = pIn2->z;
|
| + rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
|
| + ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
|
| + );
|
| + assert( pC->deferredMoveto==0 );
|
| + pC->cacheStatus = CACHE_STALE;
|
| + }
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IdxDelete P1 P2 P3 * *
|
| +** Synopsis: key=r[P2@P3]
|
| +**
|
| +** The content of P3 registers starting at register P2 form
|
| +** an unpacked index key. This opcode removes that entry from the
|
| +** index opened by cursor P1.
|
| +*/
|
| +case OP_IdxDelete: {
|
| + VdbeCursor *pC;
|
| + BtCursor *pCrsr;
|
| + int res;
|
| + UnpackedRecord r;
|
| +
|
| + assert( pOp->p3>0 );
|
| + assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + pCrsr = pC->pCursor;
|
| + assert( pCrsr!=0 );
|
| + assert( pOp->p5==0 );
|
| + r.pKeyInfo = pC->pKeyInfo;
|
| + r.nField = (u16)pOp->p3;
|
| + r.default_rc = 0;
|
| + r.aMem = &aMem[pOp->p2];
|
| +#ifdef SQLITE_DEBUG
|
| + { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
| +#endif
|
| + rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
|
| + if( rc==SQLITE_OK && res==0 ){
|
| + rc = sqlite3BtreeDelete(pCrsr);
|
| + }
|
| + assert( pC->deferredMoveto==0 );
|
| + pC->cacheStatus = CACHE_STALE;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IdxRowid P1 P2 * * *
|
| +** Synopsis: r[P2]=rowid
|
| +**
|
| +** Write into register P2 an integer which is the last entry in the record at
|
| +** the end of the index key pointed to by cursor P1. This integer should be
|
| +** the rowid of the table entry to which this index entry points.
|
| +**
|
| +** See also: Rowid, MakeRecord.
|
| +*/
|
| +case OP_IdxRowid: { /* out2-prerelease */
|
| + BtCursor *pCrsr;
|
| + VdbeCursor *pC;
|
| + i64 rowid;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + pCrsr = pC->pCursor;
|
| + assert( pCrsr!=0 );
|
| + pOut->flags = MEM_Null;
|
| + assert( pC->isTable==0 );
|
| + assert( pC->deferredMoveto==0 );
|
| +
|
| + /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
|
| + ** out from under the cursor. That will never happend for an IdxRowid
|
| + ** opcode, hence the NEVER() arround the check of the return value.
|
| + */
|
| + rc = sqlite3VdbeCursorRestore(pC);
|
| + if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
|
| +
|
| + if( !pC->nullRow ){
|
| + rowid = 0; /* Not needed. Only used to silence a warning. */
|
| + rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
|
| + if( rc!=SQLITE_OK ){
|
| + goto abort_due_to_error;
|
| + }
|
| + pOut->u.i = rowid;
|
| + pOut->flags = MEM_Int;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IdxGE P1 P2 P3 P4 P5
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** The P4 register values beginning with P3 form an unpacked index
|
| +** key that omits the PRIMARY KEY. Compare this key value against the index
|
| +** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
|
| +** fields at the end.
|
| +**
|
| +** If the P1 index entry is greater than or equal to the key value
|
| +** then jump to P2. Otherwise fall through to the next instruction.
|
| +*/
|
| +/* Opcode: IdxGT P1 P2 P3 P4 P5
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** The P4 register values beginning with P3 form an unpacked index
|
| +** key that omits the PRIMARY KEY. Compare this key value against the index
|
| +** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
|
| +** fields at the end.
|
| +**
|
| +** If the P1 index entry is greater than the key value
|
| +** then jump to P2. Otherwise fall through to the next instruction.
|
| +*/
|
| +/* Opcode: IdxLT P1 P2 P3 P4 P5
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** The P4 register values beginning with P3 form an unpacked index
|
| +** key that omits the PRIMARY KEY or ROWID. Compare this key value against
|
| +** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
|
| +** ROWID on the P1 index.
|
| +**
|
| +** If the P1 index entry is less than the key value then jump to P2.
|
| +** Otherwise fall through to the next instruction.
|
| +*/
|
| +/* Opcode: IdxLE P1 P2 P3 P4 P5
|
| +** Synopsis: key=r[P3@P4]
|
| +**
|
| +** The P4 register values beginning with P3 form an unpacked index
|
| +** key that omits the PRIMARY KEY or ROWID. Compare this key value against
|
| +** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
|
| +** ROWID on the P1 index.
|
| +**
|
| +** If the P1 index entry is less than or equal to the key value then jump
|
| +** to P2. Otherwise fall through to the next instruction.
|
| +*/
|
| +case OP_IdxLE: /* jump */
|
| +case OP_IdxGT: /* jump */
|
| +case OP_IdxLT: /* jump */
|
| +case OP_IdxGE: { /* jump */
|
| + VdbeCursor *pC;
|
| + int res;
|
| + UnpackedRecord r;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + assert( pC->isOrdered );
|
| + assert( pC->pCursor!=0);
|
| + assert( pC->deferredMoveto==0 );
|
| + assert( pOp->p5==0 || pOp->p5==1 );
|
| + assert( pOp->p4type==P4_INT32 );
|
| + r.pKeyInfo = pC->pKeyInfo;
|
| + r.nField = (u16)pOp->p4.i;
|
| + if( pOp->opcode<OP_IdxLT ){
|
| + assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
|
| + r.default_rc = -1;
|
| + }else{
|
| + assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
|
| + r.default_rc = 0;
|
| + }
|
| + r.aMem = &aMem[pOp->p3];
|
| +#ifdef SQLITE_DEBUG
|
| + { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
|
| +#endif
|
| + res = 0; /* Not needed. Only used to silence a warning. */
|
| + rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
|
| + assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
|
| + if( (pOp->opcode&1)==(OP_IdxLT&1) ){
|
| + assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
|
| + res = -res;
|
| + }else{
|
| + assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
|
| + res++;
|
| + }
|
| + VdbeBranchTaken(res>0,2);
|
| + if( res>0 ){
|
| + pc = pOp->p2 - 1 ;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Destroy P1 P2 P3 * *
|
| +**
|
| +** Delete an entire database table or index whose root page in the database
|
| +** file is given by P1.
|
| +**
|
| +** The table being destroyed is in the main database file if P3==0. If
|
| +** P3==1 then the table to be clear is in the auxiliary database file
|
| +** that is used to store tables create using CREATE TEMPORARY TABLE.
|
| +**
|
| +** If AUTOVACUUM is enabled then it is possible that another root page
|
| +** might be moved into the newly deleted root page in order to keep all
|
| +** root pages contiguous at the beginning of the database. The former
|
| +** value of the root page that moved - its value before the move occurred -
|
| +** is stored in register P2. If no page
|
| +** movement was required (because the table being dropped was already
|
| +** the last one in the database) then a zero is stored in register P2.
|
| +** If AUTOVACUUM is disabled then a zero is stored in register P2.
|
| +**
|
| +** See also: Clear
|
| +*/
|
| +case OP_Destroy: { /* out2-prerelease */
|
| + int iMoved;
|
| + int iCnt;
|
| + Vdbe *pVdbe;
|
| + int iDb;
|
| +
|
| + assert( p->readOnly==0 );
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + iCnt = 0;
|
| + for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
|
| + if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
|
| + && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
|
| + ){
|
| + iCnt++;
|
| + }
|
| + }
|
| +#else
|
| + iCnt = db->nVdbeRead;
|
| +#endif
|
| + pOut->flags = MEM_Null;
|
| + if( iCnt>1 ){
|
| + rc = SQLITE_LOCKED;
|
| + p->errorAction = OE_Abort;
|
| + }else{
|
| + iDb = pOp->p3;
|
| + assert( iCnt==1 );
|
| + assert( DbMaskTest(p->btreeMask, iDb) );
|
| + iMoved = 0; /* Not needed. Only to silence a warning. */
|
| + rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
|
| + pOut->flags = MEM_Int;
|
| + pOut->u.i = iMoved;
|
| +#ifndef SQLITE_OMIT_AUTOVACUUM
|
| + if( rc==SQLITE_OK && iMoved!=0 ){
|
| + sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
|
| + /* All OP_Destroy operations occur on the same btree */
|
| + assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
|
| + resetSchemaOnFault = iDb+1;
|
| + }
|
| +#endif
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Clear P1 P2 P3
|
| +**
|
| +** Delete all contents of the database table or index whose root page
|
| +** in the database file is given by P1. But, unlike Destroy, do not
|
| +** remove the table or index from the database file.
