Index: third_party/sqlite/sqlite-src-3070603/src/vdbeaux.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/vdbeaux.c b/third_party/sqlite/sqlite-src-3070603/src/vdbeaux.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4d4bb224f93d8ce16b7b653344164df9a026f624 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/vdbeaux.c |
@@ -0,0 +1,3208 @@ |
+/* |
+** 2003 September 6 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains code used for creating, destroying, and populating |
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior |
+** to version 2.8.7, all this code was combined into the vdbe.c source file. |
+** But that file was getting too big so this subroutines were split out. |
+*/ |
+#include "sqliteInt.h" |
+#include "vdbeInt.h" |
+ |
+ |
+ |
+/* |
+** When debugging the code generator in a symbolic debugger, one can |
+** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed |
+** as they are added to the instruction stream. |
+*/ |
+#ifdef SQLITE_DEBUG |
+int sqlite3VdbeAddopTrace = 0; |
+#endif |
+ |
+ |
+/* |
+** Create a new virtual database engine. |
+*/ |
+Vdbe *sqlite3VdbeCreate(sqlite3 *db){ |
+ Vdbe *p; |
+ p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); |
+ if( p==0 ) return 0; |
+ p->db = db; |
+ if( db->pVdbe ){ |
+ db->pVdbe->pPrev = p; |
+ } |
+ p->pNext = db->pVdbe; |
+ p->pPrev = 0; |
+ db->pVdbe = p; |
+ p->magic = VDBE_MAGIC_INIT; |
+ return p; |
+} |
+ |
+/* |
+** Remember the SQL string for a prepared statement. |
+*/ |
+void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ |
+ assert( isPrepareV2==1 || isPrepareV2==0 ); |
+ if( p==0 ) return; |
+#ifdef SQLITE_OMIT_TRACE |
+ if( !isPrepareV2 ) return; |
+#endif |
+ assert( p->zSql==0 ); |
+ p->zSql = sqlite3DbStrNDup(p->db, z, n); |
+ p->isPrepareV2 = (u8)isPrepareV2; |
+} |
+ |
+/* |
+** Return the SQL associated with a prepared statement |
+*/ |
+const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
+ Vdbe *p = (Vdbe *)pStmt; |
+ return (p && p->isPrepareV2) ? p->zSql : 0; |
+} |
+ |
+/* |
+** Swap all content between two VDBE structures. |
+*/ |
+void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
+ Vdbe tmp, *pTmp; |
+ char *zTmp; |
+ tmp = *pA; |
+ *pA = *pB; |
+ *pB = tmp; |
+ pTmp = pA->pNext; |
+ pA->pNext = pB->pNext; |
+ pB->pNext = pTmp; |
+ pTmp = pA->pPrev; |
+ pA->pPrev = pB->pPrev; |
+ pB->pPrev = pTmp; |
+ zTmp = pA->zSql; |
+ pA->zSql = pB->zSql; |
+ pB->zSql = zTmp; |
+ pB->isPrepareV2 = pA->isPrepareV2; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Turn tracing on or off |
+*/ |
+void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ |
+ p->trace = trace; |
+} |
+#endif |
+ |
+/* |
+** Resize the Vdbe.aOp array so that it is at least one op larger than |
+** it was. |
+** |
+** If an out-of-memory error occurs while resizing the array, return |
+** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain |
+** unchanged (this is so that any opcodes already allocated can be |
+** correctly deallocated along with the rest of the Vdbe). |
+*/ |
+static int growOpArray(Vdbe *p){ |
+ VdbeOp *pNew; |
+ int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
+ pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); |
+ if( pNew ){ |
+ p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); |
+ p->aOp = pNew; |
+ } |
+ return (pNew ? SQLITE_OK : SQLITE_NOMEM); |
+} |
+ |
+/* |
+** Add a new instruction to the list of instructions current in the |
+** VDBE. Return the address of the new instruction. |
+** |
+** Parameters: |
+** |
+** p Pointer to the VDBE |
+** |
+** op The opcode for this instruction |
+** |
+** p1, p2, p3 Operands |
+** |
+** Use the sqlite3VdbeResolveLabel() function to fix an address and |
+** the sqlite3VdbeChangeP4() function to change the value of the P4 |
+** operand. |
+*/ |
+int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
+ int i; |
+ VdbeOp *pOp; |
+ |
+ i = p->nOp; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ assert( op>0 && op<0xff ); |
+ if( p->nOpAlloc<=i ){ |
+ if( growOpArray(p) ){ |
+ return 1; |
+ } |
+ } |
+ p->nOp++; |
+ pOp = &p->aOp[i]; |
+ pOp->opcode = (u8)op; |
+ pOp->p5 = 0; |
+ pOp->p1 = p1; |
+ pOp->p2 = p2; |
+ pOp->p3 = p3; |
+ pOp->p4.p = 0; |
+ pOp->p4type = P4_NOTUSED; |
+ p->expired = 0; |
+ if( op==OP_ParseSchema ){ |
+ /* Any program that uses the OP_ParseSchema opcode needs to lock |
+ ** all btrees. */ |
+ int j; |
+ for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
+ } |
+#ifdef SQLITE_DEBUG |
+ pOp->zComment = 0; |
+ if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
+#endif |
+#ifdef VDBE_PROFILE |
+ pOp->cycles = 0; |
+ pOp->cnt = 0; |
+#endif |
+ return i; |
+} |
+int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
+} |
+int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
+} |
+int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
+} |
+ |
+ |
+/* |
+** Add an opcode that includes the p4 value as a pointer. |
+*/ |
+int sqlite3VdbeAddOp4( |
+ Vdbe *p, /* Add the opcode to this VM */ |
+ int op, /* The new opcode */ |
+ int p1, /* The P1 operand */ |
+ int p2, /* The P2 operand */ |
+ int p3, /* The P3 operand */ |
+ const char *zP4, /* The P4 operand */ |
+ int p4type /* P4 operand type */ |
+){ |
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
+ return addr; |
+} |
+ |
+/* |
+** Add an opcode that includes the p4 value as an integer. |
+*/ |
+int sqlite3VdbeAddOp4Int( |
+ Vdbe *p, /* Add the opcode to this VM */ |
+ int op, /* The new opcode */ |
+ int p1, /* The P1 operand */ |
+ int p2, /* The P2 operand */ |
+ int p3, /* The P3 operand */ |
+ int p4 /* The P4 operand as an integer */ |
+){ |
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
+ sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); |
+ return addr; |
+} |
+ |
+/* |
+** Create a new symbolic label for an instruction that has yet to be |
+** coded. The symbolic label is really just a negative number. The |
+** label can be used as the P2 value of an operation. Later, when |
+** the label is resolved to a specific address, the VDBE will scan |
+** through its operation list and change all values of P2 which match |
+** the label into the resolved address. |
+** |
+** The VDBE knows that a P2 value is a label because labels are |
+** always negative and P2 values are suppose to be non-negative. |
+** Hence, a negative P2 value is a label that has yet to be resolved. |
+** |
+** Zero is returned if a malloc() fails. |
+*/ |
+int sqlite3VdbeMakeLabel(Vdbe *p){ |
+ int i; |
+ i = p->nLabel++; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( i>=p->nLabelAlloc ){ |
+ int n = p->nLabelAlloc*2 + 5; |
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
+ n*sizeof(p->aLabel[0])); |
+ p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); |
+ } |
+ if( p->aLabel ){ |
+ p->aLabel[i] = -1; |
+ } |
+ return -1-i; |
+} |
+ |
+/* |
+** Resolve label "x" to be the address of the next instruction to |
+** be inserted. The parameter "x" must have been obtained from |
+** a prior call to sqlite3VdbeMakeLabel(). |
+*/ |
+void sqlite3VdbeResolveLabel(Vdbe *p, int x){ |
+ int j = -1-x; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ assert( j>=0 && j<p->nLabel ); |
+ if( p->aLabel ){ |
+ p->aLabel[j] = p->nOp; |
+ } |
+} |
+ |
+/* |
+** Mark the VDBE as one that can only be run one time. |
+*/ |
+void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
+ p->runOnlyOnce = 1; |
+} |
+ |
+#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
+ |
+/* |
+** The following type and function are used to iterate through all opcodes |
+** in a Vdbe main program and each of the sub-programs (triggers) it may |
+** invoke directly or indirectly. It should be used as follows: |
+** |
+** Op *pOp; |
+** VdbeOpIter sIter; |
+** |
+** memset(&sIter, 0, sizeof(sIter)); |
+** sIter.v = v; // v is of type Vdbe* |
+** while( (pOp = opIterNext(&sIter)) ){ |
+** // Do something with pOp |
+** } |
+** sqlite3DbFree(v->db, sIter.apSub); |
+** |
+*/ |
+typedef struct VdbeOpIter VdbeOpIter; |
+struct VdbeOpIter { |
+ Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
+ SubProgram **apSub; /* Array of subprograms */ |
+ int nSub; /* Number of entries in apSub */ |
+ int iAddr; /* Address of next instruction to return */ |
+ int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
+}; |
+static Op *opIterNext(VdbeOpIter *p){ |
+ Vdbe *v = p->v; |
+ Op *pRet = 0; |
+ Op *aOp; |
+ int nOp; |
+ |
+ if( p->iSub<=p->nSub ){ |
+ |
+ if( p->iSub==0 ){ |
+ aOp = v->aOp; |
+ nOp = v->nOp; |
+ }else{ |
+ aOp = p->apSub[p->iSub-1]->aOp; |
+ nOp = p->apSub[p->iSub-1]->nOp; |
+ } |
+ assert( p->iAddr<nOp ); |
+ |
+ pRet = &aOp[p->iAddr]; |
+ p->iAddr++; |
+ if( p->iAddr==nOp ){ |
+ p->iSub++; |
+ p->iAddr = 0; |
+ } |
+ |
+ if( pRet->p4type==P4_SUBPROGRAM ){ |
+ int nByte = (p->nSub+1)*sizeof(SubProgram*); |
+ int j; |
+ for(j=0; j<p->nSub; j++){ |
+ if( p->apSub[j]==pRet->p4.pProgram ) break; |
+ } |
+ if( j==p->nSub ){ |
+ p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
+ if( !p->apSub ){ |
+ pRet = 0; |
+ }else{ |
+ p->apSub[p->nSub++] = pRet->p4.pProgram; |
+ } |
+ } |
+ } |
+ } |
+ |
+ return pRet; |
+} |
+ |
+/* |
+** Check if the program stored in the VM associated with pParse may |
+** throw an ABORT exception (causing the statement, but not entire transaction |
+** to be rolled back). This condition is true if the main program or any |
+** sub-programs contains any of the following: |
+** |
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
+** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
+** * OP_Destroy |
+** * OP_VUpdate |
+** * OP_VRename |
+** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
+** |
+** Then check that the value of Parse.mayAbort is true if an |
+** ABORT may be thrown, or false otherwise. Return true if it does |
+** match, or false otherwise. This function is intended to be used as |
+** part of an assert statement in the compiler. Similar to: |
+** |
+** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
+*/ |
+int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
+ int hasAbort = 0; |
+ Op *pOp; |
+ VdbeOpIter sIter; |
+ memset(&sIter, 0, sizeof(sIter)); |
+ sIter.v = v; |
+ |
+ while( (pOp = opIterNext(&sIter))!=0 ){ |
+ int opcode = pOp->opcode; |
+ if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) |
+#endif |
+ || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
+ && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) |
+ ){ |
+ hasAbort = 1; |
+ break; |
+ } |
+ } |
+ sqlite3DbFree(v->db, sIter.apSub); |
+ |
+ /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. |
+ ** If malloc failed, then the while() loop above may not have iterated |
+ ** through all opcodes and hasAbort may be set incorrectly. Return |
+ ** true for this case to prevent the assert() in the callers frame |
+ ** from failing. */ |
+ return ( v->db->mallocFailed || hasAbort==mayAbort ); |
+} |
+#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
+ |
+/* |
+** Loop through the program looking for P2 values that are negative |
+** on jump instructions. Each such value is a label. Resolve the |
+** label by setting the P2 value to its correct non-zero value. |
+** |
+** This routine is called once after all opcodes have been inserted. |
+** |
+** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument |
+** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by |
+** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. |
+** |
+** The Op.opflags field is set on all opcodes. |
+*/ |
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
+ int i; |
+ int nMaxArgs = *pMaxFuncArgs; |
+ Op *pOp; |
+ int *aLabel = p->aLabel; |
+ p->readOnly = 1; |
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
+ u8 opcode = pOp->opcode; |
+ |
+ pOp->opflags = sqlite3OpcodeProperty[opcode]; |
+ if( opcode==OP_Function || opcode==OP_AggStep ){ |
+ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; |
+ }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ |
+ p->readOnly = 0; |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ }else if( opcode==OP_VUpdate ){ |
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
+ }else if( opcode==OP_VFilter ){ |
+ int n; |
+ assert( p->nOp - i >= 3 ); |
+ assert( pOp[-1].opcode==OP_Integer ); |
+ n = pOp[-1].p1; |
+ if( n>nMaxArgs ) nMaxArgs = n; |
+#endif |
+ } |
+ |
+ if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ |
+ assert( -1-pOp->p2<p->nLabel ); |
+ pOp->p2 = aLabel[-1-pOp->p2]; |
+ } |
+ } |
+ sqlite3DbFree(p->db, p->aLabel); |
+ p->aLabel = 0; |
+ |
+ *pMaxFuncArgs = nMaxArgs; |
+} |
+ |
+/* |
+** Return the address of the next instruction to be inserted. |
+*/ |
+int sqlite3VdbeCurrentAddr(Vdbe *p){ |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ return p->nOp; |
+} |
+ |
+/* |
+** This function returns a pointer to the array of opcodes associated with |
+** the Vdbe passed as the first argument. It is the callers responsibility |
+** to arrange for the returned array to be eventually freed using the |
+** vdbeFreeOpArray() function. |
+** |
+** Before returning, *pnOp is set to the number of entries in the returned |
+** array. Also, *pnMaxArg is set to the larger of its current value and |
+** the number of entries in the Vdbe.apArg[] array required to execute the |
+** returned program. |
+*/ |
+VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
+ VdbeOp *aOp = p->aOp; |
+ assert( aOp && !p->db->mallocFailed ); |
+ |
+ /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
+ assert( p->btreeMask==0 ); |
+ |
+ resolveP2Values(p, pnMaxArg); |
+ *pnOp = p->nOp; |
+ p->aOp = 0; |
+ return aOp; |
+} |
+ |
+/* |
+** Add a whole list of operations to the operation stack. Return the |
+** address of the first operation added. |
+*/ |
+int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ |
+ int addr; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ |
+ return 0; |
+ } |
+ addr = p->nOp; |
+ if( ALWAYS(nOp>0) ){ |
+ int i; |
+ VdbeOpList const *pIn = aOp; |
+ for(i=0; i<nOp; i++, pIn++){ |
+ int p2 = pIn->p2; |
+ VdbeOp *pOut = &p->aOp[i+addr]; |
+ pOut->opcode = pIn->opcode; |
+ pOut->p1 = pIn->p1; |
+ if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ |
+ pOut->p2 = addr + ADDR(p2); |
+ }else{ |
+ pOut->p2 = p2; |
+ } |
+ pOut->p3 = pIn->p3; |
+ pOut->p4type = P4_NOTUSED; |
+ pOut->p4.p = 0; |
+ pOut->p5 = 0; |
+#ifdef SQLITE_DEBUG |
+ pOut->zComment = 0; |
+ if( sqlite3VdbeAddopTrace ){ |
+ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); |
+ } |
+#endif |
+ } |
+ p->nOp += nOp; |
+ } |
+ return addr; |
+} |
+ |
+/* |
+** Change the value of the P1 operand for a specific instruction. |
+** This routine is useful when a large program is loaded from a |
+** static array using sqlite3VdbeAddOpList but we want to make a |
+** few minor changes to the program. |
+*/ |
+void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ |
+ assert( p!=0 ); |
+ assert( addr>=0 ); |
+ if( p->nOp>addr ){ |
+ p->aOp[addr].p1 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P2 operand for a specific instruction. |
+** This routine is useful for setting a jump destination. |
+*/ |
+void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ |
+ assert( p!=0 ); |
+ assert( addr>=0 ); |
+ if( p->nOp>addr ){ |
+ p->aOp[addr].p2 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P3 operand for a specific instruction. |
+*/ |
+void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ |
+ assert( p!=0 ); |
+ assert( addr>=0 ); |
+ if( p->nOp>addr ){ |
+ p->aOp[addr].p3 = val; |
+ } |
+} |
+ |
+/* |
+** Change the value of the P5 operand for the most recently |
+** added operation. |
+*/ |
+void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ |
+ assert( p!=0 ); |
+ if( p->aOp ){ |
+ assert( p->nOp>0 ); |
+ p->aOp[p->nOp-1].p5 = val; |
+ } |
+} |
+ |
+/* |
+** Change the P2 operand of instruction addr so that it points to |
+** the address of the next instruction to be coded. |
+*/ |
+void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
+ assert( addr>=0 ); |
+ sqlite3VdbeChangeP2(p, addr, p->nOp); |
+} |
+ |
+ |
+/* |
+** If the input FuncDef structure is ephemeral, then free it. If |
+** the FuncDef is not ephermal, then do nothing. |
+*/ |
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
+ if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ |
+ sqlite3DbFree(db, pDef); |
+ } |
+} |
+ |
+static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
+ |
+/* |
+** Delete a P4 value if necessary. |
+*/ |
+static void freeP4(sqlite3 *db, int p4type, void *p4){ |
+ if( p4 ){ |
+ assert( db ); |
+ switch( p4type ){ |
+ case P4_REAL: |
+ case P4_INT64: |
+ case P4_DYNAMIC: |
+ case P4_KEYINFO: |
+ case P4_INTARRAY: |
+ case P4_KEYINFO_HANDOFF: { |
+ sqlite3DbFree(db, p4); |
+ break; |
+ } |
+ case P4_MPRINTF: { |
+ if( db->pnBytesFreed==0 ) sqlite3_free(p4); |
+ break; |
+ } |
+ case P4_VDBEFUNC: { |
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; |
+ freeEphemeralFunction(db, pVdbeFunc->pFunc); |
+ if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); |
+ sqlite3DbFree(db, pVdbeFunc); |
+ break; |
+ } |
+ case P4_FUNCDEF: { |
+ freeEphemeralFunction(db, (FuncDef*)p4); |
+ break; |
+ } |
+ case P4_MEM: { |
+ if( db->pnBytesFreed==0 ){ |
+ sqlite3ValueFree((sqlite3_value*)p4); |
+ }else{ |
+ Mem *p = (Mem*)p4; |
+ sqlite3DbFree(db, p->zMalloc); |
+ sqlite3DbFree(db, p); |
+ } |
+ break; |
+ } |
+ case P4_VTAB : { |
+ if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Free the space allocated for aOp and any p4 values allocated for the |
+** opcodes contained within. If aOp is not NULL it is assumed to contain |
+** nOp entries. |
+*/ |
+static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
+ if( aOp ){ |
+ Op *pOp; |
+ for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+#ifdef SQLITE_DEBUG |
+ sqlite3DbFree(db, pOp->zComment); |
+#endif |
+ } |
+ } |
+ sqlite3DbFree(db, aOp); |
+} |
+ |
+/* |
+** Link the SubProgram object passed as the second argument into the linked |
+** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
+** objects when the VM is no longer required. |
+*/ |
+void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
+ p->pNext = pVdbe->pProgram; |
+ pVdbe->pProgram = p; |
+} |
+ |
+/* |
+** Change N opcodes starting at addr to No-ops. |
+*/ |
+void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ |
+ if( p->aOp ){ |
+ VdbeOp *pOp = &p->aOp[addr]; |
+ sqlite3 *db = p->db; |
+ while( N-- ){ |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+ memset(pOp, 0, sizeof(pOp[0])); |
+ pOp->opcode = OP_Noop; |
+ pOp++; |
+ } |
+ } |
+} |
+ |
+/* |
+** Change the value of the P4 operand for a specific instruction. |
+** This routine is useful when a large program is loaded from a |
+** static array using sqlite3VdbeAddOpList but we want to make a |
+** few minor changes to the program. |
+** |
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
+** the string is made into memory obtained from sqlite3_malloc(). |
+** A value of n==0 means copy bytes of zP4 up to and including the |
+** first null byte. If n>0 then copy n+1 bytes of zP4. |
+** |
+** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. |
+** A copy is made of the KeyInfo structure into memory obtained from |
+** sqlite3_malloc, to be freed when the Vdbe is finalized. |
+** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure |
+** stored in memory that the caller has obtained from sqlite3_malloc. The |
+** caller should not free the allocation, it will be freed when the Vdbe is |
+** finalized. |
+** |
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
+** to a string or structure that is guaranteed to exist for the lifetime of |
+** the Vdbe. In these cases we can just copy the pointer. |
+** |
+** If addr<0 then change P4 on the most recently inserted instruction. |
+*/ |
+void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
+ Op *pOp; |
+ sqlite3 *db; |
+ assert( p!=0 ); |
+ db = p->db; |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( p->aOp==0 || db->mallocFailed ){ |
+ if ( n!=P4_KEYINFO && n!=P4_VTAB ) { |
+ freeP4(db, n, (void*)*(char**)&zP4); |
+ } |
+ return; |
+ } |
+ assert( p->nOp>0 ); |
+ assert( addr<p->nOp ); |
+ if( addr<0 ){ |
+ addr = p->nOp - 1; |
+ } |
+ pOp = &p->aOp[addr]; |
+ freeP4(db, pOp->p4type, pOp->p4.p); |
+ pOp->p4.p = 0; |
+ if( n==P4_INT32 ){ |
+ /* Note: this cast is safe, because the origin data point was an int |
+ ** that was cast to a (const char *). */ |
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
+ pOp->p4type = P4_INT32; |
+ }else if( zP4==0 ){ |
+ pOp->p4.p = 0; |
+ pOp->p4type = P4_NOTUSED; |
+ }else if( n==P4_KEYINFO ){ |
+ KeyInfo *pKeyInfo; |
+ int nField, nByte; |
+ |
+ nField = ((KeyInfo*)zP4)->nField; |
+ nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; |
+ pKeyInfo = sqlite3DbMallocRaw(0, nByte); |
+ pOp->p4.pKeyInfo = pKeyInfo; |
+ if( pKeyInfo ){ |
+ u8 *aSortOrder; |
+ memcpy((char*)pKeyInfo, zP4, nByte - nField); |
+ aSortOrder = pKeyInfo->aSortOrder; |
+ if( aSortOrder ){ |
+ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; |
+ memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); |
+ } |
+ pOp->p4type = P4_KEYINFO; |
+ }else{ |
+ p->db->mallocFailed = 1; |
+ pOp->p4type = P4_NOTUSED; |
+ } |
+ }else if( n==P4_KEYINFO_HANDOFF ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = P4_KEYINFO; |
+ }else if( n==P4_VTAB ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = P4_VTAB; |
+ sqlite3VtabLock((VTable *)zP4); |
+ assert( ((VTable *)zP4)->db==p->db ); |
+ }else if( n<0 ){ |
+ pOp->p4.p = (void*)zP4; |
+ pOp->p4type = (signed char)n; |
+ }else{ |
+ if( n==0 ) n = sqlite3Strlen30(zP4); |
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
+ pOp->p4type = P4_DYNAMIC; |
+ } |
+} |
+ |
+#ifndef NDEBUG |
+/* |
+** Change the comment on the the most recently coded instruction. Or |
+** insert a No-op and add the comment to that new instruction. This |
+** makes the code easier to read during debugging. None of this happens |
+** in a production build. |
+*/ |
+void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
+ va_list ap; |
+ if( !p ) return; |
+ assert( p->nOp>0 || p->aOp==0 ); |
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
+ if( p->nOp ){ |
+ char **pz = &p->aOp[p->nOp-1].zComment; |
+ va_start(ap, zFormat); |
+ sqlite3DbFree(p->db, *pz); |
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
+ va_end(ap); |
+ } |
+} |
+void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
+ va_list ap; |
+ if( !p ) return; |
+ sqlite3VdbeAddOp0(p, OP_Noop); |
+ assert( p->nOp>0 || p->aOp==0 ); |
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
+ if( p->nOp ){ |
+ char **pz = &p->aOp[p->nOp-1].zComment; |
+ va_start(ap, zFormat); |
+ sqlite3DbFree(p->db, *pz); |
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
+ va_end(ap); |
+ } |
+} |
+#endif /* NDEBUG */ |
+ |
+/* |
+** Return the opcode for a given address. If the address is -1, then |
+** return the most recently inserted opcode. |
+** |
+** If a memory allocation error has occurred prior to the calling of this |
+** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
+** is readable but not writable, though it is cast to a writable value. |
+** The return of a dummy opcode allows the call to continue functioning |
+** after a OOM fault without having to check to see if the return from |
+** this routine is a valid pointer. But because the dummy.opcode is 0, |
+** dummy will never be written to. This is verified by code inspection and |
+** by running with Valgrind. |
+** |
+** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called |
+** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, |
+** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as |
+** a new VDBE is created. So we are free to set addr to p->nOp-1 without |
+** having to double-check to make sure that the result is non-negative. But |
+** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to |
+** check the value of p->nOp-1 before continuing. |
+*/ |
+VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
+ /* C89 specifies that the constant "dummy" will be initialized to all |
+ ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
+ static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ if( addr<0 ){ |
+#ifdef SQLITE_OMIT_TRACE |
+ if( p->nOp==0 ) return (VdbeOp*)&dummy; |
+#endif |
+ addr = p->nOp - 1; |
+ } |
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
+ if( p->db->mallocFailed ){ |
+ return (VdbeOp*)&dummy; |
+ }else{ |
+ return &p->aOp[addr]; |
+ } |
+} |
+ |
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ |
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
+/* |
+** Compute a string that describes the P4 parameter for an opcode. |