|
| +**
|
| +** The table being clear is in the main database file if P2==0. If
|
| +** P2==1 then the table to be clear is in the auxiliary database file
|
| +** that is used to store tables create using CREATE TEMPORARY TABLE.
|
| +**
|
| +** If the P3 value is non-zero, then the table referred to must be an
|
| +** intkey table (an SQL table, not an index). In this case the row change
|
| +** count is incremented by the number of rows in the table being cleared.
|
| +** If P3 is greater than zero, then the value stored in register P3 is
|
| +** also incremented by the number of rows in the table being cleared.
|
| +**
|
| +** See also: Destroy
|
| +*/
|
| +case OP_Clear: {
|
| + int nChange;
|
| +
|
| + nChange = 0;
|
| + assert( p->readOnly==0 );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p2) );
|
| + rc = sqlite3BtreeClearTable(
|
| + db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
|
| + );
|
| + if( pOp->p3 ){
|
| + p->nChange += nChange;
|
| + if( pOp->p3>0 ){
|
| + assert( memIsValid(&aMem[pOp->p3]) );
|
| + memAboutToChange(p, &aMem[pOp->p3]);
|
| + aMem[pOp->p3].u.i += nChange;
|
| + }
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: ResetSorter P1 * * * *
|
| +**
|
| +** Delete all contents from the ephemeral table or sorter
|
| +** that is open on cursor P1.
|
| +**
|
| +** This opcode only works for cursors used for sorting and
|
| +** opened with OP_OpenEphemeral or OP_SorterOpen.
|
| +*/
|
| +case OP_ResetSorter: {
|
| + VdbeCursor *pC;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<p->nCursor );
|
| + pC = p->apCsr[pOp->p1];
|
| + assert( pC!=0 );
|
| + if( pC->pSorter ){
|
| + sqlite3VdbeSorterReset(db, pC->pSorter);
|
| + }else{
|
| + assert( pC->isEphemeral );
|
| + rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: CreateTable P1 P2 * * *
|
| +** Synopsis: r[P2]=root iDb=P1
|
| +**
|
| +** Allocate a new table in the main database file if P1==0 or in the
|
| +** auxiliary database file if P1==1 or in an attached database if
|
| +** P1>1. Write the root page number of the new table into
|
| +** register P2
|
| +**
|
| +** The difference between a table and an index is this: A table must
|
| +** have a 4-byte integer key and can have arbitrary data. An index
|
| +** has an arbitrary key but no data.
|
| +**
|
| +** See also: CreateIndex
|
| +*/
|
| +/* Opcode: CreateIndex P1 P2 * * *
|
| +** Synopsis: r[P2]=root iDb=P1
|
| +**
|
| +** Allocate a new index in the main database file if P1==0 or in the
|
| +** auxiliary database file if P1==1 or in an attached database if
|
| +** P1>1. Write the root page number of the new table into
|
| +** register P2.
|
| +**
|
| +** See documentation on OP_CreateTable for additional information.
|
| +*/
|
| +case OP_CreateIndex: /* out2-prerelease */
|
| +case OP_CreateTable: { /* out2-prerelease */
|
| + int pgno;
|
| + int flags;
|
| + Db *pDb;
|
| +
|
| + pgno = 0;
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
| + assert( p->readOnly==0 );
|
| + pDb = &db->aDb[pOp->p1];
|
| + assert( pDb->pBt!=0 );
|
| + if( pOp->opcode==OP_CreateTable ){
|
| + /* flags = BTREE_INTKEY; */
|
| + flags = BTREE_INTKEY;
|
| + }else{
|
| + flags = BTREE_BLOBKEY;
|
| + }
|
| + rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
|
| + pOut->u.i = pgno;
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: ParseSchema P1 * * P4 *
|
| +**
|
| +** Read and parse all entries from the SQLITE_MASTER table of database P1
|
| +** that match the WHERE clause P4.
|
| +**
|
| +** This opcode invokes the parser to create a new virtual machine,
|
| +** then runs the new virtual machine. It is thus a re-entrant opcode.
|
| +*/
|
| +case OP_ParseSchema: {
|
| + int iDb;
|
| + const char *zMaster;
|
| + char *zSql;
|
| + InitData initData;
|
| +
|
| + /* Any prepared statement that invokes this opcode will hold mutexes
|
| + ** on every btree. This is a prerequisite for invoking
|
| + ** sqlite3InitCallback().
|
| + */
|
| +#ifdef SQLITE_DEBUG
|
| + for(iDb=0; iDb<db->nDb; iDb++){
|
| + assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
| + }
|
| +#endif
|
| +
|
| + iDb = pOp->p1;
|
| + assert( iDb>=0 && iDb<db->nDb );
|
| + assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
|
| + /* Used to be a conditional */ {
|
| + zMaster = SCHEMA_TABLE(iDb);
|
| + initData.db = db;
|
| + initData.iDb = pOp->p1;
|
| + initData.pzErrMsg = &p->zErrMsg;
|
| + zSql = sqlite3MPrintf(db,
|
| + "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
|
| + db->aDb[iDb].zName, zMaster, pOp->p4.z);
|
| + if( zSql==0 ){
|
| + rc = SQLITE_NOMEM;
|
| + }else{
|
| + assert( db->init.busy==0 );
|
| + db->init.busy = 1;
|
| + initData.rc = SQLITE_OK;
|
| + assert( !db->mallocFailed );
|
| + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
| + if( rc==SQLITE_OK ) rc = initData.rc;
|
| + sqlite3DbFree(db, zSql);
|
| + db->init.busy = 0;
|
| + }
|
| + }
|
| + if( rc ) sqlite3ResetAllSchemasOfConnection(db);
|
| + if( rc==SQLITE_NOMEM ){
|
| + goto no_mem;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +#if !defined(SQLITE_OMIT_ANALYZE)
|
| +/* Opcode: LoadAnalysis P1 * * * *
|
| +**
|
| +** Read the sqlite_stat1 table for database P1 and load the content
|
| +** of that table into the internal index hash table. This will cause
|
| +** the analysis to be used when preparing all subsequent queries.
|
| +*/
|
| +case OP_LoadAnalysis: {
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + rc = sqlite3AnalysisLoad(db, pOp->p1);
|
| + break;
|
| +}
|
| +#endif /* !defined(SQLITE_OMIT_ANALYZE) */
|
| +
|
| +/* Opcode: DropTable P1 * * P4 *
|
| +**
|
| +** Remove the internal (in-memory) data structures that describe
|
| +** the table named P4 in database P1. This is called after a table
|
| +** is dropped from disk (using the Destroy opcode) in order to keep
|
| +** the internal representation of the
|
| +** schema consistent with what is on disk.
|
| +*/
|
| +case OP_DropTable: {
|
| + sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: DropIndex P1 * * P4 *
|
| +**
|
| +** Remove the internal (in-memory) data structures that describe
|
| +** the index named P4 in database P1. This is called after an index
|
| +** is dropped from disk (using the Destroy opcode)
|
| +** in order to keep the internal representation of the
|
| +** schema consistent with what is on disk.
|
| +*/
|
| +case OP_DropIndex: {
|
| + sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: DropTrigger P1 * * P4 *
|
| +**
|
| +** Remove the internal (in-memory) data structures that describe
|
| +** the trigger named P4 in database P1. This is called after a trigger
|
| +** is dropped from disk (using the Destroy opcode) in order to keep
|
| +** the internal representation of the
|
| +** schema consistent with what is on disk.
|
| +*/
|
| +case OP_DropTrigger: {
|
| + sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
|
| + break;
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
| +/* Opcode: IntegrityCk P1 P2 P3 * P5
|
| +**
|
| +** Do an analysis of the currently open database. Store in
|
| +** register P1 the text of an error message describing any problems.
|
| +** If no problems are found, store a NULL in register P1.
|
| +**
|
| +** The register P3 contains the maximum number of allowed errors.
|
| +** At most reg(P3) errors will be reported.
|
| +** In other words, the analysis stops as soon as reg(P1) errors are
|
| +** seen. Reg(P1) is updated with the number of errors remaining.
|
| +**
|
| +** The root page numbers of all tables in the database are integer
|
| +** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
|
| +** total.
|
| +**
|
| +** If P5 is not zero, the check is done on the auxiliary database
|
| +** file, not the main database file.
|
| +**
|
| +** This opcode is used to implement the integrity_check pragma.
|
| +*/
|
| +case OP_IntegrityCk: {
|
| + int nRoot; /* Number of tables to check. (Number of root pages.) */
|
| + int *aRoot; /* Array of rootpage numbers for tables to be checked */
|
| + int j; /* Loop counter */
|
| + int nErr; /* Number of errors reported */
|
| + char *z; /* Text of the error report */
|
| + Mem *pnErr; /* Register keeping track of errors remaining */
|
| +
|
| + assert( p->bIsReader );
|
| + nRoot = pOp->p2;
|
| + assert( nRoot>0 );
|
| + aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
|
| + if( aRoot==0 ) goto no_mem;
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + pnErr = &aMem[pOp->p3];
|
| + assert( (pnErr->flags & MEM_Int)!=0 );
|
| + assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
|
| + pIn1 = &aMem[pOp->p1];
|
| + for(j=0; j<nRoot; j++){
|
| + aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
|
| + }
|
| + aRoot[j] = 0;
|
| + assert( pOp->p5<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p5) );
|
| + z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
|
| + (int)pnErr->u.i, &nErr);
|
| + sqlite3DbFree(db, aRoot);
|
| + pnErr->u.i -= nErr;
|
| + sqlite3VdbeMemSetNull(pIn1);
|
| + if( nErr==0 ){
|
| + assert( z==0 );
|
| + }else if( z==0 ){
|
| + goto no_mem;
|
| + }else{
|
| + sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
|
| + }
|
| + UPDATE_MAX_BLOBSIZE(pIn1);
|
| + sqlite3VdbeChangeEncoding(pIn1, encoding);
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
| +
|
| +/* Opcode: RowSetAdd P1 P2 * * *
|
| +** Synopsis: rowset(P1)=r[P2]
|
| +**
|
| +** Insert the integer value held by register P2 into a boolean index
|
| +** held in register P1.
|
| +**
|
| +** An assertion fails if P2 is not an integer.
|
| +*/
|
| +case OP_RowSetAdd: { /* in1, in2 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + pIn2 = &aMem[pOp->p2];
|
| + assert( (pIn2->flags & MEM_Int)!=0 );
|
| + if( (pIn1->flags & MEM_RowSet)==0 ){
|
| + sqlite3VdbeMemSetRowSet(pIn1);
|
| + if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
|
| + }
|
| + sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: RowSetRead P1 P2 P3 * *
|
| +** Synopsis: r[P3]=rowset(P1)
|
| +**
|
| +** Extract the smallest value from boolean index P1 and put that value into
|
| +** register P3. Or, if boolean index P1 is initially empty, leave P3
|
| +** unchanged and jump to instruction P2.
|
| +*/
|
| +case OP_RowSetRead: { /* jump, in1, out3 */
|
| + i64 val;
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + if( (pIn1->flags & MEM_RowSet)==0
|
| + || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
|
| + ){
|
| + /* The boolean index is empty */
|
| + sqlite3VdbeMemSetNull(pIn1);
|
| + pc = pOp->p2 - 1;
|
| + VdbeBranchTaken(1,2);
|
| + }else{
|
| + /* A value was pulled from the index */
|
| + sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
|
| + VdbeBranchTaken(0,2);
|
| + }
|
| + goto check_for_interrupt;
|
| +}
|
| +
|
| +/* Opcode: RowSetTest P1 P2 P3 P4
|
| +** Synopsis: if r[P3] in rowset(P1) goto P2
|
| +**
|
| +** Register P3 is assumed to hold a 64-bit integer value. If register P1
|
| +** contains a RowSet object and that RowSet object contains
|
| +** the value held in P3, jump to register P2. Otherwise, insert the
|
| +** integer in P3 into the RowSet and continue on to the
|
| +** next opcode.
|
| +**
|
| +** The RowSet object is optimized for the case where successive sets
|
| +** of integers, where each set contains no duplicates. Each set
|
| +** of values is identified by a unique P4 value. The first set
|
| +** must have P4==0, the final set P4=-1. P4 must be either -1 or
|
| +** non-negative. For non-negative values of P4 only the lower 4
|
| +** bits are significant.
|
| +**
|
| +** This allows optimizations: (a) when P4==0 there is no need to test
|
| +** the rowset object for P3, as it is guaranteed not to contain it,
|
| +** (b) when P4==-1 there is no need to insert the value, as it will
|
| +** never be tested for, and (c) when a value that is part of set X is
|
| +** inserted, there is no need to search to see if the same value was
|
| +** previously inserted as part of set X (only if it was previously
|
| +** inserted as part of some other set).
|
| +*/
|
| +case OP_RowSetTest: { /* jump, in1, in3 */
|
| + int iSet;
|
| + int exists;
|
| +
|
| + pIn1 = &aMem[pOp->p1];
|
| + pIn3 = &aMem[pOp->p3];
|
| + iSet = pOp->p4.i;
|
| + assert( pIn3->flags&MEM_Int );
|
| +
|
| + /* If there is anything other than a rowset object in memory cell P1,
|
| + ** delete it now and initialize P1 with an empty rowset
|
| + */
|
| + if( (pIn1->flags & MEM_RowSet)==0 ){
|
| + sqlite3VdbeMemSetRowSet(pIn1);
|
| + if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
|
| + }
|
| +
|
| + assert( pOp->p4type==P4_INT32 );
|
| + assert( iSet==-1 || iSet>=0 );
|
| + if( iSet ){
|
| + exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
|
| + VdbeBranchTaken(exists!=0,2);
|
| + if( exists ){
|
| + pc = pOp->p2 - 1;
|
| + break;
|
| + }
|
| + }
|
| + if( iSet>=0 ){
|
| + sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
|
| + }
|
| + break;
|
| +}
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| +
|
| +/* Opcode: Program P1 P2 P3 P4 P5
|
| +**
|
| +** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
|
| +**
|
| +** P1 contains the address of the memory cell that contains the first memory
|
| +** cell in an array of values used as arguments to the sub-program. P2
|
| +** contains the address to jump to if the sub-program throws an IGNORE
|
| +** exception using the RAISE() function. Register P3 contains the address
|
| +** of a memory cell in this (the parent) VM that is used to allocate the
|
| +** memory required by the sub-vdbe at runtime.
|
| +**
|
| +** P4 is a pointer to the VM containing the trigger program.
|
| +**
|
| +** If P5 is non-zero, then recursive program invocation is enabled.
|
| +*/
|
| +case OP_Program: { /* jump */
|
| + int nMem; /* Number of memory registers for sub-program */
|
| + int nByte; /* Bytes of runtime space required for sub-program */
|
| + Mem *pRt; /* Register to allocate runtime space */
|
| + Mem *pMem; /* Used to iterate through memory cells */
|
| + Mem *pEnd; /* Last memory cell in new array */
|
| + VdbeFrame *pFrame; /* New vdbe frame to execute in */
|
| + SubProgram *pProgram; /* Sub-program to execute */
|
| + void *t; /* Token identifying trigger */
|
| +
|
| + pProgram = pOp->p4.pProgram;
|
| + pRt = &aMem[pOp->p3];
|
| + assert( pProgram->nOp>0 );
|
| +
|
| + /* If the p5 flag is clear, then recursive invocation of triggers is
|
| + ** disabled for backwards compatibility (p5 is set if this sub-program
|
| + ** is really a trigger, not a foreign key action, and the flag set
|
| + ** and cleared by the "PRAGMA recursive_triggers" command is clear).