+** Use zTemp for any required temporary buffer space. |
+*/ |
+static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
+ char *zP4 = zTemp; |
+ assert( nTemp>=20 ); |
+ switch( pOp->p4type ){ |
+ case P4_KEYINFO_STATIC: |
+ case P4_KEYINFO: { |
+ int i, j; |
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
+ sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); |
+ i = sqlite3Strlen30(zTemp); |
+ for(j=0; j<pKeyInfo->nField; j++){ |
+ CollSeq *pColl = pKeyInfo->aColl[j]; |
+ if( pColl ){ |
+ int n = sqlite3Strlen30(pColl->zName); |
+ if( i+n>nTemp-6 ){ |
+ memcpy(&zTemp[i],",...",4); |
+ break; |
+ } |
+ zTemp[i++] = ','; |
+ if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ |
+ zTemp[i++] = '-'; |
+ } |
+ memcpy(&zTemp[i], pColl->zName,n+1); |
+ i += n; |
+ }else if( i+4<nTemp-6 ){ |
+ memcpy(&zTemp[i],",nil",4); |
+ i += 4; |
+ } |
+ } |
+ zTemp[i++] = ')'; |
+ zTemp[i] = 0; |
+ assert( i<nTemp ); |
+ break; |
+ } |
+ case P4_COLLSEQ: { |
+ CollSeq *pColl = pOp->p4.pColl; |
+ sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); |
+ break; |
+ } |
+ case P4_FUNCDEF: { |
+ FuncDef *pDef = pOp->p4.pFunc; |
+ sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); |
+ break; |
+ } |
+ case P4_INT64: { |
+ sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); |
+ break; |
+ } |
+ case P4_INT32: { |
+ sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
+ break; |
+ } |
+ case P4_REAL: { |
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); |
+ break; |
+ } |
+ case P4_MEM: { |
+ Mem *pMem = pOp->p4.pMem; |
+ assert( (pMem->flags & MEM_Null)==0 ); |
+ if( pMem->flags & MEM_Str ){ |
+ zP4 = pMem->z; |
+ }else if( pMem->flags & MEM_Int ){ |
+ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); |
+ }else if( pMem->flags & MEM_Real ){ |
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); |
+ }else{ |
+ assert( pMem->flags & MEM_Blob ); |
+ zP4 = "(blob)"; |
+ } |
+ break; |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ case P4_VTAB: { |
+ sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
+ sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); |
+ break; |
+ } |
+#endif |
+ case P4_INTARRAY: { |
+ sqlite3_snprintf(nTemp, zTemp, "intarray"); |
+ break; |
+ } |
+ case P4_SUBPROGRAM: { |
+ sqlite3_snprintf(nTemp, zTemp, "program"); |
+ break; |
+ } |
+ default: { |
+ zP4 = pOp->p4.z; |
+ if( zP4==0 ){ |
+ zP4 = zTemp; |
+ zTemp[0] = 0; |
+ } |
+ } |
+ } |
+ assert( zP4!=0 ); |
+ return zP4; |
+} |
+#endif |
+ |
+/* |
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
+** |
+** The prepared statements need to know in advance the complete set of |
+** attached databases that they will be using. A mask of these databases |
+** is maintained in p->btreeMask and is used for locking and other purposes. |
+*/ |
+void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
+ assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
+ assert( i<(int)sizeof(p->btreeMask)*8 ); |
+ p->btreeMask |= ((yDbMask)1)<<i; |
+ if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
+ p->lockMask |= ((yDbMask)1)<<i; |
+ } |
+} |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
+/* |
+** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
+** this routine obtains the mutex associated with each BtShared structure |
+** that may be accessed by the VM passed as an argument. In doing so it also |
+** sets the BtShared.db member of each of the BtShared structures, ensuring |
+** that the correct busy-handler callback is invoked if required. |
+** |
+** If SQLite is not threadsafe but does support shared-cache mode, then |
+** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
+** of all of BtShared structures accessible via the database handle |
+** associated with the VM. |
+** |
+** If SQLite is not threadsafe and does not support shared-cache mode, this |
+** function is a no-op. |
+** |
+** The p->btreeMask field is a bitmask of all btrees that the prepared |
+** statement p will ever use. Let N be the number of bits in p->btreeMask |
+** corresponding to btrees that use shared cache. Then the runtime of |
+** this routine is N*N. But as N is rarely more than 1, this should not |
+** be a problem. |
+*/ |
+void sqlite3VdbeEnter(Vdbe *p){ |
+ int i; |
+ yDbMask mask; |
+ sqlite3 *db; |
+ Db *aDb; |
+ int nDb; |
+ if( p->lockMask==0 ) return; /* The common case */ |
+ db = p->db; |
+ aDb = db->aDb; |
+ nDb = db->nDb; |
+ for(i=0, mask=1; i<nDb; i++, mask += mask){ |
+ if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ |
+ sqlite3BtreeEnter(aDb[i].pBt); |
+ } |
+ } |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
+/* |
+** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
+*/ |
+void sqlite3VdbeLeave(Vdbe *p){ |
+ int i; |
+ yDbMask mask; |
+ sqlite3 *db; |
+ Db *aDb; |
+ int nDb; |
+ if( p->lockMask==0 ) return; /* The common case */ |
+ db = p->db; |
+ aDb = db->aDb; |
+ nDb = db->nDb; |
+ for(i=0, mask=1; i<nDb; i++, mask += mask){ |
+ if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ |
+ sqlite3BtreeLeave(aDb[i].pBt); |
+ } |
+ } |
+} |
+#endif |
+ |
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
+/* |
+** Print a single opcode. This routine is used for debugging only. |
+*/ |
+void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
+ char *zP4; |
+ char zPtr[50]; |
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; |
+ if( pOut==0 ) pOut = stdout; |
+ zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
+ fprintf(pOut, zFormat1, pc, |
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
+#ifdef SQLITE_DEBUG |
+ pOp->zComment ? pOp->zComment : "" |
+#else |
+ "" |
+#endif |
+ ); |
+ fflush(pOut); |
+} |
+#endif |
+ |
+/* |
+** Release an array of N Mem elements |
+*/ |
+static void releaseMemArray(Mem *p, int N){ |
+ if( p && N ){ |
+ Mem *pEnd; |
+ sqlite3 *db = p->db; |
+ u8 malloc_failed = db->mallocFailed; |
+ if( db->pnBytesFreed ){ |
+ for(pEnd=&p[N]; p<pEnd; p++){ |
+ sqlite3DbFree(db, p->zMalloc); |
+ } |
+ return; |
+ } |
+ for(pEnd=&p[N]; p<pEnd; p++){ |
+ assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
+ |
+ /* This block is really an inlined version of sqlite3VdbeMemRelease() |
+ ** that takes advantage of the fact that the memory cell value is |
+ ** being set to NULL after releasing any dynamic resources. |
+ ** |
+ ** The justification for duplicating code is that according to |
+ ** callgrind, this causes a certain test case to hit the CPU 4.7 |
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps |
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table |
+ ** with no indexes using a single prepared INSERT statement, bind() |
+ ** and reset(). Inserts are grouped into a transaction. |
+ */ |
+ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ |
+ sqlite3VdbeMemRelease(p); |
+ }else if( p->zMalloc ){ |
+ sqlite3DbFree(db, p->zMalloc); |
+ p->zMalloc = 0; |
+ } |
+ |
+ p->flags = MEM_Null; |
+ } |
+ db->mallocFailed = malloc_failed; |
+ } |
+} |
+ |
+/* |
+** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
+** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
+*/ |
+void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
+ int i; |
+ Mem *aMem = VdbeFrameMem(p); |
+ VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
+ for(i=0; i<p->nChildCsr; i++){ |
+ sqlite3VdbeFreeCursor(p->v, apCsr[i]); |
+ } |
+ releaseMemArray(aMem, p->nChildMem); |
+ sqlite3DbFree(p->v->db, p); |
+} |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+/* |
+** Give a listing of the program in the virtual machine. |
+** |
+** The interface is the same as sqlite3VdbeExec(). But instead of |
+** running the code, it invokes the callback once for each instruction. |
+** This feature is used to implement "EXPLAIN". |
+** |
+** When p->explain==1, each instruction is listed. When |
+** p->explain==2, only OP_Explain instructions are listed and these |
+** are shown in a different format. p->explain==2 is used to implement |
+** EXPLAIN QUERY PLAN. |
+** |
+** When p->explain==1, first the main program is listed, then each of |
+** the trigger subprograms are listed one by one. |
+*/ |
+int sqlite3VdbeList( |
+ Vdbe *p /* The VDBE */ |
+){ |
+ int nRow; /* Stop when row count reaches this */ |
+ int nSub = 0; /* Number of sub-vdbes seen so far */ |
+ SubProgram **apSub = 0; /* Array of sub-vdbes */ |
+ Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
+ sqlite3 *db = p->db; /* The database connection */ |
+ int i; /* Loop counter */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ |
+ |
+ assert( p->explain ); |
+ assert( p->magic==VDBE_MAGIC_RUN ); |
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
+ |
+ /* Even though this opcode does not use dynamic strings for |
+ ** the result, result columns may become dynamic if the user calls |
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
+ */ |
+ releaseMemArray(pMem, 8); |
+ |
+ if( p->rc==SQLITE_NOMEM ){ |
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or |
+ ** sqlite3_column_text16() failed. */ |
+ db->mallocFailed = 1; |
+ return SQLITE_ERROR; |
+ } |
+ |
+ /* When the number of output rows reaches nRow, that means the |
+ ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
+ ** nRow is the sum of the number of rows in the main program, plus |
+ ** the sum of the number of rows in all trigger subprograms encountered |
+ ** so far. The nRow value will increase as new trigger subprograms are |
+ ** encountered, but p->pc will eventually catch up to nRow. |
+ */ |
+ nRow = p->nOp; |
+ if( p->explain==1 ){ |
+ /* The first 8 memory cells are used for the result set. So we will |
+ ** commandeer the 9th cell to use as storage for an array of pointers |
+ ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
+ ** cells. */ |
+ assert( p->nMem>9 ); |
+ pSub = &p->aMem[9]; |
+ if( pSub->flags&MEM_Blob ){ |
+ /* On the first call to sqlite3_step(), pSub will hold a NULL. It is |
+ ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ |
+ nSub = pSub->n/sizeof(Vdbe*); |
+ apSub = (SubProgram **)pSub->z; |
+ } |
+ for(i=0; i<nSub; i++){ |
+ nRow += apSub[i]->nOp; |
+ } |
+ } |
+ |
+ do{ |
+ i = p->pc++; |
+ }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
+ if( i>=nRow ){ |
+ p->rc = SQLITE_OK; |
+ rc = SQLITE_DONE; |
+ }else if( db->u1.isInterrupted ){ |
+ p->rc = SQLITE_INTERRUPT; |
+ rc = SQLITE_ERROR; |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); |
+ }else{ |
+ char *z; |
+ Op *pOp; |
+ if( i<p->nOp ){ |
+ /* The output line number is small enough that we are still in the |
+ ** main program. */ |
+ pOp = &p->aOp[i]; |
+ }else{ |
+ /* We are currently listing subprograms. Figure out which one and |
+ ** pick up the appropriate opcode. */ |
+ int j; |
+ i -= p->nOp; |
+ for(j=0; i>=apSub[j]->nOp; j++){ |
+ i -= apSub[j]->nOp; |
+ } |
+ pOp = &apSub[j]->aOp[i]; |
+ } |
+ if( p->explain==1 ){ |
+ pMem->flags = MEM_Int; |
+ pMem->type = SQLITE_INTEGER; |
+ pMem->u.i = i; /* Program counter */ |
+ pMem++; |
+ |
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
+ assert( pMem->z!=0 ); |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->type = SQLITE_TEXT; |
+ pMem->enc = SQLITE_UTF8; |
+ pMem++; |
+ |
+ /* When an OP_Program opcode is encounter (the only opcode that has |
+ ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
+ ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
+ ** has not already been seen. |
+ */ |
+ if( pOp->p4type==P4_SUBPROGRAM ){ |
+ int nByte = (nSub+1)*sizeof(SubProgram*); |
+ int j; |
+ for(j=0; j<nSub; j++){ |
+ if( apSub[j]==pOp->p4.pProgram ) break; |
+ } |
+ if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ |
+ apSub = (SubProgram **)pSub->z; |
+ apSub[nSub++] = pOp->p4.pProgram; |
+ pSub->flags |= MEM_Blob; |
+ pSub->n = nSub*sizeof(SubProgram*); |
+ } |
+ } |
+ } |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p1; /* P1 */ |
+ pMem->type = SQLITE_INTEGER; |
+ pMem++; |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p2; /* P2 */ |
+ pMem->type = SQLITE_INTEGER; |
+ pMem++; |
+ |
+ pMem->flags = MEM_Int; |
+ pMem->u.i = pOp->p3; /* P3 */ |
+ pMem->type = SQLITE_INTEGER; |
+ pMem++; |
+ |
+ if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ |
+ assert( p->db->mallocFailed ); |
+ return SQLITE_ERROR; |
+ } |
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
+ z = displayP4(pOp, pMem->z, 32); |
+ if( z!=pMem->z ){ |
+ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); |
+ }else{ |
+ assert( pMem->z!=0 ); |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->enc = SQLITE_UTF8; |
+ } |
+ pMem->type = SQLITE_TEXT; |
+ pMem++; |
+ |
+ if( p->explain==1 ){ |
+ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ |
+ assert( p->db->mallocFailed ); |
+ return SQLITE_ERROR; |
+ } |
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
+ pMem->n = 2; |
+ sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
+ pMem->type = SQLITE_TEXT; |
+ pMem->enc = SQLITE_UTF8; |
+ pMem++; |
+ |
+#ifdef SQLITE_DEBUG |
+ if( pOp->zComment ){ |
+ pMem->flags = MEM_Str|MEM_Term; |
+ pMem->z = pOp->zComment; |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->enc = SQLITE_UTF8; |
+ pMem->type = SQLITE_TEXT; |
+ }else |
+#endif |
+ { |
+ pMem->flags = MEM_Null; /* Comment */ |
+ pMem->type = SQLITE_NULL; |
+ } |
+ } |
+ |
+ p->nResColumn = 8 - 4*(p->explain-1); |
+ p->rc = SQLITE_OK; |
+ rc = SQLITE_ROW; |
+ } |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_EXPLAIN */ |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Print the SQL that was used to generate a VDBE program. |
+*/ |
+void sqlite3VdbePrintSql(Vdbe *p){ |
+ int nOp = p->nOp; |
+ VdbeOp *pOp; |
+ if( nOp<1 ) return; |
+ pOp = &p->aOp[0]; |
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
+ const char *z = pOp->p4.z; |
+ while( sqlite3Isspace(*z) ) z++; |
+ printf("SQL: [%s]\n", z); |
+ } |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
+/* |
+** Print an IOTRACE message showing SQL content. |
+*/ |
+void sqlite3VdbeIOTraceSql(Vdbe *p){ |
+ int nOp = p->nOp; |
+ VdbeOp *pOp; |
+ if( sqlite3IoTrace==0 ) return; |
+ if( nOp<1 ) return; |
+ pOp = &p->aOp[0]; |
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
+ int i, j; |
+ char z[1000]; |
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
+ for(i=0; sqlite3Isspace(z[i]); i++){} |
+ for(j=0; z[i]; i++){ |
+ if( sqlite3Isspace(z[i]) ){ |
+ if( z[i-1]!=' ' ){ |
+ z[j++] = ' '; |
+ } |
+ }else{ |
+ z[j++] = z[i]; |
+ } |
+ } |
+ z[j] = 0; |
+ sqlite3IoTrace("SQL %s\n", z); |
+ } |
+} |
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
+ |
+/* |
+** Allocate space from a fixed size buffer and return a pointer to |
+** that space. If insufficient space is available, return NULL. |
+** |
+** The pBuf parameter is the initial value of a pointer which will |
+** receive the new memory. pBuf is normally NULL. If pBuf is not |
+** NULL, it means that memory space has already been allocated and that |
+** this routine should not allocate any new memory. When pBuf is not |
+** NULL simply return pBuf. Only allocate new memory space when pBuf |
+** is NULL. |
+** |
+** nByte is the number of bytes of space needed. |
+** |
+** *ppFrom points to available space and pEnd points to the end of the |
+** available space. When space is allocated, *ppFrom is advanced past |
+** the end of the allocated space. |
+** |
+** *pnByte is a counter of the number of bytes of space that have failed |
+** to allocate. If there is insufficient space in *ppFrom to satisfy the |
+** request, then increment *pnByte by the amount of the request. |
+*/ |
+static void *allocSpace( |
+ void *pBuf, /* Where return pointer will be stored */ |
+ int nByte, /* Number of bytes to allocate */ |
+ u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ |
+ u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ |
+ int *pnByte /* If allocation cannot be made, increment *pnByte */ |
+){ |
+ assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); |
+ if( pBuf ) return pBuf; |
+ nByte = ROUND8(nByte); |
+ if( &(*ppFrom)[nByte] <= pEnd ){ |
+ pBuf = (void*)*ppFrom; |
+ *ppFrom += nByte; |
+ }else{ |
+ *pnByte += nByte; |
+ } |
+ return pBuf; |
+} |
+ |
+/* |
+** Prepare a virtual machine for execution. This involves things such |
+** as allocating stack space and initializing the program counter. |
+** After the VDBE has be prepped, it can be executed by one or more |
+** calls to sqlite3VdbeExec(). |
+** |
+** This is the only way to move a VDBE from VDBE_MAGIC_INIT to |
+** VDBE_MAGIC_RUN. |
+** |
+** This function may be called more than once on a single virtual machine. |
+** The first call is made while compiling the SQL statement. Subsequent |
+** calls are made as part of the process of resetting a statement to be |
+** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor |
+** and isExplain parameters are only passed correct values the first time |
+** the function is called. On subsequent calls, from sqlite3_reset(), nVar |
+** is passed -1 and nMem, nCursor and isExplain are all passed zero. |
+*/ |
+void sqlite3VdbeMakeReady( |
+ Vdbe *p, /* The VDBE */ |
+ int nVar, /* Number of '?' see in the SQL statement */ |
+ int nMem, /* Number of memory cells to allocate */ |
+ int nCursor, /* Number of cursors to allocate */ |
+ int nArg, /* Maximum number of args in SubPrograms */ |
+ int isExplain, /* True if the EXPLAIN keywords is present */ |
+ int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ |
+){ |
+ int n; |
+ sqlite3 *db = p->db; |
+ |
+ assert( p!=0 ); |
+ assert( p->magic==VDBE_MAGIC_INIT ); |
+ |
+ /* There should be at least one opcode. |
+ */ |
+ assert( p->nOp>0 ); |
+ |
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
+ p->magic = VDBE_MAGIC_RUN; |
+ |
+ /* For each cursor required, also allocate a memory cell. Memory |
+ ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by |
+ ** the vdbe program. Instead they are used to allocate space for |
+ ** VdbeCursor/BtCursor structures. The blob of memory associated with |
+ ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) |
+ ** stores the blob of memory associated with cursor 1, etc. |
+ ** |
+ ** See also: allocateCursor(). |
+ */ |
+ nMem += nCursor; |
+ |
+ /* Allocate space for memory registers, SQL variables, VDBE cursors and |
+ ** an array to marshal SQL function arguments in. This is only done the |
+ ** first time this function is called for a given VDBE, not when it is |
+ ** being called from sqlite3_reset() to reset the virtual machine. |
+ */ |
+ if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ |
+ u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ |
+ u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */ |
+ int nByte; /* How much extra memory needed */ |
+ |
+ resolveP2Values(p, &nArg); |
+ p->usesStmtJournal = (u8)usesStmtJournal; |
+ if( isExplain && nMem<10 ){ |
+ nMem = 10; |
+ } |
+ memset(zCsr, 0, zEnd-zCsr); |
+ zCsr += (zCsr - (u8*)0)&7; |
+ assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); |
+ |
+ /* Memory for registers, parameters, cursor, etc, is allocated in two |
+ ** passes. On the first pass, we try to reuse unused space at the |
+ ** end of the opcode array. If we are unable to satisfy all memory |
+ ** requirements by reusing the opcode array tail, then the second |
+ ** pass will fill in the rest using a fresh allocation. |
+ ** |
+ ** This two-pass approach that reuses as much memory as possible from |
+ ** the leftover space at the end of the opcode array can significantly |
+ ** reduce the amount of memory held by a prepared statement. |
+ */ |
+ do { |
+ nByte = 0; |
+ p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); |
+ p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); |
+ p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); |
+ p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); |
+ p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), |
+ &zCsr, zEnd, &nByte); |
+ if( nByte ){ |
+ p->pFree = sqlite3DbMallocZero(db, nByte); |
+ } |
+ zCsr = p->pFree; |
+ zEnd = &zCsr[nByte]; |
+ }while( nByte && !db->mallocFailed ); |
+ |
+ p->nCursor = (u16)nCursor; |
+ if( p->aVar ){ |
+ p->nVar = (ynVar)nVar; |
+ for(n=0; n<nVar; n++){ |
+ p->aVar[n].flags = MEM_Null; |
+ p->aVar[n].db = db; |
+ } |
+ } |
+ if( p->aMem ){ |
+ p->aMem--; /* aMem[] goes from 1..nMem */ |
+ p->nMem = nMem; /* not from 0..nMem-1 */ |
+ for(n=1; n<=nMem; n++){ |
+ p->aMem[n].flags = MEM_Null; |
+ p->aMem[n].db = db; |
+ } |
+ } |
+ } |
+#ifdef SQLITE_DEBUG |
+ for(n=1; n<p->nMem; n++){ |
+ assert( p->aMem[n].db==db ); |
+ } |
+#endif |
+ |
+ p->pc = -1; |
+ p->rc = SQLITE_OK; |
+ p->errorAction = OE_Abort; |
+ p->explain |= isExplain; |
+ p->magic = VDBE_MAGIC_RUN; |
+ p->nChange = 0; |
+ p->cacheCtr = 1; |
+ p->minWriteFileFormat = 255; |
+ p->iStatement = 0; |
+ p->nFkConstraint = 0; |
+#ifdef VDBE_PROFILE |
+ { |
+ int i; |
+ for(i=0; i<p->nOp; i++){ |
+ p->aOp[i].cnt = 0; |
+ p->aOp[i].cycles = 0; |
+ } |
+ } |
+#endif |
+} |
+ |
+/* |
+** Close a VDBE cursor and release all the resources that cursor |
+** happens to hold. |
+*/ |
+void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
+ if( pCx==0 ){ |
+ return; |
+ } |
+ if( pCx->pBt ){ |
+ sqlite3BtreeClose(pCx->pBt); |
+ /* The pCx->pCursor will be close automatically, if it exists, by |
+ ** the call above. */ |
+ }else if( pCx->pCursor ){ |
+ sqlite3BtreeCloseCursor(pCx->pCursor); |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( pCx->pVtabCursor ){ |
+ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; |
+ const sqlite3_module *pModule = pCx->pModule; |
+ p->inVtabMethod = 1; |
+ pModule->xClose(pVtabCursor); |
+ p->inVtabMethod = 0; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
+** is used, for example, when a trigger sub-program is halted to restore |
+** control to the main program. |
+*/ |
+int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
+ Vdbe *v = pFrame->v; |
+ v->aOp = pFrame->aOp; |
+ v->nOp = pFrame->nOp; |
+ v->aMem = pFrame->aMem; |
+ v->nMem = pFrame->nMem; |
+ v->apCsr = pFrame->apCsr; |
+ v->nCursor = pFrame->nCursor; |
+ v->db->lastRowid = pFrame->lastRowid; |
+ v->nChange = pFrame->nChange; |
+ return pFrame->pc; |
+} |
+ |
+/* |
+** Close all cursors. |
+** |
+** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
+** cell array. This is necessary as the memory cell array may contain |
+** pointers to VdbeFrame objects, which may in turn contain pointers to |
+** open cursors. |
+*/ |
+static void closeAllCursors(Vdbe *p){ |
+ if( p->pFrame ){ |
+ VdbeFrame *pFrame; |
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
+ sqlite3VdbeFrameRestore(pFrame); |
+ } |
+ p->pFrame = 0; |
+ p->nFrame = 0; |
+ |
+ if( p->apCsr ){ |
+ int i; |
+ for(i=0; i<p->nCursor; i++){ |
+ VdbeCursor *pC = p->apCsr[i]; |
+ if( pC ){ |
+ sqlite3VdbeFreeCursor(p, pC); |
+ p->apCsr[i] = 0; |
+ } |
+ } |
+ } |
+ if( p->aMem ){ |
+ releaseMemArray(&p->aMem[1], p->nMem); |
+ } |
+ while( p->pDelFrame ){ |
+ VdbeFrame *pDel = p->pDelFrame; |
+ p->pDelFrame = pDel->pParent; |
+ sqlite3VdbeFrameDelete(pDel); |
+ } |
+} |
+ |
+/* |
+** Clean up the VM after execution. |
+** |
+** This routine will automatically close any cursors, lists, and/or |
+** sorters that were left open. It also deletes the values of |
+** variables in the aVar[] array. |
+*/ |
+static void Cleanup(Vdbe *p){ |
+ sqlite3 *db = p->db; |
+ |
+#ifdef SQLITE_DEBUG |
+ /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
+ ** Vdbe.aMem[] arrays have already been cleaned up. */ |
+ int i; |
+ for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); |
+ for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); |
+#endif |
+ |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ p->pResultSet = 0; |
+} |
+ |
+/* |
+** Set the number of result columns that will be returned by this SQL |
+** statement. This is now set at compile time, rather than during |
+** execution of the vdbe program so that sqlite3_column_count() can |
+** be called on an SQL statement before sqlite3_step(). |
+*/ |
+void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
+ Mem *pColName; |
+ int n; |
+ sqlite3 *db = p->db; |
+ |
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
+ sqlite3DbFree(db, p->aColName); |
+ n = nResColumn*COLNAME_N; |
+ p->nResColumn = (u16)nResColumn; |
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); |
+ if( p->aColName==0 ) return; |
+ while( n-- > 0 ){ |
+ pColName->flags = MEM_Null; |
+ pColName->db = p->db; |
+ pColName++; |
+ } |
+} |
+ |
+/* |
+** Set the name of the idx'th column to be returned by the SQL statement. |
+** zName must be a pointer to a nul terminated string. |
+** |
+** This call must be made after a call to sqlite3VdbeSetNumCols(). |
+** |
+** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
+** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
+** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
+*/ |
+int sqlite3VdbeSetColName( |
+ Vdbe *p, /* Vdbe being configured */ |
+ int idx, /* Index of column zName applies to */ |
+ int var, /* One of the COLNAME_* constants */ |
+ const char *zName, /* Pointer to buffer containing name */ |
+ void (*xDel)(void*) /* Memory management strategy for zName */ |
+){ |
+ int rc; |
+ Mem *pColName; |
+ assert( idx<p->nResColumn ); |
+ assert( var<COLNAME_N ); |
+ if( p->db->mallocFailed ){ |
+ assert( !zName || xDel!=SQLITE_DYNAMIC ); |
+ return SQLITE_NOMEM; |
+ } |
+ assert( p->aColName!=0 ); |
+ pColName = &(p->aColName[idx+var*p->nResColumn]); |
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
+ assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
+ return rc; |
+} |
+ |
+/* |
+** A read or write transaction may or may not be active on database handle |
+** db. If a transaction is active, commit it. If there is a |
+** write-transaction spanning more than one database file, this routine |
+** takes care of the master journal trickery. |
+*/ |
+static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
+ int i; |
+ int nTrans = 0; /* Number of databases with an active write-transaction */ |
+ int rc = SQLITE_OK; |
+ int needXcommit = 0; |
+ |
+#ifdef SQLITE_OMIT_VIRTUALTABLE |
+ /* With this option, sqlite3VtabSync() is defined to be simply |
+ ** SQLITE_OK so p is not used. |
+ */ |
+ UNUSED_PARAMETER(p); |
+#endif |
+ |
+ /* Before doing anything else, call the xSync() callback for any |
+ ** virtual module tables written in this transaction. This has to |
+ ** be done before determining whether a master journal file is |
+ ** required, as an xSync() callback may add an attached database |
+ ** to the transaction. |
+ */ |
+ rc = sqlite3VtabSync(db, &p->zErrMsg); |
+ |
+ /* This loop determines (a) if the commit hook should be invoked and |
+ ** (b) how many database files have open write transactions, not |
+ ** including the temp database. (b) is important because if more than |
+ ** one database file has an open write transaction, a master journal |
+ ** file is required for an atomic commit. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( sqlite3BtreeIsInTrans(pBt) ){ |
+ needXcommit = 1; |
+ if( i!=1 ) nTrans++; |
+ rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* If there are any write-transactions at all, invoke the commit hook */ |
+ if( needXcommit && db->xCommitCallback ){ |
+ rc = db->xCommitCallback(db->pCommitArg); |
+ if( rc ){ |
+ return SQLITE_CONSTRAINT; |
+ } |
+ } |
+ |
+ /* The simple case - no more than one database file (not counting the |
+ ** TEMP database) has a transaction active. There is no need for the |
+ ** master-journal. |
+ ** |
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length |
+ ** string, it means the main database is :memory: or a temp file. In |
+ ** that case we do not support atomic multi-file commits, so use the |
+ ** simple case then too. |
+ */ |
+ if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
+ || nTrans<=1 |
+ ){ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
+ } |
+ } |
+ |
+ /* Do the commit only if all databases successfully complete phase 1. |
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
+ ** IO error while deleting or truncating a journal file. It is unlikely, |
+ ** but could happen. In this case abandon processing and return the error. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3VtabCommit(db); |
+ } |
+ } |
+ |
+ /* The complex case - There is a multi-file write-transaction active. |
+ ** This requires a master journal file to ensure the transaction is |
+ ** committed atomicly. |
+ */ |
+#ifndef SQLITE_OMIT_DISKIO |
+ else{ |
+ sqlite3_vfs *pVfs = db->pVfs; |
+ int needSync = 0; |
+ char *zMaster = 0; /* File-name for the master journal */ |
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
+ sqlite3_file *pMaster = 0; |
+ i64 offset = 0; |
+ int res; |
+ |
+ /* Select a master journal file name */ |
+ do { |
+ u32 iRandom; |
+ sqlite3DbFree(db, zMaster); |
+ sqlite3_randomness(sizeof(iRandom), &iRandom); |
+ zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); |
+ if( !zMaster ){ |
+ return SQLITE_NOMEM; |
+ } |
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
+ }while( rc==SQLITE_OK && res ); |
+ if( rc==SQLITE_OK ){ |
+ /* Open the master journal. */ |
+ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
+ ); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Write the name of each database file in the transaction into the new |
+ ** master journal file. If an error occurs at this point close |
+ ** and delete the master journal file. All the individual journal files |
+ ** still have 'null' as the master journal pointer, so they will roll |
+ ** back independently if a failure occurs. |
+ */ |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( sqlite3BtreeIsInTrans(pBt) ){ |
+ char const *zFile = sqlite3BtreeGetJournalname(pBt); |
+ if( zFile==0 ){ |
+ continue; /* Ignore TEMP and :memory: databases */ |
+ } |
+ assert( zFile[0]!=0 ); |
+ if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ |
+ needSync = 1; |
+ } |
+ rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); |
+ offset += sqlite3Strlen30(zFile)+1; |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3OsCloseFree(pMaster); |
+ sqlite3OsDelete(pVfs, zMaster, 0); |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ } |
+ } |
+ |
+ /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
+ ** flag is set this is not required. |
+ */ |
+ if( needSync |
+ && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) |
+ && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) |
+ ){ |
+ sqlite3OsCloseFree(pMaster); |
+ sqlite3OsDelete(pVfs, zMaster, 0); |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Sync all the db files involved in the transaction. The same call |
+ ** sets the master journal pointer in each individual journal. If |
+ ** an error occurs here, do not delete the master journal file. |
+ ** |
+ ** If the error occurs during the first call to |
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
+ ** master journal file will be orphaned. But we cannot delete it, |
+ ** in case the master journal file name was written into the journal |
+ ** file before the failure occurred. |
+ */ |
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
+ } |
+ } |
+ sqlite3OsCloseFree(pMaster); |
+ assert( rc!=SQLITE_BUSY ); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3DbFree(db, zMaster); |
+ return rc; |
+ } |
+ |
+ /* Delete the master journal file. This commits the transaction. After |
+ ** doing this the directory is synced again before any individual |
+ ** transaction files are deleted. |
+ */ |
+ rc = sqlite3OsDelete(pVfs, zMaster, 1); |
+ sqlite3DbFree(db, zMaster); |
+ zMaster = 0; |
+ if( rc ){ |
+ return rc; |
+ } |
+ |
+ /* All files and directories have already been synced, so the following |
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
+ ** deleting or truncating journals. If something goes wrong while |
+ ** this is happening we don't really care. The integrity of the |
+ ** transaction is already guaranteed, but some stray 'cold' journals |
+ ** may be lying around. Returning an error code won't help matters. |
+ */ |
+ disable_simulated_io_errors(); |
+ sqlite3BeginBenignMalloc(); |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ sqlite3BtreeCommitPhaseTwo(pBt, 1); |
+ } |
+ } |
+ sqlite3EndBenignMalloc(); |
+ enable_simulated_io_errors(); |
+ |
+ sqlite3VtabCommit(db); |
+ } |
+#endif |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This routine checks that the sqlite3.activeVdbeCnt count variable |
+** matches the number of vdbe's in the list sqlite3.pVdbe that are |
+** currently active. An assertion fails if the two counts do not match. |
+** This is an internal self-check only - it is not an essential processing |
+** step. |
+** |
+** This is a no-op if NDEBUG is defined. |
+*/ |
+#ifndef NDEBUG |
+static void checkActiveVdbeCnt(sqlite3 *db){ |
+ Vdbe *p; |
+ int cnt = 0; |
+ int nWrite = 0; |
+ p = db->pVdbe; |
+ while( p ){ |
+ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ |
+ cnt++; |
+ if( p->readOnly==0 ) nWrite++; |
+ } |
+ p = p->pNext; |
+ } |
+ assert( cnt==db->activeVdbeCnt ); |
+ assert( nWrite==db->writeVdbeCnt ); |
+} |
+#else |
+#define checkActiveVdbeCnt(x) |
+#endif |
+ |
+/* |
+** For every Btree that in database connection db which |
+** has been modified, "trip" or invalidate each cursor in |
+** that Btree might have been modified so that the cursor |
+** can never be used again. This happens when a rollback |
+*** occurs. We have to trip all the other cursors, even |
+** cursor from other VMs in different database connections, |
+** so that none of them try to use the data at which they |
+** were pointing and which now may have been changed due |
+** to the rollback. |
+** |
+** Remember that a rollback can delete tables complete and |
+** reorder rootpages. So it is not sufficient just to save |
+** the state of the cursor. We have to invalidate the cursor |
+** so that it is never used again. |
+*/ |
+static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ |
+ int i; |
+ for(i=0; i<db->nDb; i++){ |
+ Btree *p = db->aDb[i].pBt; |
+ if( p && sqlite3BtreeIsInTrans(p) ){ |
+ sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); |
+ } |
+ } |
+} |
+ |
+/* |
+** If the Vdbe passed as the first argument opened a statement-transaction, |
+** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
+** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
+** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
+** statement transaction is commtted. |
+** |
+** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
+** Otherwise SQLITE_OK. |
+*/ |
+int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
+ sqlite3 *const db = p->db; |
+ int rc = SQLITE_OK; |
+ |
+ /* If p->iStatement is greater than zero, then this Vdbe opened a |
+ ** statement transaction that should be closed here. The only exception |
+ ** is that an IO error may have occured, causing an emergency rollback. |
+ ** In this case (db->nStatement==0), and there is nothing to do. |
+ */ |
+ if( db->nStatement && p->iStatement ){ |
+ int i; |
+ const int iSavepoint = p->iStatement-1; |
+ |
+ assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
+ assert( db->nStatement>0 ); |
+ assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
+ |
+ for(i=0; i<db->nDb; i++){ |
+ int rc2 = SQLITE_OK; |
+ Btree *pBt = db->aDb[i].pBt; |
+ if( pBt ){ |
+ if( eOp==SAVEPOINT_ROLLBACK ){ |
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
+ } |
+ if( rc2==SQLITE_OK ){ |
+ rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ db->nStatement--; |
+ p->iStatement = 0; |
+ |
+ /* If the statement transaction is being rolled back, also restore the |
+ ** database handles deferred constraint counter to the value it had when |
+ ** the statement transaction was opened. */ |
+ if( eOp==SAVEPOINT_ROLLBACK ){ |
+ db->nDeferredCons = p->nStmtDefCons; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called when a transaction opened by the database |
+** handle associated with the VM passed as an argument is about to be |
+** committed. If there are outstanding deferred foreign key constraint |
+** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
+** |
+** If there are outstanding FK violations and this function returns |
+** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write |
+** an error message to it. Then return SQLITE_ERROR. |
+*/ |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
+ sqlite3 *db = p->db; |
+ if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ |
+ p->rc = SQLITE_CONSTRAINT; |
+ p->errorAction = OE_Abort; |
+ sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); |
+ return SQLITE_ERROR; |
+ } |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+/* |
+** This routine is called the when a VDBE tries to halt. If the VDBE |
+** has made changes and is in autocommit mode, then commit those |
+** changes. If a rollback is needed, then do the rollback. |
+** |
+** This routine is the only way to move the state of a VM from |
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
+** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
+** |
+** Return an error code. If the commit could not complete because of |