|
| + **
|
| + ** It is recursive invocation of triggers, at the SQL level, that is
|
| + ** disabled. In some cases a single trigger may generate more than one
|
| + ** SubProgram (if the trigger may be executed with more than one different
|
| + ** ON CONFLICT algorithm). SubProgram structures associated with a
|
| + ** single trigger all have the same value for the SubProgram.token
|
| + ** variable. */
|
| + if( pOp->p5 ){
|
| + t = pProgram->token;
|
| + for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
|
| + if( pFrame ) break;
|
| + }
|
| +
|
| + if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
|
| + rc = SQLITE_ERROR;
|
| + sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
|
| + break;
|
| + }
|
| +
|
| + /* Register pRt is used to store the memory required to save the state
|
| + ** of the current program, and the memory required at runtime to execute
|
| + ** the trigger program. If this trigger has been fired before, then pRt
|
| + ** is already allocated. Otherwise, it must be initialized. */
|
| + if( (pRt->flags&MEM_Frame)==0 ){
|
| + /* SubProgram.nMem is set to the number of memory cells used by the
|
| + ** program stored in SubProgram.aOp. As well as these, one memory
|
| + ** cell is required for each cursor used by the program. Set local
|
| + ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
|
| + */
|
| + nMem = pProgram->nMem + pProgram->nCsr;
|
| + nByte = ROUND8(sizeof(VdbeFrame))
|
| + + nMem * sizeof(Mem)
|
| + + pProgram->nCsr * sizeof(VdbeCursor *)
|
| + + pProgram->nOnce * sizeof(u8);
|
| + pFrame = sqlite3DbMallocZero(db, nByte);
|
| + if( !pFrame ){
|
| + goto no_mem;
|
| + }
|
| + sqlite3VdbeMemRelease(pRt);
|
| + pRt->flags = MEM_Frame;
|
| + pRt->u.pFrame = pFrame;
|
| +
|
| + pFrame->v = p;
|
| + pFrame->nChildMem = nMem;
|
| + pFrame->nChildCsr = pProgram->nCsr;
|
| + pFrame->pc = pc;
|
| + pFrame->aMem = p->aMem;
|
| + pFrame->nMem = p->nMem;
|
| + pFrame->apCsr = p->apCsr;
|
| + pFrame->nCursor = p->nCursor;
|
| + pFrame->aOp = p->aOp;
|
| + pFrame->nOp = p->nOp;
|
| + pFrame->token = pProgram->token;
|
| + pFrame->aOnceFlag = p->aOnceFlag;
|
| + pFrame->nOnceFlag = p->nOnceFlag;
|
| +
|
| + pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
|
| + for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
|
| + pMem->flags = MEM_Undefined;
|
| + pMem->db = db;
|
| + }
|
| + }else{
|
| + pFrame = pRt->u.pFrame;
|
| + assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
|
| + assert( pProgram->nCsr==pFrame->nChildCsr );
|
| + assert( pc==pFrame->pc );
|
| + }
|
| +
|
| + p->nFrame++;
|
| + pFrame->pParent = p->pFrame;
|
| + pFrame->lastRowid = lastRowid;
|
| + pFrame->nChange = p->nChange;
|
| + p->nChange = 0;
|
| + p->pFrame = pFrame;
|
| + p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
|
| + p->nMem = pFrame->nChildMem;
|
| + p->nCursor = (u16)pFrame->nChildCsr;
|
| + p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
|
| + p->aOp = aOp = pProgram->aOp;
|
| + p->nOp = pProgram->nOp;
|
| + p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
|
| + p->nOnceFlag = pProgram->nOnce;
|
| + pc = -1;
|
| + memset(p->aOnceFlag, 0, p->nOnceFlag);
|
| +
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: Param P1 P2 * * *
|
| +**
|
| +** This opcode is only ever present in sub-programs called via the
|
| +** OP_Program instruction. Copy a value currently stored in a memory
|
| +** cell of the calling (parent) frame to cell P2 in the current frames
|
| +** address space. This is used by trigger programs to access the new.*
|
| +** and old.* values.
|
| +**
|
| +** The address of the cell in the parent frame is determined by adding
|
| +** the value of the P1 argument to the value of the P1 argument to the
|
| +** calling OP_Program instruction.
|
| +*/
|
| +case OP_Param: { /* out2-prerelease */
|
| + VdbeFrame *pFrame;
|
| + Mem *pIn;
|
| + pFrame = p->pFrame;
|
| + pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
|
| + sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
|
| + break;
|
| +}
|
| +
|
| +#endif /* #ifndef SQLITE_OMIT_TRIGGER */
|
| +
|
| +#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| +/* Opcode: FkCounter P1 P2 * * *
|
| +** Synopsis: fkctr[P1]+=P2
|
| +**
|
| +** Increment a "constraint counter" by P2 (P2 may be negative or positive).
|
| +** If P1 is non-zero, the database constraint counter is incremented
|
| +** (deferred foreign key constraints). Otherwise, if P1 is zero, the
|
| +** statement counter is incremented (immediate foreign key constraints).
|
| +*/
|
| +case OP_FkCounter: {
|
| + if( db->flags & SQLITE_DeferFKs ){
|
| + db->nDeferredImmCons += pOp->p2;
|
| + }else if( pOp->p1 ){
|
| + db->nDeferredCons += pOp->p2;
|
| + }else{
|
| + p->nFkConstraint += pOp->p2;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: FkIfZero P1 P2 * * *
|
| +** Synopsis: if fkctr[P1]==0 goto P2
|
| +**
|
| +** This opcode tests if a foreign key constraint-counter is currently zero.
|
| +** If so, jump to instruction P2. Otherwise, fall through to the next
|
| +** instruction.
|
| +**
|
| +** If P1 is non-zero, then the jump is taken if the database constraint-counter
|
| +** is zero (the one that counts deferred constraint violations). If P1 is
|
| +** zero, the jump is taken if the statement constraint-counter is zero
|
| +** (immediate foreign key constraint violations).
|
| +*/
|
| +case OP_FkIfZero: { /* jump */
|
| + if( pOp->p1 ){
|
| + VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
|
| + if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
|
| + }else{
|
| + VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
|
| + if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
|
| + }
|
| + break;
|
| +}
|
| +#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| +/* Opcode: MemMax P1 P2 * * *
|
| +** Synopsis: r[P1]=max(r[P1],r[P2])
|
| +**
|
| +** P1 is a register in the root frame of this VM (the root frame is
|
| +** different from the current frame if this instruction is being executed
|
| +** within a sub-program). Set the value of register P1 to the maximum of
|
| +** its current value and the value in register P2.
|
| +**
|
| +** This instruction throws an error if the memory cell is not initially
|
| +** an integer.
|
| +*/
|
| +case OP_MemMax: { /* in2 */
|
| + VdbeFrame *pFrame;
|
| + if( p->pFrame ){
|
| + for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
| + pIn1 = &pFrame->aMem[pOp->p1];
|
| + }else{
|
| + pIn1 = &aMem[pOp->p1];
|
| + }
|
| + assert( memIsValid(pIn1) );
|
| + sqlite3VdbeMemIntegerify(pIn1);
|
| + pIn2 = &aMem[pOp->p2];
|
| + sqlite3VdbeMemIntegerify(pIn2);
|
| + if( pIn1->u.i<pIn2->u.i){
|
| + pIn1->u.i = pIn2->u.i;
|
| + }
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
| +
|
| +/* Opcode: IfPos P1 P2 * * *
|
| +** Synopsis: if r[P1]>0 goto P2
|
| +**
|
| +** If the value of register P1 is 1 or greater, jump to P2.
|
| +**
|
| +** It is illegal to use this instruction on a register that does
|
| +** not contain an integer. An assertion fault will result if you try.
|
| +*/
|
| +case OP_IfPos: { /* jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( pIn1->flags&MEM_Int );
|
| + VdbeBranchTaken( pIn1->u.i>0, 2);
|
| + if( pIn1->u.i>0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IfNeg P1 P2 P3 * *
|
| +** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
|
| +**
|
| +** Register P1 must contain an integer. Add literal P3 to the value in
|
| +** register P1 then if the value of register P1 is less than zero, jump to P2.