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
+** means the close did not happen and needs to be repeated. |
+*/ |
+int sqlite3VdbeHalt(Vdbe *p){ |
+ int rc; /* Used to store transient return codes */ |
+ sqlite3 *db = p->db; |
+ |
+ /* This function contains the logic that determines if a statement or |
+ ** transaction will be committed or rolled back as a result of the |
+ ** execution of this virtual machine. |
+ ** |
+ ** If any of the following errors occur: |
+ ** |
+ ** SQLITE_NOMEM |
+ ** SQLITE_IOERR |
+ ** SQLITE_FULL |
+ ** SQLITE_INTERRUPT |
+ ** |
+ ** Then the internal cache might have been left in an inconsistent |
+ ** state. We need to rollback the statement transaction, if there is |
+ ** one, or the complete transaction if there is no statement transaction. |
+ */ |
+ |
+ if( p->db->mallocFailed ){ |
+ p->rc = SQLITE_NOMEM; |
+ } |
+ closeAllCursors(p); |
+ if( p->magic!=VDBE_MAGIC_RUN ){ |
+ return SQLITE_OK; |
+ } |
+ checkActiveVdbeCnt(db); |
+ |
+ /* No commit or rollback needed if the program never started */ |
+ if( p->pc>=0 ){ |
+ int mrc; /* Primary error code from p->rc */ |
+ int eStatementOp = 0; |
+ int isSpecialError; /* Set to true if a 'special' error */ |
+ |
+ /* Lock all btrees used by the statement */ |
+ sqlite3VdbeEnter(p); |
+ |
+ /* Check for one of the special errors */ |
+ mrc = p->rc & 0xff; |
+ assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ |
+ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
+ || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
+ if( isSpecialError ){ |
+ /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
+ ** no rollback is necessary. Otherwise, at least a savepoint |
+ ** transaction must be rolled back to restore the database to a |
+ ** consistent state. |
+ ** |
+ ** Even if the statement is read-only, it is important to perform |
+ ** a statement or transaction rollback operation. If the error |
+ ** occured while writing to the journal, sub-journal or database |
+ ** file as part of an effort to free up cache space (see function |
+ ** pagerStress() in pager.c), the rollback is required to restore |
+ ** the pager to a consistent state. |
+ */ |
+ if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
+ if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
+ eStatementOp = SAVEPOINT_ROLLBACK; |
+ }else{ |
+ /* We are forced to roll back the active transaction. Before doing |
+ ** so, abort any other statements this handle currently has active. |
+ */ |
+ invalidateCursorsOnModifiedBtrees(db); |
+ sqlite3RollbackAll(db); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ } |
+ |
+ /* Check for immediate foreign key violations. */ |
+ if( p->rc==SQLITE_OK ){ |
+ sqlite3VdbeCheckFk(p, 0); |
+ } |
+ |
+ /* If the auto-commit flag is set and this is the only active writer |
+ ** VM, then we do either a commit or rollback of the current transaction. |
+ ** |
+ ** Note: This block also runs if one of the special errors handled |
+ ** above has occurred. |
+ */ |
+ if( !sqlite3VtabInSync(db) |
+ && db->autoCommit |
+ && db->writeVdbeCnt==(p->readOnly==0) |
+ ){ |
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
+ rc = sqlite3VdbeCheckFk(p, 1); |
+ if( rc!=SQLITE_OK ){ |
+ if( NEVER(p->readOnly) ){ |
+ sqlite3VdbeLeave(p); |
+ return SQLITE_ERROR; |
+ } |
+ rc = SQLITE_CONSTRAINT; |
+ }else{ |
+ /* The auto-commit flag is true, the vdbe program was successful |
+ ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
+ ** key constraints to hold up the transaction. This means a commit |
+ ** is required. */ |
+ rc = vdbeCommit(db, p); |
+ } |
+ if( rc==SQLITE_BUSY && p->readOnly ){ |
+ sqlite3VdbeLeave(p); |
+ return SQLITE_BUSY; |
+ }else if( rc!=SQLITE_OK ){ |
+ p->rc = rc; |
+ sqlite3RollbackAll(db); |
+ }else{ |
+ db->nDeferredCons = 0; |
+ sqlite3CommitInternalChanges(db); |
+ } |
+ }else{ |
+ sqlite3RollbackAll(db); |
+ } |
+ db->nStatement = 0; |
+ }else if( eStatementOp==0 ){ |
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
+ eStatementOp = SAVEPOINT_RELEASE; |
+ }else if( p->errorAction==OE_Abort ){ |
+ eStatementOp = SAVEPOINT_ROLLBACK; |
+ }else{ |
+ invalidateCursorsOnModifiedBtrees(db); |
+ sqlite3RollbackAll(db); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ |
+ /* If eStatementOp is non-zero, then a statement transaction needs to |
+ ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
+ ** do so. If this operation returns an error, and the current statement |
+ ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
+ ** current statement error code. |
+ ** |
+ ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp |
+ ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp |
+ ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in |
+ ** the following code. |
+ */ |
+ if( eStatementOp ){ |
+ rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
+ if( rc ){ |
+ assert( eStatementOp==SAVEPOINT_ROLLBACK ); |
+ if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ |
+ p->rc = rc; |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ } |
+ invalidateCursorsOnModifiedBtrees(db); |
+ sqlite3RollbackAll(db); |
+ sqlite3CloseSavepoints(db); |
+ db->autoCommit = 1; |
+ } |
+ } |
+ |
+ /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
+ ** has been rolled back, update the database connection change-counter. |
+ */ |
+ if( p->changeCntOn ){ |
+ if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
+ sqlite3VdbeSetChanges(db, p->nChange); |
+ }else{ |
+ sqlite3VdbeSetChanges(db, 0); |
+ } |
+ p->nChange = 0; |
+ } |
+ |
+ /* Rollback or commit any schema changes that occurred. */ |
+ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ |
+ sqlite3ResetInternalSchema(db, -1); |
+ db->flags = (db->flags | SQLITE_InternChanges); |
+ } |
+ |
+ /* Release the locks */ |
+ sqlite3VdbeLeave(p); |
+ } |
+ |
+ /* We have successfully halted and closed the VM. Record this fact. */ |
+ if( p->pc>=0 ){ |
+ db->activeVdbeCnt--; |
+ if( !p->readOnly ){ |
+ db->writeVdbeCnt--; |
+ } |
+ assert( db->activeVdbeCnt>=db->writeVdbeCnt ); |
+ } |
+ p->magic = VDBE_MAGIC_HALT; |
+ checkActiveVdbeCnt(db); |
+ if( p->db->mallocFailed ){ |
+ p->rc = SQLITE_NOMEM; |
+ } |
+ |
+ /* If the auto-commit flag is set to true, then any locks that were held |
+ ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
+ ** to invoke any required unlock-notify callbacks. |
+ */ |
+ if( db->autoCommit ){ |
+ sqlite3ConnectionUnlocked(db); |
+ } |
+ |
+ assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); |
+ return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
+} |
+ |
+ |
+/* |
+** Each VDBE holds the result of the most recent sqlite3_step() call |
+** in p->rc. This routine sets that result back to SQLITE_OK. |
+*/ |
+void sqlite3VdbeResetStepResult(Vdbe *p){ |
+ p->rc = SQLITE_OK; |
+} |
+ |
+/* |
+** Clean up a VDBE after execution but do not delete the VDBE just yet. |
+** Write any error messages into *pzErrMsg. Return the result code. |
+** |
+** After this routine is run, the VDBE should be ready to be executed |
+** again. |
+** |
+** To look at it another way, this routine resets the state of the |
+** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
+** VDBE_MAGIC_INIT. |
+*/ |
+int sqlite3VdbeReset(Vdbe *p){ |
+ sqlite3 *db; |
+ db = p->db; |
+ |
+ /* If the VM did not run to completion or if it encountered an |
+ ** error, then it might not have been halted properly. So halt |
+ ** it now. |
+ */ |
+ sqlite3VdbeHalt(p); |
+ |
+ /* If the VDBE has be run even partially, then transfer the error code |
+ ** and error message from the VDBE into the main database structure. But |
+ ** if the VDBE has just been set to run but has not actually executed any |
+ ** instructions yet, leave the main database error information unchanged. |
+ */ |
+ if( p->pc>=0 ){ |
+ if( p->zErrMsg ){ |
+ sqlite3BeginBenignMalloc(); |
+ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); |
+ sqlite3EndBenignMalloc(); |
+ db->errCode = p->rc; |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ }else if( p->rc ){ |
+ sqlite3Error(db, p->rc, 0); |
+ }else{ |
+ sqlite3Error(db, SQLITE_OK, 0); |
+ } |
+ if( p->runOnlyOnce ) p->expired = 1; |
+ }else if( p->rc && p->expired ){ |
+ /* The expired flag was set on the VDBE before the first call |
+ ** to sqlite3_step(). For consistency (since sqlite3_step() was |
+ ** called), set the database error in this case as well. |
+ */ |
+ sqlite3Error(db, p->rc, 0); |
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = 0; |
+ } |
+ |
+ /* Reclaim all memory used by the VDBE |
+ */ |
+ Cleanup(p); |
+ |
+ /* Save profiling information from this VDBE run. |
+ */ |
+#ifdef VDBE_PROFILE |
+ { |
+ FILE *out = fopen("vdbe_profile.out", "a"); |
+ if( out ){ |
+ int i; |
+ fprintf(out, "---- "); |
+ for(i=0; i<p->nOp; i++){ |
+ fprintf(out, "%02x", p->aOp[i].opcode); |
+ } |
+ fprintf(out, "\n"); |
+ for(i=0; i<p->nOp; i++){ |
+ fprintf(out, "%6d %10lld %8lld ", |
+ p->aOp[i].cnt, |
+ p->aOp[i].cycles, |
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
+ ); |
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
+ } |
+ fclose(out); |
+ } |
+ } |
+#endif |
+ p->magic = VDBE_MAGIC_INIT; |
+ return p->rc & db->errMask; |
+} |
+ |
+/* |
+** Clean up and delete a VDBE after execution. Return an integer which is |
+** the result code. Write any error message text into *pzErrMsg. |
+*/ |
+int sqlite3VdbeFinalize(Vdbe *p){ |
+ int rc = SQLITE_OK; |
+ if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
+ rc = sqlite3VdbeReset(p); |
+ assert( (rc & p->db->errMask)==rc ); |
+ } |
+ sqlite3VdbeDelete(p); |
+ return rc; |
+} |
+ |
+/* |
+** Call the destructor for each auxdata entry in pVdbeFunc for which |
+** the corresponding bit in mask is clear. Auxdata entries beyond 31 |
+** are always destroyed. To destroy all auxdata entries, call this |
+** routine with mask==0. |
+*/ |
+void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ |
+ int i; |
+ for(i=0; i<pVdbeFunc->nAux; i++){ |
+ struct AuxData *pAux = &pVdbeFunc->apAux[i]; |
+ if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ |
+ if( pAux->xDelete ){ |
+ pAux->xDelete(pAux->pAux); |
+ } |
+ pAux->pAux = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Free all memory associated with the Vdbe passed as the second argument. |
+** The difference between this function and sqlite3VdbeDelete() is that |
+** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
+** the database connection. |
+*/ |
+void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ |
+ SubProgram *pSub, *pNext; |
+ assert( p->db==0 || p->db==db ); |
+ releaseMemArray(p->aVar, p->nVar); |
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
+ for(pSub=p->pProgram; pSub; pSub=pNext){ |
+ pNext = pSub->pNext; |
+ vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
+ sqlite3DbFree(db, pSub); |
+ } |
+ vdbeFreeOpArray(db, p->aOp, p->nOp); |
+ sqlite3DbFree(db, p->aLabel); |
+ sqlite3DbFree(db, p->aColName); |
+ sqlite3DbFree(db, p->zSql); |
+ sqlite3DbFree(db, p->pFree); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Delete an entire VDBE. |
+*/ |
+void sqlite3VdbeDelete(Vdbe *p){ |
+ sqlite3 *db; |
+ |
+ if( NEVER(p==0) ) return; |
+ db = p->db; |
+ if( p->pPrev ){ |
+ p->pPrev->pNext = p->pNext; |
+ }else{ |
+ assert( db->pVdbe==p ); |
+ db->pVdbe = p->pNext; |
+ } |
+ if( p->pNext ){ |
+ p->pNext->pPrev = p->pPrev; |
+ } |
+ p->magic = VDBE_MAGIC_DEAD; |
+ p->db = 0; |
+ sqlite3VdbeDeleteObject(db, p); |
+} |
+ |
+/* |
+** Make sure the cursor p is ready to read or write the row to which it |
+** was last positioned. Return an error code if an OOM fault or I/O error |
+** prevents us from positioning the cursor to its correct position. |
+** |
+** If a MoveTo operation is pending on the given cursor, then do that |
+** MoveTo now. If no move is pending, check to see if the row has been |
+** deleted out from under the cursor and if it has, mark the row as |
+** a NULL row. |
+** |
+** If the cursor is already pointing to the correct row and that row has |
+** not been deleted out from under the cursor, then this routine is a no-op. |
+*/ |
+int sqlite3VdbeCursorMoveto(VdbeCursor *p){ |
+ if( p->deferredMoveto ){ |
+ int res, rc; |
+#ifdef SQLITE_TEST |
+ extern int sqlite3_search_count; |
+#endif |
+ assert( p->isTable ); |
+ rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); |