|
| +*/
|
| +case OP_IfNeg: { /* jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( pIn1->flags&MEM_Int );
|
| + pIn1->u.i += pOp->p3;
|
| + VdbeBranchTaken(pIn1->u.i<0, 2);
|
| + if( pIn1->u.i<0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: IfZero P1 P2 P3 * *
|
| +** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
|
| +**
|
| +** The register P1 must contain an integer. Add literal P3 to the
|
| +** value in register P1. If the result is exactly 0, jump to P2.
|
| +*/
|
| +case OP_IfZero: { /* jump, in1 */
|
| + pIn1 = &aMem[pOp->p1];
|
| + assert( pIn1->flags&MEM_Int );
|
| + pIn1->u.i += pOp->p3;
|
| + VdbeBranchTaken(pIn1->u.i==0, 2);
|
| + if( pIn1->u.i==0 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: AggStep * P2 P3 P4 P5
|
| +** Synopsis: accum=r[P3] step(r[P2@P5])
|
| +**
|
| +** Execute the step function for an aggregate. The
|
| +** function has P5 arguments. P4 is a pointer to the FuncDef
|
| +** structure that specifies the function. Use register
|
| +** P3 as the accumulator.
|
| +**
|
| +** The P5 arguments are taken from register P2 and its
|
| +** successors.
|
| +*/
|
| +case OP_AggStep: {
|
| + int n;
|
| + int i;
|
| + Mem *pMem;
|
| + Mem *pRec;
|
| + Mem t;
|
| + sqlite3_context ctx;
|
| + sqlite3_value **apVal;
|
| +
|
| + n = pOp->p5;
|
| + assert( n>=0 );
|
| + pRec = &aMem[pOp->p2];
|
| + apVal = p->apArg;
|
| + assert( apVal || n==0 );
|
| + for(i=0; i<n; i++, pRec++){
|
| + assert( memIsValid(pRec) );
|
| + apVal[i] = pRec;
|
| + memAboutToChange(p, pRec);
|
| + }
|
| + ctx.pFunc = pOp->p4.pFunc;
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + ctx.pMem = pMem = &aMem[pOp->p3];
|
| + pMem->n++;
|
| + sqlite3VdbeMemInit(&t, db, MEM_Null);
|
| + ctx.pOut = &t;
|
| + ctx.isError = 0;
|
| + ctx.pVdbe = p;
|
| + ctx.iOp = pc;
|
| + ctx.skipFlag = 0;
|
| + (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
|
| + if( ctx.isError ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
|
| + rc = ctx.isError;
|
| + }
|
| + if( ctx.skipFlag ){
|
| + assert( pOp[-1].opcode==OP_CollSeq );
|
| + i = pOp[-1].p1;
|
| + if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
|
| + }
|
| + sqlite3VdbeMemRelease(&t);
|
| + break;
|
| +}
|
| +
|
| +/* Opcode: AggFinal P1 P2 * P4 *
|
| +** Synopsis: accum=r[P1] N=P2
|
| +**
|
| +** Execute the finalizer function for an aggregate. P1 is
|
| +** the memory location that is the accumulator for the aggregate.
|
| +**
|
| +** P2 is the number of arguments that the step function takes and
|
| +** P4 is a pointer to the FuncDef for this function. The P2
|
| +** argument is not used by this opcode. It is only there to disambiguate
|
| +** functions that can take varying numbers of arguments. The
|
| +** P4 argument is only needed for the degenerate case where
|
| +** the step function was not previously called.
|
| +*/
|
| +case OP_AggFinal: {
|
| + Mem *pMem;
|
| + assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
|
| + pMem = &aMem[pOp->p1];
|
| + assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
|
| + rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
|
| + if( rc ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
|
| + }
|
| + sqlite3VdbeChangeEncoding(pMem, encoding);
|
| + UPDATE_MAX_BLOBSIZE(pMem);
|
| + if( sqlite3VdbeMemTooBig(pMem) ){
|
| + goto too_big;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_WAL
|
| +/* Opcode: Checkpoint P1 P2 P3 * *
|
| +**
|
| +** Checkpoint database P1. This is a no-op if P1 is not currently in
|
| +** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
|
| +** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
|
| +** SQLITE_BUSY or not, respectively. Write the number of pages in the
|
| +** WAL after the checkpoint into mem[P3+1] and the number of pages
|
| +** in the WAL that have been checkpointed after the checkpoint
|
| +** completes into mem[P3+2]. However on an error, mem[P3+1] and
|
| +** mem[P3+2] are initialized to -1.
|
| +*/
|
| +case OP_Checkpoint: {
|
| + int i; /* Loop counter */
|
| + int aRes[3]; /* Results */
|
| + Mem *pMem; /* Write results here */
|
| +
|
| + assert( p->readOnly==0 );
|
| + aRes[0] = 0;
|
| + aRes[1] = aRes[2] = -1;
|
| + assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
|
| + || pOp->p2==SQLITE_CHECKPOINT_FULL
|
| + || pOp->p2==SQLITE_CHECKPOINT_RESTART
|
| + );
|
| + rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
|
| + if( rc==SQLITE_BUSY ){
|
| + rc = SQLITE_OK;
|
| + aRes[0] = 1;
|
| + }
|
| + for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
|
| + sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
|
| + }
|
| + break;
|
| +};
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_PRAGMA
|
| +/* Opcode: JournalMode P1 P2 P3 * *
|
| +**
|
| +** Change the journal mode of database P1 to P3. P3 must be one of the
|
| +** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
|
| +** modes (delete, truncate, persist, off and memory), this is a simple
|
| +** operation. No IO is required.
|
| +**
|
| +** If changing into or out of WAL mode the procedure is more complicated.
|
| +**
|
| +** Write a string containing the final journal-mode to register P2.
|
| +*/
|
| +case OP_JournalMode: { /* out2-prerelease */
|
| + Btree *pBt; /* Btree to change journal mode of */
|
| + Pager *pPager; /* Pager associated with pBt */
|
| + int eNew; /* New journal mode */
|
| + int eOld; /* The old journal mode */
|
| +#ifndef SQLITE_OMIT_WAL
|
| + const char *zFilename; /* Name of database file for pPager */
|
| +#endif
|
| +
|
| + eNew = pOp->p3;
|
| + assert( eNew==PAGER_JOURNALMODE_DELETE
|
| + || eNew==PAGER_JOURNALMODE_TRUNCATE
|
| + || eNew==PAGER_JOURNALMODE_PERSIST
|
| + || eNew==PAGER_JOURNALMODE_OFF
|
| + || eNew==PAGER_JOURNALMODE_MEMORY
|
| + || eNew==PAGER_JOURNALMODE_WAL
|
| + || eNew==PAGER_JOURNALMODE_QUERY
|
| + );
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + assert( p->readOnly==0 );
|
| +
|
| + pBt = db->aDb[pOp->p1].pBt;
|
| + pPager = sqlite3BtreePager(pBt);
|
| + eOld = sqlite3PagerGetJournalMode(pPager);
|
| + if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
|
| + if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
|
| +
|
| +#ifndef SQLITE_OMIT_WAL
|
| + zFilename = sqlite3PagerFilename(pPager, 1);
|
| +
|
| + /* Do not allow a transition to journal_mode=WAL for a database
|
| + ** in temporary storage or if the VFS does not support shared memory
|
| + */
|
| + if( eNew==PAGER_JOURNALMODE_WAL
|
| + && (sqlite3Strlen30(zFilename)==0 /* Temp file */
|
| + || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
|
| + ){
|
| + eNew = eOld;
|
| + }
|
| +
|
| + if( (eNew!=eOld)
|
| + && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
|
| + ){
|
| + if( !db->autoCommit || db->nVdbeRead>1 ){
|
| + rc = SQLITE_ERROR;
|
| + sqlite3SetString(&p->zErrMsg, db,
|
| + "cannot change %s wal mode from within a transaction",
|
| + (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
|
| + );
|
| + break;
|
| + }else{
|
| +
|
| + if( eOld==PAGER_JOURNALMODE_WAL ){
|
| + /* If leaving WAL mode, close the log file. If successful, the call
|
| + ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
|
| + ** file. An EXCLUSIVE lock may still be held on the database file
|
| + ** after a successful return.