+ if( rc ) return rc; |
+ p->lastRowid = p->movetoTarget; |
+ if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
+ p->rowidIsValid = 1; |
+#ifdef SQLITE_TEST |
+ sqlite3_search_count++; |
+#endif |
+ p->deferredMoveto = 0; |
+ p->cacheStatus = CACHE_STALE; |
+ }else if( ALWAYS(p->pCursor) ){ |
+ int hasMoved; |
+ int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); |
+ if( rc ) return rc; |
+ if( hasMoved ){ |
+ p->cacheStatus = CACHE_STALE; |
+ p->nullRow = 1; |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The following functions: |
+** |
+** sqlite3VdbeSerialType() |
+** sqlite3VdbeSerialTypeLen() |
+** sqlite3VdbeSerialLen() |
+** sqlite3VdbeSerialPut() |
+** sqlite3VdbeSerialGet() |
+** |
+** encapsulate the code that serializes values for storage in SQLite |
+** data and index records. Each serialized value consists of a |
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
+** integer, stored as a varint. |
+** |
+** In an SQLite index record, the serial type is stored directly before |
+** the blob of data that it corresponds to. In a table record, all serial |
+** types are stored at the start of the record, and the blobs of data at |
+** the end. Hence these functions allow the caller to handle the |
+** serial-type and data blob seperately. |
+** |
+** The following table describes the various storage classes for data: |
+** |
+** serial type bytes of data type |
+** -------------- --------------- --------------- |
+** 0 0 NULL |
+** 1 1 signed integer |
+** 2 2 signed integer |
+** 3 3 signed integer |
+** 4 4 signed integer |
+** 5 6 signed integer |
+** 6 8 signed integer |
+** 7 8 IEEE float |
+** 8 0 Integer constant 0 |
+** 9 0 Integer constant 1 |
+** 10,11 reserved for expansion |
+** N>=12 and even (N-12)/2 BLOB |
+** N>=13 and odd (N-13)/2 text |
+** |
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
+** of SQLite will not understand those serial types. |
+*/ |
+ |
+/* |
+** Return the serial-type for the value stored in pMem. |
+*/ |
+u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ |
+ int flags = pMem->flags; |
+ int n; |
+ |
+ if( flags&MEM_Null ){ |
+ return 0; |
+ } |
+ if( flags&MEM_Int ){ |
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
+ i64 i = pMem->u.i; |
+ u64 u; |
+ if( file_format>=4 && (i&1)==i ){ |
+ return 8+(u32)i; |
+ } |
+ if( i<0 ){ |
+ if( i<(-MAX_6BYTE) ) return 6; |
+ /* Previous test prevents: u = -(-9223372036854775808) */ |
+ u = -i; |
+ }else{ |
+ u = i; |
+ } |
+ if( u<=127 ) return 1; |
+ if( u<=32767 ) return 2; |
+ if( u<=8388607 ) return 3; |
+ if( u<=2147483647 ) return 4; |
+ if( u<=MAX_6BYTE ) return 5; |
+ return 6; |
+ } |
+ if( flags&MEM_Real ){ |
+ return 7; |
+ } |
+ assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
+ n = pMem->n; |
+ if( flags & MEM_Zero ){ |
+ n += pMem->u.nZero; |
+ } |
+ assert( n>=0 ); |
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
+} |
+ |
+/* |
+** Return the length of the data corresponding to the supplied serial-type. |
+*/ |
+u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
+ if( serial_type>=12 ){ |
+ return (serial_type-12)/2; |
+ }else{ |
+ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; |
+ return aSize[serial_type]; |
+ } |
+} |
+ |
+/* |
+** If we are on an architecture with mixed-endian floating |
+** points (ex: ARM7) then swap the lower 4 bytes with the |
+** upper 4 bytes. Return the result. |
+** |
+** For most architectures, this is a no-op. |
+** |
+** (later): It is reported to me that the mixed-endian problem |
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
+** that early versions of GCC stored the two words of a 64-bit |
+** float in the wrong order. And that error has been propagated |
+** ever since. The blame is not necessarily with GCC, though. |
+** GCC might have just copying the problem from a prior compiler. |
+** I am also told that newer versions of GCC that follow a different |
+** ABI get the byte order right. |
+** |
+** Developers using SQLite on an ARM7 should compile and run their |
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
+** enabled, some asserts below will ensure that the byte order of |
+** floating point values is correct. |
+** |
+** (2007-08-30) Frank van Vugt has studied this problem closely |
+** and has send his findings to the SQLite developers. Frank |
+** writes that some Linux kernels offer floating point hardware |
+** emulation that uses only 32-bit mantissas instead of a full |
+** 48-bits as required by the IEEE standard. (This is the |
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
+** byte swapping becomes very complicated. To avoid problems, |
+** the necessary byte swapping is carried out using a 64-bit integer |
+** rather than a 64-bit float. Frank assures us that the code here |
+** works for him. We, the developers, have no way to independently |
+** verify this, but Frank seems to know what he is talking about |
+** so we trust him. |
+*/ |
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
+static u64 floatSwap(u64 in){ |
+ union { |
+ u64 r; |
+ u32 i[2]; |
+ } u; |
+ u32 t; |
+ |
+ u.r = in; |
+ t = u.i[0]; |
+ u.i[0] = u.i[1]; |
+ u.i[1] = t; |
+ return u.r; |
+} |
+# define swapMixedEndianFloat(X) X = floatSwap(X) |
+#else |
+# define swapMixedEndianFloat(X) |
+#endif |
+ |
+/* |
+** Write the serialized data blob for the value stored in pMem into |
+** buf. It is assumed that the caller has allocated sufficient space. |
+** Return the number of bytes written. |
+** |
+** nBuf is the amount of space left in buf[]. nBuf must always be |
+** large enough to hold the entire field. Except, if the field is |
+** a blob with a zero-filled tail, then buf[] might be just the right |
+** size to hold everything except for the zero-filled tail. If buf[] |
+** is only big enough to hold the non-zero prefix, then only write that |
+** prefix into buf[]. But if buf[] is large enough to hold both the |
+** prefix and the tail then write the prefix and set the tail to all |
+** zeros. |
+** |
+** Return the number of bytes actually written into buf[]. The number |
+** of bytes in the zero-filled tail is included in the return value only |
+** if those bytes were zeroed in buf[]. |
+*/ |
+u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ |
+ u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); |
+ u32 len; |
+ |
+ /* Integer and Real */ |
+ if( serial_type<=7 && serial_type>0 ){ |
+ u64 v; |
+ u32 i; |
+ if( serial_type==7 ){ |
+ assert( sizeof(v)==sizeof(pMem->r) ); |
+ memcpy(&v, &pMem->r, sizeof(v)); |
+ swapMixedEndianFloat(v); |
+ }else{ |
+ v = pMem->u.i; |
+ } |
+ len = i = sqlite3VdbeSerialTypeLen(serial_type); |
+ assert( len<=(u32)nBuf ); |
+ while( i-- ){ |
+ buf[i] = (u8)(v&0xFF); |
+ v >>= 8; |
+ } |
+ return len; |
+ } |
+ |
+ /* String or blob */ |
+ if( serial_type>=12 ){ |
+ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) |
+ == (int)sqlite3VdbeSerialTypeLen(serial_type) ); |
+ assert( pMem->n<=nBuf ); |
+ len = pMem->n; |
+ memcpy(buf, pMem->z, len); |
+ if( pMem->flags & MEM_Zero ){ |
+ len += pMem->u.nZero; |
+ assert( nBuf>=0 ); |
+ if( len > (u32)nBuf ){ |
+ len = (u32)nBuf; |
+ } |
+ memset(&buf[pMem->n], 0, len-pMem->n); |
+ } |
+ return len; |
+ } |
+ |
+ /* NULL or constants 0 or 1 */ |
+ return 0; |
+} |
+ |
+/* |
+** Deserialize the data blob pointed to by buf as serial type serial_type |
+** and store the result in pMem. Return the number of bytes read. |
+*/ |
+u32 sqlite3VdbeSerialGet( |
+ const unsigned char *buf, /* Buffer to deserialize from */ |
+ u32 serial_type, /* Serial type to deserialize */ |
+ Mem *pMem /* Memory cell to write value into */ |
+){ |
+ switch( serial_type ){ |
+ case 10: /* Reserved for future use */ |
+ case 11: /* Reserved for future use */ |
+ case 0: { /* NULL */ |
+ pMem->flags = MEM_Null; |
+ break; |
+ } |
+ case 1: { /* 1-byte signed integer */ |
+ pMem->u.i = (signed char)buf[0]; |
+ pMem->flags = MEM_Int; |
+ return 1; |
+ } |
+ case 2: { /* 2-byte signed integer */ |
+ pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; |
+ pMem->flags = MEM_Int; |
+ return 2; |
+ } |
+ case 3: { /* 3-byte signed integer */ |
+ pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; |
+ pMem->flags = MEM_Int; |
+ return 3; |
+ } |
+ case 4: { /* 4-byte signed integer */ |
+ pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
+ pMem->flags = MEM_Int; |
+ return 4; |
+ } |
+ case 5: { /* 6-byte signed integer */ |
+ u64 x = (((signed char)buf[0])<<8) | buf[1]; |
+ u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; |
+ x = (x<<32) | y; |
+ pMem->u.i = *(i64*)&x; |
+ pMem->flags = MEM_Int; |
+ return 6; |
+ } |
+ case 6: /* 8-byte signed integer */ |
+ case 7: { /* IEEE floating point */ |
+ u64 x; |
+ u32 y; |
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
+ /* Verify that integers and floating point values use the same |
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
+ ** defined that 64-bit floating point values really are mixed |
+ ** endian. |
+ */ |
+ static const u64 t1 = ((u64)0x3ff00000)<<32; |
+ static const double r1 = 1.0; |
+ u64 t2 = t1; |
+ swapMixedEndianFloat(t2); |
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
+#endif |
+ |
+ x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
+ y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; |
+ x = (x<<32) | y; |
+ if( serial_type==6 ){ |
+ pMem->u.i = *(i64*)&x; |
+ pMem->flags = MEM_Int; |
+ }else{ |
+ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); |
+ swapMixedEndianFloat(x); |
+ memcpy(&pMem->r, &x, sizeof(x)); |
+ pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; |
+ } |
+ return 8; |
+ } |
+ case 8: /* Integer 0 */ |
+ case 9: { /* Integer 1 */ |
+ pMem->u.i = serial_type-8; |
+ pMem->flags = MEM_Int; |
+ return 0; |
+ } |
+ default: { |
+ u32 len = (serial_type-12)/2; |
+ pMem->z = (char *)buf; |
+ pMem->n = len; |
+ pMem->xDel = 0; |
+ if( serial_type&0x01 ){ |
+ pMem->flags = MEM_Str | MEM_Ephem; |
+ }else{ |
+ pMem->flags = MEM_Blob | MEM_Ephem; |
+ } |
+ return len; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+ |
+/* |
+** Given the nKey-byte encoding of a record in pKey[], parse the |
+** record into a UnpackedRecord structure. Return a pointer to |
+** that structure. |
+** |
+** The calling function might provide szSpace bytes of memory |
+** space at pSpace. This space can be used to hold the returned |
+** VDbeParsedRecord structure if it is large enough. If it is |
+** not big enough, space is obtained from sqlite3_malloc(). |
+** |
+** The returned structure should be closed by a call to |
+** sqlite3VdbeDeleteUnpackedRecord(). |
+*/ |
+UnpackedRecord *sqlite3VdbeRecordUnpack( |
+ KeyInfo *pKeyInfo, /* Information about the record format */ |
+ int nKey, /* Size of the binary record */ |
+ const void *pKey, /* The binary record */ |
+ char *pSpace, /* Unaligned space available to hold the object */ |
+ int szSpace /* Size of pSpace[] in bytes */ |
+){ |
+ const unsigned char *aKey = (const unsigned char *)pKey; |
+ UnpackedRecord *p; /* The unpacked record that we will return */ |
+ int nByte; /* Memory space needed to hold p, in bytes */ |
+ int d; |
+ u32 idx; |
+ u16 u; /* Unsigned loop counter */ |
+ u32 szHdr; |
+ Mem *pMem; |
+ int nOff; /* Increase pSpace by this much to 8-byte align it */ |
+ |
+ /* |
+ ** We want to shift the pointer pSpace up such that it is 8-byte aligned. |
+ ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift |
+ ** it by. If pSpace is already 8-byte aligned, nOff should be zero. |
+ */ |
+ nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; |
+ pSpace += nOff; |
+ szSpace -= nOff; |
+ nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); |
+ if( nByte>szSpace ){ |
+ p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
+ if( p==0 ) return 0; |
+ p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; |
+ }else{ |
+ p = (UnpackedRecord*)pSpace; |
+ p->flags = UNPACKED_NEED_DESTROY; |
+ } |
+ p->pKeyInfo = pKeyInfo; |
+ p->nField = pKeyInfo->nField + 1; |
+ p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ idx = getVarint32(aKey, szHdr); |
+ d = szHdr; |
+ u = 0; |
+ while( idx<szHdr && u<p->nField && d<=nKey ){ |
+ u32 serial_type; |
+ |
+ idx += getVarint32(&aKey[idx], serial_type); |
+ pMem->enc = pKeyInfo->enc; |
+ pMem->db = pKeyInfo->db; |
+ pMem->flags = 0; |