|
| + */
|
| + rc = sqlite3PagerCloseWal(pPager);
|
| + if( rc==SQLITE_OK ){
|
| + sqlite3PagerSetJournalMode(pPager, eNew);
|
| + }
|
| + }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
|
| + /* Cannot transition directly from MEMORY to WAL. Use mode OFF
|
| + ** as an intermediate */
|
| + sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
|
| + }
|
| +
|
| + /* Open a transaction on the database file. Regardless of the journal
|
| + ** mode, this transaction always uses a rollback journal.
|
| + */
|
| + assert( sqlite3BtreeIsInTrans(pBt)==0 );
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
|
| + }
|
| + }
|
| + }
|
| +#endif /* ifndef SQLITE_OMIT_WAL */
|
| +
|
| + if( rc ){
|
| + eNew = eOld;
|
| + }
|
| + eNew = sqlite3PagerSetJournalMode(pPager, eNew);
|
| +
|
| + pOut = &aMem[pOp->p2];
|
| + pOut->flags = MEM_Str|MEM_Static|MEM_Term;
|
| + pOut->z = (char *)sqlite3JournalModename(eNew);
|
| + pOut->n = sqlite3Strlen30(pOut->z);
|
| + pOut->enc = SQLITE_UTF8;
|
| + sqlite3VdbeChangeEncoding(pOut, encoding);
|
| + break;
|
| +};
|
| +#endif /* SQLITE_OMIT_PRAGMA */
|
| +
|
| +#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
|
| +/* Opcode: Vacuum * * * * *
|
| +**
|
| +** Vacuum the entire database. This opcode will cause other virtual
|
| +** machines to be created and run. It may not be called from within
|
| +** a transaction.
|
| +*/
|
| +case OP_Vacuum: {
|
| + assert( p->readOnly==0 );
|
| + rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +#if !defined(SQLITE_OMIT_AUTOVACUUM)
|
| +/* Opcode: IncrVacuum P1 P2 * * *
|
| +**
|
| +** Perform a single step of the incremental vacuum procedure on
|
| +** the P1 database. If the vacuum has finished, jump to instruction
|
| +** P2. Otherwise, fall through to the next instruction.
|
| +*/
|
| +case OP_IncrVacuum: { /* jump */
|
| + Btree *pBt;
|
| +
|
| + assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, pOp->p1) );
|
| + assert( p->readOnly==0 );
|
| + pBt = db->aDb[pOp->p1].pBt;
|
| + rc = sqlite3BtreeIncrVacuum(pBt);
|
| + VdbeBranchTaken(rc==SQLITE_DONE,2);
|
| + if( rc==SQLITE_DONE ){
|
| + pc = pOp->p2 - 1;
|
| + rc = SQLITE_OK;
|
| + }
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +/* Opcode: Expire P1 * * * *
|
| +**
|
| +** Cause precompiled statements to expire. When an expired statement
|
| +** is executed using sqlite3_step() it will either automatically
|
| +** reprepare itself (if it was originally created using sqlite3_prepare_v2())
|
| +** or it will fail with SQLITE_SCHEMA.
|
| +**
|
| +** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
| +** then only the currently executing statement is expired.
|
| +*/
|
| +case OP_Expire: {
|
| + if( !pOp->p1 ){
|
| + sqlite3ExpirePreparedStatements(db);
|
| + }else{
|
| + p->expired = 1;
|
| + }
|
| + break;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_SHARED_CACHE
|
| +/* Opcode: TableLock P1 P2 P3 P4 *
|
| +** Synopsis: iDb=P1 root=P2 write=P3
|
| +**
|
| +** Obtain a lock on a particular table. This instruction is only used when
|
| +** the shared-cache feature is enabled.
|
| +**
|
| +** P1 is the index of the database in sqlite3.aDb[] of the database
|
| +** on which the lock is acquired. A readlock is obtained if P3==0 or
|
| +** a write lock if P3==1.
|
| +**
|
| +** P2 contains the root-page of the table to lock.
|
| +**
|
| +** P4 contains a pointer to the name of the table being locked. This is only
|
| +** used to generate an error message if the lock cannot be obtained.
|
| +*/
|
| +case OP_TableLock: {
|
| + u8 isWriteLock = (u8)pOp->p3;
|
| + if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
|
| + int p1 = pOp->p1;
|
| + assert( p1>=0 && p1<db->nDb );
|
| + assert( DbMaskTest(p->btreeMask, p1) );
|
| + assert( isWriteLock==0 || isWriteLock==1 );
|
| + rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
|
| + if( (rc&0xFF)==SQLITE_LOCKED ){
|
| + const char *z = pOp->p4.z;
|
| + sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
|
| + }
|
| + }
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_SHARED_CACHE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VBegin * * * P4 *
|
| +**
|
| +** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
|
| +** xBegin method for that table.
|
| +**
|
| +** Also, whether or not P4 is set, check that this is not being called from
|
| +** within a callback to a virtual table xSync() method. If it is, the error
|
| +** code will be set to SQLITE_LOCKED.
|
| +*/
|
| +case OP_VBegin: {
|
| + VTable *pVTab;
|
| + pVTab = pOp->p4.pVtab;
|
| + rc = sqlite3VtabBegin(db, pVTab);
|
| + if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VCreate P1 * * P4 *
|
| +**
|
| +** P4 is the name of a virtual table in database P1. Call the xCreate method
|
| +** for that table.
|
| +*/
|
| +case OP_VCreate: {
|
| + rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VDestroy P1 * * P4 *
|
| +**
|
| +** P4 is the name of a virtual table in database P1. Call the xDestroy method
|
| +** of that table.
|
| +*/
|
| +case OP_VDestroy: {
|
| + p->inVtabMethod = 2;
|
| + rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
|
| + p->inVtabMethod = 0;
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VOpen P1 * * P4 *
|
| +**
|
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
| +** P1 is a cursor number. This opcode opens a cursor to the virtual
|
| +** table and stores that cursor in P1.
|
| +*/
|
| +case OP_VOpen: {
|
| + VdbeCursor *pCur;
|
| + sqlite3_vtab_cursor *pVtabCursor;
|
| + sqlite3_vtab *pVtab;
|
| + sqlite3_module *pModule;
|
| +
|
| + assert( p->bIsReader );
|
| + pCur = 0;
|
| + pVtabCursor = 0;
|
| + pVtab = pOp->p4.pVtab->pVtab;
|
| + pModule = (sqlite3_module *)pVtab->pModule;
|
| + assert(pVtab && pModule);
|
| + rc = pModule->xOpen(pVtab, &pVtabCursor);
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + if( SQLITE_OK==rc ){
|
| + /* Initialize sqlite3_vtab_cursor base class */
|
| + pVtabCursor->pVtab = pVtab;
|
| +
|
| + /* Initialize vdbe cursor object */
|
| + pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
|
| + if( pCur ){
|
| + pCur->pVtabCursor = pVtabCursor;
|
| + }else{
|
| + db->mallocFailed = 1;
|
| + pModule->xClose(pVtabCursor);
|
| + }
|
| + }
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VFilter P1 P2 P3 P4 *
|
| +** Synopsis: iplan=r[P3] zplan='P4'
|
| +**
|
| +** P1 is a cursor opened using VOpen. P2 is an address to jump to if
|
| +** the filtered result set is empty.
|
| +**
|
| +** P4 is either NULL or a string that was generated by the xBestIndex
|
| +** method of the module. The interpretation of the P4 string is left
|
| +** to the module implementation.
|
| +**
|
| +** This opcode invokes the xFilter method on the virtual table specified
|
| +** by P1. The integer query plan parameter to xFilter is stored in register
|
| +** P3. Register P3+1 stores the argc parameter to be passed to the
|
| +** xFilter method. Registers P3+2..P3+1+argc are the argc
|
| +** additional parameters which are passed to
|
| +** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
|
| +**
|
| +** A jump is made to P2 if the result set after filtering would be empty.
|
| +*/
|
| +case OP_VFilter: { /* jump */
|
| + int nArg;
|
| + int iQuery;
|
| + const sqlite3_module *pModule;
|
| + Mem *pQuery;
|
| + Mem *pArgc;
|
| + sqlite3_vtab_cursor *pVtabCursor;
|
| + sqlite3_vtab *pVtab;
|
| + VdbeCursor *pCur;
|
| + int res;
|
| + int i;
|
| + Mem **apArg;
|
| +
|
| + pQuery = &aMem[pOp->p3];
|
| + pArgc = &pQuery[1];
|
| + pCur = p->apCsr[pOp->p1];
|
| + assert( memIsValid(pQuery) );
|
| + REGISTER_TRACE(pOp->p3, pQuery);
|
| + assert( pCur->pVtabCursor );
|
| + pVtabCursor = pCur->pVtabCursor;
|
| + pVtab = pVtabCursor->pVtab;
|
| + pModule = pVtab->pModule;
|
| +
|
| + /* Grab the index number and argc parameters */
|
| + assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
|
| + nArg = (int)pArgc->u.i;
|
| + iQuery = (int)pQuery->u.i;
|
| +
|
| + /* Invoke the xFilter method */
|
| + {
|
| + res = 0;
|
| + apArg = p->apArg;
|
| + for(i = 0; i<nArg; i++){
|
| + apArg[i] = &pArgc[i+1];
|
| + }
|
| +
|
| + p->inVtabMethod = 1;
|
| + rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
|
| + p->inVtabMethod = 0;
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + if( rc==SQLITE_OK ){
|
| + res = pModule->xEof(pVtabCursor);
|
| + }
|
| + VdbeBranchTaken(res!=0,2);
|
| + if( res ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + }
|
| + pCur->nullRow = 0;
|
| +
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VColumn P1 P2 P3 * *
|
| +** Synopsis: r[P3]=vcolumn(P2)
|
| +**
|
| +** Store the value of the P2-th column of
|
| +** the row of the virtual-table that the
|
| +** P1 cursor is pointing to into register P3.
|
| +*/
|
| +case OP_VColumn: {
|
| + sqlite3_vtab *pVtab;
|
| + const sqlite3_module *pModule;
|
| + Mem *pDest;
|
| + sqlite3_context sContext;
|
| +
|
| + VdbeCursor *pCur = p->apCsr[pOp->p1];
|
| + assert( pCur->pVtabCursor );
|
| + assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
|
| + pDest = &aMem[pOp->p3];
|
| + memAboutToChange(p, pDest);
|
| + if( pCur->nullRow ){
|
| + sqlite3VdbeMemSetNull(pDest);
|
| + break;
|
| + }
|
| + pVtab = pCur->pVtabCursor->pVtab;
|
| + pModule = pVtab->pModule;
|
| + assert( pModule->xColumn );
|
| + memset(&sContext, 0, sizeof(sContext));
|
| + sContext.pOut = pDest;
|
| + MemSetTypeFlag(pDest, MEM_Null);
|
| + rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + if( sContext.isError ){
|
| + rc = sContext.isError;
|
| + }
|
| + sqlite3VdbeChangeEncoding(pDest, encoding);
|
| + REGISTER_TRACE(pOp->p3, pDest);
|
| + UPDATE_MAX_BLOBSIZE(pDest);
|
| +
|
| + if( sqlite3VdbeMemTooBig(pDest) ){
|
| + goto too_big;
|
| + }
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VNext P1 P2 * * *
|
| +**
|
| +** Advance virtual table P1 to the next row in its result set and
|
| +** jump to instruction P2. Or, if the virtual table has reached
|
| +** the end of its result set, then fall through to the next instruction.
|
| +*/
|
| +case OP_VNext: { /* jump */
|
| + sqlite3_vtab *pVtab;
|
| + const sqlite3_module *pModule;
|
| + int res;
|
| + VdbeCursor *pCur;
|
| +
|
| + res = 0;
|
| + pCur = p->apCsr[pOp->p1];
|
| + assert( pCur->pVtabCursor );
|
| + if( pCur->nullRow ){
|
| + break;
|
| + }
|
| + pVtab = pCur->pVtabCursor->pVtab;
|
| + pModule = pVtab->pModule;
|
| + assert( pModule->xNext );
|
| +
|
| + /* Invoke the xNext() method of the module. There is no way for the
|
| + ** underlying implementation to return an error if one occurs during
|
| + ** xNext(). Instead, if an error occurs, true is returned (indicating that
|
| + ** data is available) and the error code returned when xColumn or
|
| + ** some other method is next invoked on the save virtual table cursor.
|
| + */
|
| + p->inVtabMethod = 1;
|
| + rc = pModule->xNext(pCur->pVtabCursor);
|
| + p->inVtabMethod = 0;
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + if( rc==SQLITE_OK ){
|
| + res = pModule->xEof(pCur->pVtabCursor);
|
| + }
|
| + VdbeBranchTaken(!res,2);
|
| + if( !res ){
|
| + /* If there is data, jump to P2 */
|
| + pc = pOp->p2 - 1;
|
| + }
|
| + goto check_for_interrupt;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VRename P1 * * P4 *
|
| +**
|
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
| +** This opcode invokes the corresponding xRename method. The value
|
| +** in register P1 is passed as the zName argument to the xRename method.
|
| +*/
|
| +case OP_VRename: {
|
| + sqlite3_vtab *pVtab;
|
| + Mem *pName;
|
| +
|
| + pVtab = pOp->p4.pVtab->pVtab;
|
| + pName = &aMem[pOp->p1];
|
| + assert( pVtab->pModule->xRename );
|
| + assert( memIsValid(pName) );
|
| + assert( p->readOnly==0 );
|
| + REGISTER_TRACE(pOp->p1, pName);
|
| + assert( pName->flags & MEM_Str );
|
| + testcase( pName->enc==SQLITE_UTF8 );
|
| + testcase( pName->enc==SQLITE_UTF16BE );
|
| + testcase( pName->enc==SQLITE_UTF16LE );
|
| + rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
|
| + if( rc==SQLITE_OK ){
|
| + rc = pVtab->pModule->xRename(pVtab, pName->z);
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + p->expired = 0;
|
| + }
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/* Opcode: VUpdate P1 P2 P3 P4 P5
|
| +** Synopsis: data=r[P3@P2]
|
| +**
|
| +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
|
| +** This opcode invokes the corresponding xUpdate method. P2 values
|
| +** are contiguous memory cells starting at P3 to pass to the xUpdate
|
| +** invocation. The value in register (P3+P2-1) corresponds to the
|
| +** p2th element of the argv array passed to xUpdate.
|
| +**
|
| +** The xUpdate method will do a DELETE or an INSERT or both.
|
| +** The argv[0] element (which corresponds to memory cell P3)
|
| +** is the rowid of a row to delete. If argv[0] is NULL then no
|
| +** deletion occurs. The argv[1] element is the rowid of the new
|
| +** row. This can be NULL to have the virtual table select the new
|
| +** rowid for itself. The subsequent elements in the array are
|
| +** the values of columns in the new row.
|
| +**
|
| +** If P2==1 then no insert is performed. argv[0] is the rowid of
|
| +** a row to delete.
|
| +**
|
| +** P1 is a boolean flag. If it is set to true and the xUpdate call
|
| +** is successful, then the value returned by sqlite3_last_insert_rowid()
|
| +** is set to the value of the rowid for the row just inserted.
|
| +**
|
| +** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
|
| +** apply in the case of a constraint failure on an insert or update.
|
| +*/
|
| +case OP_VUpdate: {
|
| + sqlite3_vtab *pVtab;
|
| + sqlite3_module *pModule;
|
| + int nArg;
|
| + int i;
|
| + sqlite_int64 rowid;
|
| + Mem **apArg;
|
| + Mem *pX;
|
| +
|
| + assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|
| + || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
|
| + );
|
| + assert( p->readOnly==0 );
|
| + pVtab = pOp->p4.pVtab->pVtab;
|
| + pModule = (sqlite3_module *)pVtab->pModule;
|
| + nArg = pOp->p2;
|
| + assert( pOp->p4type==P4_VTAB );
|
| + if( ALWAYS(pModule->xUpdate) ){
|
| + u8 vtabOnConflict = db->vtabOnConflict;
|
| + apArg = p->apArg;
|
| + pX = &aMem[pOp->p3];
|
| + for(i=0; i<nArg; i++){
|
| + assert( memIsValid(pX) );
|
| + memAboutToChange(p, pX);
|
| + apArg[i] = pX;
|
| + pX++;
|
| + }
|
| + db->vtabOnConflict = pOp->p5;
|
| + rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
|
| + db->vtabOnConflict = vtabOnConflict;
|
| + sqlite3VtabImportErrmsg(p, pVtab);
|
| + if( rc==SQLITE_OK && pOp->p1 ){
|
| + assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
|
| + db->lastRowid = lastRowid = rowid;
|
| + }
|
| + if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
|
| + if( pOp->p5==OE_Ignore ){
|
| + rc = SQLITE_OK;
|
| + }else{
|
| + p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
|
| + }
|
| + }else{
|
| + p->nChange++;
|
| + }
|
| + }
|
| + break;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| +
|
| +#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
| +/* Opcode: Pagecount P1 P2 * * *
|
| +**
|
| +** Write the current number of pages in database P1 to memory cell P2.