+ pMem->zMalloc = 0; |
+ d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
+ pMem++; |
+ u++; |
+ } |
+ assert( u<=pKeyInfo->nField + 1 ); |
+ p->nField = u; |
+ return (void*)p; |
+} |
+ |
+/* |
+** This routine destroys a UnpackedRecord object. |
+*/ |
+void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ |
+ int i; |
+ Mem *pMem; |
+ |
+ assert( p!=0 ); |
+ assert( p->flags & UNPACKED_NEED_DESTROY ); |
+ for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ |
+ /* The unpacked record is always constructed by the |
+ ** sqlite3VdbeUnpackRecord() function above, which makes all |
+ ** strings and blobs static. And none of the elements are |
+ ** ever transformed, so there is never anything to delete. |
+ */ |
+ if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); |
+ } |
+ if( p->flags & UNPACKED_NEED_FREE ){ |
+ sqlite3DbFree(p->pKeyInfo->db, p); |
+ } |
+} |
+ |
+/* |
+** This function compares the two table rows or index records |
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
+** or positive integer if key1 is less than, equal to or |
+** greater than key2. The {nKey1, pKey1} key must be a blob |
+** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 |
+** key must be a parsed key such as obtained from |
+** sqlite3VdbeParseRecord. |
+** |
+** Key1 and Key2 do not have to contain the same number of fields. |
+** The key with fewer fields is usually compares less than the |
+** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set |
+** and the common prefixes are equal, then key1 is less than key2. |
+** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are |
+** equal, then the keys are considered to be equal and |
+** the parts beyond the common prefix are ignored. |
+** |
+** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of |
+** the header of pKey1 is ignored. It is assumed that pKey1 is |
+** an index key, and thus ends with a rowid value. The last byte |
+** of the header will therefore be the serial type of the rowid: |
+** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. |
+** The serial type of the final rowid will always be a single byte. |
+** By ignoring this last byte of the header, we force the comparison |
+** to ignore the rowid at the end of key1. |
+*/ |
+int sqlite3VdbeRecordCompare( |
+ int nKey1, const void *pKey1, /* Left key */ |
+ UnpackedRecord *pPKey2 /* Right key */ |
+){ |
+ int d1; /* Offset into aKey[] of next data element */ |
+ u32 idx1; /* Offset into aKey[] of next header element */ |
+ u32 szHdr1; /* Number of bytes in header */ |
+ int i = 0; |
+ int nField; |
+ int rc = 0; |
+ const unsigned char *aKey1 = (const unsigned char *)pKey1; |
+ KeyInfo *pKeyInfo; |
+ Mem mem1; |
+ |
+ pKeyInfo = pPKey2->pKeyInfo; |
+ mem1.enc = pKeyInfo->enc; |
+ mem1.db = pKeyInfo->db; |
+ /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
+ VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ |
+ |
+ /* Compilers may complain that mem1.u.i is potentially uninitialized. |
+ ** We could initialize it, as shown here, to silence those complaints. |
+ ** But in fact, mem1.u.i will never actually be used initialized, and doing |
+ ** the unnecessary initialization has a measurable negative performance |
+ ** impact, since this routine is a very high runner. And so, we choose |
+ ** to ignore the compiler warnings and leave this variable uninitialized. |
+ */ |
+ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
+ |
+ idx1 = getVarint32(aKey1, szHdr1); |
+ d1 = szHdr1; |
+ if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ |
+ szHdr1--; |
+ } |
+ nField = pKeyInfo->nField; |
+ while( idx1<szHdr1 && i<pPKey2->nField ){ |
+ u32 serial_type1; |
+ |
+ /* Read the serial types for the next element in each key. */ |
+ idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
+ if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; |
+ |
+ /* Extract the values to be compared. |
+ */ |
+ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
+ |
+ /* Do the comparison |
+ */ |
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], |
+ i<nField ? pKeyInfo->aColl[i] : 0); |
+ if( rc!=0 ){ |
+ assert( mem1.zMalloc==0 ); /* See comment below */ |
+ |
+ /* Invert the result if we are using DESC sort order. */ |
+ if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){ |
+ rc = -rc; |
+ } |
+ |
+ /* If the PREFIX_SEARCH flag is set and all fields except the final |
+ ** rowid field were equal, then clear the PREFIX_SEARCH flag and set |
+ ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). |
+ ** This is used by the OP_IsUnique opcode. |
+ */ |
+ if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ |
+ assert( idx1==szHdr1 && rc ); |
+ assert( mem1.flags & MEM_Int ); |
+ pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; |
+ pPKey2->rowid = mem1.u.i; |
+ } |
+ |
+ return rc; |
+ } |
+ i++; |
+ } |
+ |
+ /* No memory allocation is ever used on mem1. Prove this using |
+ ** the following assert(). If the assert() fails, it indicates a |
+ ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
+ */ |
+ assert( mem1.zMalloc==0 ); |
+ |
+ /* rc==0 here means that one of the keys ran out of fields and |
+ ** all the fields up to that point were equal. If the UNPACKED_INCRKEY |
+ ** flag is set, then break the tie by treating key2 as larger. |
+ ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes |
+ ** are considered to be equal. Otherwise, the longer key is the |
+ ** larger. As it happens, the pPKey2 will always be the longer |
+ ** if there is a difference. |
+ */ |
+ assert( rc==0 ); |
+ if( pPKey2->flags & UNPACKED_INCRKEY ){ |
+ rc = -1; |
+ }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ |
+ /* Leave rc==0 */ |
+ }else if( idx1<szHdr1 ){ |
+ rc = 1; |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** pCur points at an index entry created using the OP_MakeRecord opcode. |
+** Read the rowid (the last field in the record) and store it in *rowid. |
+** Return SQLITE_OK if everything works, or an error code otherwise. |
+** |
+** pCur might be pointing to text obtained from a corrupt database file. |
+** So the content cannot be trusted. Do appropriate checks on the content. |
+*/ |
+int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
+ i64 nCellKey = 0; |
+ int rc; |
+ u32 szHdr; /* Size of the header */ |
+ u32 typeRowid; /* Serial type of the rowid */ |
+ u32 lenRowid; /* Size of the rowid */ |
+ Mem m, v; |
+ |
+ UNUSED_PARAMETER(db); |
+ |
+ /* Get the size of the index entry. Only indices entries of less |
+ ** than 2GiB are support - anything large must be database corruption. |
+ ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
+ ** this code can safely assume that nCellKey is 32-bits |
+ */ |
+ assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ rc = sqlite3BtreeKeySize(pCur, &nCellKey); |
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
+ assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
+ |
+ /* Read in the complete content of the index entry */ |
+ memset(&m, 0, sizeof(m)); |
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); |
+ if( rc ){ |
+ return rc; |
+ } |
+ |
+ /* The index entry must begin with a header size */ |
+ (void)getVarint32((u8*)m.z, szHdr); |
+ testcase( szHdr==3 ); |
+ testcase( szHdr==m.n ); |
+ if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ |
+ /* The last field of the index should be an integer - the ROWID. |
+ ** Verify that the last entry really is an integer. */ |
+ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
+ testcase( typeRowid==1 ); |
+ testcase( typeRowid==2 ); |
+ testcase( typeRowid==3 ); |
+ testcase( typeRowid==4 ); |
+ testcase( typeRowid==5 ); |
+ testcase( typeRowid==6 ); |
+ testcase( typeRowid==8 ); |
+ testcase( typeRowid==9 ); |
+ if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
+ testcase( (u32)m.n==szHdr+lenRowid ); |
+ if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
+ goto idx_rowid_corruption; |
+ } |
+ |
+ /* Fetch the integer off the end of the index record */ |
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
+ *rowid = v.u.i; |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_OK; |
+ |
+ /* Jump here if database corruption is detected after m has been |
+ ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
+idx_rowid_corruption: |
+ testcase( m.zMalloc!=0 ); |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_CORRUPT_BKPT; |
+} |
+ |
+/* |
+** Compare the key of the index entry that cursor pC is pointing to against |
+** the key string in pUnpacked. Write into *pRes a number |
+** that is negative, zero, or positive if pC is less than, equal to, |
+** or greater than pUnpacked. Return SQLITE_OK on success. |
+** |
+** pUnpacked is either created without a rowid or is truncated so that it |
+** omits the rowid at the end. The rowid at the end of the index entry |
+** is ignored as well. Hence, this routine only compares the prefixes |
+** of the keys prior to the final rowid, not the entire key. |
+*/ |
+int sqlite3VdbeIdxKeyCompare( |
+ VdbeCursor *pC, /* The cursor to compare against */ |
+ UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ |
+ int *res /* Write the comparison result here */ |
+){ |
+ i64 nCellKey = 0; |
+ int rc; |
+ BtCursor *pCur = pC->pCursor; |
+ Mem m; |
+ |
+ assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ rc = sqlite3BtreeKeySize(pCur, &nCellKey); |
+ assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
+ /* nCellKey will always be between 0 and 0xffffffff because of the say |
+ ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
+ if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
+ *res = 0; |
+ return SQLITE_CORRUPT_BKPT; |
+ } |
+ memset(&m, 0, sizeof(m)); |
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); |
+ if( rc ){ |
+ return rc; |
+ } |
+ assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); |
+ *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
+ sqlite3VdbeMemRelease(&m); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This routine sets the value to be returned by subsequent calls to |
+** sqlite3_changes() on the database handle 'db'. |
+*/ |
+void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
+ assert( sqlite3_mutex_held(db->mutex) ); |
+ db->nChange = nChange; |
+ db->nTotalChange += nChange; |
+} |
+ |
+/* |
+** Set a flag in the vdbe to update the change counter when it is finalised |
+** or reset. |
+*/ |
+void sqlite3VdbeCountChanges(Vdbe *v){ |
+ v->changeCntOn = 1; |
+} |
+ |
+/* |
+** Mark every prepared statement associated with a database connection |
+** as expired. |
+** |
+** An expired statement means that recompilation of the statement is |
+** recommend. Statements expire when things happen that make their |
+** programs obsolete. Removing user-defined functions or collating |
+** sequences, or changing an authorization function are the types of |
+** things that make prepared statements obsolete. |
+*/ |
+void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
+ Vdbe *p; |
+ for(p = db->pVdbe; p; p=p->pNext){ |
+ p->expired = 1; |
+ } |
+} |
+ |
+/* |
+** Return the database associated with the Vdbe. |
+*/ |
+sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
+ return v->db; |
+} |
+ |
+/* |
+** Return a pointer to an sqlite3_value structure containing the value bound |
+** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
+** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
+** constants) to the value before returning it. |
+** |
+** The returned value must be freed by the caller using sqlite3ValueFree(). |
+*/ |
+sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ |
+ assert( iVar>0 ); |
+ if( v ){ |
+ Mem *pMem = &v->aVar[iVar-1]; |
+ if( 0==(pMem->flags & MEM_Null) ){ |
+ sqlite3_value *pRet = sqlite3ValueNew(v->db); |
+ if( pRet ){ |
+ sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
+ sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
+ sqlite3VdbeMemStoreType((Mem *)pRet); |
+ } |
+ return pRet; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Configure SQL variable iVar so that binding a new value to it signals |
+** to sqlite3_reoptimize() that re-preparing the statement may result |
+** in a better query plan. |
+*/ |
+void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
+ assert( iVar>0 ); |
+ if( iVar>32 ){ |
+ v->expmask = 0xffffffff; |
+ }else{ |
+ v->expmask |= ((u32)1 << (iVar-1)); |
+ } |
+} |