|
| +*/
|
| +case OP_Pagecount: { /* out2-prerelease */
|
| + pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
| +/* Opcode: MaxPgcnt P1 P2 P3 * *
|
| +**
|
| +** Try to set the maximum page count for database P1 to the value in P3.
|
| +** Do not let the maximum page count fall below the current page count and
|
| +** do not change the maximum page count value if P3==0.
|
| +**
|
| +** Store the maximum page count after the change in register P2.
|
| +*/
|
| +case OP_MaxPgcnt: { /* out2-prerelease */
|
| + unsigned int newMax;
|
| + Btree *pBt;
|
| +
|
| + pBt = db->aDb[pOp->p1].pBt;
|
| + newMax = 0;
|
| + if( pOp->p3 ){
|
| + newMax = sqlite3BtreeLastPage(pBt);
|
| + if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
|
| + }
|
| + pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
|
| + break;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/* Opcode: Init * P2 * P4 *
|
| +** Synopsis: Start at P2
|
| +**
|
| +** Programs contain a single instance of this opcode as the very first
|
| +** opcode.
|
| +**
|
| +** If tracing is enabled (by the sqlite3_trace()) interface, then
|
| +** the UTF-8 string contained in P4 is emitted on the trace callback.
|
| +** Or if P4 is blank, use the string returned by sqlite3_sql().
|
| +**
|
| +** If P2 is not zero, jump to instruction P2.
|
| +*/
|
| +case OP_Init: { /* jump */
|
| + char *zTrace;
|
| + char *z;
|
| +
|
| + if( pOp->p2 ){
|
| + pc = pOp->p2 - 1;
|
| + }
|
| +#ifndef SQLITE_OMIT_TRACE
|
| + if( db->xTrace
|
| + && !p->doingRerun
|
| + && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
| + ){
|
| + z = sqlite3VdbeExpandSql(p, zTrace);
|
| + db->xTrace(db->pTraceArg, z);
|
| + sqlite3DbFree(db, z);
|
| + }
|
| +#ifdef SQLITE_USE_FCNTL_TRACE
|
| + zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
|
| + if( zTrace ){
|
| + int i;
|
| + for(i=0; i<db->nDb; i++){
|
| + if( DbMaskTest(p->btreeMask, i)==0 ) continue;
|
| + sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
|
| + }
|
| + }
|
| +#endif /* SQLITE_USE_FCNTL_TRACE */
|
| +#ifdef SQLITE_DEBUG
|
| + if( (db->flags & SQLITE_SqlTrace)!=0
|
| + && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
|
| + ){
|
| + sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
|
| + }
|
| +#endif /* SQLITE_DEBUG */
|
| +#endif /* SQLITE_OMIT_TRACE */
|
| + break;
|
| +}
|
| +
|
| +
|
| +/* Opcode: Noop * * * * *
|
| +**
|
| +** Do nothing. This instruction is often useful as a jump
|
| +** destination.
|
| +*/
|
| +/*
|
| +** The magic Explain opcode are only inserted when explain==2 (which
|
| +** is to say when the EXPLAIN QUERY PLAN syntax is used.)
|
| +** This opcode records information from the optimizer. It is the
|
| +** the same as a no-op. This opcodesnever appears in a real VM program.
|
| +*/
|
| +default: { /* This is really OP_Noop and OP_Explain */
|
| + assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
|
| + break;
|
| +}
|
| +
|
| +/*****************************************************************************
|
| +** The cases of the switch statement above this line should all be indented
|
| +** by 6 spaces. But the left-most 6 spaces have been removed to improve the
|
| +** readability. From this point on down, the normal indentation rules are
|
| +** restored.
|
| +*****************************************************************************/
|
| + }
|
| +
|
| +#ifdef VDBE_PROFILE
|
| + {
|
| + u64 endTime = sqlite3Hwtime();
|
| + if( endTime>start ) pOp->cycles += endTime - start;
|
| + pOp->cnt++;
|
| + }
|
| +#endif
|
| +
|
| + /* The following code adds nothing to the actual functionality
|
| + ** of the program. It is only here for testing and debugging.
|
| + ** On the other hand, it does burn CPU cycles every time through
|
| + ** the evaluator loop. So we can leave it out when NDEBUG is defined.
|
| + */
|
| +#ifndef NDEBUG
|
| + assert( pc>=-1 && pc<p->nOp );
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| + if( db->flags & SQLITE_VdbeTrace ){
|
| + if( rc!=0 ) printf("rc=%d\n",rc);
|
| + if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
|
| + registerTrace(pOp->p2, &aMem[pOp->p2]);
|
| + }
|
| + if( pOp->opflags & OPFLG_OUT3 ){
|
| + registerTrace(pOp->p3, &aMem[pOp->p3]);
|
| + }
|
| + }
|
| +#endif /* SQLITE_DEBUG */
|
| +#endif /* NDEBUG */
|
| + } /* The end of the for(;;) loop the loops through opcodes */
|
| +
|
| + /* If we reach this point, it means that execution is finished with
|
| + ** an error of some kind.
|
| + */
|
| +vdbe_error_halt:
|
| + assert( rc );
|
| + p->rc = rc;
|
| + testcase( sqlite3GlobalConfig.xLog!=0 );
|
| + sqlite3_log(rc, "statement aborts at %d: [%s] %s",
|
| + pc, p->zSql, p->zErrMsg);
|
| + sqlite3VdbeHalt(p);
|
| + if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
|
| + rc = SQLITE_ERROR;
|
| + if( resetSchemaOnFault>0 ){
|
| + sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
|
| + }
|
| +
|
| + /* This is the only way out of this procedure. We have to
|
| + ** release the mutexes on btrees that were acquired at the
|
| + ** top. */
|
| +vdbe_return:
|
| + db->lastRowid = lastRowid;
|
| + testcase( nVmStep>0 );
|
| + p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
|
| + sqlite3VdbeLeave(p);
|
| + return rc;
|
| +
|
| + /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
|
| + ** is encountered.
|
| + */
|
| +too_big:
|
| + sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
|
| + rc = SQLITE_TOOBIG;
|
| + goto vdbe_error_halt;
|
| +
|
| + /* Jump to here if a malloc() fails.
|
| + */
|
| +no_mem:
|
| + db->mallocFailed = 1;
|
| + sqlite3SetString(&p->zErrMsg, db, "out of memory");
|
| + rc = SQLITE_NOMEM;
|
| + goto vdbe_error_halt;
|
| +
|
| + /* Jump to here for any other kind of fatal error. The "rc" variable
|
| + ** should hold the error number.
|
| + */
|
| +abort_due_to_error:
|
| + assert( p->zErrMsg==0 );
|
| + if( db->mallocFailed ) rc = SQLITE_NOMEM;
|
| + if( rc!=SQLITE_IOERR_NOMEM ){
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
| + }
|
| + goto vdbe_error_halt;
|
| +
|
| + /* Jump to here if the sqlite3_interrupt() API sets the interrupt
|
| + ** flag.
|
| + */
|
| +abort_due_to_interrupt:
|
| + assert( db->u1.isInterrupted );
|
| + rc = SQLITE_INTERRUPT;
|
| + p->rc = rc;
|
| + sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
|
| + goto vdbe_error_halt;
|
| +}
|
|
|